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ABSTRACT

This paper presents a dynamic model of the industrial demands for

structures, equipment, and blue— and white—collar labor. Our approach is

consistent with producers holding rational expectations and optimizing dynam-

ically in the presence of adjustment costs, yet it permits generality of func-

tional form regarding the technology. We represent the technology by a

translog input requirement function that specifies the amount of blue—collar

labor (a flexible factor) the firm must hire to produce a level of output

given its quantities of three quasi—fixed factors that are subject to adjust-

ment costs: non—production (white—collar) workers, equipment, and structures.

A complete description of the production structure is obtained by simultaneously

estimating the input requirement function and three stochastic Euler equations.

We apply an instrumental variable technique to estimate these equations using

aggregate data for U.S. manufacturing. We find that as a fraction of total

expenditures, adjustment costs are small in total hut large on the margin,

and that they differ considerably across quasi—fixed factors. We also present

short— and long—run elasticities of factor demands.
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1. Introduction

Understanding the way in which tax changes, changes in relative factor

prices, and changes in aggregate output affect investment and employment over

time requires a model of the production structure that incorporates dynamic

adjustment of "quasi—fixed" factors, i.e. a dynamic model of factor demands.

This paper develops such a model in a way that is consistent with rational

expectations and dynamic optimization in the presence of adlustment costs, while

allowing for generality of functional form.

Dynamic factor demand models are certainly not new to the literature.

The "flexible accelerator" and related models of investment demand have been

widely used in empirical applications, although they are generally based on ad hoc

descriptions of the dynamic adjustment process.1 Berndt, Fuss, and Waverman (1980)

and Morrison and Berndt (1981) developed dynamic models in which capital is quasi—

fixed and subject to quadratic adjustment costs, but their approach utilizes an

explicit solution to the optimal investment problem. In so doing it imposes the

assumption that producers have static expectations regarding the evolution of

factor and output prices, and requires that the underlying cost function be

quadratic. Kennan (1979) and Meese (1980) estimated dynamic factor demand models

in which producers have rational expectations, but Kennan imposed the restriction

of a linear production structure, and Meese inposed a quadratic production

structure.2

In an earlier paper (1982) concerned primarily with energy demand,

we demonstrated an alternative approach that allows for a general production

structure. It works as follows. In a stochastic environment, firms that have

rational expectations and maximize the expected sum of discounted profits also

minimize the expected sum of discounted costs. Given any restricted cost function,

one can derive the stochastic Euler equations (one for each quasi—fixed factor)

that hold for this latter dynamic optimization problem. These Euler equations



are just first—order conditions, and although they do not provide a complete

solution to the optimization problem, they can be estimated directly for any para-

metric specification of the technology.

Our approach is to represent the technology by a translog restricted cost

function, and then estimate the Euler equations, together with the cost function

itself and the static demand equations for any flexible factors, using three—

stage least squares. This permits us to test structural restrictions such as

constant returns, and to test the over—identifying restrictions implied by

rational expectations. The estimated equations then provide a complete empirical

description of the production technology, including both short—run (only

flexible factors adjust) and long—run (all factors fully adjust) elasticities

of demand. The parameter estimates are fully consistent with rational expect-

ations, and in particular with firm behavior that utilizes the solution to the

underlying stochastic control problem.3

In our earlier paper we used U.S. manufacturing data for the period

1948 — 1971 to estimate a model in which capital and labor were treated as

quasi—fixed factors, and energy and materials as flexible factors. We found

adjustment costs on capital to be very important, but adjustment costs on labor

appeared negligible. However, as we will soon see, this latter result was

probably due to our aggregation of white—collar (skilled) and blue—collar

(unskilled) labor.

In this paper we utilize the same methodological approach described above,

but both the model and data are different, and we focus on a number of different

issues. In this paper we ignore the role of energy and materials, but we

disaggregate labor (into white—collar and blue—collar) and capital (into equip-

ment and structures). This disaggregation turns out to be quite important;

we find that white—collar labor has very significant adlustment costs, that

adjustment costs on structures and equipment are quite different, and that

structures and equipment enter the production structure differently. Also,
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this paper studies the role of financing in more detail. In particular, we

allow for both debt and equity financing, and estimate the extent to which

firms borrow to finance the marginal dollar of investment. Finally, we estimate

the model with data for the period 1949 — 1976, thereby including those more

recent years during which factor prices and rates of return fluctuated widely.

