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distribution of ideas. If that distribution is Pareto, then two results obtain: the global production

function is Cobb-Douglas, and technical change in the long run is labor-augmenting. Kortum (1997)
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growth. Here we show that this same assumption delivers the additional results about the shape of

the production function and the direction of technical change.
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1. INTRODUCTION

Where do production functions come from? To take a common example,

our models frequently specify a relation y = f(k, ·) that determines how

much output per worker y can be produced with any quantity of capital per

worker k. We typically assume the economy is endowed with this function,

but what microfoundations can be provided to tell us more about it?

Suppose production techniques are discovered, i.e. they are ideas. One

example of such an idea would be a Leontief technology that says, “for each

unit of labor, take k∗ units of capital. Follow these instructions [omitted],

and you will get out y∗ units of output.” The values k∗ and y∗ are parameters

of this production technique.

If one wants to produce with a very different capital-labor ratio from

k∗, the Leontief technique is not particularly helpful, and one needs to

discover a new idea “appropriate” to the higher capital-labor ratio.1 Notice

that one can replace the Leontief structure with a production technology that

exhibits a low elasticity of substitution, and this statement remains true: to

take advantage of a substantially higher capital-labor ratio, one really needs

a new technique targetted at that capital-labor ratio. One needs a new idea.

According to this view, the standard production function that we write

down, mapping the entire range of capital-labor ratios into output per

worker, is a reduced form. It is not a single technology, but rather rep-

resents the substitution possibilities across different production techniques.

The elasticity of substitution for this global production function depends on

the extent to which new techniques that are appropriate at higher capital-

labor ratios have been discovered. That is, it depends on the distribution of

ideas.

But from what distribution are ideas drawn? Kortum (1997) examined

a search model of growth in which ideas are productivity levels that are

1This use of appropriate technologies is related to Basu and Weil (1998).
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drawn from a distribution. He showed that the only way to get exponential

growth in such a model is if ideas are drawn from a Pareto distribution, at

least in the upper tail.

This same basic assumption, that ideas are drawn from a Pareto distribu-

tion, yields two additional results in the framework considered here. First,

the global production function is Cobb-Douglas. Second, technological

change is purely labor-augmenting in the long run. In other words, an

assumption Kortum (1997) suggests we make if we want a model to ex-

hibit steady-state growth leads to important predictions about the shape of

production functions and the direction of technical change.

Section 2 of this paper presents a simple baseline model that illustrates

all of the main results of this paper. In particular, that section shows how a

specific shape for the technology frontier produces a Cobb-Douglas produc-

tion function and labor-augmenting technical change. Section 3 develops

the full model with richer microfoundations and derives the Cobb-Douglas

result, while Section 4 discusses the underlying assumptions and the re-

lationship between this model and Houthakker (1955–1956). Section 5

develops the implications for the direction of technical change. Section 6

provides a numerical example of the model, and Section 7 concludes.

2. A BASELINE MODEL
2.1. Preliminaries

Let a particular production technique — call it technique i — be defined

by two parameters, ai and bi. With this technique, output Y can be produced

with capital K and labor L according to a (local) production function

Y = F̃ (biK, aiL). (1)

We assume that F̃ (·, ·) exhibits an elasticity of substitution less than one

between its inputs and constant returns to scale in K and L. In addition,
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we make the usual neoclassical assumption that F̃ possesses positive but

diminishing marginal products and satisfies the Inada conditions.

This production function can be rearranged to give

Y = aiLF̃

(

biK

aiL
, 1

)

, (2)

so that in per worker terms we have

y = aiF̃

(

bi

ai
k, 1

)

, (3)

where y ≡ Y/L and k ≡ K/L. Now, define yi ≡ ai and ki ≡ ai/bi. Then

the production technique can be written as

y = yiF̃

(

k

ki
, 1

)

. (4)

If we choose our units so that F̃ (1, 1) = 1, then we have the nice property

that k = ki implies that y = yi. Therefore, we can think of technique i as

being indexed by ai and bi, or, equivalently, by ki and yi.

The shape of the global production function is driven by the distribu-

tion of alternative production techniques rather than by the shape of the

local production function that applies for a single technique.2 To illustrate

this, consider the example given in Figure 1. The circles in this figure de-

note different production techniques that are available — the set of (ki, yi)

pairs. For a subset of these, we also plot the local production function

y = F̃ (bik, ai). Finally, the heavy solid line shows the global production

function, given by the convex hull of the local production techniques. For

any given level of k, the global production function shows the maximum

amount of output per worker that can be produced using the set of ideas

that are available.
2Other models in the literature feature a difference between the short-run and long-run

elasticities of substitution, as opposed to the local-global distinction made here. These
include the putty-clay models of Caballero and Hammour (1998) and Gilchrist and Williams
(2000).
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FIGURE 1. An Example of the Global Production Function

 

 

 k

 y

Circles identify distinct production techniques; for some of these, the lo-
cal production function associated with the technique has been drawn as
a dashed line. The heavy solid line shows the convex hull of the local
production functions, i.e. the global production function.

The key question we’d like to answer is this: What is the shape of the

global production function? To make progress, we now turn to a simple

baseline model.

2.2. The Baseline Model

We begin with a simple model, really not much more than an example.

However this baseline model turns out to be very useful: it is easy to analyze

and captures the essence of the model with more detailed microfoundations

that is presented in Section 3.

At any given point in time, a firm (or the economy) has a stock of ideas

from which to choose. To characterize the global production function,
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notice that for each point in the input space, the economy will choose to

produce with the idea that yields the largest amount of output.

