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1 Introduction

What I want to argue is that advances in econometrics, in combination with at least the basics

of a theoretical structure, and greatly facilitated by the parallel and interrelated growth of

better data and computing facilities, have made

sensible things simple

and that, as a result, empirical industrial organization has become much more useful.

I will argue this through two examples. They are designed to show how new econometric

tools enable us to dramatically improve our estimates of objects which are of fundamental

importance to the analysis of market outcomes: demand functions and entry costs. The

econometric tools used in these examples, simulation and semiparametrics, are also the two

tools that have been most intensively used of late in empirical industrial organization.

1.1 Background Notes

Why give a talk with this title? My motivation comes from the need for an antidote to the

disparaging comments that I have, of late, been hearing on the use of “complex” econometric

tools, particularly on the use of econometrics in conjunction with tools from economic theory.

Many of us would agree that most good empirical work starts out with simple correlations

of one form or the other. First and foremost the correlations provide a summary of what

the model has to explain. They often also provide a basis for determining which among

alternative more detailed structures is more appropriate.

Probably the most important role of the new econometric tools in empirical I.O. has been

to enable us to use more sensible theoretical structures to explain these correlations. In this

context the theoretical structures play two roles. First they make it possible to make the

link between market outcomes and the decisions taken by economic units. Less appreciated,

however, is that the theory also makes it possible to utilize the available data in a “sensible”

way. It is this latter point that the examples are designed to illustrate.
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The examples show that were we to use a realistic theoretical structure to interpret

either demand or entry data, and, in addition, limit ourselves to standard econometric

tools, we would run into rather immense computational problems. The new econometric

tools alleviate these computational problems. Moreover they do so in a way the makes the

relationship between the economic model and the estimating equations transparent. It is

this transparency that makes it easy to see where the model might be lacking and how it

might be improved.

Though the relationship between the estimating equations and the economic model is

typically easy to understand, the resulting parameter estimates do not necessarily have a

simple relationship to the underlying raw data moments. The parameter estimates do,

however, describe the primitives that determine the behavior of the underlying economic

agents. As a result their reasonableness can often be judged by consistency with the other

information available on these primitives. Moreover, under the assumptions of the model,

they are the parameters needed to either (i) evaluate the causal impacts of past events or (ii)

analyze the counterfactuals needed for the evaluation of possible future policies. Of course

if the assumptions are wrong then so might be the analysis. However one of the advantages

of writing down the model is that it clarifies the assumptions needed for the analysis, and

this allows us to engage in sensible robustness analysis. The robustness analysis is typically

greatly facilitated by the transparency of the estimation procedure and the power of modern

computers.

Put differently, the emphasis on integrating theory and the power of the modern econo-

metric techniques allows us to focus the empirical work on determining

• the primitives generating the returns to actions (the demand and cost systems, the

rules which determine the institutional environment, etc.) and

• appropriate behavioral assumptions (interpreted broadly enough to include the choice

of equilibrium).
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We then evaluate alternative explanations of past phenomena by working with the impli-

cations of these more primitive constructs, and we evaluate counterfactuals by making the

changes in either the primitives or the behavioral assumptions that the counterfactuals imply.

Of course the “real world” is complex and we will never get the model exactly “right”.

That, however, is also a rather naive goal. The question is not whether a paper has gotten it

“right” but rather whether the paper has provided a more meaningful approximation than

the next best alternative. Firms are going to use data to help make decisions, agencies are

going to use it to help determine policies, and academics are going to use it to interpret

market outcomes, whether we like it or not. The only question is whether we can improve

on how this is being done.

The fact that the model is not exactly right does, however, imply that we should not

be using standard test statistics to either accept or reject a given model, or to choose be-

tween alternatives.1 Our success is better evaluated by demonstrating the ability of the

“structural” model to make sense of aspects of the data that the simpler models could not.

Similarly “stopping rules” for model selection should be based on trading off the incremental

complexity resulting from relaxing assumptions against any improvements in the quality of

the analysis the more complex model delivers.

1.2 The Examples

I first consider the use of simulation to overcome aggregation problems in estimation.2 Sim-

ulation allows us to base the analysis on microeconomic models but base the estimation

on the market outcomes we more typically observe and are primarily interested in. In this

context I will focus on the estimation of market level demand systems. The economic model

here is any demand model that allows consumers’ choices to depend on their attributes (i.e.

on their income, family size, location of residence, and so on). What simulation does is

1Though sometimes it does make sense to employ them as summary statistics to be compared to the
analogous summary statistics for other models (either computed on the same data or on other data sets of
similar size).

2This use of simulation dates back to Pakes (1986).
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allow us to sum up over the demands generated by this model and the actual distribution of

consumer attributes in the market of interest. This generates a prediction for demand whose

relationship to the micro model and the data are transparent. The estimator is obtained

by simply finding the value of the model’s parameter vector that makes these predictions as

close as possible to the observed market demands. This is an application that has benefits

which I think are so obvious that I can suffice with a simple summary of what we have gained

by looking at demand in this way.

The second example is a bit more complex. It shows how the use of semiparametrics

can simplify the empirical analysis of models that require decision rules that are difficult to

compute.3 I use the example of entry models, variants of which have been used in empirical

industrial organization for some time now. In this context I am going to try and convince

you of two issues. First I argue that the early “structural” entry models that were taken

to data, models which used blatantly unrealistic assumptions, turned out to be quite useful.

Second I am going to argue that semiparametrics can be used to provide models which both

(i) get around an important subset of those unrealistic assumptions and (ii) are simple to

estimate.