Our basic methodological approach is summarized in the next section. There

we specify the translog restricted cost function (since blue—collar labor is

the only flexible factor this boils down to an input requirement function, and

there are no static demand equations), and derive the stochastic Euler equations

for the quasi—fixed factors. Section 3 briefly summarizes the estimation method,

and discusses the treatment of various taxes and other issues related to the

data. Estimation results are presented and discussed in Section 4.

2. The Models

Before presenting the details of our particular model specifications, it

is useful to briefly review our general approach to estimating the production

structure of a firm facing adjustment costs and making input choices in an

uncertain environment. Let us assume that a time T the firm chooses levels of

n variable inputs whose quantities and nominal prices are given by the vectors

—T
=

(VIT) and VT = (viT) respectively, and N quasi—fixed inputs whose

quantities are given by the vector T = (XiT). These inputs yield the single

output The technology can therefore be represented by a restricted cost

function CT which specifies the minimum expenditure on variable factors needed

to produce T' given the amounts of quasi—fixed factors -T

CT = T' T' T' T),
(1)

with C increasing and concave in V but decreasing and convex in X, and the

dependence on T capturing technical progress.

By definition, the firm incurs costs of adjusting the quasi—fixed factors.

We assume these adjustment costs are convex and external to the firm,4 and we
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represent them in nominal terms by Ph(AXT), where is the price of output and

Ax = X —
XT1 . The firm also makes direct outlays for its use of quasi—

fixed factors, and because of tax and financing considerations these expenditures

may be spread through time. We therefore assume that outlays (net of adjustment

costs) for quasi—fixed factors at T, HT, are a function of the current and past

quantities of those factors:

HT=H(XT, "'-T—T (2)

We assume the firm maximizes its expected present discounted value of profits.

As shown in our earlier paper (1982), this implies that the firm minimizes the

expected present discounted value of costs. Thus at time t the firm chooses a

contingency plan for the vector of quasi—fixed factors to minimize:

mm R [C + P h (AX ) + H ] (3)
{} Tt t,T T T T T

where t1: denotes the expectation conditional on information available at t, and

t is the discount factor applied at t for costs incurred at T.

By taking the derivative of (3) with respect to and setting it equal to

zero, it is easily seen that the minimization yields the following Euler equations,

or first—order conditions:

I ac ah(Ax ) h(AX
T 1. I t÷p -R —t+l + R __±-I0

'-jt I ax. t ax. t,t+1 t+1 ax. . t,t+j ax.

[
it it tt j=O it

1l, ...,m (4)

These Euler equations just state that the net change in expected disounted costs

from hiring one more unit of X. at t is zero. That change is the sum of the

increase in variable costs (which is negative), the extra costs of adjustment at

t, the expected discounted value of the extra expenditures which the firm must

incur by holding (at t only) one extra unit of X, minus the expected discounted

value of the savings in future costs of adjustment.

By Shepherd's Lemma we have the following additional first—order conditions,

which take the form of static demand equations for the flexible factors:

v. = ac / av. , i 1, ... , n . (5)
it t it
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As we discuss in more detail later, our approach is to estimate equations

(1), (4), and (5) simultaneously.

In this paper we focus on four production inputs: equipment, structures,

and white—collar and blue—collar labor. Our model pertains to the U.S. manu-

facturing sector, which we treat as a single firm6 that takes input prices as

given. Data for other inputs (e.g. energy and raw materials) were not available

for the time period we consider, and we assume that such inputs are not sub-

stitutable for labor and capital. In particular, we assume that expenditures on

blue—collar workers (the only variable input) depend only on the wage of those

workers, the levels of the other three inputs, and output]

Since there is only one variable input, the restricted cost function (1)

takes the form of an input requirement function, which we specify in trarislog

form: 2mB = a + a1lnL + a2lnE + a3lnS + +

+ Yi2lnLtlnEt + ym3lnLtlnSt + 1i4lnLlnQ +

+ 123mnEThSt + 124lnEmnQt + 33(lnSt)2 + 34lnStlflQ

+ Xt (6)

where B, L, E, S, and
are the levels of blue—collar labor, white—collar

labor, equipment, structures and output at t. The term Xt allows for neutral

technical progress. (The restrictions on the a's and 's required for this

translog function to be decreasing and convex in L, Et and St are not imposed

in the estimation.)

