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1 Introduction

In the existing literature on optimal monetary policy two distinct branches have developed

that deliver diametrically opposed policy recommendations concerning the long-run and

cyclical behavior of prices and interest rates. One branch follows the theoretical framework

laid out in Lucas and Stokey (1983). It studies the joint determination of optimal fiscal

and monetary policy in flexible-price environments with perfect competition in product and

factor markets. In this group of papers, the government’s problem consists in financing

an exogenous stream of public spending by choosing the least disruptive combination of

inflation and distortionary income taxes. The criterion under which policies are evaluated

is the welfare of the representative private agent. A basic result of this literature is the

optimality of the Friedman rule. A zero opportunity cost of money has been shown to be

optimal under perfect-foresight in a variety of monetary models, including cash-in-advance,

money-in-the-utility function, and shopping-time models.1

In a significant contribution to the literature, Chari et al. (1991) characterize optimal

monetary and fiscal policy in stochastic environments. They prove that the Friedman rule is

also optimal under uncertainty: the government finds it optimal to set the nominal interest

rate at zero at all dates and all states of the world. In addition, Chari et al. show that

income tax rates are remarkably stable over the business cycle, and that the inflation rate

is highly volatile and serially uncorrelated. Under the Ramsey policy, the government uses

unanticipated inflation as a lump-sum tax on financial wealth. The government is able to do

this because public debt is assumed to be nominal and non-state-contingent. Thus, inflation

plays the role of a shock absorber of unexpected adverse fiscal shocks.

On the other hand, a more recent literature focuses on characterizing optimal monetary

policy in environments with nominal rigidities and imperfect competition.2 Besides its em-

1See, for example, Chari et al. (1991), Correia and Teles (1996), Guidotti and Végh (1993), and Kimbrough
(1986).

2See, for example, Erceg, Henderson, and Levin (2002), Gaĺı and Monacelli (2000), Khan, King, and
Wolman (2000), and Rotemberg and Woodford (1999).
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phasis on the role of price rigidities and market power, this literature differs from the earlier

one described above in two important ways. First, it assumes, either explicitly or implicitly,

that the government has access to (endogenous) lump-sum taxes to finance its budget. An

important implication of this assumption is that there is no need to use unanticipated infla-

tion as a lump-sum tax; regular lump-sum taxes take up this role. Second, the government

is assumed to be able to implement a production (or employment) subsidy so as to eliminate

the distortion introduced by the presence of monopoly power in product and factor markets.

A key result of this literature is that the optimal monetary policy features an inflation

rate that is zero or close to zero at all dates and all states.3 In addition, the nominal interest

rate is not only different from zero, but also varies significantly over the business cycle. The

reason why price stability turns out to be optimal in environments of the type described

here is straightforward: the government keeps the price level constant in order to minimize

(or completely eliminate) the costs introduced by inflation under nominal rigidities.

This paper is the first step of a larger research project that aims to incorporate in a

unified framework the essential elements of the two approaches to optimal policy described

above. Specifically, in this paper we build a model that shares three elements with the earlier

literature: (a) The only source of regular taxation available to the government is distortionary

income taxes. In particular, the fiscal authority cannot adjust lump-sum taxes endogenously

in financing its outlays. (b) Prices are fully flexible. (c) The government cannot implement

production subsidies to undo distortions created by the presence of imperfect competition.

At the same time, our model shares with the more recent body of work on optimal monetary

policy the assumption that product markets are not perfectly competitive. In particular, we

assume that each firm in the economy is the monopolistic producer of a differentiated good.

An assumption maintained throughout this paper that is common to all of the papers cited

3In models where money is used exclusively as a medium of account or when money enters in an additively
separable way in the utility function, the optimal inflation rate is typically strictly zero. Khan, King, and
Wolman (2000) show that when a nontrivial transaction role for money is introduced, the optimal inflation
rate lies between zero and the one called for by the Friedman rule. However, in calibrated model economies,
they find that the optimal rate of inflation is in fact very close to zero and smooth.
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above (except for Lucas and Stokey, 1983) is that the government has the ability to fully

commit to the implementation of announced fiscal and monetary policies.