To make this problem more precise, suppose N is the cumulative amount

of research the firm has undertaken, and suppose this research has generated

a menu of technology choices given by

b = H(a, N) (5)

where Ha < 0 and HN > 0. From its research effort, N , the firm discovers

a set of ideas. The frontier of this set is a technology menu that involves a

tradeoff between ideas with a high level of a and ideas with a high level of

b. As more research is conducted, N rises, the firm discovers more ideas,

and this menu shifts out.

The firm’s problem then is to choose a and b from the technology menu

to maximize the level of production for any given set of inputs, and this

defines the global production function:

Y = F (K, L; N) ≡ max
b,a

F̃ (bK, aL) (6)

subject to (5), assuming K, L, and N are given. As discussed above, we

assume that F̃ (·, ·) has an elasticity of substitution less than one and exhibits

constant returns to scale in K and L.

Notice that the problem here is to choose the levels of a and b. Related

problems appear in the literature on the direction of technical change; see

Acemoglu (2003a), Kennedy (1964), Samuelson (1965) and Drandakis and

Phelps (1966). However, in these problems the choice variables and the

constraints are typically expressed in terms of the growth rates of a and b

rather than the levels, resulting in a conceptually different problem. There,

the notion is that one can choose whether to discover ideas with a high a or

a high b. Here, the notion is that one discovers ideas in undirected search,

and that each idea is an (a, b) pair.
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FIGURE 2. Direction of Technical Change

a*

b*

 a

 b

 Y = Y *

 b = H(a, N)

The solution to this problem is straightforward. Graphically, it is shown

in Figure 2. Algebraically, an interior solution equates the ratio of the labor

and capital shares to the elasticity of the H curve:

1 − θK

θK
= −

∂H

∂a

a

H
≡ ηHa, (7)

where θK(a, b; K, L) ≡ F̃1bK/Y .

In Figure 2, we drew the technology menu as convex to the origin. Of

course, this is just for illustrative purposes; we could have drawn the curve as

concave or linear. However, it turns out that the constant elasticity version of

the convex curve delivers a particularly nice result.3 In particular, suppose

the constraint is given by

b = Na−η, η > 0. (8)

3In this case, the assumption that F̃ has an elasticity of substitution less than one guaran-
tees that the iso-output curves are more sharply curved than the technology menu, producing
an interior solution.
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In this case, the elasticity ηHa = η is constant, so the choice of the technol-

ogy levels leads to a first-order condition that sets the capital share equal to

the constant 1/1 + η.

The constancy of the capital share then leads to two useful and interesting

results. First, the global production function takes a Cobb-Douglas form:

for any levels of the inputs K and L, and any location of the technology

frontier, N , the choice of technology leads the elasticity of output with

respect to capital and labor to be constant.

In fact, it is easy to derive the exact form of the global production function

by combining the local-global insights of Section 2.1 with the technology

menu. For some technique i, recall the equivalent ways we have of describ-

ing the technique:

yi ≡ ai (9)

ki ≡
ai

bi
(10)

From the technology frontier in equation (8), we know that bi and ai are

related by bi = Na−η
i . Simple algebra shows that yi and ki are therefore

related by

yi = (Nki)
1/1+η. (11)

That is, given the constant elasticity form of the technology frontier, a plot

of the techniques in (k, y) space like that in Figure 1 yields a Cobb-Douglas

production function. With this continuous formulation for the frontier, the

global production function is exactly equal to the technology frontier in

(k, y) space.4 Multiplying by L to get back to the standard form, the global

4For this to be true, we need the local production techniques to paste up smoothly with
the global production function. For example, if F̃ is a CES function with a capital share
parameter λ (see, for example, equation (33) below), the global production function is
actually proportional to that in equation (12). To make the factor of proportionality equal
to one, we need λ = 1/1 + η, so that the factor share at k = ki is exactly 1/1 + η.
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production function is given by

Y = N θKθL1−θ, (12)

where θ ≡ 1/1 + η.

The second key result is related to the direction of technical change. To

see this, consider embedding this production setup in a standard neoclassical

growth model.5 The fact that the global production function is Cobb-

Douglas implies immediately that such a model will exhibit a balanced

growth path with positive growth provided N grows exponentially.

The balanced growth path result turns out to have a strong implication

for the direction of technical change. This is just an application of the

Steady-State Growth Theorem: If a neoclassical growth model exhibits

steady-state growth with a nonzero capital share, then either the production

function is Cobb-Douglas or technical change is labor augmenting.6 Since

the local production function is not Cobb-Douglas and since production

always occurs with some local production technique, this must mean that in

the long run, technical change is purely labor augmenting and b is constant.

Moreover, the fact that the capital share equals 1/1 + η implies that the

level of b is chosen so that the capital share is invariant to the capital-output

ratio, one of the key results in Acemoglu (2003b).7

5By this we mean the usual Ramsey-Cass-Koopmans model with isoelastic utility, con-
stant population growth, and constant growth in N .

6For a discussion and proof of this theorem, see Barro and Sala-i-Martin (1995), Chapter
2. The nonzero capital share qualification is important. For example, a neoclassical growth
model with a CES production function Y = F (BK, AL) with an elasticity of substitution
less than one and with exponential growth in A and B does have a balanced growth path.
Asymptotically, production behaves as if there were an infinite amount of effective capital
so that Y = AL.

7As an example, if the local production function takes the CES form given in equation (33),
it is straightforward to show that the level of b is chosen as

b =

(

1

λ
·

1

1 + η

)1/ρ
Y

K
.
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What is the intuition for the result that technical change is purely labor

augmenting? Notice that in steady state K/Y must be constant. To have

a positive capital share, then, the marginal product of capital must also be

positive and constant. An increase in b has two effects: first, it raises the

marginal product of capital directly. But second, it increases the amount of

effective capital, driving down the marginal product. In the Cobb-Douglas

case, these two effects cancel, but otherwise one or the other dominates,

imparting a trend to the marginal product unless b is constant.8

The insight from this simple example is that if the technology frontier —

i.e. the way in which the levels of a and b trade off — exhibits a constant

elasticity, then the global production function will be Cobb-Douglas and

technological change will be labor-augmenting in the long run. But is there

any reason to think that the technology frontier takes this particular shape?