Costs of adjustment are assumed to be quadratic in ALt, AE, and AS.8

In particular,

h = hL(ALt) + hE(AEt) + hs(AS) = E(AE)2 +

Note that cross effects —— i.e. changes in one factor affecting costs of

adjusting other factors —— are neglected. Letting w and b be the hourly wage
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to white—collar and blue—collar workers respectively, the Euler equation for

white—collar labor is then given by:

[b(l_e)Bt/Lt ] (ct + yiilnL + yi2lnE + yi3lnS + Yi4lnQ)

+ w(l_O) + PtL(Lt_Lt_l) — Lêt[Rt,t+lPt+lt+lLt 0 (7)

where e is the corporate income tax rate (wages are tax deductible in the U.S.).

The importance of tax and financing considerations becomes clear when we

consider equipment. Let e be the purchase price of a unit of equipment.

Suppose the firm buys a unit of equipment at t with the intention of keeping

it until it is fully depreciated. If the firm borrows the present discounted

value of the depreciation allowances its after—tax payment would be

e(l — CEt
—

zEt), where CEt is the investment tax credit on equipment and

ZEt is the present discounted value of the depreciation allowance. If the

firm wants an extra unit of equipment at t without affecting the level of capital

in subsequent periods, it will purchase fewer units of equipment at t+l,

where (SE is the physical depreciation rate for equipment, thereby saving

(l—(SE)e+l(l_cE,+l_zE,+l).9 So far the only debt the firm incurs is offset

by the depreciation allowances. However, we would like to allow for the possibility

that a fraction d of e(l_cEt_zEt) is borrowed for the purchase of the marginal

dollar's worth of equipment, and for simplicity we assume (perhaps unrealistically)

that this marginal debt is repaid after one year. (However, the firm is also

allowed to borrow unspecified amounts on inframarginal units of equipment.) Given

this treatment of taxes and financing, and assuming that factors are productive in

the period in which they are purchased, the Euler equation for equipment is:

[b(l_Ot)B/Etl + Yi2lnL + Y22lnE + y23lnS + y24lnQ)

+ (l_d)e(l_cE_zE) + PtBE(Et_Etl)

+ eR÷1

—
Pt÷lE(Et+l_Et)} = 0 (8)

where i is the pre—tax rate of interest paid at t+l on marginal borrowing at
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A similar analysis for structures yields the following Euler equation for that

factor:

[b(1_0)B/s] (a3+y13lnL+y23lnE+y33lnSt+y34lnQ) + (ld)s (l_c_z)

+ PI3 (s_s_i)

—
(l_os)St+i(l_Cs,t+i_Zs,t+i)

— = o (9)

where 5,, s, c, and are, respectively, the physical depreciation rate,

the purchase price, the investment tax credit, and the present value of depre-

ciation allowances for structures.

The model given by equations (6) — (9) is our "preferred" specification.

One might argue, however, that the distinction between equipment and structures is

somewhat artificial, since any capital that is bolted down is classified as a

structure. We therefore estimate an alternative model for which equipment and

structures are aggregated into a single measure of capital. The blue—collar

labor input requirement function is again specified to he translog:

lnBt = + 1lnL + 21nK + 3lnQ + 12lnLlnK

+ 13lnLlnQ + 23lnKmnQ + 33(lnQt)2 + Xt (10)

where is the quantity of aggregate capital. Letting SK, kt, CKt and ZKt

denote, respectively, the physical depreciation rate, purchase price, investment

tax credit, and present discounted value of depreciation allowances for this

capital, the Euler equations are now given by:

[b(1_e)Bt/L] + ll1't + p12lnK + lpi3lnQ) + w(l_O)

+ PtL(Lt_Ltl) — Lg[R +1+i +iL)] = o (11)

