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ABSTRACT

We study the optimal recursive refinancing problem where a borrower minimizes his lifetime

mortgage costs by repeatedly refinancing when rates drop sufficiently. Key factors affecting the

optimal decision are the cost of refinancing and the possibility that the mortgagor may have to

refinance at a premium rate because of his credit. The optimal recursive strategy often results in

prepayment being delayed significantly relative to traditional models. Furthermore, mortgage values

can exceed par by much more than the cost of refinancing. Applying the recursive model to an

extensive sample of mortgage-backed security prices, we find that the implied credit spreads that

match these prices closely parallel borrowers’ actual spreads at the origination of the mortgage.

These results suggest that optimal recursive models may provide a promising alternative to the

reduced-form prepayment models widely used in practice.
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1. INTRODUCTION

Since its inception in the 1970s, the mortgage-backed security market has experi-
enced dramatic growth in the United States. As of June 30, 2002, the total notional
amount of Agency mortgage-backed securities and collateralized mortgage obligations
outstanding was more than $3.9 trillion. This means that the size of these markets
now exceeds the $3.5 trillion notional amount of publicly-traded U.S. Treasury debt.

Despite the importance of these markets, however, the goal of developing a fun-
damental theory of mortgage valuation represents an ongoing challenge to researchers.
The key element that has proven difficult to explain within a rational model is how
mortgage borrowers choose to refinance their loans. Influential early work by Dunn and
McConnell (1981a, b), Brennan and Schwartz (1985), and others applies contingent
claims techniques to the problem by modeling prepayment as an endogenous decision
made by the borrower in minimizing the present value of his current mortgage. More
recently, Dunn and Spatt (1986) and Stanton and Wallace (1998) extend this classical
approach in an important way by modeling the prepayment decision as the result of
the borrower minimizing his lifetime mortgage costs. As discussed by Schwartz and
Torous (1989, 1992, 1993), however, actual prepayment behavior appears very subop-
timal relative to the optimal behavior implied by these models. Furthermore, these
models all have the property that mortgage-backed security prices cannot exceed par
plus the number of points paid to refinance the loan. As demonstrated by Stanton
(1995), Boudoukh, Whitelaw, Richardson, and Stanton (1997), and others, this upper
bound is nearly always violated in practice.

The apparent failure of the optimal prepayment literature led to the current gen-
eration of reduced-form or behavioral mortgage valuation models. In this approach,
econometric models of prepayment behavior are estimated from historical data and
are then used to forecast future prepayments. Important examples of this widely-
used modeling approach include Schwartz and Torous (1989, 1992, 1993), Boudoukh,
Whitelaw, Richardson, and Stanton (1997), Hayre (2001), and many others. An im-
portant drawback of these descriptive models, however, is that they may do very
poorly out of sample when the current or expected shape of the term structure differs
from those experienced during the historical calibration period. Thus, this approach
can impose significant model risk on market participants during periods when the
characteristics of the market differ from their historical patterns.

The drawbacks of reduced-form models provide a strong motivation for revis-
iting the optimal prepayment modeling approach. Interestingly, a common feature
throughout the earlier literature is the assumption that the rate at which a borrower
can refinance his loan is independent of his financial status. In actuality, however, a
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borrower who does not satisfy the strictest underwriting guidelines may have to refi-
nance at a higher rate than other more-qualified borrowers. This clearly would reduce
his incentives for prepaying his current mortgage and affect his optimal refinancing
strategy. Thus, even though principal and interest on an Agency mortgage-backed
security are guaranteed, the actual timing of these cash flows could be affected by the
credit of the borrower, which in turn would be reflected in the value of the security.

In this paper, we solve for the optimal recursive refinancing strategy of a borrower
whose objective is to minimize his lifetime mortgage costs, and then examine the impli-
cations of this strategy for the valuation of mortgage-backed securities. Our approach
incorporates the effects of the following key factors on the optimal refinancing strategy:

• The transaction costs associated with refinancing a mortgage.

• The probability of prepaying for exogenous reasons.

• The credit spread faced by a borrower who is considering refinancing.

Since the nature of the recursive problem requires considering the effects of decisions
going far beyond the current mortgage, it is important to use a modeling framework
that reflects the actual intertemporal behavior of the term structure. In light of
this, we develop the model within a realistic multi-factor term-structure setting that
matches both the current term structure and the values of fixed income options. The
use of a multi-factor model is also consistent with Boudoukh, Whitelaw, Richardson,
and Stanton (1997) and Downing, Stanton, and Wallace (2002) who find evidence that
mortgage-backed security prices are driven by multiple term-structure factors. Since
the recursive refinancing problem is essentially an American option valuation problem,
we use the least-squares simulation method of Longstaff and Schwartz (2001) to solve
for the optimal recursive strategy and value mortgage-backed securities in this multi-
factor framework.

We show that the optimal recursive strategy implies prepayment behavior very
different from that given by classical rational prepayment models. For example, the
mean time to prepayment of the current mortgage can be several years later under
the optimal recursive strategy when the borrower is not able to refinance at the par
mortgage rate. Furthermore, a borrower attempting to minimize lifetime mortgage
costs has a strong incentive to minimize the number of times he refinances his mort-
gage because of the associated transaction costs. Thus, a borrower who believes that
mortgage rates may be going down further in the near future may choose to delay re-
financing his loan. This is particularly true when there is a significant possibility that
the borrower may need to pay off the loan for exogenous reasons in the near future
anyway. Because the first prepayment may occur much later when the optimal recur-
sive strategy is followed, the value of a mortgage-backed security can be significantly
higher than par plus the costs of refinancing.
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To explore the valuation implications of the model, we collect monthly prices
for mortgage-backed securities with coupon rates ranging from 5.50 to 9.50 percent
for the 1992-2002 period. Calibrating the model to the swap curve and the prices of
interest rate caps and swaptions for the corresponding months, we solve for the im-
plied mortgage turnover rate and credit spreads that match the historical data. The
mean mortgage turnover rate implied from the data is 5.59 percent, which closely ap-
proximates the actual historical turnover rate of 6.04 percent. Similarly, the implied
credit spreads needed to match the cross section of mortgage-backed security prices
in the sample range from zero to about 150 basis points. These implied credit spreads
closely parallel actual credit spreads observed in the market at the time the mortgages
are originated and are also consistent with mortgage spreads in the rapidly-growing
subprime mortgage market. These results strongly suggest that mortgage-backed se-
curity prices can be reconciled within a rational model by taking into account the
credit of the borrower. We also examine the out-of-sample pricing performance of the
model by calibrating it using ex ante data and then comparing implied model prices
to actual market mortgage-backed security prices. We find that the model is able to
capture more than 97 percent of the variation in the data over the past decade and
provides unbiased estimates of overall mortgage-backed security prices. Thus, optimal
recursive models may provide a viable alternative to the reduced-form or behavioral
prepayment models widely used in practice.

The remainder of this paper is organized as follows. Section 2 describes the
mortgage-backed security market. Section 3 discusses the literature. Section 4 presents
the optimal recursive refinancing model. Section 5 provides numerical examples. Sec-
tion 6 describes the data used in the study. Section 7 provides a preliminary regression
analysis of the properties of mortgage-backed security prices. Section 8 examines the
implications of the model for mortgage-backed security valuation. Section 9 exam-
ines the out-of-sample performance of the recursive model in valuing mortgage-backed
securities. Section 10 summarizes the results and makes concluding remarks.

2. MORTGAGE-BACKED SECURITIES

A mortgage-backed security is a claim to the cash flows generated by a specific pool
of mortgages. Most mortgage-backed securities are issued by one of three Govern-
ment Sponsored Enterprises or Agencies known as Ginnie Mae (GNMA), Freddie
Mac (FHLMC), and Fannie Mae (FNMA), although there is a growing trend toward
mortgage-backed securities being issued directly by large mortgage lenders. Since their
inception in the 1970s, mortgage-backed securities have become very popular as an
investment vehicle among individual and institutional fixed income investors. Key
reasons for this popularity are that mortgage-backed securities offer attractive yields,
have little or no credit risk, and trade in a liquid secondary market.

3



To illustrate the mechanics of how mortgage-backed securities work, let us con-
sider the Ginnie Mae I mortgage-backed security program as an specific example.
Under this program, the creation of a mortgage-backed security begins with a Ginnie
Mae approved mortgage lender or issuer originating a pool of FHA insured or VA
guaranteed mortgage loans secured by single-family homes. To be eligible for the Gin-
nie Mae I program, these mortgage loans must have the same mortgage rate and meet
specific documentation and origination guidelines. As an example, assume that the
pool of mortgages consists of recently originated 30-year loans with a fixed coupon
rate of 7.00 percent. Securitized by these loans, the issuer then structures a mortgage-
backed security with a coupon rate equal to 6.50 percent and a total notional amount
equal to the aggregate principal amount of the underlying mortgage pool ($1 million
minimum pool size). The issuer then sells the mortgage-backed security to investors
either directly or through a network of Wall Street dealers.

The coupon rate on the mortgage-backed security is lower than the mortgage rate
since the issuer receives a 50 basis point fee for servicing the mortgages and passing
through interest payments and scheduled and unscheduled principal to investors. In
the case of delinquent loans, the mortgage-backed security issuer has the responsibility
to advance funds from his own account to make the scheduled payments. Out of the 50
basis point fee received by the issuer, however, the issuer must also pay Ginnie Mae a
six basis point guarantee fee. For this fee, Ginnie Mae guarantees the timely payment
of principal and interest on the mortgage-backed security to the investors. Thus,
because of the Ginnie Mae guarantee, investors do not face the risk of losses arising
from delinquent payments or from foreclosures or bankruptcies among the mortgages
in the underlying mortgage pool. The Ginnie Mae guarantee is backed by the full faith
and credit of the United States. Mortgage-backed securities issued by Freddie Mac
or Fannie Mae are guaranteed by the respective agencies and bear credit risk similar
to their debt, which is rated AAA (or better). GNMA I mortgage-backed securities
generally exist only in book-entry form and are issued in minimum denominations of
$25,000.

To simplify the pass through of interest and principal from borrowers to the
mortgage-backed security investors, monthly payments are made on a prespecified
schedule. In particular, the interest and principal collected by the mortgage servicer
during a month is paid out to the investors 15 days after the end of the month in which
the interest accrues. For other mortgage-backed security programs, the delay can be
between 15 to 45 days. Because of this, there can be a slight timing mismatch between
the cash flows on the underlying pool of mortgages and those on the mortgage-backed
security.

If borrowers did not have the option to prepay their loans, the value of a mortgage-
backed security would simply be the value of a fixed 30-year annuity. Because of
the prepayment option, however, principal is returned at varying times. Mortgage-
backed security valuation is complicated because the timing of these prepayments
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may be determined by both random and strategic factors. For example, a borrower
may prepay his mortgage for exogenous reasons such as moving even though market
rates may be higher than his current mortgage rate. Alternatively, a borrower may
strategically decide to refinance his mortgage when market rates are below his current
mortgage rate.