The difficulty with the early entry models is that they are two period models; firms earn

profits in the second period and choose whether to enter in the first. Semiparametrics allows

us to base the analysis on a truly dynamic environment without having to compute equi-

librium strategies for a dynamic game. More precisely incumbents’ decisions on whether to

exit and potential entrants’ decisions on whether to enter depend on the expected discounted

values of the profits from continuing and entering, respectively. It is these values which the

equilibrium solves for. What semiparametrics does is obtain a first stage estimate of these

values by averaging over the realized discounted cash flows for the incumbents in the data

who did continue, and of the potential entrants who did enter. Given these first stage es-

timates of continuation and entry values, the parameters of the entry and exit distribution

3This use of semiparametrics dates back to Hotz and Miller (1992) for single agent problems, and Olley
and Pakes (1996) for multiple agent problems.
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can be estimated from any of a number of simple algorithms.

Again the economic model is transparent; agents enter (continue) if the expected dis-

counted value of entering (continuing) is greater than the cost of entry (the sell-off value). It

is the computation of the expected discounted values that is complex. What semiparamet-

rics does is provide a simple way of approximating them that is grounded in what actually

happened.

2 Simulation and Demand Systems

Not long ago graduate lectures on demand systems were largely based on representative agent

models. Applications, on the other hand, typically used market level data: they would regress

quantity purchased on (average) income and prices. There were theoretical papers which

investigated the properties of market level demand systems obtained by explicitly aggregating

up from micro models of consumer choices (including a seminal paper by Houthakker,1955).

However we could not use their results to structure estimation on market level data without

imposing unrealistic a priori assumptions on the distribution of income and “preferences”

(or its determinants like size, age, location, etc.).

What simulation methodology has done is enabled us to aggregate up from the observed

distribution of consumer characteristics and any functional form that we might think rel-

evant. That is we allow different consumers to have different income, age, family size, or

location of residence. We then formulate a demand system which is conditional on the

consumer’s characteristics and a vector of parameters which determines the relationship be-

tween those characteristics and preferences over products (or over product characteristics).

To estimate those parameters from market level data we simply

• draw vectors of consumer characteristics from the distribution of those characteristics

in the market of interest (in the U.S., say from the March CPS),

• determine the choice that each of the households drawn would make for a given value
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of the parameter vector,

• aggregate those choices into a prediction for aggregate demand conditional on the

parameter vector, and

• employ a search routine that finds the value of that parameter vector which makes

these aggregate quantities as close as possible to the observed market level demands.

What do we gain by aggregating from a micro model?

We gain an increase in both (i) the depth of our understanding of how “aggregate pref-

erences” are formed and (ii) the precision of our parameter estimates. Not only does this

enable us to be more detailed and precise in our analysis of industrial organization issues, it

also enables us to use them to analyze a host of distributional issues of distinct interest to

related fields (examples include tax incidence and voting patterns).

For example we all believe (and virtually all empirical work indicates) that the impact of

price depends on income. Our micro model will therefore imply that the price elasticity of a

given good depends on the density of the income distribution among the income/demographic

groups attracted to that good. So if the income distribution differed across regional markets,

and we used an aggregate framework to analyze demand, we would require different price

coefficients for each market.

Table I provides some data on the distribution of the income distribution across U.S.

counties (there are about three thousand counties in the U.S.). It is clear that the income

distribution differs markedly across these “markets”. The standard deviation of the fraction

of households in our nine income groups varies between twenty and a hundred percent of their

means (with an average across these groups of fifty three percent of the mean). Counties with

more households tend to have a larger fraction of their populations in the highest income

group, and a smaller fraction in the lowest.
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Table I: Cross County Differences in Household Income

Statistics for Counties’
Income Fraction of U.S. Distribution of Fraction Correlation of
Group Population in Over Counties Fraction with Mean

(thousands) Income Group Mean Std. Dev. County Income

0-20 0.226 0.289 0.104 -0.845
20-35 0.194 0.225 0.035 -0.637
35-50 0.164 0.174 0.028 0.147
50-75 0.193 0.175 0.045 0.737
75-100 0.101 0.072 0.033 0.901
100-125 0.052 0.030 0.020 0.912
125-150 0.025 0.013 0.011 0.868
150-200 0.022 0.010 0.010 0.862
200 + 0.024 0.012 0.010 0.800

It is pretty clear, then, that if we rely on the aggregate demand framework we are

likely to require different price coefficients in different markets. If we based our estimates

on an underlying micro model, on the other hand, we could get price effects that differ

in a sensible way across markets without needing to resort to parameterizing each market

separately. Moreover, unlike the aggregate framework, the micro model would allow us to

make sensible predictions for price elasticities in locations where the good has not yet been

marketed. Of course getting sensible price effects is a prerequisite for getting sensible markups

(since markups are closely tied to the inverse of the price elasticity of demand). Moreover

getting sensible predictions for markups and demand are the prerequisites for getting sensible

incentives for product development, and so on.

Relatedly we often study differentiated product markets in which goods differ in their

quality attributes and prices reflect these quality differences. The last column of Table I

makes it clear that intermarket differences in the density of consumers in any given income

range have only a modest empirical relationship to mean income. Consequently aggregate
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frameworks are going to find it difficult to account for, say, differences in demand for mid-

priced cars between two regions with similar mean incomes; one with mostly poor and a few

very rich households, and one in which all household incomes are near the mean.

Of course one could stick with the aggregate model and add more detailed features of

the income distribution as “right hand side variables”. However were we to go this route we

would quickly move to a model with too many parameters to estimate, particularly once we

begin interacting the percentiles of the income distribution with demographic and location

characteristics of the population. Indeed there is a very real sense in which the major

advantage of moving to the micro model is that it enables us to use economics to provide a

sensible and empirically useful way of constraining the impacts of the joint distribution of

consumer attributes on demand.

Use of a framework constructed from an underlying micro model of demand and ex-

plicit aggregation also implicitly solves a number of other outstanding problems in demand

estimation, a few of which are now discussed.

2.1 Integrating Alternative Data Sets

Since demand systems based on a micro model use data on the distribution of consumer

characteristics, they use more of the information available then do demand systems based on

an aggregate framework. Perhaps more important, however, is the fact that the micro models

allow us to integrate information from alternative data sets in the same framework. That is

use of a micro framework allows us to analyze micro choice data, data which matches the

consuming unit to the good it chooses, within exactly the same framework used to analyze

the market level data (and a similar comment applies to analyzing data at any intermediate

level of aggregation, for e.g. data on differences in demand patterns among different income

and/or demographic groups).