3. MICROFOUNDATIONS: PARETO DISTRIBUTIONS

The baseline model is straightforward and yields strong predictions.

However, it involves a very particular specification of the technology menu.

It turns out that this specification can be derived from a model of ideas with

substantially richer microfoundations. This is the subject of the current

section.9

The fact that Y/K is constant along a balanced growth path then delivers the constancy of
b.

8Another intuition is the following. Notice that Y = F̃ (bK, aL) has an elasticity of
substitution between effective capital and effective labor that is less than one. Therefore,
K and a are relative complements while b and K are relative substitutes (the elasticity of
substitution between b and K is equal to one). Capital accumulation substitutes for growth
in b while it complements and reinforces growth in a.

9I owe a large debt to Sam Kortum in this section. A previous version of this paper
contained a much more cumbersome derivation of the Cobb-Douglas result that applied
asymptotically as research effort gets large. Kortum, in discussing this earlier version at a
conference, offered a number of useful comments that simplified the presentation, including
the Poisson approach that follows. The asymptotic approach gets by without making the
Poisson assumption, while the Poisson approach is more tractable and delivers a result that
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3.1. Setup

Let i = 0, 1, . . . index the production techniques — the ideas — that

are available at a given point in time. The production technique associated

with idea i is F̃ (biK, aiL). Because it results in a more tractable problem

that yields analytic results, we make the extreme assumption that this local

production technology is Leontief:

Y = F̃ (biK, aiL) = min{biK, aiL}. (13)

Of course, the intuition regarding the global production function suggests

that it is determined by the distribution of ideas, not by the shape of the

local production function. In later simulation results, we confirm that the

Leontief assumption can be relaxed.

New ideas for production are discovered through research. A single re-

search endeavor yields a number of ideas drawn from a Poisson distribution

with a parameter normalized to one. In expectation, then, each research

endeavor yields one idea. Let N denote the cumulative number of research

endeavors that have been undertaken. Then the number of ideas, n that

have been discovered as a result of these N attempts is a random variable

drawn from a Poisson distribution with parameter N .

The discovery of an idea results in a new production technique, de-

scribed by its labor-augmenting and capital-augmenting parameters ai and

bi. These parameters are drawn from a joint distribution given by

Prob [bi > b, ai > a] = G(b, a), (14)

where the support for this distribution is ai ≥ γa > 0 and bi ≥ γb > 0. We

specify this distribution in its complementary form because this simplifies

some of the equations that follow.

applies for finite research effort. The asymptotic result that drops the Poisson assumption
is developed in the Appendix.
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3.2. Deriving the Production Function

The global production function describes, as a function of inputs, the

maximum amount of output that can be produced using any combination of

existing production techniques. We have already made one simplification

in our setup by limiting consideration to Leontief techniques. Now we

make another by ignoring combinations of techniques and allowing only a

single technique to be used at each point in time. Again, this is a simplifying

assumption that allows for an analytic result, but it will be relaxed later in

the numerical simulations.

Definition 3.1. The global production function F (K, L; n) is given
as

F (K, L; n) ≡ max
i∈{0,...,n−1}

F̃ (biK, aiL) (15)

We build up to characterizing this object through several steps. First, con-

sider particular levels of the inputs, K and L. Let Yi(K, L) ≡ F̃ (biK, aiL)

denote output using technique i. Then, since F̃ is Leontief, the distribution

of Yi is given by10

Prob [Yi > ỹ] = Prob [biK > ỹ, aiL > ỹ]

= G(ỹ/K, ỹ/L). (16)

Next, suppose there are n ideas that have been discovered. In this case,

the output level associated with the global production function is distributed

as

Prob [max
i

{Yi} ≤ ỹ] = (1 − G(ỹ/K, ỹ/L))n (17)

10Since bi ≥ γb and ai ≥ γa, the support for this distribution is ỹ ≥ max{γbK, γaL}.
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At this point, we can use the nice properties of the Poisson distribution

to make further progress. Recall that n ∼ Poisson(N), so as a function

of the total number of research attempts, N , we have

Prob [max{ Yi } ≤ ỹ]

=
∞
∑

n=0

e−NNn

n!
(1 − G(ỹ/K, ỹ/L))n

= e−N
∞
∑

n=0

(N(1 − G(ỹ/K, ỹ/L)))n

n!

= e−N · eN(1−G(·))

= e−NG(ỹ/K,ỹ/L). (18)

For a general joint distribution function G, this last equation describes the

distribution of the global production function when cumulative research

effort is N .11

To go further, we now make a key assumption about the distribution of

ideas:

Assumption 3.1. Ideas are drawn from independent Pareto distribu-

tions:

Prob [ai ≤ a] = 1 −

(

a

γa

)−α

, a ≥ γa > 0 (19)

Prob [bi ≤ b] = 1 −

(

b

γb

)−β

, b ≥ γb > 0, (20)

where α > 0, β > 0, and α + β > 1.12

11See Proposition 2.1 in Kortum (1997) for this style of reasoning, i.e. for an approach
that uses a Poisson process to get an exact extreme value distribution that is easy to work
with rather than an asymptotic result. See also Johnson, Kotz and Balakrishnan (1994),
pages 11 and 91–92.