It is important to observe, however, that the decision to refinance a mortgage
does not depend solely on the relation between the borrower’s current mortgage rate
and the prevailing market rate. To prepay his existing mortgage and refinance the
loan, the borrower needs to qualify for a new mortgage loan. To do this, the borrower
needs to meet a number of income, credit, documentation, employment, loan-to-value,
and debt-to-income standards. If the borrower’s personal financial situation is such
that he is marginal in meeting some of these criteria, he may have fewer choices of
lenders available to him and may only be able to refinance at a premium rate (if at
all). To illustrate how the borrower’s financial situation may affect the rate at which
he can refinance, note that a VA borrower who refinances his mortgage but puts down
less than five percent of the value of his home must pay a three point VA funding
fee in addition to the usual origination costs paid to a mortgage lender. By making
a larger down payment, however, the VA borrower may be able to reduce this fee to
1.25 points. A similar sliding schedule of mortgage insurance fees applies to standard
FHA mortgages. Thus, a mortgage borrower who is cash constrained or whose home
has declined in value relative to the mortgage balance faces significantly higher costs
to refinance. Since these costs are typically absorbed into the refinanced mortgage,
they serve to increase the effective rate at which the borrower is able to refinance.
The GNMA I program allows premium mortgages with rates as high as 150 basis
points above the prevailing GNMA mortgage rate to be pooled into a mortgage-backed
security.

Furthermore, a FHA or VA borrower who has recently gone through bankruptcy, a
period of unemployment, or other credit problems, or who has a judgment against him,
is unable or unwilling to document his income, or in other ways fails to meet standard
underwriting requirements, may not be able to refinance into a new FHA or VA loan.
In some cases, these nonconforming borrowers may be able to find conventional lenders
with less stringent criteria who would be willing to refinance the loan, albeit at a
premium rate. If the borrower’s credit is sufficiently bad that he cannot refinance with
a conventional lender at all, he may then need to go to the subprime mortgage market.
This is a rapidly growing sector of the mortgage market that specializes in making
loans to borrowers with impaired credit. A quick search of the web reveals a vast
array of subprime mortgage products available to borrowers (often with names such
as “bad credit mortgage loans”). Laderman (2001) reports that subprime mortgage
originations as a share of total mortgage originations grew from five percent in 1994
to 13.4 percent in 2000. Laderman also shows that subprime mortgage rates averaged
roughly 370 basis points higher than prime mortgage rates during the 1994 to 2000
period, and were about 300 basis points at the end of 2001. These considerations
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make clear that the financial situation of a borrower can affect the rate at which he
can refinance. This makes a strong case for incorporating credit into the analysis of
mortgage-backed securities. Clearly, to be successful, a mortgage valuation framework
needs to capture the economics of how borrowers choose to exercise their prepayment
option and refinance their mortgage. To provide historical perspective to the problem,
some of the ways in which mortgage prepayments have been modeled are described in
the next section.

3. THE LITERATURE

In important early work, Dunn and McConnell (1981a, b) were the first to apply a
contingent-claims approach to valuing mortgage-backed securities. In their approach, a
mortgage-backed security is modeled as a combination of a long position in an annuity
and a short American call option on that annuity. Using a single-factor Cox, Ingersoll,
and Ross (1985) model to describe interest rate dynamics, the short call option is
priced by solving for the prepayment rule that maximizes its value using standard
American option valuation techniques. This is equivalent to minimizing the value of
the mortgage-backed security that the investor holds, or alternatively, minimizing the
value of the current mortgage. To capture the feature that borrowers may prepay
mortgages for exogenous reasons, Dunn and McConnell also allow prepayment to be
triggered by the realization of a Poisson event. Numerical values for GNMA mortgage-
backed securities are obtained by solving the associated partial differential equation
using finite difference techniques. A similar approach is taken in Brennan and Schwartz
(1985) who use a two-factor term structure model. Other related papers that adopt a
similar approach but with transaction costs include Timmis (1985), Dunn and Spatt
(1986), Johnston and Van Drunen (1988), and McConnell and Singh (1994). In an
important extension to this contingent claims framework, Dunn and Spatt (1986)
model the prepayment decision as the result of a borrower attempting to minimize his
lifetime mortgage costs. Stanton and Wallace (1998) present a numerical algorithm
for solving the resulting recursive prepayment problem and generalize the framework
to include the possibility of prepayments for exogenous reasons.

As discussed by Stanton (1995), however, a major drawback of these early rational
prepayment models is that they imply upper bounds on the values of mortgage-backed
securities that are often violated in practice. In Dunn and McConnell (1981a, b), for
example, the maximum value that a mortgage-backed security can attain is 100. Sim-
ilarly, in Dunn and Spatt (1986), mortgage-backed security prices are bounded above
by 100 plus the number of points paid by the borrower to refinance his loan. In actu-
ality, high-coupon mortgage-backed securities with prices in the range of 105 to 110
are common. Since transactions costs of five to ten percent are implausible, the upper
bounds implied by these models are clearly inconsistent with market prices. Equiv-
alently, the prepayment strategies generated by these rational prepayment models
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imply that mortgages typically should be paid off at a rate much faster than actually
observed.

Given the inability of these optimal prepayment models to match observed pre-
payment behavior or to explain premium mortgage-backed security prices, it is perhaps
not surprising that the next generation of models focused on incorporating empirical
descriptions of prepayment behavior into the valuation framework. Important exam-
ples of this approach include Schwartz and Torous (1989, 1992, 1993). In these papers,
rather than imposing an optimal value-minimizing call condition, Schwartz and Torous
use historical prepayment data to estimate a hazard rate function for the probabil-
ity that a borrower will prepay his mortgage. The estimated empirical prepayment
function is used to generate mortgage cash flows over time and along the simulated
paths generated by a one- or two-factor model of the term structure. The simulated
mortgage cash flows are then easily valued by discounting them back along the interest
rate paths and then averaging across paths. This empirical or reduced-form approach
quickly became the standard way on Wall Street of modeling prepayment behavior
and valuing mortgage-backed securities. There are numerous in-depth descriptions of
the implementation of this approach. As an example, see Hayre and Young (2001).

While reduced-form models have the advantage of fitting historical prepayment
behavior, they have a number of important drawbacks. For example, Stanton (1995)
observes that since these models are only descriptive of historical prepayment behav-
ior, it is not clear how they would perform in a different economic environment. In
particular, if the current or expected shape of the term structure were to differ from
those experienced historically, then the prepayment model might do very poorly out
of sample. Reduced-form models are heavily dependent on the assumption that future
prepayment behavior is predictable on the basis of historical prepayment behavior.
Because of this feature, they impose significant model risk on market participants
who rely on them.

In an interesting recent paper, Stanton (1995) presents a framework for valu-
ing mortgage-backed securities in which elements of both rational and exogenously
determined prepayment strategies are included. Specifically, borrowers attempt to
minimize the value of their current mortgage by making optimal prepayment deci-
sions given their transaction costs. The borrower, however, is only allowed to consider
whether prepayment is optimal at random times given by the realization of a Pois-
son process. Thus, while the model results in prepayments that are delayed relative
to those implied by earlier rational prepayment models, this delay is imposed exoge-
nously. In fairness to the model, however, Stanton’s primary focus is on demonstrating
how heterogeneity in transaction costs can reproduce a number of stylized facts about
mortgage-backed securities such as the burnout factor in prepayments. Although we
do not consider the effects of heterogeneity in this paper, Stanton’s results would
clearly generalize to our modeling framework as well.
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Finally, we note a number of other papers which also address the valuation of
mortgage-backed securities. Recently, Boudoukh, Whitelaw, Richardson, and Stanton
(1997) use a nonparametric multivariate density approach to approximate the func-
tional dependence of mortgage-backed security prices on term structure factors. Their
paper documents the important result that mortgage-backed security prices are influ-
enced by at least two distinct interest rate factors. A similar result is also documented
by Downing, Stanton, and Wallace (2002). Dunn and Singleton (1983) find evidence
that the relative pricing of GNMA mortgage-backed securities and Treasury bonds
is consistent with a consumption-based asset pricing model. Dunn and Spatt (1985,
1988), Chari and Jagannathan (1989), Leroy (1996), and Stanton and Wallace (1998)
consider the effects of borrower mobility or choice on mortgage markets. Finally, Dunn
and Spatt (1999) study the effects of callability, points, and contract length on the
pricing of debt contracts.

4. THE RECURSIVE REFINANCING MODEL

In this section, we present the optimal recursive refinancing model. In doing this, we
first describe the multi-factor term structure framework used to model the dynamics of
interest rates. We then explain how the optimal recursive strategy can be determined
by an application of the least-squares simulation methodology (LSM) used by Longstaff
and Schwartz (2001), Longstaff, Santa-Clara, and Schwartz (2001a), and others in
valuing American options.

As described, the early literature on rational prepayment assumes that the bor-
rower attempts to minimize the value of his current mortgage, or equivalently, attempts
to maximize the value of the option that the mortgage lender is short. Given this ob-
jective function, the prepayment decision becomes intertemporally separable and can
be made without considering any of the cash flows associated with future mortgages.
When there are refinancing costs, however, the prepayment decision is no longer sepa-
rable and a utility maximizing borrower needs to take into account the intertemporal
effects of prepayment. Most individuals who prepay their mortgage will not be able
to pay off the loan in cash, and will need to refinance their mortgage. Thus, both the
transaction costs of refinancing as well as the rate at which the borrower can borrow
in the future become relevant to making current decisions. For example, because of
the costs of refinancing, the borrower has clear incentives to minimize the number of
times he refinances during his lifetime. This means that a borrower who is considering
refinancing needs to take into account the likelihood that rates might decrease further
and that he may want to refinance yet again in the near future.

In this paper, we follow Dunn and Spatt (1986) and Stanton and Wallace (1998)
and take the objective function of the borrower to be the minimization of the present
value of his lifetime mortgage-related cash flows. These cash flows include interest,
principal, and any points and/or transaction costs involved in refinancing the mortgage
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(potentially repeatedly) over time. A key distinguishing feature of our approach is
that it explicitly allows for the possibility that the borrower may not be able to
refinance at the par mortgage rate because of his financial or credit situation. Our
framework also incorporates refinancing costs or points and allows for possibility that
the mortgage may be prepaid for exogenous reasons. For simplicity, we assume that
the lifetime of the borrower coincides with the 30-year horizon of his initial mortgage.
This assumption, however, is not crucial to the problem and could easily be relaxed.

4.1 The Term Structure Model

Since making an optimal recursive prepayment decision requires anticipating the char-
acteristics of prepayment decisions far in the future, it is important that the model
imply realistic term structure dynamics. To this end, we use a simple version of the
string market model framework used in Santa-Clara and Sornette (2001), Longstaff
and Schwartz (2001), Longstaff, Santa-Clara, and Schwartz (2001a, b), Han (2002),
and others. This framework can also be viewed as equivalent to a Heath, Jarrow, and
Morton (1992) or Brace, Gatarek, and Musiela (1997) model in which the covariance
structure among forward rates is specified directly.