In our imperfectly competitive economy, profits represent the income to a fixed “factor,”

namely, monopoly rights. It is therefore optimal for the Ramsey planner to tax profits at a

100 percent rate. Realistically, however, governments cannot implement a complete confis-

cation of this type of income. The main finding of our paper is that under this restriction

the Friedman rule ceases to be optimal. The Ramsey planner resorts to a positive nominal

interest rate as an indirect way to tax profits. The nominal interest rate represents an indi-

rect tax on profits because households must hold (non-interest-bearing) fiat money in order

to convert income into consumption. Indeed, we find that the Ramsey allocation features an

increasing relationship between the nominal interest rate and monopoly profits. Under the

assumption of no profit taxation and for plausible calibrations of other structural parameters

of the model economy, we find that as the profit share increases from zero to 25 percent, the

optimal average nominal interest rate increases continuously from zero to 8 percent per year.

In addition, the interest rate is time varying and its volatility is increasing in the degree of

monopoly power.

The second central result of our study is that while the first moments of inflation, the

nominal interest rate, and tax rates are sensitive to the degree of market power in the Ramsey

allocation, the cyclical properties of these variables under imperfect competition are similar

to those arising in perfectly competitive environments. In particular, it is optimal for the

government to smooth tax rates and to make the inflation rate highly volatile. Thus, as

in the case of perfect competition, the government uses variations in the price level as a

state-contingent tax on financial wealth.

The remainder of the paper is organized in 5 sections. Section 2 describes the economic

environment and defines a competitive equilibrium. Section 3 presents the primal form of

the equilibrium and shows that it is equivalent to the definition of competitive equilibrium

given in section 2. Section 4 establishes the first central result of this paper. Namely, the fact
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that the Friedman rule is not optimal when monopoly profits cannot be fully confiscated.

Section 5 analyzes the business-cycle properties of Ramsey allocations. It first presents a

novel numerical method for solving the exact conditions of the Ramsey problem. It then de-

scribes the calibration of the model and presents the quantitative results. Section 6 presents

some concluding remarks.

2 The model

In this section we develop a simple infinite-horizon production economy with imperfectly

competitive product markets. Prices are assumed to be fully flexible and asset markets com-

plete. The government finances an exogenous stream of purchases by levying distortionary

income taxes and printing money.

2.1 The private sector

Consider an economy populated by a large number of identical households. Each household

has preferences defined over processes of consumption and leisure and described by the utility

function

E0

∞∑

t=0

βtU(ct, ht) (1)

where ct denotes consumption, ht denotes labor effort, β ∈ (0, 1) denotes the subjective

discount factor, and E0 denotes the mathematical expectation operator conditional on infor-

mation available in period 0. The single period utility function U is assumed to be increasing

in consumption, decreasing in effort, strictly concave, and twice continuously differentiable.

In each period t ≥ 0, households can purchase two types of financial assets: fiat money,

Mt, and one-period, state-contingent, nominal assets, Dt+1, that pay one unit of currency

in a particular state of period t + 1. Money holdings are motivated by assuming that

they facilitate consumption purchases. Specifically, consumption purchases are subject to a

proportional transaction cost s(vt) that depends on the household’s money-to-consumption
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ratio, or consumption-based money velocity,

vt =
Ptct
Mt

, (2)

where Pt denotes the price of the consumption good in period t. The transaction cost function

satisfies the following assumption:

Assumption 1 The function s(v) satisfies: (a) s(v) is nonnegative and twice continuously

differentiable; (b) There exists a level of velocity v > 0, to which we refer as the satiation

level of money, such that s(v) = s′(v) = 0; (c) (v − v)s′(v) > 0 for v 6= v; and (d)

2s′(v) + vs′′(v) > 0 for all v ≥ v.

Assumption 1(a) states that the transaction cost is smooth. Assumption 1(b) ensures that

the Friedman rule, i.e., a zero nominal interest rate, need not be associated with an infinite

demand for money. It also implies that both the transaction cost and the distortion it

introduces vanish when the nominal interest rate is zero. Assumption 1(c) guarantees that

money velocity is always greater than or equal to the satiation level. As will become clear

shortly, assumption 1(d) ensures that the demand for money is decreasing in the nominal

interest rate. (Note that assumption 1(d) is weaker than the more common assumption of

strict convexity of the transaction cost function.)