[b(l_Ot)B/K]
+ ip121nL + p22lnK + ip23lnQ ) +

(l_d)kt(l_cKt_zKt)

+ PtK(Kt_Kt.l) +
)]kt(l_cKt_zKt)

—
(l_K)k+1(l_cK,+1_zK,+1)

—
Pt+lK(Kt+l_Kt)}

= 0 (12)



—8—

3. Estimation Method and Data

We obtain parameter values for "Model 1" by simultaneously estimating the

input requirement function (6) and the Euler equations (7), (8), and (9), and

for "Model 2" by simultaneously estimating the input requirement function (10)

and the Euler equations (11) and (12). Note that because there is only one

variable factor in each model, no static demand equations are estimated.

The estimation is done using three—stage least squares, which, if the error

terms are conditionally homoscedastic, is equivalent to the generalized instru-

mental variables procedure of Hansen (1982) and Hansen and Singleton (1982).hi

That procedure minimizes the correlation between variables known at t (the

instruments) and the residuals of the estimating equations. The minimized value

of the objective function of this procedure provides a statistic J, which is

distributed as chi—squared, and which can be used to test the over—identifying

restrictions of the model, as well as structural restrictions such as constant

returns.

This instrumental variables procedure is a natural one to apply to the Euler

equations, since the residuals of those equations can be viewed as expectational

errors which, conditional on information available at t, have mean zero. The

residuals of the input requirement function, however, cannot be interpreted

in the same way, since in theory that function should provide an exact description

of the technology. In practice that function will not fit the data exactly,

and the errors are likely to be correlated with variables known at t. We will

assume that this function holds in expectation with respect to some smaller

conditioning set (i.e. set of instruments). We take that set to exclude current

variables appearing in the input requirement function or Euler equations.

We estimate the models using annual data for the U.S. manufacturing sector

for the years 1949—1976. Quantities and wape rates for blue— and white—collar

labor are those compiled in Berndt and Morrison (1979).12 The purchase prices

and quantities of equipment and structures were constructed by Ernst Berndt
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using a perpetual inventory method, and assuming a physical depreciation rate

for equipment of 0.135 and for structures of 0.071. Since no data for gross

output in manufacturing is available for the period of our study, we used the

level of the gross domestic product of manufacturing from the National Income

and Product Accounts. The price index P came from the same source.

We assume that the 1—period discount rate Rt t+l is equal to l/(l+r),

where r is the after—tax return on equity.13 This return is constructed from

the identity:

r r (1—8 ) + r (1—8 ) , (13)
e d p c c

where rd and r are respectively the dividend yield and capital gains rate

(we use data on the Standard and Poor's 500 Index for both), is the marginal

personal tax rate (we use data reported by Seater (1980)), and 0c is the effective

tax rate on capital gains (based on the estimates of Feldstein and Summers

(1979), we set U = 0.047). As for the interest rate i, we use the rate on

commercial paper. The investment tax credit and present discounted value of

depreciation allowances are computed by Jorgenson and Sullivan (1981), who use

data on the term structure of interest rates to obtain z.

The following instruments are used in the estimation of both models: a

constant, and the lagged detrended values of the rate of return on equity, the

hourly compensation of both types of workers, the purchase prices of equipment

and structures, the present discounted value of their depreciation allowances,

as well as the logarithms of the quantities of blue—collar labor, white—collar

labor, structures, equipment, and output.

4. Estimation Results

For our "preferred" specification, both capital and labor are disaggregated,

so that there are three quasi—fixed factors. Recall that the model for this

specification ("Model 1") is given by the input requirement function (6) and the

three Euler equations (7), (8), and (9). We also estimate the alternative sped—
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fication in which equipment and structures are aggregated; this model ("Model 2")

is given by the input requirement function (10) and the Euler equations (11) and

(12). Each of these models was estimated first in its unrestricted form, and then

with the restrictions of constant returns (CRTS) imposed.14

Parameter estimates are shown in Table 1. Both models satisfy the conditions

of monotonicity and convexity for all but the first four years of data. Observe

that for the unrestricted version of Model 1 the value of J is 54.45. Under the

null hypothesis that the model is valid, J is distributed as chi—square with number

of degrees of freedom equal to the number of instruments (13) times the number of

equations (4) minus the number of parameters (20). The critical 5% level of the

chi—square distribution with 32 degrees of freedom is 46.2, so that the over—

identifying restrictions are rejected, throwing some doubt on the validity of the

estimated standard errors.15 For Model 2 the value of J is 34.81. For this model

there are 39 — 14 = 25 degrees of freedom, the critical 5% level of the chi—square

distribution is 37.7, and the over—identifying restrictions can be accepted.