For notational simplicity, we denote the valuation date as time zero. The under-
lying string to be simulated is the vector D of discount bonds with maturities ranging
from three months to 30 years in increments of three months.1 Let Di denote the
price of the zero-coupon bond with maturity date i/4, where i = 1, 2, . . . , 120. Since
the expected return of each discount bond is just the the short-term rate r under the
risk-neutral measure, we only need to specify the volatility and correlation structure
of D to complete the specification of the term structure dynamics.

In doing this, we follow Heath, Jarrow, and Morton (1992), Brace, Gatarek, and
Musiela (1997), Longstaff, Santa-Clara, and Schwartz (2001a, b), and many others
by first specifying the volatility and correlation structure among forward rates. From
this, the volatility and correlation structure of D are easily obtained by a change of
variables. Let Fi represent the forward three-month rate given by 4 (Di/Di+1 − 1).
We assume that the risk-neutral dynamics for each forward rate are given by

dFi = µi dt + σ dZi, (1)

where µi is an unspecified drift function, σ is a deterministic volatility function, and
dZi is a standard Brownian motion specific to this forward rate. Note that although
each forward rate has its own dZi term, these terms are correlated across forwards.
To allow a simple time-homogeneous correlation structure, we assume that the ij-th

1We use three-month time increments rather than the customary one-month time
increments to reduce the memory and computational requirements of the algorithm.
This simplification has little or no effect on any of the results.
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element of the correlation matrix Σ for the Brownian motions is given by e−γ|i−j|.
When γ > 0, the correlation matrix Σ is of full rank.2 Thus, this string market model
can be viewed as a 120-dimensional multi-factor model of the term structure. The
values of σ and γ will be chosen to match the market prices of fixed income option
values.

Following Longstaff, Santa-Clara, and Schwartz (2001a, b), the risk-neutral dy-
namics of the vector of discount bond prices can now be expressed as

dD = r D dt + J−1 σ dZ, (2)

where r is the spot rate, σ dZ is the vector formed by stacking the individual σ dZi
terms in Eq. (1), and J−1 is the inverse of the Jacobian matrix for the mapping
from discount bonds to forward rates. Since each forward rate depends only on two
discount bond prices, this Jacobian matrix has a simple banded diagonal form (see
Longstaff, Santa-Clara, and Schwartz (2001b)). The dynamics for D in Eq. (2)
provide a complete specification of the evolution of the term structure. This string
market model is arbitrage free in the sense that it fits the initial term structure exactly
and the expected rate of return on all discount bonds equals the spot rate under the
risk-neutral pricing measure.

4.2 The Recursive Model

Minimizing his lifetime mortgage costs implies that at each decision date, the borrower
must compare the present value of continuing with his current mortgage with the
present value of refinancing the mortgage. If the present value of refinancing is lower,
then the borrower prepays, and vice versa. In either event, the prepayment decision
is revisited at the next decision date.

The optimal recursive prepayment strategy is determined numerically by applying
the LSM algorithm of Longstaff and Schwartz (2001). In doing this, we first generate
N paths of the vector D by simulating the string market model described above out
for 30 years. Since the simulation interval is three months, the stochastic differential
equation forD is discretized by applying Ito’s Lemma to the logarithm ofD, simulating
the Euler approximation to the stochastic differential equation for the logarithm of
D, and then exponentiating the resulting expression. This approach results in a much
more accurate discretization than applying the Euler approximation directly to the
stochastic differential equation for D. We use the yield on the zero-coupon bond with
maturity three months at each date to approximate the value of r. This, combined
with the assumption that the volatility function σ is zero for horizons less than or

2Although this specification for the correlation matrix is chosen for its simplicity, it
performs as well as a number of more complex specifications in matching the market
prices of swaption values.
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equal to three months guarantees that zero-coupon bonds converge to a value of one
on their maturity date.

The next step is to solve for the par mortgage rate at each date along each of theN
paths. To explain this, we first need to introduce some notation. Let α be the number
of points paid to refinance a mortgage. Let β represent the spread above the par
mortgage rate at which the borrower can refinance his loan. We assume that exogenous
prepayments occur by the realization of an independent Poisson process with intensity
parameter λ. Now, let V (R,D, t) denote the value of a mortgage with coupon rate
R, given the state vector D at time t, and given that the borrower can always borrow
at the par mortgage rate (β = 0). Given this function, the value of the par mortgage
rate R∗(D, t) can be determined by solving the expression V (R∗, D, t) = 100.

To approximate the functional form of the value function V (R,D, t), we use the
following iterative procedure. Let A(R,D, t) denote the present value at time t of all
future cash flows to be paid by a borrower who does not refinance at time t and who
can borrow at the par rate. Similarly, let B(R,D, t) denote the present value at time
t of all future cash flows to be paid by the same borrower assuming that the mortgage
is refinanced at time t. Note that both A(R,D, t) and B(R,D, t) are based on the
assumption that optimal decisions are made at all future times beyond time t.

At the maturity date T of the mortgage, the value of the mortgage V (R,D, T ) is
clearly zero. Similarly, both A(R,D, T ) and B(R,D, T ) equal zero. Rolling back to
time T − 1, the present value of continuing with the current mortgage is A(R,D, T −
1) = D(1)P , where D(1) is the value of a one-period zero-coupon bond and P is the
payment given rate R. Given this functional form, the value of R∗(D,T − 1) is easily
determined. The present value of refinancing is B(R,D, T − 1) = D(1)P ∗+αL where
P ∗ is the payment at the refinanced rate R∗, and L is the mortgage balance given that
the current mortgage rate is R. With these present value functions, the decision to
refinance at time T −1 can be made by simply comparing the values of A(R,D, T −1)
and B(R,D, T − 1) for each path and taking the decision that results in the lowest
cost.

Rolling back to time T−2, we note that it is now straightforward to determine the
future cash flows from a newly-originated mortgage with coupon rate R. Specifically,
this mortgage would make a payment P at T − 1, and the borrower would then
decide whether to pay off the mortgage by comparing the values of A(R,D, T − 1)
and B(R,D, T − 1). If it is less costly for the borrower to refinance at T − 1, or
alternatively, if the borrower must pay off his mortgage for exogenous reasons, then
the mortgage balance is paid to the mortgageholder and there are no further cash
flows. If, on the other hand, it is less costly to continue with the mortgage, then the
mortgage continues one more period until T . The key point here is that all future cash
flows on the mortgage are determined given the functions A, B, and R∗ determined
for t > T − 2.
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Although this procedure allows us to identify the ex post cash flows along each
path for the mortgage, what we need is the functional form for the ex ante value of the
mortgage V (R,D, T − 2). To estimate this functional form, we recall that standard
no-arbitrage valuation theory implies that V (R,D, T − 2) can be expressed as the
conditional expectation of discounted future cash. Thus, the problem of estimating
the form of V (R,D, T − 2) can be reduced to the problem of finding the conditional
expectation of discounted future cash flows, given the current state variables R and D.
Following Longstaff and Schwartz (2001), we regress the discounted ex post cash flows
for each path on functions of the ex ante variables R and D. The fitted value from
this cross-sectional regression then represents an efficient estimator of the conditional
expectation function, and hence, of V (R,D, T−2). Given this estimator of V (R,D, T−
2), it is again straightforward to determine the par mortgage rate as the solution of
V (R∗, D, T − 2) = 100.

Continuing to solve for the other relevant functions at T −2, we follow essentially
the same procedure to determine the future cash flows that result from a decision not
to refinance. Specifically, the borrower would make a payment P at time T − 1, and
would then decide whether to refinance. If the loan was not refinanced at T − 1, then
the borrower would make another payment P at time T . If the loan was refinanced
at T − 1, then the borrower would pay points on his loan balance, and would then
make a payment of P ∗ at T . Alternatively, the borrower may pay off his mortgage for
exogenous reasons at T − 1 in which case he would also pay L at T − 1 but have no
further cash flows in the future. Again, given the decision not to refinance at T − 2,
all future cash flows are determined by the functions A, B, and R∗ determined for
t > T − 2. In exactly the same way, we can also determine all future cash flows that
result from a decision to refinance at T − 2 at the par mortgage rate R∗(D,T − 2).
Finally, in exactly the same manner as before, we regress the ex post discounted
cash flows resulting from the two decisions on the same set of functions of R and D.
The fitted values from these two regressions then become the estimators for the two
functions A(R,D, T − 2) and B(R,D, T − 2). All of the key functions at T − 2 are
now identified.

The algorithm then rolls back to T − 3, and repeats the same procedure by
solving for ex post cash flows, estimating the conditional expectation function through
a cross-sectional regression to obtain V (R,D, T − 3), solving for R∗(D,T − 3), and
then following a similar procedure to obtain A(R,D, T − 3) and B(R,D, T − 3). The
procedure continues by rolling back one more period and repeating the entire process
until the initial date t = 0. Once completed, this algorithm results in a complete
specification of the par mortgage rate R∗(D, t) for all t = 0, 1, . . . , 120. Note that the
par mortgage rates are all conditional on the parameter values α and λ; changing the
number of refinancing points or the probability of an exogenous prepayment will alter
the par mortgage rates.3

3Although solving for the par mortgage rate at each date along each path is the most
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Having solved for the par mortgage rate at each date along each path, we can now
focus on the valuation of a mortgage where the borrower may only be able to refinance
his loan at a premium rate because of his credit. In particular, let β denote the credit
spread or the difference between the rate at which the borrower can refinance and the
par mortgage rate. Let Aβ(R,D, t) denote the present value of the lifetime mortgage
costs faced by a borrower with credit spread β who does not refinance at time t.
Similarly, let Bβ(R,D, t) represent the present value of the lifetime mortgage costs
faced by the same borrower when he refinances his mortgage at rate R∗(D, t) + β at
time t.4

To identify these two present value functions, we follow the same procedure de-
scribed above to solve for the functions A(R,D, t) and B(R,D, t). The only differ-
ence is that the cost of refinancing is higher than before and it is easily seen that
Aβ(R,D, t) ≥ A(R,D, t) and Bβ(R,D, t) ≥ B(R,D, t). Finally, once the functions
Aβ(R,D, t) and Bβ(R,D, t) are determined for all t, we can solve for the value of the
mortgage Vβ(R,D, t) by taking the present value of the cash flows for the mortgage
generated by following the stopping or prepayment rule implied by these present value
functions and averaging them over all N paths.5

It is important to point out that in applying this algorithm to the valuation of
mortgage-backed securities throughout this paper, we make the simplifying assumption
that all of the borrowers in a mortgage pool are identical. This assumption allows us
to treat a mortgage-backed security as if it were a single loan. As shown by Stanton
(1995), however, a number of important properties of empirical prepayments such as
the burnout effect can be explained by borrower heterogeneity. Although beyond the
scope of this paper, we note that it would be straightforward to value a mortgage-
backed security with heterogeneous borrowers in our framework. This could be done
by simply valuing the cash flows from the individual mortgages in the underlying
mortgage pool and then adding up the values.

correct way to proceed, we also find that an alternative specification in which the
spread between the par mortgage rate and the ten-year swap rate is assumed to be
constant over all paths and dates gives results very close to those reported throughout
this paper.