12This last condition that the sum of the two parameters be greater than one is needed so
that the mean of the Fréchet distribution below exists. On a related point, recall that for a
Pareto distribution, the kth moment exists only if the shape parameter (e.g. α or β) is larger
than k.
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With this assumption, the joint distribution of ai and bi satisfies

Prob [bi > b, ai > a] = G(b, a) =

(

b

γb

)−β ( a

γa

)−α

. (21)

And therefore,

Prob [Yi > ỹ] = G(ỹ/K, ỹ/L) = γKβLαỹ−(α+β) (22)

where γ ≡ γα
a γβ

b . That is, the distribution of Yi is itself Pareto.

The final step is to combine the Pareto assumption with the global produc-

tion function result derived in equation (18). It is straightforward to show

that the distribution of the output that can be produced with the global

production function, given inputs of K and L, is

Prob [max{Yi} ≤ ỹ] = e−γNKβLαỹ−(α+β)
. (23)

This distribution is known as a Fréchet distribution.13

Finally, taking expectations over this distribution, one sees that expected

output, given N cumulative research draws and inputs K and L, is given

by

E[Y ] ≡ E[max Yi] = µ
(

γNKβLα
)

1
α+β (24)

where µ ≡ Γ(1−1/(α+β)) is a constant that depends on Euler’s factorial

function.14

13See Kortum (1997), Galambos (1978), and Castillo (1988) for more.
14Surprisingly few of the reference books on extreme value theory actually report the mean

of the Fréchet distribution. For a distribution function F (x) = exp(−((x − λ)/δ)−β),
Castillo (1988) reports that the mean is λ + δΓ(1 − 1/β) for β > 1.
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One can also use the distribution in equation (23) to write the level of

output as a random variable:15

Y =
(

γNKβLα
)

1
α+β ε (25)

where ε is a random variable drawn from a Fréchet distribution with shape

parameter α + β and a scale parameter equal to unity.

The Poisson structure for the arrival of ideas is a convenient device for

simplifying the presentation of the Cobb-Douglas result, but it is not nec-

essary. The Appendix derives the Cobb-Douglas production function as an

asymptotic result when the number of ideas gets large.

4. DISCUSSION

The result given in equation (25) is one of the main results in the paper.

If ideas are drawn from Pareto distributions, then the global production

function takes, at least in expectation, the Cobb-Douglas form. For any

given production technique, a firm may find it difficult to substitute capital

for labor and vice versa, leading the curvature of the production technique

to set in quickly. However, when firms are allowed to switch between

production technologies, the global production function depends on the

distribution of ideas. If that distribution happens to be a Pareto distribution,

then the production function is Cobb-Douglas.

We can now make a number of remarks. First, the exponent in the Cobb-

Douglas function depends directly on the parameters of the Pareto search

distributions. The easier it is to find ideas that augment a particular factor,

the lower is the relevant Pareto parameter (e.g. α or β), and the lower

is the exponent on that factor. Intuitively, better ideas on average reduce

15In particular, notice that

Prob [Y/z ≤ ỹ] = exp(−ỹ−(α+β))

where z ≡ (γKβLα)1/α+β .
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factor shares because the elasticity of substitution is less than one. Some

additional remarks follow.

4.1. Relationship to the Baseline Model

The simple baseline model given at the beginning of this paper postulated

a technology menu and showed that if this menu exhibited a constant elas-

ticity, then one could derive a Cobb-Douglas global production function.

The model with microfoundations based on Pareto distributions turns out

to deliver a stochastic version of this technology menu.

In the model, the stochastic version of this menu can be seen by con-

sidering an iso-probability curve Prob [bi > b, ai > a] ≡ G(b, a) = C,

where C > 0 is some constant. With the joint Pareto distribution, this

iso-probability curve is given by

b =

(

γ

C

)1/β

a−α/β . (26)

This iso-curve has a constant elasticity equal to −α/β and shifts up as the

probability C is lowered, analogous to an increase in N in the baseline

model.

In terms of the baseline model, the Pareto distribution therefore delivers

ηHa = α/β. The first-order condition in equation (7) then implies that

technologies will be chosen so that the capital share is equal to β/(α +

β), which is exactly the exponent in the global Cobb-Douglas production

function of the Pareto model, as shown in equation (25).

4.2. Houthakker (1955–1956)

The notion that Pareto distributions, appropriately “kicked,” can deliver a

Cobb-Douglas production function is a classic result by Houthakker (1955–

1956). Houthakker considers a world of production units (e.g. firms)

that produce with Leontief technologies where the Leontief coefficients are

distributed across firms according to a Pareto distribution. Importantly,



PRODUCTION FUNCTIONS AND TECHNICAL CHANGE 17

each firm has limited capacity, so that the only way to expand output is to

use additional firms. Houthakker then shows that the aggregate production

function across these units is Cobb-Douglas.

The result here obviously builds directly on Houthakker’s insight that

Pareto distributions can generate Cobb-Douglas production functions. The

result differs from Houthakker’s in several ways, however. First, Houthakker’s

result is an aggregation result. Here, in contrast, the result applies at the

level of a single production unit (be it a firm, industry, or country). Second,

the Leontief restriction in Houthakker’s paper is important for the result;

it allows the aggregation to be a function only of the Pareto distributions.

Here, in contrast, the result is really about the shape of the global produc-

tion function, looking across techniques. The local shape of the production

function does not really matter. This was apparent in the simple baseline

model given earlier, and it will be confirmed numerically in Section 6.

Finally, Houthakker’s result relies on the presence of capacity constraints.

If one wants to expand output, one has to add additional production units,

essentially of lower “quality.” Because of these capacity constraints, his

aggregate production function is characterized by decreasing returns to

scale. In the context of an idea model, such constraints are undesirable:

one would like to allow the firm to take its best idea and use it for every unit

of production. That is, one would like the setup to respect the nonrivalry

of ideas and the replication argument for constant returns, as is true in the

formulation here.16

16Lagos (2004) embeds the Houthakker formulation in a Mortenson-Pissarides search
model to provide a theory of total factor productivity differences. In his setup, firms (capital)
match with labor and have a match quality that is drawn from a Pareto distribution. Capital
is the quasi-fixed factor so that the setup generates constant returns to scale in capital and
labor. Nevertheless, because each unit of capital gets its own Pareto draw, a firm cannot
expand production by increasing its size at its best match quality.
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4.3. Evidence for Pareto Distributions?