There are at least two important implications of this fact. First, it allows us to do away

with the embarrassment of having mutually inconsistent sets of parameters for the same
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problem. Second by using all the available data in one coherent framework we can obtain

much sharper estimates of the objects of interest. In this context it is important to remember

that prices and products (or product characteristics) typically vary over time but not in the

cross section, while the characteristics of households (income, demographics, and location of

residence) vary greatly over households but have a joint distribution which is pretty stable

over time. Thus our ability to use the information at different levels of aggregation in one

internally consistent estimation framework can be the key to getting precise estimates of

demand patterns.

2.2 Gains to Variety and Dynamics

Use of a micro based model allows us to get a start on the difficult problem of analyzing

the gains to variety. The aggregate frameworks used in macroeconomics and trade either to

evaluate the gains from variety or to work out the implications of those gains, are totally

driven by functional form assumptions that have not been verified empirically. The empirical

problem of measuring the gains to variety is a problem of evaluating the welfare gains from

new products. Fundamentally, though standard tools may find an empirical approximation

to the welfare gained by a consumer who purchased the new good at one observed price but

not at another, the tools cannot determine the inframarginal benefits accumulated by those

consumers who purchased the good at all observed prices without strong functional form

assumptions.

On the other hand if differences in variety can be broken down into the differences in

the characteristics of the goods being marketed, and households with different attributes

differ in their relative preferences over the product characteristics, then a micro model can

provide a rather direct measure of variety gains. The micro model would use the difference

in household attributes in the population and differences in the quality of products over time

to estimate of the importance of the interactions between household attributes and product

characteristics, and then use those estimates to build a measure of welfare gains. A simple

9



example of evaluating the impact of “horizontal” variety differences is the analysis of the cost

of travel time that we can do by analyzing the impacts of the interaction of the locational

distribution of stores (or airports) with consumer residences (or work places) in determining

purchasing decisions. Any sensible analysis of the impacts of “zoning” laws would require

such a framework. An example which is a bit more complex, but central to issues in growth,

trade, and health care is the analysis of the gains from new improved “qualities” of products.

This would require us to be able to measure quality dimensions (as, arguably is the case for

computers, or hospitals), and the consumer characteristics that determine their usefulness

(like the need for computer speed and/or storage, or the degree of sickness).

Finaly the nature of the tradeoff between the increase in demand that would accrue to

a “horizontally” differentiated variety of a good, versus the demand increase that would

be generated by an increase in the quality dimensions of an existing product, is often a

fundamental tradeoff that determines the nature of the dynamic model relevant for the

analysis of different industries (see, for example, Sutton, 1991). As a result were we to look

for a “test” of situations in which one or the other dynamic model might be relevant that

did not depend on some a priori classification, we would have to estimate a demand model

that allowed for differences in tastes, and then see if differences in the primitives estimated

are consistent with the theory’s predictions for differences in the features of markets.

2.3 Distributional Issues and Political Economy

Lastly, use of a micro model of demand provides us with a basis for analyzing the distribu-

tional impacts of different policies. This feeds directly into the analysis of regulation and of

political economy more generally. That is, to analyze most of the regulatory and political

economy issues of interest, we need the entire distribution of benefits and costs from different

policies (and not just market level summary statistics).
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3 “Structural” Entry Models

Entry and exit are a key part of the dynamics of market adjustments. In particular we

usually think that it is the size and nature of entry costs that allow one (or a group of) firms

to maintain a dominant position in a profitable market.

Unfortunately most cost data are proprietary (and hence difficult for researchers to ac-

cess). This is the reason we often have to resort to inferring marginal costs from their

implications on an equilibrium pricing equation (a procedure whose validity requires de-

tailed assumptions on both demand and on the nature of equilibrium). If we consider data

on marginal costs to be rare, then we should think of data on many aspects of sunk costs as

virtually nonexistent. The decision of a firm on whether to exit is determined by whether

its continuation value is greater than its sell-off value, and the latter is often associated with

factors as hard to measure as “goodwill” or the value of the firm’s building and equipment in

its “second best” alternative employment. The potential entrants’ sunk costs can be largely

determined by the time and effort required to formulate the idea to be marketed, or by an

individual entrepreneur’s cost in accessing startup capital and/or the requisite permissions

from a local administration. As a result we have to infer the extent of sunk costs from other

variables whose behavior depends on them.

The variable that seems most directly related to the costs of entry is entry itself. How-

ever to make use of the connection between actual entry and the costs of entry we need a

framework which allows us to compute the value of entering (similarly to make use of the

relationship of sell-off values and exit we need to be able to calculate the cost of continuing).

Though such frameworks have been available for some time (see for example, Ericson and

Pakes, 1995), their implications cannot be used directly in estimation without encountering

substantial (in many cases insurmountable) computational problems.

11



3.1 Early Entry Models

Largely as a result of these computational problems the early empirical analysis of entry

and exit used, as a modelling framework, two-period entry games. The two-period game

framework is problematic in many respects. Most importantly it makes little sense unless

sunk costs are absent (or at least are very small relative to single period profits). This is an

assumption which is hard to swallow, particularly since much of our interest in entry models

stems from a desire to investigate the origins and implications of sunk costs.

Despite this I would argue that the early papers were extremely useful for at least two

reasons

• the structures they used provided a convenient framework for organizing empirical

facts,

• the use of the structures forced the researchers to face up to questions which reappear

in more realistic (truly dynamic) entry models, and the two period models provided

an environment in which to explore them.

Indeed this is a subfield of industrial organization in which later authors built rather directly

from earlier results.