4We also explored specifications in which β was stochastic rather than constant. The
results suggest that only the mean value of β has much effect on mortgage-backed
security values. Thus, assuming β to be constant results in little loss of generality.

5Even when β W= 0, the cash flows generated by following the stopping rule are dis-
counted using the riskless rate in order to value the mortgage. Thus, we are not
actually valuing the mortgage itself, but rather the mortgage with the GNMA guar-
antee. This is appropriate, however, since our objective is to value mortgage-backed
securities, not individual unguaranteed mortgage loans.
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To complete the description of the valuation algorithm, we need to specify the
explanatory variables used in the cross-sectional regressions. At each date t, there are
N simulated paths or realizations of the state vector D. To provide a cross-section
of values for R, we allow R to range from 0.005 to 0.150 in 30 increments of 0.005.
Taking the cross product of these 30 values with the N realizations of D gives us 30 N
realizations of the conditioning variables R and D. For each of these 30 N realizations,
we then determine the present value of the future cash flows generated by following
the corresponding optimal stopping rules. Discounting is done using the usual money
market compounding factor obtained by rolling over an investment in the short-term
discount bond. We then regress these 30 N values for the discounted future cash flows
on ten explanatory variables of the form RiCj where i and j range from 0 to 2, and
i + j ≤ 3, and where C is the par rate on a fixed coupon bond with ten years until
maturity defined by

C = 4
1−D(t, t+ 10)
40
i=1D(t, t+ i/4)

. (3)

The use of the par rate for a fixed coupon bond provides a parsimonious way of
capturing the key information in the vector D of discount bond prices since it is
directly related to the present value of all remaining contractual payments on the
mortgage.6 Robustness checks indicate that adding additional regressors to capture
higher degree terms has little or no incremental effects on the results. Similarly,
more general specifications that include information about other points on the term
structure give virtually identical results. Since there is no cross sectional dispersion in
the vector D at time zero, it is difficult to identify the present value functions A and
B at time zero. For this reason, we make the assumption that the mortgage cannot be
immediately prepaid at time zero; that the first time that the loan can be refinanced is
after three months. This can be viewed as equivalent to assuming that the mortgage
loan application and approval process requires a discrete period of time. Because of
this simplifying assumption, the value of a mortgage may exceed 100 slightly even
in the absence of transactions costs. Specifically, the amount by which the mortgage
value can exceed 100 is the accrual of the difference between the mortgage coupon
rate and the short-term rate for one period.

Finally, to keep the numerical implementation of this algorithm tractable, we
follow Dunn and Spatt (1986) and Stanton and Wallace (1998) and assume that the
mortgage balance at time t is determined by the current mortgage rate R on the loan.
In actuality, the balance at time t is path dependent through its dependence on the
entire history of the mortgage rates paid by the borrower since the loan was originated.

6When t is greater than 20 years, C represents the par rate for a fixed coupon bond
with final maturity at 30 years.
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Numerical diagnostics, however, indicate that the effect of this simplifying assumption
on mortgage valuation is negligible.

5. NUMERICAL EXAMPLES

To illustrate the optimal recursive refinancing model, we implement the algorithm
described in the previous section usingN = 2, 000 simulated paths of the string market
model. Table 1 reports the prices for 30-year mortgage-backed securities for a range
of coupon rates and for a variety of mortgage refinancing costs and credit spreads. To
provide additional perspective, Table 1 also reports mortgage-backed security values
using an extended version of Dunn and McConnell (1981a, b) in which the borrower
faces costs of refinancing, but is always able to borrow at the par mortgage rate. This
extended model is also implemented by applying the LSM algorithm to the paths
generated by the string market model. While calibration will be discussed later, we
note at this point that these examples are based on swap market and fixed income
option data for June 28, 2002.

Recall that classical optimal prepayment models such as Dunn and McConnell
(1981a, b) and Dunn and Spatt (1986) imply that mortgage-backed security values
cannot exceed 100 plus the number of points required to refinance the mortgage (plus
coupon accrual for one period). As shown in Table 1, the maximum value of the
mortgage implied by the extended Dunn and McConnell model is only on the order of
102. Thus, the classical modeling approach clearly cannot capture the level of prices
observed in the market which often approaches 110. In contrast, the recursive model is
easily able to generate values far in excess of par plus refinancing points (plus coupon
accrual for one period). For example, when the borrower faces refinancing costs of two
points, the value of a mortgage-backed security reaches a maximum of 105.23 when
β = 50 basis points, 110.12 when β = 150 basis points, and 114.29 when β = 250
basis points. This can also be seen in Figure 1 which plots mortgage-backed security
values as a function of the coupon rate. Recall that credit spreads as large as 250
basis points are standard in the rapidly growing subprime mortgage market.

Table 1 shows that mortgage-backed security values implied by the optimal recur-
sive model are increasing functions of the number of points associated with refinancing.
In general, however, the effect on the price is much less than one-to-one with the num-
ber of points for most coupon rates. The exception is for the maximum price which
is impacted on roughly a one-to-one basis by the number of financing points. Recall
that the recursive model takes into account not just the cost of the next refinancing,
but all potential refinancings of the mortgage balance. As shown by Dunn and Spatt
(1986) and others, the value of a mortgage-backed security is generally not a mono-
tonic function of the coupon rate. Typically, the price increases above par, reaches a
maximum, and then declines as the coupon is increased. Intuitively, this is because
the value of a mortgage-backed security must converge to par (plus coupon accrual)
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when the coupon rate is so far above the current par mortgage rate that it is optimal
for the borrower to refinance at the next opportunity. Again, this can be seen directly
in Figure 1.

To examine how credit risk affects the timing of prepayment within the optimal
recursive model, Table 2 reports the mean times to first prepayment for the same
examples as those in Table 1. As shown, when the borrower must refinance at a
mortgage rate that includes a credit spread, the mean time to the first prepayment
date can be many years later than it would be otherwise. For example, when the
coupon rate is 7.00 percent and the borrower must pay two points to refinance, the
mean time to first prepayment is 7.93 years when β = 0 basis points, but is 12.88
years when β = 250 basis points. The difference in the mean time to first prepayment
is even more striking when compared with the measures for the extended Dunn and
McConnell (1981a, b) model.

6. THE DATA

In conducting this study, we use a number of types of financial data including mortgage
rates, term structure data from the Treasury, Agency, Libor, and swap curves, implied
volatilities for interest rate caps and swaptions, and indicative data and market prices
for GNMA I mortgage-backed securities. All data are obtained from the Bloomberg
system which collects and aggregates market quotations from a number of brokers and
dealers in the fixed income markets. Except where noted otherwise, all data consist
of monthly observations (month-end New York closes) for the June 1992 to June 2002
period.

The interest rate data used in the study includes the par GNMA I mortgage rate,
representing the coupon rate at which a newly-originated mortgage-backed security
would sell at par in the market. The Treasury data consist of constant maturity 2-
year, 3-year, 5-year, 7-year, 10-year, 20-year, and 30-year par rates. These constant
maturity rates are based on the yields of actively-traded on-the-run Treasury bonds.
Similarly, the Agency data consist of constant maturity par rates for the same matu-
rities (beginning in December 1992). These constant maturity Agency par rates are
estimated by Bloomberg from the yields of a sample of over 100 noncallable fixed rate
bonds issued by agencies such as FNMA and FHLMC. Finally, we include the 3-month
Libor rate as well as midmarket 2-year, 3-year, 5-year, 7-year, 10-year, 15-year, 20-
year, and 30-year par swap rates.7 These are the standard maturities for which swap
rates are quoted in the market.

To illustrate the data, Table 3 reports summary statistics for the par mortgage
rate. Also reported are summary statistics for the spread between the mortgage rate

7The 20-year par swap rate is only available from June 1994 onward.
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and the 10-year Treasury, Agency, and swap rates. Throughout the sample period, the
mortgage rate is always higher than either the 10-year Treasury, Agency, or swap rate.
This, of course, does not imply that mortgages have more credit risk than reflected in
these other curves. Rather, the par mortgage rate is higher because of the prepayment
option that the mortgage investor is short. On average, the mortgage rate is 119 basis
points higher than the Treasury rate, 72 basis points higher than the Agency rate,
and 65 basis points higher than the swap rate. Observe that the spread to the swap
rate displays the least serial correlation.

To provide some insight into the behavior of the mortgage rate, Table 4 reports
standard deviations for the spread between the mortgage rate and Treasury, Agency,
and swap rates for varying maturities. Table 4 also reports the correlations between
the mortgage rate and the other rates. The results indicate that of the three curves,
mortgage rates are more closely related to swap rates. In particular, the spread be-
tween the par mortgage rate and the 10-year swap rate is only 11.9 basis points. Thus,
over the 1992 to 2002 sample period, the mortgage rate is very nearly equal to the
10-year swap rate plus a constant spread of 65 basis points. Similarly, the highest cor-
relations are those between the mortgage rate and the swap rates. For example, the
correlation between the mortgage rate and the 10-year swap rate is 0.986. Because of
the close relation between mortgage rates and the swap curve, we use the swap curve
as the underlying term structure in implementing the string market model. We note,
however, that there are several other reasons for this choice. For example, calibrating
the model requires using volatility data for long-dated interest-rate options. The only
such data available is for swap-curve-related derivatives like interest rate caps and
swaptions. Additionally, although GNMA mortgage-backed securities are backed by
the Treasury, recent evidence by Longstaff (2003) shows that other Treasury-backed
debt often trades at significantly higher yields than do Treasury bonds. Thus, dis-
counting GNMA cash flows along a curve constructed from on-the-run Treasury bonds
may be inappropriate since these bonds can include a significant flight-to-liquidity pre-
mium. The last point argues for using the Agency curve, or what is nearly the same,
the swap curve as the basis for valuing GNMA mortgage-backed securities.