The next main comment is that Pareto distributions are crucial to the

result. Is it plausible that the distributions for ideas are Pareto?

In terms of direct evidence, there are a number of references related to

patents, profitability, and citations. First, it is worth noting that many of

the tests in this literature are about whether or not the relevant variable

obeys a Pareto distribution. That is, Pareto serves as a benchmark. In

terms of findings, this literature either supports the Pareto distribution or

finds that it is difficult to distinguish between the Pareto and the lognormal

distributions. For example, Harhoff, Scherer and Vopel (1997) examine

the distribution of the value of patents in Germany and the United States.

For patents worth more than $500,000 or more than 100,000 Deutsche

Marks, a Pareto distribution accurately describes patent values, although

for the entire range of patent values a lognormal seems to fit better. Bertran

(2003) finds evidence of a Pareto distribution for ideas by using patent

citation data to value patents. Grabowski (2002) produces a graph of the

present discounted value of profits for new chemical entities by decile in

the pharmaceutical industry for 1990–1994 that supports a highly-skewed

distribution. Sornette and Zajdenweber (2000) interpret earlier similar work

by Grabowski and Vernon as evidence in favor of a Pareto distribution.

Lotka (1926), a classic reference on scientific productivity, shows that

the distribution of scientific publications per author is Pareto. This result

appears to have stood the test of time across a range of disciplines, even in

economics, as shown by Cox and Chung (1991). Huber (1998) looks for

this result among inventors and finds some evidence that the distribution of

patents per inventor is also Pareto, although the sample is small. Somewhat

further removed but still related, evidence of Pareto distributions is found

by Sornette and Zajdenweber (1999) for world movie revenues and by

Chevalier and Goolsbee (2004) for book sales.



PRODUCTION FUNCTIONS AND TECHNICAL CHANGE 19

In addition to the direct evidence, there are also conceptual reasons to

think ideas might come from Pareto distributions. To begin, consider a

simple example. Imagine drawing social security numbers for the U.S.

population at random, and for each person drawn, record their income

and their height. Also keep track of the largest draw to date: let ymax
z

denote the maximum income and let hmax
z denote the maximum height

after z draws have been made. Now consider the following conditional

probability: Prob [X ≥ γxmax | X ≥ xmax] for γ > 1, where x stands

for either income or height. This probability answers the question: “Given

that the tallest person observed so far is 6 feet 6 inches tall and given that

we just found someone even taller, what is the probability that this new

person is more than 5 percent taller than our 6 foot 6 inch person?” Clearly

as hmax gets larger and larger, this conditional probability gets smaller and

smaller — there is no one in the world taller than ten feet.

In contrast, consider the income draws. Now, the probability answers

the question: “Given that the highest-earning person observed so far has an

annual income of $240,000 and given that we just found someone who earns

even more, what is the probability that this new person’s earnings exceed

the previous maximum by more than 5 percent?” It turns out empirically

that in the case of incomes, this probability does not depend on the level of

ymax being considered. Indeed, it was exactly this observation on incomes

that led Pareto to formulate the distribution that bears his name: the defining

characteristic of the Pareto distribution is that the conditional probability

given above is invariant to xmax.17

In applying this example to growth models, one is led to ask whether the

distribution of ideas is more like the distribution of heights or the distribution

of incomes. An important insight into this question was developed by

17Saez (2001) shows this invariance for the United States in 1992 and 1993 for incomes
between $100,000 and $30 million.
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Kortum (1997). Kortum formulates a growth model where productivity

levels (ideas) are draws from a distribution. He shows that this model

generates steady-state growth only if the distribution has Pareto tails. That

is, what the model requires is that the probability of finding an idea that

is 5 percent better than the current best idea is invariant to the level of

productivity embodied in the current best idea. Of course, this is almost the

very definition of a steady state: the probability of improving economy-

wide productivity by 5 percent can’t depend on the level of productivity.

This requirement is satisfied only if the upper tail of the distribution is a

power function, i.e. only if the upper tail is Pareto.18

A literature in physics on “scale invariance” suggests that if a stochastic

process is to be invariant to scale, it must involve Pareto distributions.

Steady-state growth is simply a growth rate that is invariant to scale (defined

in this context as the initial level of productivity). Whether incomes are at

100 or 1000, steady-state growth requires the growth rate to be the same in

both cases.

Additional insight into this issue emerges from Gabaix (1999). Whereas

Kortum shows that Pareto distributions lead to steady-state growth, Gabaix

essentially shows the reverse in his explanation of Zipf’s Law for the size

of cities. He assumes that city sizes grow at a common exponential rate

plus an idiosynchratic shock. He then shows that this exponential growth

generates a Pareto distribution for city sizes.19

18Kortum also shows that if the tails of the distribution are thinner than Pareto, as is the
case for the log normal or exponential distributions, then exponential growth rates decline
to zero. If the tails are thicker, then presumably growth rates rise over time, but this case is
not analyzed by Kortum.

19An important additional requirement in the Gabaix paper is that there be some positive
lower bound to city sizes that functions as a reflecting barrier. Otherwise, for example,
normally distributed random shocks results in a log-normal distribution of city cizes. Al-
ternatively, if the length of time that has passed since each city was created is a random
variable with an exponential distribution, then no lower bound is needed and one recovers
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These papers by Kortum and Gabaix suggest that Pareto distributions and

exponential growth are really just two sides of the same coin. The result

in the present paper draws out this connection further and highlights the

additional implication for the shape of production functions. Not only are

Pareto distributions necessary for exponential growth, but they also imply

that the global production function takes a Cobb-Douglas form.