The two-period structure did make sense as an “organizer” of empirical facts. This is

easiest to see in environments where the the only aspect of profitability that changes over

time are idiosyncratic realizations of the sell-off and entry values of the different incumbents

and potential entrants. Then the variables that determine the second period profit function

in a two period game are the same as the “publicly observed” variables that determine

the value of entry in a truly dynamic game. Of course sensibility demands that in most

empirical examples we modify the two-period model’s “profit” function. In reality what the

two period models analyzed were differences in the number of active firms across markets

and these differences depend on lagged, as well as on the current, values of the determinants

of profitability. Moreover when we try to interpret the parameter estimates we have to keep
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in mind that firms are trading off the current sunk cost of entry against a continuation

value which incorporates the expected discounted value of a stream of future, and not just

current, profits. These caveats makes it harder both to be precise about the implications

of the parameter estimates and to do counterfactuals, but the two-period models use as an

organizer of empirical facts is, I think, beyond doubt.

Bresnahan and Reiss (1987, 1990) focused on a model with identical firms. That is, all

firms were assumed to have both the same sunk cost of entry and the same continuation

values, but they noted the extensions that were required to allow for heterogeneity in sunk

entry costs. Berry (1992) showed how simulation could be used to compute the implications

of the model that allowed for differences in sunk costs, and based his empirical results on

that model. The two-period identical firm model of Bresnahan and Reiss was primarily used

as a framework to organize facts on how differences in the characteristics of regional markets

(largely population) impacted the number of active firms. When differences in sunk costs

were added they provided an avenue which could be used to explore how differences among

firms might affect their entry possibilities.

However, there were conceptual problems that had to be solved before one could actually

do the entry analysis. In particular once we allow for interfirm differences there is more

than one possible equilibrium outcome that is consistent with the model and a given value

for its parameter vector. This made it impossible to apply standard estimation techniques

for models which predict discrete outcomes (like entry or exit). A standard model implies a

unique outcome conditional on values for the parameter vector, the observed determinants

of the decision (the x’s), and the unobserved determinants (the ε’s). To find the probability

of the observed action conditional on the parameter vector, the econometrician adds up the

probabilities for the ε that would lead to the action actually chosen. These probabilities

are used to form the likelihood of that parameter value (or some other method of moments

criteria function). Estimation consists of repeating this procedure whenever needed while

searching for the value of the parameter vector that maximizes the objective function.
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With nonuniqueness, the researcher cannot compute the equilibrium outcome implied

by the parameters and then search for the value of the parameter vector that makes the

data as close as possible to the implications of the theory. The insight used in the early

entry literature to circumvent this problem was that, provided only sunk costs (and not

continuation values) differ among firms, then the number of firms are uniquely determined

even though their identities are not. They then proceed by developing an estimator which

finds the value of the parameter vector which makes the theoretical prediction for the number

of firms as close as possible to the number in the data.4

Subsequent work by Siem (2002) and Mazzeo (2002) extends the analysis further by

developing estimation techniques for two period models that allow for differences in contin-

uation values (more precisely differences associated with different entry “locations”). From

an empirical point of view what this did is to allow us to investigate how continuation values

of similar (but not identical) entry locations are affected by the number of firms operating in

the neighboring locations. This is particularly important to the study of retail trade where

location choice, defined broadly enough to include both physical location and store size, is

central to the issues we want to analyze. From a modelling point of view the papers sug-

gested two other ways to ameliorate (if not overcome) the uniqueness issue, both of which

use more of the underlying detail in the data: add noise to the system so that one agent does

not know the precise action of its potential competitors, and/or sequentially order decisions.

I review this material not just to provide a setting for what I am about to present, but

also to make a point. We have made progress both in characterizing the determinants of

entry, and in providing appropriate frameworks for subsequent analysis, by working with

a patently unrealistic “structural” model. On the other hand we have not yet gotten to a

framework which is rich enough to enable us to provide a realistic analysis of entry costs,

4A similar problem (i.e. nonuniqueness) arises in the analysis of pricing equilibria and a similar solution
is typically used there. In the pricing game all equilibria must satisfy the first order conditions for a Nash
equilibrium in prices, so we estimate off of those conditions. Note also that though this entry literature
derives consistent and asymptotically normal parameter estimates, those estimates need not be efficient. An
alternative estimator which makes use of more of the available information is provided in Tamer (2003).

14



which, recall, was a major reason for our interest in the study of entry in the first place. To

do that we need to explicitly model the tradeoff between entry costs and the perceived value

of entry (not the one period profit function).

My goal here is to go one step further and show how semiparametrics can provide an

easy way of making the transition from two-period to truly dynamic models, and hence to

more realistic inferences about entry costs and exit fees. Most of this part of the talk is

taken from Pakes, Ostrovsky and Berry (2003), a paper I will refer to simply as POB, and

I thank my coauthors for permission to use this material.5

3.2 A Semiparametric Entry Model

I will focus on the simple case where there is only one entry location and the same number

of potential entrants in each period (POB shows how to extend the model and deal with a

finite number of entry locations and a random number of potential entrants in every period).

The issues here are a bit more detailed, so I will need some notation.

Let nt be the number of agents active at the beginning of each period, zt be a vector of

exogenous profit shifters which evolve as a discrete state Markov process, and assume that

there is a one-period profit function that is determined by these variables, say π(n, z; θ),

where θ is a parameter vector to be estimated. An incumbent chooses to exit if current profits

plus the discounted selloff value is greater than profits plus the discounted continuation value.

So if φ is the sell-off (or exit) value and 0 < δ < 1 is the discount rate, the “Bellman” equation

for the value of an incumbent is

V (n, z; φ, θ) = max {π(n, z; θ) + δφ, π(n, z; θ) + δV C(n, z; θ)} , (1)

where V C(·) is the continuation value. If the max is the first term inside the curly brackets,

5Similar ideas can be used to simplify empirical analysis that requires equilibrium decision rules in other
complex contexts (for an example of an application to electric utility auctions see Pakes, Porter, and Wolfram,
2003)
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the incumbent exits.