To implement the string market model, we need to identify the term structure of
discount bond prices out to 30 years from the Libor and swap rate data. We do this in
the following simple way. First, we use a standard cubic spline algorithm to interpolate
the par curve at semiannual intervals. This semiannual frequency corresponds to the
frequency with which fixed payments are made on swaps. We then solve for the
vector of discount bond prices that correspond to the par curve using the standard
bootstrapping procedure. We then obtain quarterly discount bond prices from the
bootstrapped semiannual discount bond prices by a simple linear interpolation of the
yields to maturity. Table 5 presents summary statistics for the Libor and swap rate
data used to generate discount bond prices. Figure 2 plots this term structure data
over the sample period.
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The interest-rate cap data consists of monthly implied volatilities for 2-year, 3-
year, 4-year, 5-year, 7-year, and 10-year caps for the same period as the term structure
data. By market convention, the strike price of a T -year cap is simply the T -year swap
rate. The market prices of caps are given by substituting market volatility quotations
into the Black (1976) model as described in Longstaff, Santa-Clara, and Schwartz
(2001b) and others. To generate a term structure of volatilities for individual forward
rates out to 30 years, we do the following. First, since market cap volatilities are only
available for horizons out to 10 years, we assume that a 30-year cap would have an
implied volatility two-thirds that of the 10-year cap. Although admittedly somewhat
arbitrary, this assumption is fairly consistent with the ratio of implied volatilities
for long-term and shorter-term swaptions observed in the market. We then use a
nonlinear least-squares optimization algorithm to solve for the polynomial of the form
j=2
j=−2 αjT

j that provides the best root-mean-squared fit to the prices of all eight of
the interest-rate caps. The fitted value of this polynomial is evaluated at quarterly
maturities out to 30 years, which is then used as the discretized volatility function
σ in calibrating the string market model. Table 5 also presents summary statistics
for the interest cap data used in the study. Figure 3 plots the time series of the cap
volatility term structure.

To calibrate the parameter γ governing correlations among individual forward
rates, we solve for a value of γ approximating the implied correlation matrix for
forwards reported in Longstaff, Santa-Clara, and Schwartz (2001b). In their study,
Longstaff, Santa-Clara, and Schwartz estimate the correlation matrix for forward rates
that best fits a cross section of 34 different European swaptions each week during the
1997 to 1999 period, and report the average correlation matrix across their sample
period. We find that γ = .01 provides a close approximation to the average implied
correlation matrix they report. Diagnostic tests, however, indicate that our results
are robust across a wide range of values for γ. We also collected a sample of swaption
values from near the end of our sample period and checked whether the swaption
values implied by the model using the caplet volatility curve in conjunction with this
value of γ matched these market values. This diagnostic check indicated that the
implied swaption values were generally quite close to the market swaption values. A
number of other specifications for the correlation function were investigated but found
to perform similarly to the functional form used in this study.

The mortgage-backed security data for the study consist of monthly midmarket
quotations for a wide spectrum of GNMA I TBAs (to be announced) with coupons
ranging from 5.50 to 9.50 percent in increments of 50 basis points. As described
by the Bond Market Association, a TBA is a contract for the purchase or sale of
mortgage-backed securities to be delivered at an agreed-upon date in the near future.
The specific pool numbers that will be delivered are unknown at the time of the
trade, but are required to satisfy standard good delivery guidelines. Thus, TBAs can
be viewed as short-term forward trades in generic mortgage-backed securities with a
specific coupon. To avoid the possibility of stale prices from illiquid issues, we only
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include TBA prices when the total remaining principal amount of all outstanding
GNMA I pools for that coupon exceeds $250 million. For the purposes of this study,
we consider TBA prices to be equivalent to the market values of newly-originated 30-
year mortgage loans with the corresponding mortgage rate. In actuality, the weighted
average maturities of the loans in GNMA I pools eligible for TBA delivery can be
less than 30 years. During the sample period, however, and for the issues included
in the data set, the weighted average maturity (WAM) is never less than 26 years.
In fact, Table 6 shows that the average WAM is in excess of 28 years for all of the
mortgage-backed securities in the sample. Thus, there is little loss of precision from
this simplifying assumption. Similarly, the effect on the results of abstracting from
the forward settlement feature of TBAs is negligible.

Table 6 also provides descriptive statistics for the mortgage-backed security prices
in the sample. As shown, there is significant cross-sectional variation in the prices
across coupon rates. Throughout the sample period, the prices range from a low of
about 82 to a high of more than 109. This can also be seen directly from Figure 4
which plots the prices during the sample period. As shown, the range of prices near
the end of 1994 was nearly twice as large as the range during the middle of 2002.
Interestingly, there is also considerable cross-sectional dispersion in the volatilities
of prices. In particular, the standard deviations of the low-coupon mortgage-backed
securities are several times as large as those for the high-coupon mortgage-backed
securities. One possible reason for this is that the borrower’s prepayment option has
more of a dampening effect of the prices of premium mortgage-backed securities since
it is deeper in the money. The number of observations for the 5.50 percent coupon is
29, while the number of observations for the 9.50 percent coupon is 52. The reason
for the limited number of observations is the variation in mortgage rates during the
sample period. During the early 1990s, mortgage-backed securities with coupons as
low as 5.50 percent were rare because par mortgage rates were much higher, and vice
versa near the end of the sample period.

Table 7 presents the correlation matrix for the mortgage-backed security prices.
As shown, mortgage-backed securities with similar coupons tend to be highly corre-
lated with one another. In contrast, the prices of low- and high-coupon mortgage-
backed securities display a significant amount of independent variation. For example,
the correlation between the 5.50 and 9.00 percent coupons is only 0.180. Similarly, the
correlation between the intermediate 7.00 percent coupon and the high 9.50 percent
coupon is 0.720. In contrast, the correlation between low and medium coupons is
generally much higher. This illustrates that the prices of premium mortgage-backed
securities tend to be affected by factors that are less prevalent in lower- and medium-
coupon mortgage-backed securities.

As discussed earlier, the possibility that the borrower may have to refinance at
an above-market rate because of his financial situation can have a large impact on
the optimal recursive strategy. Although the credit of the borrowers in the underlying
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mortgage pools is not completely observable, some information about their financial
situation can be inferred from the data available to us. In particular, we can compare
the mortgage rate on their current loan with prevailing mortgage rates at the time the
mortgage was originated. To illustrate this procedure, consider the following example.
At the end of June 2002, the WAM for the 9.00 percent coupon mortgage-backed
security was 27 years 6 months, implying that the underlying mortgage loans were
30 months old. Rolling back 30 months to December 1999, we find that the par
mortgage rate at that time was 7.83. This implies an estimate of 113 basis points for
the spread between the mortgage rate on the loans and the prevailing rate at the time
the loans were originated. We repeat this procedure for the entire sample and denote
the (positive) differences as credit spreads. We acknowledge, of course, that these
estimates doubtlessly contain noise since we can only approximate the origination date
of the mortgages from the WAM. Furthermore, there are a number of other factors
besides credit which may account for borrowers taking out loans at premium mortgage
rates. Despite these limitations, this measure may provide valuable information about
the financial situation of borrowers at the time their loans were originated.

In actuality, this measure of the credit spread could be significantly downward
biased. For example, assume that the average credit of the set of borrowers who are
initially in a high-coupon pool remains the same over time. Individually, however,
some borrowers may experience an improvement in their financial situation while
others may experience a decline. Borrowers who are able to borrow at a lower credit
spread will find it optimal to refinance their loan sooner than those whose credit
remains the same or declines. Thus, there may be a reverse survivorship aspect to high-
coupon mortgage pools. This argument suggests that the average credit spread for
the borrowers within an existing high-coupon mortgage pool may increase significantly
over time. This aspect parallels the well-known seasoning or burnout features used to
describe empirical prepayment behavior.

Table 8 reports summary statistics for the estimated credit spreads. Figure 5
plots the time series of these credit spreads. As shown, many of the high-coupon
observations are associated with significant credit spreads. For example, the average
credit spread for the 9.00 percent coupon mortgage-backed security is 82.9 basis points.
The average credit spread is almost monotonically increasing with the coupon rate.
The only exception is the 9.50 percent mortgage-backed security which has an average
credit spread of 68.3 basis points. These results strongly suggest that there may be a
significant credit component to many of these high-coupon mortgage-backed securities.
Recall from the numerical examples shown in Table 1 that credit spreads on the order
of magnitude of those in Table 8 could easily account for prices as high as 107 or 108.
This would be consistent with virtually all of the high-coupon prices in the sample.

It is important to stress that reconciling the premium prices observed in the
market within a rational model of refinancing behavior does not require the assumption
that credit problems are widespread among borrowers. In fact, the remaining principal
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amount of premium mortgage-backed securities is actually fairly small relative to that
for the other mortgage-backed securities. For example, mortgage-backed securities
with coupon rates more than 100 basis points above the current mortgage average
only about 13.4 percent of the total principal balance of all mortgage-backed securities
throughout the sample period. An important implication of these statistics is that a
credit-based explanation for the premium prices of high-coupon mortgages may only
require that 10 to 15 percent of borrowers face credit spreads in refinancing. Given
that subprime mortgage lending now represents more than 13 percent of all mortgage
lending, a credit-based explanation of premium mortgage-backed security prices is
certainly plausible.

7. REGRESSION ANALYSIS

As a preliminary to applying the optimal recursive model to the mortgage-backed secu-
rity data, it is useful to first examine how prices respond to changes in underlying term
structure variables. In an important recent paper, Boudoukh, Whitelaw, Richardson,
and Stanton (1997) find that GNMA mortgage-backed security prices are driven by at
least two term structure factors. Further, they find evidence of at least one common
factor in the GNMA pricing errors from their multivariate density estimation model
and consider a number of possible explanations for this finding.

In the spirit of the Boudoukh, Whitelaw, Richardson, and Stanton (1997) analy-
sis, we investigate the factor structure of the GNMA mortgage-backed security prices
in the sample. Since this analysis is only intended to be exploratory, however, we
adopt the simple approach of regressing changes in prices on changes in three-month
Libor, changes in the 10-year and 30-year swap rates, and changes in the average im-
plied volatility of interest rate caps. Although simplistic, this regression approach has
the advantage of allowing us to determine the extent to which prices are driven by the
various points along the term structure. Furthermore, by including changes in volatil-
ity in these regressions, we can examine directly whether volatility-related variation
in the value of the prepayment option is a significant determinant of mortgage-backed
security price changes.

Table 9 reports the regression results. As shown, all of the variables have ex-
planatory power, at least for some of the coupons. Changes in the three-month Libor
rate are significant for the 7.50 through 9.00 percent coupons. Changes in the 10-year
swap rate are significant for the 5.50 through 8.00 percent coupons. Changes in the
30-year rate are significant for the 6.00 through 7.50 percent coupons. Consistent
with Boudoukh, Whitelaw, Richardson, and Stanton (1997), these results indicate the
presence of at least three term structure variables driving GNMA mortgage-backed
security prices. As shown earlier in Table 2, the higher the coupon rate, the shorter
the effective maturity or duration of the mortgage-backed security. The results in Ta-
ble 9 are consistent with this implication. Specifically, low-coupon mortgage-backed
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securities are more sensitive to longer-term rates, while high-coupon mortgage-backed
securities are more sensitive to shorter-term rates.