5. THE DIRECTION OF TECHNICAL CHANGE

The second main result of the paper is related to the direction of techni-

cal change. It turns out that this same setup, when embedded in a standard

neoclassical growth model, delivers the result that technological change is

purely labor augmenting in the long run. That is, even though the largest

value of bi associated with any idea goes to infinity, this Pareto-based growth

model delivers the result that ai(t) grows on average while bi(t) is station-

ary.

To see this result, we first embed our existing setup in a standard neo-

classical growth model. The production side of the model is exactly as

specified in Section 3. Capital accumulates in the usual way, and we as-

sume the investment rate s is a constant:

Kt+1 = (1 − δ)Kt + sYt, δ, s ∈ (0, 1). (27)

Finally, we assume that the cumulative number of research endeavors as

of date t, Nt, grows exogenously at rate g > 0:

Nt = N0e
gt. (28)

the Pareto result. See Mitzenmacher (2003) for a direct discussion of these alternatives, as
well as Cordoba (2003) and Rossi-Hansberg and Wright (2004).
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As in Jones (1995) and Kortum (1997), one natural interpretation of this

assumption is that research endeavors are undertaken by researchers, and

g is proportional to population growth.20

For this model, we have already shown that the global production function

is given by

Yt =
(

γNtK
β
t Lα

t

)
1

α+β εt. (29)

It is then straightforward to show that the average growth rate of output per

worker y in the model in a stationary steady state is given by21

E[log
yt+1

yt
] ≈ g/α. (31)

The growth rate of output per worker is proportional to the rate of growth

of research effort. The factor of proportionality depends only on the search

parameter of the Pareto distribution for the labor-augmenting ideas. In

particular, the easier it is to find higher ai, the faster is the average rate of

economic growth.

The fact that this growth rate depends on α but not on β is the first

clue that there is something further to explore here: if it is easier to find

better labor-augmenting ideas, the average growth rate is higher, but if it

is easier to find better capital-augmenting ideas, the average growth rate is

unaffected.
20For example, one could have ∆Nt+1 = Rλ

t Nφ
t , where Rt represents the number of

researchers working in period t. In this case, if the number of researchers grows at a constant
exponential rate, then the growth rate of N converges to a constant that is proportional to
this population growth rate. Of course, one logical case to consider is where λ = 1 and
φ = 0, so that the number of research endeavors in a period is just proportional to the
number of researchers.

21Rewriting the production function in per worker terms, one has

log
yt+1

yt
=

1

α + β
log

Nt+1

Nt
+

β

α + β
log

kt+1

kt
+ log

εt+1

εt
. (30)

Taking expectations of this equation and equating the growth rates of y and k yields the
desired result.
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To understand this fact, it is helpful to look back at the local production

function. Even though the global production function is Cobb-Douglas,

production at some date t always occurs with some technique i(t):

Yt = F̃ (bi(t)Kt, ai(t)Lt). (32)

Now recall the Steady-State Growth Theorem discussed earlier: If a neo-

classical growth model exhibits steady-state growth with a nonzero capital

share, then either the production function is Cobb-Douglas or technical

change is labor augmenting. In this case, the (local) production function

is not Cobb-Douglas and we do have a (stationary) steady state. The im-

plication is that technical change must be labor-augmenting in the model.

That is, despite the fact that maxi bi → ∞ as t → ∞, the time path for bi(t)

— i.e. the time path of the bi’s associated with the ideas that are actually

used — must have an average growth rate equal to zero in the limit. The

intuition is the same as in the simple baseline model: K and b are relative

substitutes, while K and a are relative complements in production. This

means that capital accumulation leads the economy to increase a at the

expense of a stable b.22

6. SIMULATION RESULTS

We now turn to a full simulation based on the Pareto model. In addition to

providing an illustration of the results, we take this opportunity to relax the

Leontief assumption on the local production function. Instead, we assume

the local production function takes the CES form:

Yt = F̃ (biKt, aiLt) = (λ(biKt)
ρ + (1 − λ)(aiLt)

ρ)1/ρ , (33)

22This result leads to an important observation related to extending the model. Recall that
with the Pareto assumption, γb is the smallest value of b that can be drawn, and similarly
γa is the smallest value of a that can be drawn. Now consider allowing these distributions
to shift. There seems to be no obstacle to allowing for exponential shifts in γa over time.
However, increases in γb turn out to lower the capital share in the model. If γb were to rise
exponentially, the capital share would be driven toward zero, on average.
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where ρ < 0 so that the elasticity of substitution is σ ≡ 1
1−ρ < 1. We

also allow production units to use two production techniques at a time in

order to convexify the production set, analogous to the picture given at the

beginning of the paper in Figure 1.

The remainder of the model is as specified before. Apart from the change

to the CES function, the production setup is the same as that given in

Section 3 and the rest of the model follows the constant saving setup of

Section 5.

We begin by showing that the CES setup still delivers a Cobb-Douglas

global production function, at least on average. For this result, we repeat

the following set of steps to obtain 1000 capital-output pairs: We first set

cumulative research effort N to 500, so that on average there are 500 ideas in

each iteration. We compute the convex hull of the CES functions associated

with these ideas to get a global production function.23 Next, we choose a

level of capital per worker k randomly from a uniform distribution between

the smallest value of ki and the largest value of ki for the iteration. Finally,

we record the output of the global production function associated with this

input.