If e is the number of entrants, x is the number of exitors (both of which are unknown at the

time the incumbents decisions are made), and p(·) is notation for a probability distribution,

then V C(·) is just the expectation (over the possible numbers of exitors, entrants, and values

of the profit shifters) of the next period’s realization of the value function (of future V (·)),

or

V C(n, z; θ) ≡
∑

φ′,z′,e,x

V (n + e− x, z′, φ′; θ)p(φ′|θ)p(e, x|n, z, χ = 1)p(z′|z). (2)

Note that to form this expectation we need to form the incumbent’s perceptions of the likely

number of entrants and exitors conditional on the incumbent itself continuing, perceptions

that we write as the probability distribution

p(e, x|z, n, χ = 1)

where χ = 1 is notation for the incumbent continuing. We need these perceptions because

the incumbent cannot estimate his returns to continuing without an idea of how many other

firms will be active. It is the requirement that these perceptions be consistent with behavior

that will generate our equilibrium conditions.

Analogously we assume that the entrant must commit to entering one period before it

earns any profit, so the value of entry is

V E(n, z; θ) ≡
∑

e,x,z′,φ′
V (n + e− x, z′, φ′)p(φ′|θ)p(x, e|n, z, χe = 1)p(z′|z), (3)

where

p(x, e|n, z, χe = 1)

provides the potential entrant’s perceptions of the likely number of entrants and exitors

conditional on it entering, or conditional on χe = 1.
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The potential entrant enters if

δV E(n, z; θ) ≥ κ

where κ is its sunk cost of entry.

3.2.1 Assumptions and Their Implications

In addition to technical “regularity” conditions, it is assumed that entry and exit decisions

are made simultaneously at the beginning of the period. The following assumptions are also

made.

1. There are a fixed number of potential entrants in each period (denoted by E), and the

distribution over

• the sunk costs of entry, say F κ(r|β), which has a lower bound of κ > 0, and

• the returns to exiting, say F φ(·|β), which are assumed nonnegative,

are i.i.d. over time and across markets. Incumbents and entrants know these distribu-

tion and their own realizations, but do not know the realizations of their competitors

(so there is asymmetric information, as in Siem, 2001).

2. Entrant’s and incumbent’s perceptions of the probabilities of exit and entry by their

competitors in period t depend only on (nt, zt) (the publicly available information at

that time).

These assumptions are truly restrictive. They imply, for example, that there are no seri-

ally correlated state variables that are observed to the agents and not to the econometrician.

However they (or simple generalizations of them that allow for multiple locations) are less

restrictive than the assumptions used in any of the two-period models that have been taken

to data to date. Moreover, as we will show below, these assumptions lead to an estimator
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of continuation and entry values that has a transparent relationship to objects in the data,

and therefore has both a great deal of intuitive appeal and is easy to work with.

This model is a special case of the model in Ericson and Pakes (1995) and so has an

equilibrium, but there may be more than one of them. Each equilibrium generates a finite

state Markov chain in (n, z) couples: i.e. the distribution of possible (n, z)’s in the next

period depends only on the current (n, z) (and not on either prior history, or time itself).

Indeed one can go a bit further and note that every possible sequence of {(nt, zt)} will

eventually wander into a recurrent subset of the possible (n, z) couples, say R, and once

(nt, zt) is in the set R it will stay in it forever (Freedman, 1983). Thus, for example, there

will be an n such that, provided the current n is lower than it, we will never observe an n > n.

The market is simply not profitable enough to induce entry if there are n incumbents, so

states with n > n are not in R. However all states in R “communicate” with each other,

and will eventually be visited many times.

I want to emphasize, however, that though our assumptions do not guarantee a unique

equilibrium, they do insure that there is only one equilibrium that is consistent with a given

data generating process. As a result we will be able to use the data itself to “pick out” the

equilibrium that is played, and at least for large enough samples, we will pick out the correct

one. This is all we require to develop consistent estimators for the parameters of the model.

To see that the data can be used to pick out the equilibrium, note that (i) the agents

only condition their perceptions of the behavior of their competitors on the publicly available

information (on (n, z)) and (ii) precisely the same information is available to the econome-

trician. Moreover in equilibrium the realized distribution of entrants and exitors from each

state must be consistent with these perceived distributions.

Now recall that the data will eventually wander into the recurrent subset of points,

and once in that subset will visit each point in it repeatedly. As the sample gets large we

obtain an empirical distribution of entrants and exitors from each (n, z), and by the law of

large numbers that distribution will converge to the distribution which generated it (almost
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surely). As noted this must be the distribution the agents use to form their perceptions, so

we have just identified the perceived distributions needed for agents to make their decisions.

Given those perceived distributions equations (1) and (2) generate a unique best response

for each incumbent and potential entrant. This is just the familiar statement that reaction

functions are generically unique, and can be proven using Blackwell’s theorem for single

agent dynamic programs. Since there is only one policy that is consistent with both the

data and our equilibrium assumptions at each (n, z) ∈ R, and once we are in the set R we

stay there forever, there is a unique equilibrium for any subgame starting from any (n, z)

couple in R (a set which can be identified from the data).6 We now provide semiparametric

estimators for the continuation and entry values generated by that equilibrium.

3.2.2 Equilibrium Perceptions and Continuation Values

In equilibrium the perceptions of potential entrants and incumbents of the likelihood of

entry and exit by their competitors must be consistent with the distribution of entry and

exit actually generated by incumbent and potential entrant behavior. This observation leads

directly to two semiparametric estimates of continuation values at each (n, z) observed at

least once.

The first estimate simply averages the realized continuation values of all firms who did

continue when (nt, zt) = (n, z). Since agents perceptions of probabilities of reaching different

states must be consistent with the actual probabilities of reaching the different states, the

sample average of discounted future values will converge to expected continuation value we

are after. This estimator is particularly simple, so I will provide detail on it below.