Table 9 also shows that changes in prices are significantly affected by changes
in interest rate volatility. Interestingly, the results are the most significant for the
intermediate coupons. This makes intuitive sense since the prepayment option is likely
to be deep out of the money for low-coupon mortgages and deep in the money for high-
coupon mortgages. Thus, the vega or sensitivity to volatility of the prepayment option
should be highest when the mortgage coupon is close to the current par mortgage rate
in the market.

These results suggest the presence of at least three term structure factors and
one volatility factor driving GNMA prices. The R2s for the regressions are relatively
high for the 5.50 through 7.50 percent coupons, implying that most of the variation
in their prices is driven by these factors. In contrast, the R2s for the high-coupon
mortgage-backed securities are much lower, reaching a low of 0.237 for the 9.50 percent
coupon. This is consistent with the correlations shown in Table 6 which indicate that
there is considerable independent variation in the prices of high-coupon mortgage-
backed securities. In summary, these results suggest that the possibility that high-
coupon mortgage-backed security prices are influenced by additional factors that have
a much smaller effect on low-coupon and medium-coupon mortgage-backed securities.
A careful inspection of the numerical results in Table 1 indicates that variation in
the credit spread has a disproportionately large effect on the prices of high-coupon
mortgage-backed securities. Thus, variation in credit spreads is a potential candidate
for explaining the price movements of high-coupon mortgage-backed securities.

8. EMPIRICAL RESULTS

In this section, we examine the extent to which market mortgage-backed security prices
can be explained by allowing for credit spreads within the recursive framework. In
doing this, we use the following four-step approach. First, we assume that the number
of refinancing points α is fixed at two points throughout the sample.8 Second, we
solve for the parameter λ that provides the best root-mean-squared fit to the vector
of discount mortgage-backed security prices each month. Third, for each premium
mortgage-backed security price in the sample, we solve for the implied credit spread
that allows the calibrated model to match that market price. Finally, we examine
whether these implied credit spreads are consistent with the empirical properties of
credit-related measures for the individual mortgage-backed securities.

8The assumption that transaction costs average two points is consistent with a number
of industry sources. We note, however, that the results are fairly insensitive to modest
variation in this parameter.
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To be specific, for each of the 121 months in the sample, we generate 1,000 paths
of the string market model using the corresponding vectors of discount bond prices
and caplet volatilities. For each month, we then solve for the value of λ that best fits
the mortgage-backed securities with prices less than 100. In doing this, we make the
realistic identifying assumption that borrowers in these low-coupon mortgage pools
could refinance at the par mortgage rate. Typically, there are two to four discount
mortgage-backed securities each month from which λ can be estimated. For the few
months where there are no discount mortgage-backed securities, we use the parameter
λ from the previous month as the estimated value of λ. We use a standard numerical
search algorithm to solve for the value of λ that best fits the discount mortgage-backed
security prices. Alternative algorithms result in similar estimates. Table 10 reports
summary statistics for the fitting procedure and the estimated values of λ. As shown,
the model achieves a close fit to the prices of the discount mortgage-backed securities
in the sample. Across the 121 months in the sample, the average root-mean-squared
error is only 0.22 per $100 principal amount, while the median root-mean-squared
error is only 0.16 per $100 principal amount. These pricing errors are only slightly
larger than the typical bid-ask spread for these securities.

The summary statistics for the turnover parameter λ show that the average im-
plied probability that a borrower will pay off his loan for exogenous reasons is 5.59
percent per year. The median probability of an exogenous payoff is 5.15 percent per
year. To provide historical perspective, it is interesting to contrast these implied
turnover probabilities with actual turnover statistics. To do this, we collect data on
the seasonally adjusted number of sales of existing single-family homes in the U.S. from
the National Association of Realtors for each month during the sample period. We
also collect data on the number of single-family homes in the U.S. from Hayre (2001)
and the U.S. Census Bureau. Linearly interpolating the annual housing stock data
to provide monthly estimates, we estimate the historical actual turnover frequency by
dividing the number of sales by the housing stock. As shown in Table 10, the mean
value for the actual turnover frequency is 6.04 percent, which is only slightly higher
than the mean implied frequency. Figure 6 plots the time series of the implied and
actual turnover frequencies. As can be seen, the implied turnover frequency closely
approximates the actual turnover frequency in its level. Furthermore, the implied
value is clearly correlated with the actual turnover ratio. Table 10 reports that the
correlation between the two turnover measures is 0.327. Although this correlation is
far from perfect, recall that the actual turnover measure only captures the current
month’s experience while the implied turnover parameter reflects the market’s fore-
cast over the entire future life of the mortgage. In light of this, this correlation is
surprisingly high. These results indicate that mortgage-backed security prices contain
significant information about the propensity of borrowers to sell their homes and pay
off their mortgages for exogenous reasons. Further, the recursive model is able to
extract this information from market prices.
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Recall that the par mortgage rate is endogenously determined in the recursive
model. Specifically, at each date along each of the simulated paths of the term struc-
ture, the model solves for the coupon rate at which a newly-issued 30-year mortgage
would sell for par. To provide additional insight into the model, we solve for the initial
or time-zero par mortgage rate implied by the model and contrast it with the actual
GNMA I par mortgage rates during the sample period. Rather than reporting these
rates in their levels, Table 10 reports summary statistics for the spread between the
rates and the 10-year swap rate. As illustrated, the average par mortgage spread im-
plied by the recursive model almost matches the actual par mortgage spread exactly.
In particular, the average implied spread is 70 basis points over the 10-year swap rate
while the average historical spread is 65 basis points over the 10-year swap rate. Both
the implied and actual spreads have a median value of 65 basis points. The correlation
between the two time series is very high; Table 10 shows that the correlation between
the implied and actual spreads is 0.686. Figure 7 plots the time series of the implied
and actual credit spreads. Together with the previous results, this evidence indicates
that the recursive model is successful in capturing the properties of both discount and
par mortgage-backed securities during the sample period.

Turning now to the valuation of premium mortgage-backed securities, we use
the model to solve for the implied credit spread for each premium mortgage-backed
security in the sample. Specifically, for each month, we use the simulated paths and
the implied value of λ for that month to generate model prices for a grid of different
credit spreads or values of β. From this grid, we then solve for the value of β that that
matches the market price of each mortgage-backed security to its model value. Note
that this procedure allows each premium mortgage-backed security to be fit exactly
since each mortgage-backed security has its own implied credit spread. Of course,
by fitting the data exactly, we cannot use goodness of fit measures to evaluate the
model’s performance. Rather, our approach is to examine whether the implied credit
spreads from the model are consistent with empirical measures of borrower credit. It
is important to observe, however, that the ability of the recursive model to match
premium prices is not trivial. As discussed, previous optimal prepayment models do
not allow prices to exceed par plus the number of refinancing points. Thus, previous
optimal prepayment models would be unable to match the majority of the premium
prices in the sample.

Table 11 reports summary statistics for the implied credit spreads. Figure 8
graphs the time series of implied credit spreads. As shown, the credit premia needed
to match the premium mortgage-backed security prices in the sample are relatively
small. For example, Table 6 shows that the average price of the high-coupon 9.00
percent mortgage-backed securities in the sample is 105.56. Table 11 shows that the
average implied credit premium for these mortgage-backed securities is 119.2 basis
points, or only slightly more than 1 percent. Recall from the earlier discussion that
the average subprime mortgage rate near the end of the sample period is approximately
300 basis points in excess of the par mortgage rate. The implied credit spreads from
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the recursive model are clearly well within this range for all of the coupon rates in the
sample. The average implied credit spreads are monotonic in the coupon rate.

As illustrated in Table 8, many of the high-coupon mortgages in the sample
were originated at rates exceeding the prevailing par mortgage rate in the market at
the time of origination. As discussed earlier, one reason for this could be that these
borrowers might not have been able to satisfy the strictest underwriting guidelines and,
therefore, had to pay a premium rate to obtain a FHA or VA mortgage. Over time,
borrowers whose financial situation improves would be able to refinance at a lower
credit spread. Thus, as time passes, we might expect that the average credit quality
of the remaining borrowers underlying a premium mortgage-backed security would
tend to decrease. This would imply that implied credit spread for a mortgage-backed
security could be somewhat wider than the credit spread for the mortgage-backed
security at the date of origination.

This hypothesis is easily investigated by comparing the average credit spreads at
origination shown in Table 8 with the average credit spreads implied by the recursive
model shown in Table 11. As can be seen, the original and implied credit spreads are
actually very similar for the mortgage-backed securities with coupons ranging from
5.50 to 8.50 percent. For example, the original credit spreads for the 7.50 and 8.00
percent mortgage-backed securities are 23.9 and 34.6 basis point respectively. These
closely match the average implied credit spreads for these coupons of 21.1 and 45.7
basis points respectively. For the remaining coupons, the implied credit spread is
somewhat larger than the original credit spread. For example, the average original
credit spread for the 9.00 percent coupon mortgage-backed security is 82.9 basis points,
which is roughly 70 percent of the average implied credit spread. In general, however,
the implied credit spreads closely track the credit spreads at the origination date of
the mortgages. This provides indirect evidence that the recursive model captures the
economics of premium mortgage-backed security prices, since the original credit spread
is not used in calibrating the model.

To examine more directly whether implied credit spreads reflect borrower funda-
mentals, we investigate the relation between these spreads and the credit quality of the
borrowers whose mortgages underlie the mortgage-backed security. Of course, detailed
information about individual borrowers’ financial situations is not directly observable.
Despite this, however, there are several instrumental variables which may proxy for
borrower credit quality. The first of these is simply the original credit spread or differ-
ence between the mortgage coupon rate and the prevailing par mortgage rate at the
time that the mortgages were originated. As discussed above, this variable may re-
flect the average credit quality of the borrowers at the origination date of the mortgage
loans. As a second proxy, we use the percentage of the original principal balance that
has been paid off. Recall from Table 6 that the typical mortgage-backed security in the
sample is based on a pool of mortgages that are one to two years old. During this one-
to two-year period, some of the individual borrowers with high-coupon mortgages may
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find that their financial situation has improved. These borrowers have strong incen-
tives to prepay and refinance their loans. Thus, over time, the average credit quality
of the borrowers remaining in a premium pool may decrease as higher-credit borrowers
exit the pool. Because of this, the percentage of the original principal balance that has
been paid off may contain information about the average credit quality of borrowers
underlying an mortgage-backed security.