The consumption good ct is assumed to be a composite good made of a continuum of

intermediate differentiated goods. The aggregator function is of the Dixit-Stiglitz type.

Each household is the monopolistic producer of one variety of intermediate goods. The

intermediate goods are produced using a linear technology, zth̃t, that takes labor, h̃t, as the

sole input and is subject to an exogenous productivity shock, zt. The household hires labor

from a perfectly competitive market. The demand for the intermediate input is of the form

Ytd(pt), where Yt denotes the level of aggregate demand and pt denotes the relative price of

the intermediate good in terms of the composite consumption good. The demand function
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d(·) is assumed to be decreasing and to satisfy d(1) = 1 and d′(1) < −1.4 The monopolist

sets the price of the good it supplies taking the level of aggregate demand as given, and is

constrained to satisfy demand at that price, that is,

zth̃t ≥ Ytd(pt). (3)

Finally, we assume that each period the household receives profits from financial institu-

tions in the amount Πt. The household takes Πt as exogenous. We introduce the variable

Πt because we want to allow for the possibility that in equilibrium only a fraction of the

transactions costs be true resource (or shoe-leather) costs. We do so by assuming that part of

the transaction cost is rebated to the public in a lump-sum fashion. We motivate this rebate

by assuming that part of the transaction cost represent pure profits of financial institutions

owned (in equal shares) by the public.

The flow budget constraint of the household in period t is then given by:

Ptct[1+s(vt)]+Mt +Etrt+1Dt+1 ≤Mt−1 +Dt +Pt[ptYtd(pt)−wth̃t]+(1−τt)Ptwtht +Πt, (4)

where wt is the real wage rate and τt is the labor income tax rate. The variable rt+1 denotes

the period-t price of a claim to one unit of currency in a particular state of period t+1 divided

by the probability of occurrence of that state conditional on information available in period

t. The left-hand side of the budget constraint represents the uses of wealth: consumption

spending, including transactions costs, money holdings, and purchases of interest bearing

assets. The right-hand side shows the sources of wealth: money and contingent claims

acquired in the previous period, profits from the sale of the differentiated good, after-tax

labor income, and profits received from financial institutions.

In addition, the household is subject to the following borrowing constraint that prevents

4The restrictions on d(1) and d′(1) are necessary for the existence of a symmetric equilibrium.
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it from engaging in Ponzi schemes:

lim
j→∞

Etqt+j+1(Dt+j+1 +Mt+j) ≥ 0, (5)

at all dates and under all contingencies. The variable qt represents the period-zero price of

one unit of currency to be delivered in a particular state of period t divided by the probability

of occurrence of that state given information available at time 0 and is given by

qt = r1r2 . . . rt,

with q0 ≡ 1.

The household chooses the set of processes {ct, ht, h̃t, pt, vt,Mt, Dt+1}∞t=0, so as to maxi-

mize (1) subject to (2)- (5), taking as given the set of processes {Yt, Pt, wt, rt+1, τt, zt}∞t=0 and

the initial condition M−1 +D0.

Let the multiplier on the flow budget constraint be λt/Pt. Then the first-order conditions

of the household’s maximization problem are (2)- (5) holding with equality and

Uc(ct, ht) = λt[1 + s(vt) + vts
′(vt)] (6)

−Uh(ct, ht)

Uc(ct, ht)
=

(1 − τt)wt

1 + s(vt) + vts′(vt)
(7)

v2
t s

′(vt) = 1 − Etrt+1 (8)

λt

Pt
rt+1 = β

λt+1

Pt+1
(9)

pt +
d(pt)

d′(pt)
=
wt

zt
(10)

The interpretation of these optimality conditions is straightforward. The first-order condi-

tion (6) states that the transaction cost introduces a wedge between the marginal utility of

consumption and the marginal utility of wealth. The assumed form of the transaction cost
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function ensures that this wedge is zero at the satiation point v and increasing in money

velocity for v > v. Equation (7) shows that both the labor income tax rate and the transac-

tion cost distort the consumption/leisure margin. Given the wage rate, households will tend

to work less and consume less the higher is τ or the smaller is vt. Equation (8) implicitly

defines the household’s money demand function. Note that Etrt+1 is the period-t price of an

asset that pays one unit of currency in every state in period t + 1. Thus Etrt+1 represents

the inverse of the risk-free gross nominal interest rate. Formally, letting Rt denote the gross

risk-free nominal interest rate, we have

Rt =
1

Etrt+1

Our assumptions about the form of the transactions cost function imply that the demand

for money is strictly decreasing in the nominal interest rate and unit elastic in consumption.