To test for constant returns, we use the difference in the values of J

with and without the parameter restrictions imposed. That difference is

418.22 — 54.45 = 363.77 for Model 1, and 447.83 — 34.81 = 413.02 for Model 2.

There are five parameter restrictions in the CRTS version of Model 1, and four in

Model 2, so that the critical 5% values of the chi—square distribution are 11.1

and 9.5 respectively. Constant returns is therefore overwhelmingly rejected.16

The parameter estimates have interesting implications for the role of

adjustment costs. Observe that all of the adjustment cost parameters have the

correct sign, and all are statistically significant except the one for structures

in Model 1 (although this parameter is numerically large). The importance of

adjustment costs is best understood by comparing their value as a total fraction

of expenditures on a particular quasi—fixed factor with their value on the margin.

This is done in Table 2. In the first column of that table we take the average

annual change in the stock of each quasi—fixed factor over the sample period,

compute the adjustment cost for that average annual change using the parameter
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TABLE 1 PARAMETER ESTIMATES

(Asymptotic Standard Errors in Parentheses)

MODEL 1 (B; L,S,E) MODEL 2 (B; L,K)

Unrestricted CRTS Unrestricted CRTS

—12.1166 7.8492 —10.9216 7.7565

(2.6060) (1.2135) (2.3371) (1.3809)

a 4.4941 —.7089 4.5063 —.7034
1

(.3352) (.6326)
1

(.3342) (.7172)

a .00075 — .001997 —.003493 — .01004
2

(.00090) (.000541) (.003411) (.001362)

a3
—.000677 —.001844 .1395

(.00082) (.000652) (.8566)

.5907
(.9379)

— .7502 .03281 —.7527 .03160

(.0614) (.1642) (.06122) (.1863)

3.01Ox1O5 .000513 11' 2 .000709 .002714

(.00016) (.000123)
1

(.000611) (.000347)

—.000103 .000352
11)13(.000138) (.000142) (.04810)

14 .3461

(.04815)

.000191 .000289 11,
.000885 .001593

(.000129) (.000113)
22

(.000656) (.00046)

— .000253 — .000164
it,

— .001416
23

(9.624x105) (7.878x105)
23

(.000659)

— .000167
(.000194)

y .000563 —.000261
I)3

—.4247
(.000277) (.000104) (.1620)

6.181x105
(.000173)

144
— .5045
(.1782)

A — .01295 — .02890 A — .01213 — .02427
(.00302) (.001186) (.002614) (.000721)

d 1.2733 1.1938 d 1.5977 1.4381
(.09859) (.09526) (.1752) (.1635)

.000318 .000191 .000315 .000185

(5.243x105) (.000189) (5.246x105) (.000223)

.00476 .003159 .01768 .01047.

(.00238) (.002264) (.003304) (.002753)

.009238 .02021

(.009418) (.00868)

3 54.45 418.22 .1 34.81 447.83

EQ 6 SSR .02186 .06721 EQ 10 SSR .02154 .09893
D.W. 1.181 .737 D.W. 1.160 .506

EQ 7 SSR .17229 3.2188 EQ 11 SSR .1717 3.2225
D.W. 1.727 .218 D.W. 1.708 .217

EQ 8 SSR .01858 .03566 EQ 12 SSR .08443 .2643
D.W. 1.776 .912 ILW. 1.647 .568

EQ 9 SSR .01272 .02079
D.W. 2.771 1.715
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TABLE 2 — ADJUSTMENT COSTS

Percentage Marginal Percentage Total

Adjustment Cost (Avg.)* Adjustment Cost (Avg.)*
Model 1

L .03 .001

E .23 .007

S .34 .005

Model 2
L .03 .001

K 2.14 .056

*Computations are explained in the text.

estimates in Table 1, and then divide by the average rental rate for the factor.