Table 12 reports the results from regressions of the implied credit spread on the
original credit spread and the percentage prepaid. As illustrated, both of the prox-
ies for borrower credit risk have significant explanatory power for the implied credit
spread. In particular, the t-statistics for the two variables are 10.62 and 10.79 respec-
tively. The sign of the regression coefficient is positive for both variables. Thus, the
implied credit spread is an increasing function of the original credit spread. This is
consistent with the view that the original credit spread directly reflects the average
credit of the borrowers in the mortgage pool. Similarly, the positive sign for the per-
centage prepaid variable is consistent with the interpretation that the average credit
quality of a premium mortgage pool deteriorates over time as the better credits in
the pool prepay. Although these two variables are only proxies for credit risk, their
explanatory power for the implied credit spread is very high since the R2 for the re-
gression is 0.373. Each of the two explanatory variables is also significant in individual
univariate regressions. This is illustrated in Figure 9 which presents scatterdiagrams of
the implied credit spread against the individual explanatory variables. As illustrated,
there is a strong correlation between the implied credit spread and both explanatory
variables. The correlation between the implied credit spread and the original credit
spread is 0.488. The correlation between the implied credit spread and the percentage
prepaid is 0.493. These results provide strong support for the hypothesis that the
credit spread implied by the recursive model captures fundamental information about
the average credit quality of the borrowers underlying the mortgage-backed securities
in the sample.

9. MODEL PERFORMANCE

In this section, we examine how well the model performs using only ex ante infor-
mation to price the cross-section of mortgage-backed securities. This out-of-sample
test provides insights into the ability of the model to capture the dynamic behavior
of mortgage-backed security prices.

In applying the recursive model to mortgage-backed security prices at date t,
we do the following. First, we assume that the probability of an exogenous payoff
is a constant six percent throughout the sample period. Second, for each mortgage-
backed security, we use the implied credit spread estimated the previous month for the
corresponding coupon rate as the estimate of the credit spread for the current month.
Implicit in this approach is the assumption that the credit status of borrowers within
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a specific mortgage pool does not change rapidly, and, therefore, that their credit
spread displays some degree of persistence. Given this parameterization, we solve for
the mortgage-backed security values for each coupon given by the model and compare
them with the actual market prices. The pricing error is the difference between the
actual market price and the price implied by the recursive model.

Table 13 reports summary statistics for the pricing errors from the recursive
model. Over all coupon rates, the average pricing error is only about 3.6 cents per
$100 notional or principal amount, and is not statistically significant. The overall
root-mean-squared error is 0.858. Although this root-mean-squared error indicates
that the recursive model does not fully explain the pricing of all mortgage-backed
securities, it is important to observe that the model is able to capture 97.1 percent of
the variation in the mortgage-backed security prices during the sample period.

Table 13 also shows that there some residual bias in the pricing for the individual
coupons. In particular, the mean errors for the lower-coupon mortgage-backed securi-
ties in the sample are all significantly negative, while the reverse is true for the high-
coupon mortgage-backed securities. Thus, the model tends to overprice low-coupon
mortgage-backed securities and underprice high-coupon mortgage-backed securities.
The mean errors, however, are generally less than 50 cents per $100 notional amount.
Thus, even for the high-coupon 9.50 percent mortgage-backed securities, the recursive
model is able to explain nearly 91 percent of the average premium over par. Similarly,
the model is able to explain about 94.4 percent of the premium over par for the 9.00
coupon mortgage-backed securities. These results suggest that the recursive model
performs well out of sample in explaining the pricing of mortgage-backed securities
over the past decade.

10. CONCLUSION

This paper studies the optimal recursive refinancing problem for a borrower who faces
transaction costs and may have to refinance at a premium rate because of his credit.
This paper also examines the implications of the model for the valuation of mortgage-
backed securities. We show that the optimal recursive strategy can be very different
from that implied by the earlier optimal prepayment models in the literature. In
particular, the borrower often finds it optimal to delay prepayment far beyond the
point at which these traditional models imply that the mortgage should be prepaid.
Because of this key feature, the recursive model can generate mortgage-backed security
values that are much higher than those implied by traditional models.

We apply the optimal recursive model to an extensive cross section of mortgage-
backed security prices covering a ten-year sample period. We find that the model is
able to match the market values of premium mortgage-backed securities using moder-
ate and realistic assumptions about the transaction costs associated with refinancing
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and the credit spreads faced by borrowers. To our knowledge, this recursive refinanc-
ing model is the first framework based on rational or optimal prepayment behavior
that is able to do so. The results of this study strongly suggest that optimal recursive
models offer a promising alternative to the reduced-form or behavioral prepayment
models widely used in practice.
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Table 1

Mortgage-Backed Security Values Implied by the Optimal Recursive Refinancing Model. This table presents 30-year mortgage-backed
security values for the indicated parameters. Credit spread is the number of basis points over the par mortgage rate at which the mortgage could be
refinanced. Points represents the percentage costs of refinancing. The model is calibrated to the June 28, 2002 swap curve and interest rate cap and
swaption volatilities. Values are based on a par value of 100. The probability of an exogenous payoff is 6% per year. The static model is an extended
version of Dunn and McConnell (1981a, b) with refinancing points but without credit spreads.

Coupon Rate
Credit Refinancing

Model Spread Points 4.00 5.00 6.00 7.00 8.00 9.00 10.00

Static − 0 88.85 94.79 99.43 101.17 101.52 101.77 102.02
1 88.86 94.84 99.57 101.34 101.52 101.77 102.02
2 88.92 94.86 99.85 101.67 101.52 101.77 102.14

Recursive 0 0 89.01 95.00 100.03 102.49 101.63 101.79 102.03
1 89.07 95.07 100.30 103.20 101.69 101.80 102.03
2 89.08 95.12 100.56 103.81 102.02 101.82 102.03

Recursive 50 0 89.11 95.15 100.73 104.31 102.66 101.83 102.03
1 89.13 95.31 100.94 104.75 103.50 101.90 102.04
2 89.17 95.40 101.10 105.23 104.86 101.99 102.04

Recursive 100 0 89.19 95.49 101.29 105.51 106.10 102.06 102.05
1 89.21 95.62 101.44 105.99 107.15 102.25 102.07
2 89.26 95.72 101.56 106.32 108.19 102.70 102.08

Recursive 150 0 89.28 95.78 101.65 106.62 108.82 103.81 102.09
1 89.32 95.85 101.84 106.96 109.53 105.07 102.13
2 89.34 95.89 102.00 107.22 110.12 106.59 102.23

Recursive 200 0 89.35 95.94 102.16 107.52 110.59 107.98 102.33
1 89.43 96.00 102.33 107.80 111.23 109.62 102.48
2 89.44 96.04 102.51 108.02 111.82 110.94 102.81

Recursive 250 0 89.45 96.08 102.61 108.22 112.17 111.84 103.41
1 89.48 96.15 102.75 108.41 112.67 113.18 104.25
2 89.51 96.20 102.82 108.63 113.10 114.29 105.98



Table 2

Mean Time until First Prepayment Implied by the Optimal Recursive Refinancing Model. This table reports the expected number of
years until the first prepayment of a 30-year mortgage. Credit spread is the number of basis points over the par mortgage rate at which the mortgage
could be refinanced. Points represents the percentage costs of refinancing. The model is calibrated to the June 28, 2002 swap curve and interest rate
cap and swaption volatilities. The probability of an exogenous payoff is 6% per year. The static model is an extended version of Dunn and McConnell
(1981a, b) with refinancing points but without credit spreads.

Coupon Rate
Credit Refinancing

Model Spread Points 4.00 5.00 6.00 7.00 8.00 9.00 10.00

Static − 0 12.55 10.50 6.46 0.73 0.25 0.25 0.25
1 12.91 11.22 8.76 1.72 0.25 0.25 0.25
2 13.16 11.91 9.73 2.95 0.26 0.25 0.27

Recursive 0 0 13.26 12.20 10.18 5.10 0.53 0.37 0.25
1 13.48 12.43 10.65 6.70 0.78 0.27 0.25
2 13.64 12.64 11.03 7.93 1.17 0.30 0.25

Recursive 50 0 13.65 12.73 11.26 8.68 2.05 0.31 0.26
1 13.74 12.95 11.61 9.30 2.97 0.40 0.26
2 13.84 13.13 11.93 9.85 4.59 0.49 0.26

Recursive 100 0 13.86 13.19 12.14 10.06 5.79 0.56 0.27
1 13.97 13.39 12.35 10.56 6.88 0.78 0.29
2 14.04 13.59 12.50 10.85 7.78 1.11 0.29

Recursive 150 0 14.04 13.60 12.62 11.05 8.29 1.96 0.30
1 14.09 13.72 12.86 11.46 8.99 2.74 0.35
2 14.15 13.79 13.04 11.68 9.44 3.84 0.41

Recursive 200 0 14.13 13.80 13.11 11.91 9.68 4.66 0.47
1 14.27 13.93 13.27 12.17 10.16 5.84 0.56
2 14.31 14.01 13.48 12.37 10.54 6.75 0.79

Recursive 250 0 14.28 13.99 13.50 12.47 10.70 7.22 1.06
1 14.33 14.08 13.68 12.69 11.06 8.09 1.51
2 14.38 14.16 13.76 12.88 11.37 8.80 2.41



Table 3

Summary Statistics for the Par Mortgage Rate and its Spread to 10-Year Treasury, Agency, and Swap Rates. This table reports
summary statistics for the par GNMA I mortgage rate and its spread to the indicated 10-year rates. The data are monthly from June 1992 to June
2002, except for the 10-year Agency rate series which begins in December 1992.

Serial Number of
Average Minimum Median Maximum Correlation Observations

Par Mortgage Rate 7.22 5.58 7.24 8.97 0.927 121

Spread to 10-Year Treasury Rate 1.19 0.52 1.14 2.01 0.732 121
Spread to 10-Year Agency Rate 0.72 0.43 0.75 1.00 0.845 115
Spread to 10-Year Swap Rate 0.65 0.34 0.65 0.92 0.719 121



Table 4

Standard Deviations for Mortgage Spreads and Correlations with Treasury, Agency, and Swap Rates. This table reports the standard
deviation of the spread between the par GNMA I mortgage rate and Treasury, Agency, and swap rates of the indicated maturities. Also reported are
the correlations between the par mortgage rates and the Treasury, Agency, and swap rates of the indicated maturities. The data are monthly from
June 1992 to June 2002, with the exception of several Agency and Treasury series which begin one to two years later.

Maturity

2 3 5 7 10 20 30

Std. Deviation of Mortgage-Treasury Spread 0.677 0.516 0.306 0.239 0.313 0.315 0.495
Std. Deviation of Mortgage-Agency Spread 0.611 0.454 0.215 0.132 0.149 0.279 0.325
Std. Deviation of Mortgage-Swap Spread 0.714 0.513 0.266 0.148 0.119 0.123 0.289

Correlation of Mortgage and Treasury Rates 0.799 0.866 0.938 0.953 0.916 0.907 0.775
Correlation of Mortgage and Agency Rates 0.841 0.902 0.968 0.985 0.979 0.924 0.896
Correlation of Mortgage and Swap Rates 0.794 0.865 0.950 0.981 0.986 0.988 0.917



Table 5

Summary Statistics for the Swap Curve and the Implied Volatilities of Interest Rate Caps. This table presents summary statistics for
the indicated maturity Libor and swap rates. Also reported are summary statistics for the midmarket Black-model implied volatilities of at-the-money
Libor caps. The data are monthly for the period from June 1992 to June 2002.