Equation (9) represents a standard pricing equation for one-step-ahead nominal contingent

claims. Finally, equation (10) states that firms set prices so as to equate marginal revenue,

pt + d(pt)/d
′(pt), to marginal cost, wt/zt.

2.2 The government

The government faces a stream of public consumption, denoted by gt, that is exogenous,

stochastic, and unproductive. These expenditures are financed by levying labor income taxes

at the rate τt, by printing money, and by issuing one-period, risk-free, nominal obligations,

which we denote by Bt. The government’s sequential budget constraint is then given by

Mt +Bt = Mt−1 +Rt−1Bt−1 + Ptgt − τtPtwtht

for t ≥ 0. The monetary/fiscal regime consists in the announcement of state-contingent

plans for the nominal interest rate and the tax rate, {Rt, τt}.
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2.3 Equilibrium

We restrict attention to symmetric equilibria where all households charge the same price

for the good they produce. As a result, we have that pt = 1 for all t. It then follows from

the fact that all firms face the same wage rate, the same technology shock, and the same

production technology, that they all hire the same amount of labor. That is, h̃t = ht. Also,

because all firms charge the same price, we have that the marginal revenue of the individual

monopolist, given by the left-hand side of (10), is constant and equal to 1+ 1/d′(1). Letting

η = d′(1)

denote the equilibrium value of the elasticity of demand faced by the monopolist and µ the

equilibrium gross markup of prices to marginal cost, we have that

µ =
η

1 + η
(11)

The equilibrium gross markup approaches unity as the demand elasticity becomes perfectly

elastic (η → −∞) and approaches infinity as the demand elasticity becomes unit elastic

(η → −1).

Because all households are identical, in equilibrium there is no borrowing or lending

among them. Thus, all interest-bearing asset holdings by private agents are in the form of

government securities. That is,

Dt = Rt−1Bt−1

at all dates and all contingencies. In equilibrium, it must be the case that the nominal

interest rate is non-negative,

Rt ≥ 1.

Otherwise pure arbitrage opportunities would exist and households’ demand for consumption

would not be well defined.
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Finally, as explained earlier, we assume that only a fraction α ∈ [0, 1] of the transaction

cost represents a true resource cost. The rest of the costs are assumed to be pure profits of

financial institutions owned by the public. Thus, in equilibrium

Πt = (1 − α)cts(vt)

We are now ready to define an equilibrium. A competitive equilibrium as a set of plans

{ct, ht, Mt, Bt, vt, wt, λt, Pt, qt, rt+1} satisfying the following conditions:

Uc(ct, ht) = λt[1 + s(vt) + vts
′(vt)] (12)

−Uh(ct, ht)

Uc(ct, ht)
=

(1 − τt)wt

1 + s(vt) + vts′(vt)
(13)

v2
t s

′(vt) =
Rt − 1

Rt
(14)

λtrt+1 = βλt+1
Pt

Pt+1

(15)

Rt =
1

Etrt+1
≥ 1 (16)

1 + η

η
=
wt

zt

, (17)

Mt +Bt + τtPtwtht = Rt−1Bt−1 +Mt−1 + Ptgt (18)

lim
j→∞

Etqt+j+1(Rt+jBt+j +Mt+j) = 0 (19)

qt = r1r2 . . . rt with q0 = 1 (20)

[1 + αs(vt)]ct + gt = ztht (21)

vt = Ptct/Mt, (22)

given policies {Rt, τt}, exogenous processes {zt, gt}, and the initial condition R−1B−1 +M−1.

The optimal fiscal and monetary policy is the process {Rt, τt} associated with the competitive
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equilibrium that yields the highest level of utility to the representative household, that is,

that maximizes (1). As is well known, the planner will always find it optimal to confiscate the

entire initial financial wealth of the household by choosing a policy consistent with an infinite

initial price level, P0 = ∞. This is because such a confiscation amounts to a nondistortionary

lump-sum tax. To avoid this unrealistic feature of optimal policy, we restrict the initial price

level to be arbitrarily given.