The second estimator, though also intuitive, is computationally more complex, so the

reader who wants more detail should see POB and the literature referred to there. Briefly, if

6There is a detail missing here. Though points in R can only communicate with other points in R if
optimal policies are followed, there are some points, “boundary points” in the terminology of Pakes and
McGuire (2001), that could communicate with points outside of R if feasible but nonoptimal policies were
followed. To analyze equilibria for subgames in R fully, boundary points need to be treated separately (see
Pakes and McGuire, 2001). In our case the only decisions that involve boundary points are the decisions of
entrants at the maximum n observed for any given z; thus we can easily isolate them.
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we knew p(e, x|n, z, χ = 1) we could compute the fixed point which defines the continuation

value in equations (1) and (2) for any value of θ. What the second procedure does is substitute

the empirical distributions of entrants and exitors from each state for p(e, x|n, z, χ = 1) and

compute the fixed point implied by these empirical distributions. Equations (1) and (2) define

a contraction mapping, so solving the associated fixed point problem is not too difficult, but

it must be solved every time we need to evaluate θ in the estimation algorithm. In the

terminology of Rust (1994) this is a “nested fixed point” estimation algorithm.7

The next subsection provides a brief description of how to obtain the estimates based on

sample averages. The reader who is not interested in these details should be able to skip

directly to the remark at the end of this subsection, and continue from there.

3.2.3 Using Sample Averages to Form Continuation Values

To form this estimate we need estimates of (i) the distribution of future states given the

current state and (ii) the realized value at those future states.

We begin with the realized values at the future states. An incumbent at t who continues

to t + 1 receives that period’s profits plus a choice between the continuation value at t + 1

and a draw from the distribution of sell-off values. The incumbent chooses the sell-off value

if and only if it is greater than the continuation value.

Let functions indexed by t refer to the function evaluated at (nt, zt), and let the proba-

bility of exit be given by

gx
t+1 ≡ Pr{φ > V Ct+1(θ)}. (4)

Then given how the incumbent chooses, the continuation value of firms who did continue

7Aguirreberia and Mira (2003), in independent work, provide a closely related estimator. Instead of using
the empirical transition probabilities for (n, z) couples, they use the empirical exit (and for entrants, entry)
probabilities to generate these transitions. That is, since all incumbents are identical, a consistent estimate
of the probability that x of n incumbents exit is given by the binomial formula with an exit probability
estimated by the fraction of incumbents that exit. A similar procedure can be used to generate entry
probabilities. Aguirreberia and Mira (2003) construct a consistent estimate of p(e, x|n, z, χ = 1) from these
binomial probabilities. They assume that the random entry and exit fees are i.i.d. draws from an extreme
value distribution. This is not necessary but does ease the computational burden of their nested fixed point
estimator. POB compare these and other alternative estimators.
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from period t conditional on the (publicly available) information available in period t + 1,

say ˜V CRt(θ), is given by

˜V CRt(θ) = πt+1(θ) + δ(1− gx
t+1)V Ct+1(θ) + δgx

t+1E[φ|φ > V Ct+1(θ)] (5)

where E[φ|φ > V Ct+1(θ)] is the expected sell-off value conditional on exiting.

The easiest case is when sell-off values are exponentially distributed with parameter σ,

because a truncated exponential is just another exponential with its origin shifted to the

truncation point.8 In this case, then

E[φ|φ > V Ct+1(θ)] = σ + V Ct+1(θ). (6)

Now make two substitutions in the equation for ˜V CRt(θ): (i) substitute this expression for

E[φ|φ > Vt+1(θ)] and (ii) substitute an estimate of the exit probability obtained by averaging

over the fraction who exit at the different periods in the data when (n, z) = (nt, zt), say g̃x
t ,

for the unobserved gx
t . Rearranging terms we obtain

˜V CRt(θ) = πt+1(θ) + δV Ct+1(θ) + δσg̃x
t+1. (7)

Note that the expectation of ˜V CRt(θ) is equal to the expected continuation value of all

those firms who continue. That is not quite V Ct(θ), since in forming the expectation which

determines whether it should continue the incumbent conditions on itself continuing (while

in the realizations measured by ˜V CRt(θ) only a fraction continue). As shown in POB the

ratio of the probabilities observed in the data, to the probabilities that the incumbent uses

is consistently estimated by wt = [1 − g̃x
t ]/[1 − (xt/nt)], where g̃x

t is, as before, the fraction

of incumbents who exit when (n, z) = (nt, zt).

8Virtually any other distributional assumption could be used here, but most others (with the exception of
the uniform) would result in a somewhat more computational complex estimation algorithm. On the other
hand the shape restrictions of the exponential seems reasonable for sell-off values.
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So if we let

V CRt+1 = wt
˜V CRt(θ)

then

E[V CRt(θ)] = V Ct(θ)

the unknown continuation value as defined in equation (1).

The sample average of the observations on V CRt(θ) computed as an average over those

periods where (nt, zt) was a particular value of (n, z), say (n∗, z∗), converges to the population

expectation of the continuation value for (n∗, z∗), that is to the V C(n∗, z∗; θ) we are after.

More precisely if we let T (n, z) be the set of periods when there was n firms active and the

state variable had value z, and #T (n, z) be the number of such periods, and define

Ṽ C(n, z) ≡ 1

#T (n, z)

∑
t∈T (n,z)

wt
˜V CRt(θ), (8)

then if →P is read as converges in probability, we have

Ṽ C(n, z) →P V C(n, z)

provided #T (n, z) →∞.

Finally we need to connect the estimates of the continuation values from the different

(n, z) to each other. Here I will need matrix notation. Arrange the Ṽ C(n, z; θ) of the

(n, z) combinations observed in the data into the vector Ṽ C(θ), let the matrix of empirical

transition probabilities from one observed (n, z) combination to another (weighted as above)

be M̃ , and gather the average fraction of firms exiting from each state into the vector g̃x.