Standard Serial
Average Minimum Median Maximum Deviation Correlation

3-Month Libor 4.933 1.850 5.500 6.844 1.352 0.980
2-Year Swap Rate 5.574 2.822 5.875 8.135 1.135 0.960
3-Year Swap Rate 5.831 3.420 5.945 8.195 0.988 0.948
5-Year Swap Rate 6.169 4.172 6.215 8.175 0.827 0.934
7-Year Swap Rate 6.372 4.571 6.325 8.215 0.761 0.929
10-Year Swap Rate 6.567 4.899 6.565 8.275 0.717 0.926
15-Year Swap Rate 6.678 5.264 6.810 8.390 0.688 0.929
20-Year Swap Rate 6.817 5.419 6.880 8.490 0.700 0.941
30-Year Swap Rate 6.925 5.513 6.980 8.500 0.693 0.945

1-Year Cap Volatility 18.64 7.75 17.50 43.12 7.83 0.933
2-Year Cap Volatility 20.34 11.10 20.05 40.00 5.94 0.923
3-Year Cap Volatility 20.29 12.60 19.80 34.20 4.40 0.913
4-Year Cap Volatility 19.82 13.40 19.75 30.50 3.51 0.905
5-Year Cap Volatility 19.32 13.50 19.25 28.80 2.98 0.897
7-Year Cap Volatility 18.24 13.50 18.20 26.00 2.46 0.887
10-Year Cap Volatility 17.13 12.30 17.10 24.00 2.21 0.898



Table 6

Summary Statistics for GNMA I Mortgage-Backed Security Prices. This table reports summary statistics for the market prices of GNMA I
mortgage-backed security TBAs with the indicated coupon rates. Mortgage-backed securities where the total notional outstanding in all pools is less
than $250 million are omitted from the sample. Average WAM is the time series average of the weighted average maturity in years of all mortgages
in pools with the indicated coupon rates. The data are monthly for the period from June 1992 to June 2002.

Standard Average Number of
Coupon Rate Average Minimum Median Maximum Deviation WAM Observations

5.50 95.20 89.36 95.55 99.77 2.27 28.8 29
6.00 93.95 82.27 94.19 101.73 4.40 28.6 104
6.50 96.68 85.67 97.27 103.33 3.95 28.7 111
7.00 98.89 88.84 99.22 104.41 3.37 28.7 120
7.50 100.92 92.05 101.35 105.42 2.82 28.1 121
8.00 102.66 95.05 102.89 106.42 2.29 28.6 121
8.50 104.24 97.83 104.45 107.48 1.88 28.3 121
9.00 105.56 100.50 105.84 108.16 1.58 28.4 115
9.50 107.42 103.19 107.58 109.34 1.23 28.1 52



Table 7

Correlation Matrix of GNMA I Mortgage-Backed Security Prices. This table presents the correlation matrix for the GNMA I mortgage-
backed security TBA prices for the indicated coupon rates. Since not all time series of prices have the same length, pairwise correlations are based
only on months where there is an observation for both series. Correlations which cannot be computed because of nonoverlapping observations are
designated with a hyphen. The data are monthly for the period from June 1992 to June 2002.

Coupon Rate 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50

5.50 1.000 .975 .966 .931 .816 .672 .566 .180 −
6.00 .975 1.000 .998 .994 .979 .949 .911 .791 .716
6.50 .966 .998 1.000 .997 .982 .948 .909 .797 .746
7.00 .931 .994 .997 1.000 .992 .958 .902 .782 .720
7.50 .816 .979 .982 .992 1.000 .985 .936 .823 .748
8.00 .672 .949 .948 .958 .985 1.000 .972 .877 .799
8.50 .566 .911 .909 .902 .936 .972 1.000 .951 .861
9.00 .180 .791 .797 .782 .823 .877 .951 1.000 .928
9.50 − .716 .746 .720 .748 .799 .861 .928 1.000



Table 8

Summary Statistics for Original Credit Spreads. This table reports summary statistics for the original credit spreads measured in basis points
for mortgage-backed securities with the indicated coupon rates. The credit spread is computed by taking the (positive) difference between the coupon
rate and the par coupon rate at the implied date when the underlying mortgages were originated. This implied date is based on weighted average
maturity or WAM of the mortgages.

Standard Number of
Coupon Rate Average Minimum Median Maximum Deviation Observations

5.50 0.0 0.0 0.0 0.0 0.0 29
6.00 0.0 0.0 0.0 4.0 0.4 104
6.50 2.2 0.0 0.0 28.0 6.1 111
7.00 14.5 0.0 7.0 104.0 21.7 120
7.50 23.9 0.0 0.0 154.0 38.0 121
8.00 34.6 0.0 14.0 175.0 47.7 121
8.50 67.8 0.0 49.0 232.0 55.2 121
9.00 82.9 0.0 91.0 278.0 62.1 115
9.50 68.3 0.0 69.0 130.0 49.0 52



Table 9

Regressions of Changes in GNMA I Mortgage-Backed Security Prices on Changes in Term Structure and Volatility Variables. This
table reports the results of regression of monthly changes in the mortgage-backed security prices for the indicated coupon rates on monthly changes
in the three-month Libor, 10-year swap, and 30-year swap rates, and monthly changes in the average volatility of 2-year through 10-year interest rate
caps.

∆TBA = β0 + β1 ∆3MO + β2 ∆10YR + β3 ∆30YR + β4 ∆VOL + 6

β0 β1 β2 β3 β4 tβ0 tβ1 tβ2 tβ3 tβ4 R2 N

5.50 0.115 0.556 −4.256 −1.147 −0.039 0.98 1.20 −4.03 −0.92 −0.62 0.899 27
6.00 −0.003 −0.044 −3.608 −2.290 −0.098 −0.06 −0.24 −6.20 −3.43 −2.58 0.902 103
6.50 −0.005 −0.135 −3.485 −1.860 −0.105 −0.10 −0.73 −6.28 −2.95 −2.87 0.889 110
7.00 −0.015 −0.355 −2.495 −2.216 −0.115 −0.34 −1.93 −4.65 −3.66 −3.26 0.850 119
7.50 −0.011 −0.466 −1.735 −2.058 −0.111 −0.24 −2.43 −3.08 −3.24 −3.03 0.773 120
8.00 −0.009 −0.525 −1.529 −1.203 −0.086 −0.18 −2.62 −2.60 −1.81 −2.26 0.641 120
8.50 −0.013 −0.571 −0.956 −0.773 −0.036 −0.29 −3.05 −1.74 −1.25 −1.01 0.495 120
9.00 −0.013 −0.558 −0.587 −0.482 −0.018 −0.32 −3.35 −1.18 −0.85 −0.60 0.399 113
9.50 0.080 −0.123 −1.369 0.838 0.018 1.30 −0.28 −1.63 0.98 0.35 0.237 50



Table 10

Summary Statistics for the Fitted Recursive Model. This table reports summary statistics from fitting the optimal recursive model to historical
discount mortgage-backed security prices. For each of the 121 months in the sample period, the fitting procedure searches for the implied turnover
rate that best fits (in terms of the root-mean-squared error) the prices of the mortgage-backed securities with prices less than 100. Root-mean-squared
errors are expressed in units of dollars per 100 principal amount. The turnover rate is the annualized probability of an exogenous payoff and is
expressed as a percentage. The implied par mortgage spread is the difference between the par mortgage rate implied by the model and the 10-year
swap rate and is expressed as an annualized percentage rate. Similarly for the actual par mortgage spread.

Standard Correlation
Average Minimum Median Maximum Deviation With Actual

Root Mean Squared Error 0.22 0.00 0.16 0.85 0.21

Implied Turnover Rate 5.59 1.35 5.15 10.00 1.48 0.327
Actual Turnover Rate 6.04 4.60 5.95 7.44 0.66
Difference in Rates −0.45 −5.25 −0.64 3.33 1.41

Implied Par Mortgage Spread 0.70 0.36 0.65 1.19 0.19 0.686
Actual Par Mortgage Spread 0.65 0.34 0.65 0.92 0.12

Difference in Spreads 0.05 −0.20 0.01 0.54 0.14



Table 11

Summary Statistics for Implied Credit Spreads. This table reports summary statistics for the implied credit spreads measured in basis points
for mortgage-backed securities with the indicated coupon rates. The implied credit spread is determined by solving for the credit spread that sets the
recursive model price equal to the market price for each premium mortgage-backed security in the sample.

Standard Number of
Coupon Rate Average Minimum Median Maximum Deviation Observations

5.50 0.0 0.0 0.0 0.0 0.0 0
6.00 0.0 0.0 0.0 0.0 0.0 3
6.50 6.5 0.0 0.0 122.1 24.9 24
7.00 10.2 0.0 0.0 250.0 35.3 56
7.50 21.1 0.0 17.8 81.6 18.9 79
8.00 45.7 0.0 44.1 102.5 20.6 106
8.50 82.6 22.3 82.8 149.2 24.8 116
9.00 119.2 52.7 123.3 172.4 25.7 115
9.50 168.1 113.2 170.7 210.0 24.4 52



Table 12

Regression of Implied Credit Spreads on Borrower-Credit-Related Variables. This table reports the results of regressing the implied credit
spreads for the premium mortgage-backed securities on the original credit spreads for the mortgages in the underlying pools and the percentage of
the original mortgage balance that has been prepaid.

Implied Spread = β0 + β1 Original Spread + β2 Percent Prepaid + 6

Independent
Variables β0 β1 β2 tβ0 tβ1 tβ2 R2 N

Original Spread Only 48.33 0.503 − 17.58 13.04 − 0.238 545

Percent Prepaid Only 39.97 − 1.509 12.57 − 13.19 0.243 545

Both Variables 28.86 0.389 1.175 9.37 10.62 10.79 0.373 545



Table 13

Summary Statistics for the Out-of-Sample Pricing Errors from the Recursive Model. This table reports summary statistics for the pricing
errors resulting from calibrating the recursive model to the implied credit spreads from the previous month and applying the model to the current
month. The pricing error is the difference between the actual mortgage-backed security price and the recursive model price.

Standard Deviation t-Statistic for Root-Mean-Squared Number of
Coupon Mean Pricing Error of Pricing Error Mean Pricing Error Error Observations

5.50 −0.437 0.613 −3.38 0.744 29
6.00 −0.438 1.027 −4.35 1.112 104
6.50 −0.398 0.815 −5.14 0.903 111
7.00 −0.280 0.713 −4.31 0.763 120
7.50 −0.017 0.632 −0.30 0.629 120
8.00 0.127 0.670 2.08 0.680 120
8.50 0.209 0.765 2.99 0.790 120
9.00 0.310 0.887 3.73 0.937 114
9.50 0.597 1.032 4.13 1.183 51

All −0.036 0.858 −1.25 0.858 889






