To find the optimal policy, it is convenient to use a simpler representation of the com-

petitive equilibrium known as the primal form. We turn to this task next.

3 Ramsey allocations

In this section we analytically derive the first central result of this paper. Namely, that the

Friedman rule ceases to be optimal when product markets are imperfectly competitive. We

begin by deriving the primal form of the competitive equilibrium. Then we state the Ramsey

problem. And finally we characterize optimal fiscal and monetary policy.

3.1 The primal form

Following a long-standing tradition in Public Finance, we study optimal policy using the

primal-form representation of the competitive equilibrium. Finding the primal form involves

the elimination of all prices and tax rates from the equilibrium conditions, so that the re-

sulting reduced form involves only real variables. In our economy, the real variables that

appear in the primal form are consumption, hours, and money velocity. The primal form of

the equilibrium conditions consists of two equations. One equation is a feasibility constraint,

given by the resource constraint (21), which must hold at every date and under all contingen-

cies. The other equation is a single, present-value constraint known as the implementability

constraint. The implementability constraint guarantees that at the prices and quantities

associated with every possible competitive equilibrium, the present discounted value of con-

11



solidated government surpluses equals the government’s total initial liabilities. The following

proposition presents the primal form of the competitive equilibrium and establishes that it

is equivalent to the definition of competitive equilibrium given in section 2.3.

Proposition 1 Plans {ct, ht, vt}∞t=0 satisfying

ztht = [1 + αs(vt)]ct + gt, (23)

E0

∞∑

t=0

βt

{
Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht +

Uc(ct, ht)

γ(vt)

ztht

η

}
=
Uc(c0, h0)

γ(v0)

R−1B−1 +M−1

P0
,

(24)

vt ≥ v and v2
t s

′(vt) < 1,

given (R−1B−1 +M−1) and P0, are the same as those satisfying (12)- (22), where

γ(vt) ≡ 1 + s(vt) + vts
′(vt)

and

φ(vt) ≡ [1 + αs(vt) + vts
′(vt)]/γ(vt)

.

Proof: We first show that plans {ct, ht, vt} satisfying (12)- (22) also satisfy (23), (24), vt ≥ v,

and v2
t s

′(vt) < 1.

Obviously, (21) implies (23). Furthermore, (14), (16), and assumption 1 together imply

that vt ≥ v and v2
t s

′(vt) < 1. Let Wt+1 = RtBt +Mt and note that Wt+1 is in the information

set of time t. Use this expression to eliminate Bt from (18) and multiply by qt to obtain

qtMt(1 − R−1
t ) + qtEtrt+1Wt+1 − qtWt = qt[Ptgt − τtPtwtht],
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where we use (16) to write Rt in terms of rt+1. Take expectations conditional on information

available at time zero and sum for t = 0 to t = T to obtain

E0

T∑

t=0

[
qtMt(1 − R−1

t ) − qt(Ptgt − τtPtwtht)
]

= −E0qT+1WT+1 +W0.

In writing this expression, we use the fact that q0 = 1. Take limits for T → ∞. By (19) the

limit of the right hand side is well defined and equal to W0. Thus, the limit of the left-hand

side exists. This yields:

E0

∞∑

t=0

[
qtMt(1 − R−1

t ) − qt(Ptgt − τtPtwtht)
]

= W0

By (15) we have that Ptqt = βtλtP0/λ0. Use (12) to eliminate λt (22) to eliminate Mt/Pt to

obtain

E0

∞∑

t=0

βtUc(ct, ht)

γ(vt)

[
ct
vt

(1 −R−1
t ) − (gt − τtwtht)

]
=
W0

P0

Uc(c0, h0)

γ(v0)

Solve (13) for τt and (17) for wt. Then τtwtht = (1 + η)/ηztht + γ(vt)/Uc(ct, ht)Uh(ct, ht)ht.