Then, if we substitute our expression for ˜V CR(θ) from equation (7) into the expression for

Ṽ C(n, z) in equation (8) and rearrange we have

Ṽ C(θ) ≡ M̃ [π(θ) + δσg̃x] + δM̃ V C(θ).
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This gives us our estimates of continuation values in terms of objects that we know (at

least up to the parameters to be estimated), and the continuation values itself. We now

iteratively substitute our estimate of continuation values for the continuation values that

appear in this expression. Doing this once we obtain

Ṽ C(θ) ≡ M̃ [π(θ) + δσg̃x] + δM̃ [π(θ) + δσg̃x] + δ2M̃2V C(θ),

and if we continue this process of substitution we get

Ṽ C(θ) =
∞∑

τ=0

δτ+1M τ [π(θ) + δσg̃x]

= [I − δM̃ ]−1M̃ [π(θ) + δσg̃x],

as a consistent estimator for the unknown continuation values.

Note that Ṽ C(θ) is just the discounted value of the returns of the incumbents who did

continue (adjusted to account for the fact that the incumbent conditions on itself continuing).

This is the sense in which our estimator of continuation values is transparent and likely to

have empirical content. We expect the actual average of realized continuation values to be

close to the true expected continuation value.

3.2.4 Remark on Ease of Computation

Note how easy it is to compute our estimates of continuation values, or Ṽ C(θ). If δ is

known (and we usually think that the prior information we have on δ is likely to swamp the

information on δ available from estimating an entry model), then

Ṽ C(θ) = Ãπ(θ) + σã

for a data matrix Ã = [I − δM̃ ]−1M̃ and a data vector ã = δ[I − δM̃ ]−1g̃x. So if profits were

linear functions of θ, the first stage estimates of continuation values are also.
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POB shows (and it is easy to verify) that consistent estimates of entry values, say Ṽ E(θ),

can be obtained as

V̂ E(θ) = B̃π(θ) + σb̃,

where

B̃ ≡ M̃ e + δM̃ eÃ, b̃ ≡ δM̃ eã + δM̃ eg̃x,

and M̃ e is the Markov transition matrix formed after weighting the observed transitions with

we
t = (et/E)/g̃e

t , where g̃e
t is an estimate of the entry probability obtained by averaging over

the fraction who enter at the different periods in the data when (n, z) = (nt, zt).

3.2.5 Estimation Methods

We estimate models by finding the value of the model’s parameter vector that make the

predictions of the model as close as possible to the observed data.

In our case the model predicts that, conditional on (n, z), the number of entrants and

exitors are independent draws from two binomial distributions. We have shown that a

consistent estimate of the model’s binomial probability of exit in a given period is

1− F φ(Ãtπ(θ) + σãt|θ)

and of the binomial entry probability is

F κ(B̃tπ(θ) + σb̃t|θ)

where the t subscript on (A, a,B, b) picks out the row of each at which (n, z) = (nt, zt).

Relatedly, consistent estimates of the model’s predictions for the expected number of exitors

from a state is just the number of incumbents at that state times the exit probability at

that state (as defined above). Similarly the model’s prediction for the expected number of

entrants at that state is just the number of potential entrants times the entry probability at
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that state.

Different estimators are obtained by using different measures of the distance between the

theoretical predictions for the probabilities conditional on θ, and the empirical observations.

For example the “pseudo” maximum likelihood estimator treats our estimated continuation

and entry values as the true continuation and entry values (when in fact they are just

estimates of the truth), forms the binomial likelihood of the observed number of entrants

and exits conditional on these estimates, i.e.

F φ(Ãtπ(θ) + σãt| θ)nt−xt

[
1− F φ(Ãtπ(θ) + σãt|θ)

]xt

× F κ(B̃tπ(θ) + σb̃t|θ)et

[
1− F κ(B̃tπ(θ) + σb̃t|θ)

]E−et

,

and then maximizes the sum of the logs of these likelihoods over periods.

Alternative method of moment estimators can be formed by minimizing a weighted aver-

age of either (i) the squared differences between the model’s estimates of the average entry

and exit rates and the entry and exit rates observed in the data (where the average is taken

over observed periods) or (ii) the squared differences between the model’s estimates of the

average and entry and exit rates at the alternative observed (n, z) states (here we average

over the observations at the same state, square the differences between the models predic-

tions for the average at that state and the sample average at that state, and then minimize

a weighted average of these differences over states).

All of these estimators will be consistent and have limiting normal distributions. They

will, however, differ in both their variance, and in their computational complexity. POB

contains a discussion of these issues. For now all I want to note is that there are good

reasons to think that pseudo maximum likelihood will not do well in this context, so one

should probably focus on the alternative method of moments estimators.

What I do want to stress here is the simplicity of all of these estimators. I.e. to obtain

any of the estimators discussed above we need only minimize analytic function of the pa-
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rameters. This makes the computational burden of these estimators as easy (or easier) than

the estimators for any of the earlier entry models discussed in Section 3.1. Moreover, the

procedure has the following additional benefits.

• It is easily generalized to models which allow entry into multiple locations (the number

of entrants to the different locations are then draws from a multinominal rather than

that of a binomial distribution), and to models with a random number of entrants

(the number of entrants into the different locations are then a draw from a mixture of

multinominals, so the estimating equation is still an analytic function of the parameters

of the problem).