Following this procedure yields a graph like that shown in Figure 3. The

key parameter values in this simulation are α = 5 and β = 2.5, so that

the theory suggests we should expect a Cobb-Douglas production function

with a capital exponent of β/α + β = 1/3.24 As the figure shows, the

23Computing the convex hull of the overlapping CES production functions is a compu-
tationally intensive problem, especially when the number of ideas gets large. To simplify,
we first compute the convex hull of the (ki, yi) points. Then, we compute the convex hull
of the CES functions associated with this limited set of points. To approximate the CES
curve, we divide the capital interval into 100 equally-spaced points.

24The standard capital share pins down the ratio of α/β, but it does not tell us the basic
scale of these parameters. The studies cited earlier related to patent values and scientific
productivity typically find Pareto parameters that are in the range of 0.5 to 1.5. We have
chosen higher values here for illustration. The following exercise is helpful in thinking
about this: What is the median value of a productivity draw, conditional on that draw being
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FIGURE 3. The Cobb-Douglas Result
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OLS Slope =   0.325
 Std. Err.    =   0.006

        R2      =    0.73

 log k

 log y

Note: The figure shows 1000 capital-output combinations from the global pro-
duction function. The parameter values used in the simulation are N = 500,
α = 5, β = 2.5, γa = 1, γb = 0.2, and ρ = −1.

relation between log y and log k is linear, with a slope that is very close to

this value.

We next consider a simulation run for the full dynamic time path of the

Pareto model. Continuing with the parameter choices already made, we

additionally assume g = .10, which implies an annual growth rate of 2

percent for output per worker in the steady state. We simulate this model

for 100 years and plot the results in several figures.25 Figure 4 shows a

subset of the more than 1 million techniques that are discovered over these

larger than some value, x? If α is the Pareto parameter, then the answer to this question
turns out to be 21/αx ≈ (1 + 0.7/α)x. For example, if α = 2, then the median value,
conditional on a draw being higher than x, is about 1.4x. This says that the average idea
that exceeds the frontier exceeds it by 40 percent. This implies very large jumps, which
might be plausible at the micro level but seem too large at the macro level. A value of
α = 5 instead gives an average jump of about 14 percent, which is still somewhat large.
Aggregation would, one suspects, smooth these jumps out.

25Additional parameter values used in the simulation are listed in the notes to Figure 4.
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FIGURE 4. Production in the Simulated Economy
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Note: Circles indicate ideas, plus signs indicate capital-output combinations that
are actually used. The model is simulated for 100 periods with N0 = 50, α = 5,
β = 2.5, g = .10, γa = 1, γb = 0.2, k0 = 2.5, s = 0.2, δ = .05, and ρ = −1.

100 periods. In particular, we plot only the 300 points with the highest

values of y (these are shown with circles “o”). Without this truncation, the

lower triangle in the figure that is currently blank but for the plus signs is

filled in as solid black. In addition, the capital-output combinations that

are actually used in each period are plotted with a plus sign (“+”). When a

single technique is used for a large number of periods, the points trace out the

CES production function. Alternatively, if the economy is convexifying by

using two techniques, the points trace out a line. Finally, when the economy

switches to a new technique, the capital-output combinations jump upward.

Figure 5 shows output per worker over time, plotted on a log scale. The

average growth rate of output per worker in this particular simulation is
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FIGURE 5. Output per Worker over Time
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Note: See notes to Figure 4.

1.48 percent, as compared to the theoretical value of 2 percent implied by

the parameter values, given by g/α.26

Figure 6 plots the capital share FKK/Y over time. Even though the

economy grows at a stable average rate, the capital share exhibits fairly large

movements. When the economy is using a single production technique, the

accumulation of capital leads the capital share to decline. Alternatively,

when the economy is using two techniques to convexify the production

set, the marginal product of capital is constant, so the capital share rises

smoothly.

It is interesting to compare the behavior of the capital share in the Pareto

model with the behavior that occurs in the simple baseline model. In the

26We compute the average growth rate by dropping the first 20 observations (to minimize
the effect of initial conditions) and then regressing the log of output per worker on a constant
and a time trend.
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FIGURE 6. The Capital Share over Time
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Note: See notes to Figure 4.

simple model, the economy equates the capital share to a function of the

elasticity of the technology menu. If this elasticity is constant, then the

capital share would be constant over time. Here, the technology menu

exhibits a constant elasticity on average, but the menu is not a smooth,

continuous function. Quite the opposite: the extreme value nature of this

problem means the frontier is sparse, as the example back in Figure 1

suggests. This means the capital share will be stationary, but that it can

move around, both as the economy accumulates capital and as it switches

techniques.

Figure 7 shows the technology choices that occur in this simulation. As

in Figure 4, the 300 ideas with the highest level of yi = ai are plotted. This

time, however, the (ai, bi) pair corresponding to each idea is plotted. The

graph therefore shows the stochastic version of the technology menu. In

addition, the figure plots with a “+” the idea combinations that are actually
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FIGURE 7. Technology Choices
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Note: From more than 1 million ideas generated, the 300 with the highest
level of a are plotted as circles. The figure also plots with a “+” the (ai, bi)
combinations that are used at each date and links them with a line. When
two ideas are used simultaneously, the idea with the higher level of output
is plotted. See also notes to Figure 4.
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used as the economy grows over time. Corresponding to the theoretical

finding earlier, one sees that the level of b∗i appears stationary, while the level

ofa∗i trends upward. On average, technological change is labor augmenting.

7. CONCLUSION

This paper provides microfoundations for the standard production func-

tion that serves as a building block for many economic models. An idea

is a set of instructions that tells how to produce with a given collection of

inputs. It can be used with a different mix of inputs, but it is not especially

effective with the different mix; the elasticity of substitution in production

is low for a given production technique. Instead, producing with a different

input mix typically leads the production unit to switch to a new technique.

This suggests that the shape of the global production function hinges on the

distribution of available techniques.