This provides a measure of percentage marginal adjustment costs. In the second

column we compute total adjustment costs for each factor in each year as a

fraction of the total expenditure on that factor, and then average these figures

over the sample period. This provides a measure of percentage total adjustment

costs. Observe that while adjustment costs are small as a total percentage of

expenditures, they are quite large on the margin, particularly for capital. This

means that the firm's cost minimization problem is very much a dynamic one.

Our estimates also have implications for the role of financing. In particular

the parameter d specifies the fraction of the after—tax cost of a dollar of capital

that is debt financed at the margin. However, our estimates of d are implausibly

high since they are significantly greater than one for both models. While the

parameter d applies only at the margin and thus the inframarginal investments may

well lead to lower borrowing, these values seem high nonetheless.

Further insight into the production structure can be obtained by examining

the elasticities of factor demands)7 These elasticities were calculated for the

18
1976 sample point, and are presented in Table 3.

A number of things should be mentioned about these elasticities. First, note

that there is consistency across the two models. Elasticities of blue— and white—

collar labor demand with respect to the two wage rates and output are almost

identical across the two models, and in Model 2, the elasticities of demand for

capital with respect to its own price and output are
about midway hetwcefl the cor-

responding elasticities for equipment and structures in Model 1.
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TABLE 3 - ELASTICITIES

Model 1 (B; L, S, E)

Long-run With respect to:

Elasticity of
Demand for:

— B
p p
L E

p
S

B -1.4505 1.4505 -l.493x105 1.734xl0 .3575

L 2.3105 -2.3106 .000126 l.0007x105 .9938

E -.1554 .8166 -.5221 -.1390 1 .0582

S .2708 .09809 -.2107 -.1582 .5282

Short-run With respect to:

Elasticity of
Demand for:

L E S Q

-.6278 -9.706510 -6.4045xl05 .98158

Model 2 (B; L, K)

Long—run With respect to:

Elasticity of
Demand for: p

B L
p
K Q

B

L

-1.4674 1.4676

2.3381 -2.3385

-.000229

.000394 1

.3513

.0187

K —1.6851 1.8186 -.1335 .7275

Short—run With respect to:

Elasticity of
Demand for:

L K Q[
B -.62769 -.000136 .99086
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Second, note that the elasticities are generally reasonable, both in magnitude

and in sign. In Model 1, blue—collar labor and equipment are complementary inputs,

as are structures and equipment, and in Model 2 blue—collar labor and the capital

aggregate are complements. As one would expect, structures is relatively price

inelastic, and in particular less elastic than equipment. The elasticities of

demand for white—collar labor are large, but still reasonable.

Although we do not do so here, one could use the models presented in this paper

to simulate the effects of changes in factor prices or output —— but only in a

deterministic context. As explained in Pindyck and Rotemberg (1982), such simu-

lations are carried out by numerically solving the deterministic control problem

that corresponds to the minimization in equation (3). A solution to the control

problem can be obtained by finding initial conditions for the quasi—fixed factors

which yield steady—state values for those factors (i.e. values which satisfy the

associated transversality conditions) when the Euler equations and input require-

ment function are together solved recursively through time. Note that for Model 1,

in which there are three quasi—fixed factors, this involves searching over a three—

dimensional grid of initial conditions.

5. Conclusions.

The model of factor demands presented in this paper is consistent with rational

expectations and dynamic optimization in the presence of adjustment costs. With the

possible exception of the parameter which describes the manufacturing sector's

financing decisions, our estimates are quite plausible. We obtain reasonable elasti-

city estimates, and find that equipment is a complementary factor to both blue—collar

labor and structures, while other factor pairs are substitutes. As in our previous

paper, we strongly reject constant returns to scale. Finally, we find that adjust-

ment costs are very important at the margin, especially for equipment and structures.

It is important to keep in mind that our model has a number of limitations,

some of which are suggestive of further work. First, we aggregate across goods,
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factors, and time. The numerous outputs produced under the heading of manufacturing

are treated as a single good. Factor diversity is in fact richer that the two types

of labor and capital we consider. Also, our use of annual data requires the implicit

assumption that seasonal fluctuations are such that average output is only a function

of average factor use over the year.