• Though it is true that all of the estimators are “two-step” estimators, and that their

variance must take account of the fact that the “regressors” used in the second step

were estimated, there is a simple “parametric boostrap” procedure which provides

consistent estimators for the variances of the parameter estimates.9

3.2.6 Monte Carlo Evidence on Computational Burden

Table II provides Monte Carlo results that are designed to illustrate how this simplicity

translates into ameliorating the computational burden from analyzing entry and exit prob-

lems. It considers two models: a one-location model roughly patterned after Bresnahan and

Reiss’ (1987) study, and a two-location model, patterned after Mazzeo’s (2002) study (for

9The parametric bootstrap is obtained as follows. Let the estimate of the parameter vector be θ̂, and
compute ˆV C(θ̂) and ˆV E(θ̂), the estimates of the continuation and entry values obtained by substituting the
θ̂ into the equations for those values. Starting from the observed (nt=0, zt=0), randomly draw sell-off values
from Fφ(θ̂) and entry values from Fκ(θ̂) for each of the incumbents and potential entrants. Assume each
incumbent exits if its sell-off value is greater than the component ˆV C(θ̂) that is associated with (nt=0, zt=0).
Similarly the potential entrants enter if their randomly drawn entry cost was less than ˆV E(θ̂). Keep this
predicted number of entrants and exitors in memory, and construct nt=1 as the initial number of incumbents
minus the exitors plus the entrants. Next randomly draw a zt=1 from (a consistent estimate of) the Markov
process generating z. This gives us (nt=1, zt=1), and we can determine exit and entry from this point in
the same way as we did above. Continue in this way until we have a simulated sample with exactly the
same number of periods (or of markets and periods) as in the original sample. Once we have this “pseudo
random” sample, substitute it into the estimation algorithm and generate a new estimate of θ. Do this for a
number of simulated samples, and calculate the variance-covariance of the estimates of θ obtained from the
alternative pseudo random samples. This is a consistent estimate of the variance covariance matrix of θ̂.
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more details see POB, 2003). In each case we used the algorithm introduced in Pakes and

McGuire (1994) to compute an equilibrium for a fixed value of the parameter vector, and

then used the equilibrium policy functions produced by that algorithm to generate a panel

of “data”. This data was then used to estimate the original parameters. In all cases we

used a simple method of moments estimation algorithm: one that minimized the squared

differences between the average (over periods) entry and exit probabilities predicted by the

model and those in our data. The models were all computed on the desktop PC in my office.

Table 2: Monte Carlo Results

Number of Average Bias Average Standard Error Computation Time
Cross Sections (Percent of Parameter) (Percent of Parameter) (Seconds)

Single Location Model (Two Parameters)

250 11% 7% 26
500 6.5% 2% 42
1000 4% 1% 60

Two Location Model with Random Number of Entrants (Four Parameters)

250 34% 95% 80
500 8.5% 17% 109
1000 6% 11% 131

Notes: Results reported using a five-year time dimension, i.e., T = 5.

Since the early papers studied isolated markets, we chose South Dakota and counted that

there were approximately 250 relatively “isolated” towns in it. This became the smallest

number of markets in any of our runs. Here we report results where the time dimension was

five years (we have also tried fifteen, and the results are correspondingly better); i.e. we are

assuming we have a five year panel data set. Our modification of the Bresnahan Reiss model
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has entry costs drawn from a unimodal one parameter family, and sell-off values generated

by a one parameter exponential. It is the parameters of these two distributions that we try

to estimate (i.e. we assume the profit function is known).

The two location model is somewhat more complex. Here a random number of potential

entrants appear in every period and each one of them receives a draw on a couple which

determines the sunk cost of building a low and a high quality “motel”, respectively. The

draws are correlated (indeed, for any given individual the cost of building a high quality

motel is always higher than the cost of building a low quality motel), and described by a two

parameter family. The sell-off values from the two different locations are exponential with

two different parameters. So there are four parameters we estimate for this model.

Each model has about five hundred “populated” states. In the one location model our

procedures produce nonparametric estimates of entry and continuation values for each of

them. The two location model produces separate entry and continuation values for each of

the two locations for each state. The computation time column provides the sum of the time

required to arrange the data into the form we use (largely the time required to compute the

Markov transition matrices and their inverses) and the search time. It seems pretty clear

that the estimators are not particularly computationally demanding. Estimation time for

the one location model was only about a half a minute for the smallest sample and about

one minute for the largest sample. This increases to just over two minutes for the large

sample in the two location model. Of course in actual applications we might want to allow

for more observable determinants of profitability or sunk costs, and this will increase the

computational burden. Still it seems we have a long way we can go before computational

burden becomes a problem.

Also, as one might expect, the larger the number of parameters we are estimating and

the smaller is the sample, the larger the bias and the variances of the estimators. Still recall

where we started: typically we have almost no knowledge of sunk costs. If we had obtained

these estimates from real data on an industry of interest, even the most poorly behaved
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estimators in the table would be providing a great deal of useful information.

4 A Final Note

I admit that the estimation frameworks outlined in these two examples are somewhat “com-

plex”. Moreover their complexity stems directly from the fact that their estimating equations

are derived from a theoretical structure. To use the theory to guide estimation we had to

transform either the model or the data. In the demand example we had to derive the im-

plications of the model for aggregates over individuals. In the entry example we had to

transform the data to approximate discounted values over time. However, in both cases the

estimating equations were based on constructs which should have a transparent meaning to

economists.

As a result I would argue that these relatively complex estimators are not only eminently

“sensible”, they are also about as direct a method of obtaining empirical information on

either demand or on entry costs as is available for most industries. Moreover it is because

the estimation equations are developed from an economic model that (i) it is often easy to

consider robustness to model misspecification and (ii) there is an unambiguous and straight-

forward way to use the results for the investigation of past causal effects and/or subsequent

policy analysis. It is, of course, true that the quality of this analysis is likely to depend on

how good our assumptions were in approximating reality. What we should keep in mind,

however, is that all causal analysis requires assumptions. Indeed all we have done is been

“up front” about the assumptions that we need. This, in turn, provides a scientific basis for

a debate on their relevance.

Of course this transparency is not as obvious in the early work that this paper is based

upon. Indeed I think the lesson we have learned in empirical industrial organization is

that complex and/or less realistic models are often stepping stones to developing empirical

frameworks capable of a simpler, more direct analysis of the issues we are interested in. So
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my hope is that you stay “tuned in” to the econometric developments in our field. We should

be giving them a chance to complement the advances that we have seen over the last few

decades in theory, computation, and data availability.
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