Kortum (1997) examined a model in which productivity levels are draws

from a distribution and showed that only distributions in which the upper

tail is a power function are consistent with exponential growth. If one wants

a model in which steady-state growth occurs, then one needs to build in a

Pareto distribution for ideas. We show here that this assumption delivers two

additional results. Pareto distributions lead the global production function

to take a Cobb-Douglas form and produce a setup where technological

change, in the long run, is entirely labor augmenting.

There are several additional directions for research suggested by this ap-

proach. First, our standard ways of introducing skilled and unskilled labor

into production involve production functions with an elasticity of substitu-

tion bigger than one, consistent with the observation that unskilled labor’s
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share of income seems to be falling.27 How can this view be reconciled

with the reasoning here?

Second, the large declines in the prices of durable investment goods are

often interpreted as investment-specific technological change. That is, they

are thought of as increases in b rather than increases in a.28 This is the case

in Greenwood, Hercowitz and Krusell (1997) and Whelan (2001), and it

is also implicitly the way the hedonic pricing of computers works in the

National Income and Product Accounts: better computers are interpreted

as more computers. The model in this paper suggests instead that b might

be stationary, so there is a tension with this other work. Of course, it is

not at all obvious that better computers are equivalent to more computers.

Perhaps a better computer is like having two people working with a single

computer (as in extreme programming). In this case, better computers might

be thought of as increases in a instead. This remains an open question.

Alternatively, it might be desirable to have microfoundations for a Cobb-

Douglas production function that permits capital-augmenting technological

change to occur in the steady state.

Finally, one might ask how the model relates to recent discussions about

the behavior of capital shares. The literature is in something of a flux.

For a long time, of course, the stylized fact has been that capital’s share

is relatively stable. This turns out to be true at the aggregate level for

the United States and Great Britain, but it is not true at the disaggregated

level in the U.S. or in the aggregate for many other countries. Rather,

the more accurate version of the fact appears to be that capital’s share can

exhibit large medium term movements and even trends over periods longer

27See Katz and Murphy (1992) and Krusell, Ohanian, Rios-Rull and Violante (2000), for
example.

28This is loose. In fact, they are thought of as increases in a term that multiplies investment
in the capital accumulation equation. Of course, for many purposes this is like an increase
in b.
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than 20 years in some countries and industries.29 This paper is somewhat

agnostic about factor shares. As shown in Figure 6, the Pareto model

predicts the capital share may vary over time, while of course the baseline

model implied a constant capital share. However, there are many other

determinants of capital shares left out of this model, including aggregation

issues and wedges between marginal products and prices, so care should

be taken in interpreting the model along this particular dimension.

APPENDIX: AN ALTERNATIVE DERIVATION OF THE
COBB-DOUGLAS RESULT

Here we drop the assumption that ideas arrive as a Poisson process and

show that one still recovers the Cobb-Douglas result (and therefore the

labor-augmenting technical change). The difference is that the result now

holds asymptotically, as the number of ideas goes to infinity, and the proof

involves the use of extreme value theory.

Let N now denote the total number of ideas that have been discovered

and drop the Poisson process. This is the only change to the model in

Section 3. As before, let Yi denote production using technique i with a

given amount of capital and labor. Then

H(ỹ) ≡ Prob [Yi > ỹ] = Prob [biK > ỹ, aiL > ỹ]

= G

(

ỹ

K
,
ỹ

L

)

= γKβLαỹ−(α+β). (A.1)

That is, the distribution of Yi is Pareto.1

29The recent papers by Blanchard (1997), Bentolila and Saint-Paul (2003), and Harrison
(2003) discuss in detail the facts about capital and labor shares and how they vary. Gollin
(2002) is also related; that paper argues that in the cross-section of countries, labor shares
are more similar than rough data on employee compensation as a share of GDP suggests
because of the very high levels of self-employment in many poor countries.

1Since bi ≥ γb and ai ≥ γa, the support for this distribution is ỹ ≥ max{γbK, γaL}.
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The global production function is the maximum amount of output that

can be produced with a single technique. Formally, it is defined as

Y = F (K, L, N) = max
i=1,...,N

Yi. (A.2)

Since the N draws are independent,

Prob [Y ≤ ỹ] = (1 − H(ỹ))N .

=
(

1 − γKβLαỹ−(α+β)
)N

. (A.3)

Of course, as the number of ideas N gets large, this probability for any

given level of ỹ goes to zero. So to get a stable distribution, we need to

normalize our random variable somehow, in a manner analogous to that

used in the Central Limit Theorem.

In this case, the right normalization turns out to involve zN , where

zN ≡
(

γNKβLα
)

1
α+β . (A.4)

In particular, consider

Prob [Y ≤ zN ỹ] =
(

1 − γKβLα(zN ỹ)−(α+β)
)N

=

(

1 −
ỹ−(α+β)

N

)N

. (A.5)

Then using the standard result that limN→∞(1 − x/N)N = exp(−x) for

any fixed value of x, we have

lim
N→∞

Prob [Y ≤ zN ỹ] = exp(−ỹ−(α+β)) (A.6)

for ỹ > 0.2

Therefore

Y

(γNKβLα)1/α+β

a

∼ Fréchet(α + β). (A.7)

2This is a special case of the much more general theory of extreme values. For a more
general theorem relevant to this case, see Theorem 2.1.1 of Galambos (1978).
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The global production function, appropriately normalized, converges asymp-

totically to a Fréchet distribution. We can think of the production function,

asymptotically, as

Y ≈
(

γNKβLα
)

1
α+β ε (A.8)

where ε is a random variable drawn from a Fréchet distribution with param-

eter α + β. This result can be compared to that in equation (25): we get

the same result, asymptotically, that we obtained when we used the Poisson

process for research.
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