Second, our model imposes constraints on firms' financial policies. Although

we allow for the different tax consequences of debt and equity financing, we ignore

the term structures of the debt that firms incur when they purchase new capital.

Finally, we only allow for limited forms of technical progress. Expanding the model

to include other forms of technical progress might significantly affect the parameter

estimates.
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FOOTNOTES

1. As Lucas (1967) and Treadway (1971) have shown, under certain conditions the

flexible accelerator is consistent with dynamic optimization in the presence

of adjustment costs. For a survey of this and related models, together with

an assessment of their empirical performance, see Clark (1979).

2. For a survey of some of the recent work in dynamic factor demand modelling,

see Berndt, Morrison, and Watkins (1981).

3. Since we do not actually solve the stochastic control problem (beyond writing

the first—order conditions), we cannot calculate optimal factor demand trajec-

tories corresponding to particular stochastic processes for prices. Stochastic

control problems of this sort are generally difficult, if not impossible to

solve, and this raises the question of whether rational expectations provides

a realistic behavioral foundation for studying investment behavior and factor

demands in general.

4. As in Gould (1968). For a survey of the treatment of adjustment costs, see

Sderstrm (1976). We implicitly assume that costs of adjustment are incurred

only when the net quantity of X1 changes.
This assumption was relaxed in our

earlier paper (1982), where our point estimates suggest that, indeed, only

changes in lead to adjustment costs. We also estimated the current models

relaxing this requirement, without affecting our results significantly.

5. Note that while the expectation in (3) treats not just future input prices but

also future output as random variables, output is not predetermined. The ran-

dom variable Q is given by the contingency plan
that maximizes expected profits.

6. Or, equivalently, as consisting of many competitive firms whose aggregate

technology is given by our model.

7. This assumption is justified if the production
function is of the Leontief form

in two composite inputs, the first of which
is a function of the levels of

labor and capital while the second is a function of the other inputs.
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8. We also estimated versions of the model assuming adjustment costs are quadratic in

Lt/Li E/Eti, and tSIS1, without significantly affecting the results.

9. This assumes the firm purchases some equipment at t+1. If the firm bought an

extra unit of equipment at t with the intention of selling 16E units at t+1,

it would be unlikely to borrow the expected present value of the depreciation

allowances. Instead it would pay e(1_cE_zEt) at t, where ZEt is the depreci-

ation allowances in the first period, and it would receive (1_5E)e+l(l_cE,t+1)

at t+1.

10. If revenues at t+l get discounted at t at the rate i(1_O+i), R+i =

the fraction d that is debt financed is irrelevant to the firm.

11. This equivalence is explained in our earlier paper (1982).

12. These data incorporate some embodied technical progress since employment

levels are corrected for the educational achievement of the work force.

13. We also estimated the models using R = l/(l+r ), where r is the after—
t,t+1 cp cp

tax return on commercial paper, but we obtained significantly poorer results.

14. But note that the constant returns version is estimated using the covariance

matrix obtained from the estimation of the unrestricted model, thereby per-

mitting us to test the CRTS restrictions. CRTS parameter restrictions are

derived as in Pindyck and Rotemberg (1982).

15. Failure of the over-identifying restrictions in this model is inconsistent

with the hypothesis that firms are optimizing with rational expectations.

15. Note that this puts into question empirical q—theory models of investment

that equate marginal and average q.

17. Intermediate— and long—run elasticities, i.e. those that apply when quasi—fixed

factors have partially or fully adjusted, must be interpreted with caution.

The reason is that if prices evolve stochastically, the adjustment path for

any particular discrete change in a price, as well as the long—run expected

(continued)
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equilibrium, are solutions to a stochastic control problem (and in some cases

a long—run expected equilibrium may not exist). Since such solutions are

typically infeasible, we must compute elasticities by implicitly assuming that

firms ignore the variance of future prices in responding to price changes.

These elasticities can therefore be best viewed as a description of the

technology.

18. For an explanation of how these elasticities are calculated, see the Appendix

of Pindyck and Rotemberg (1982).
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