Use this in the above expression and replace gt with (21). This yields

E0

∞∑

t=0

βt


Uc(ct, ht)ct

1 + αs(vt) +
1−R−1

t

vt

γ(vt)
+ Uh(ct, ht)ht +

ztht

η

Uc(ct, ht)

γ(vt)


 =

W0

P0

Uc(c0, h0)

γ(v0)

Finally, use (14) to replace (1 − R−1
t )/vt with vts

′(vt) and use the definitions φ(vt) =

1+αs(vt)+vts′(vt)
γ(vt)

and W0 = R−1B−1 +M−1 to get

E0

∞∑

t=0

βt

[
Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht +

ztht

η

Uc(ct, ht)

γ(vt)

]
=
R−1B−1 +M−1

P0

Uc(c0, h0)

γ(v0)

which is (24).

Now we show that plans {ct, ht, vt} that satisfy vt ≥ v, v2
t s

′(vt) < 1, (23), and (24) also

satisfy (12)- (22) at all dates all contingencies.
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Clearly, (23) implies (21). Given a plan {ct, ht, vt} proceed as follows. Use (14) to

construct Rt as 1/[1 − v2
t s

′(vt)]. Note that our assumption that given assumption 1, the

constraints vt ≥ v and v2
t s

′(vt) < 1 ensure that Rt ≥ 1. Let λt be given by (12), wt by (17)

and τt by (13). To construct plans for Mt, Pt+1, and Bt, for t ≥ 0, use the following iterative

procedure: (a) Set t = 0; (b) Use equation (22) to construct Mt (one can do this for t = 0

because P0 is given); (c) Set Bt so as to satisfy equation (18); (d) Construct Pt+1 (one price

level for each state of the world in t+ 1) as the solution to:

Et+1

∞∑

j=0

βj [Uc(ct+j+1, ht+j+1)ct+j+1φ(vt+j+1) + Uh(ct+j+1, ht+j+1)ht+j+1

+
zt+j+1ht+j+1

η

Uc(ct+j+1, ht+j+1)

γ(vt+j+1)

]
=
RtBt +Mt

Pt+1

Uc(ct+1, ht+1)

γ(vt+1)
. (25)

(e) Increase t by 1 and repeat steps (b) to (e). This procedure yields plans for Pt and thus

for the gross inflation rate πt ≡ Pt/Pt−1. Of course, only if the resulting price level process

is positive can the plan {ct, ht, vt} be supported as a competitive equilibrium. Once the plan

for πt is known, construct a plan for rt+1 from (15) and let qt be given by (20). It remains

to be shown that (16) and (19) also hold. Use the definition of Pt to get for any t ≥ 0:

Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht +
ztht

η

Uc(ct, ht)

γ(vt)
+

Et

∞∑

j=1

βj

[
Uc(ct+j, ht+j)ct+jφ(vt+j) + Uh(ct+j, ht+j)ht+j +

zt+jht+j

η

Uc(ct+j, ht+j)

γ(vt+j)

]

=
Rt−1Bt−1 +Mt−1

Pt

Uc(ct, ht)

γ(vt)

Make a change of index. Let k = j − 1 and use the definition of Pt+1. Then the above

expression can be written as

Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht +
ztht

η

Uc(ct, ht)

γ(vt)
+

βEt

[
Uc(ct+1, ht+1)

γ(vt+1)

RtBt +Mt

Pt+1

]
=
Rt−1Bt−1 +Mt−1

Pt

Uc(ct, ht)

γ(vt)
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Multiplying by γ(vt)Pt/Uc(ct, ht) yields

Ptct(1 + (1 − R−1
t )/vt) + Uh(ct, ht)/Uc(ct, ht)γ(vt)Ptht +

Ptztht

η

+(RtBt +Mt)βEt

[
γ(vt)Pt

Uc(ct, ht)

Uc(ct+1, ht+1)

γ(vt+1)Pt+1

]
= Rt−1Bt−1 +Mt−1

Using (13), (15), and (21) this expression can be written as:

Ptztht − Ptgt +Mt(1 − R−1
t ) − (1 − τt)wtPtht +

Ptztht

η
+ (RtBt +Mt)Etrt+1 = Rt−1Bt−1 +Mt−1

Then use (17) and (18) to simplify this expression to

(RtBt +Mt)Etrt+1 = Bt +R−1
t Mt,

which implies (16).

Finally, we must show that (19) holds. We have already established that (18) holds at

every date and under every contingency. Multiply (18) in period t + j by qt+j and take

expectations conditional on information available at time t to get

Et[qt+jMt+j(1 − rt+j+1) + qt+j+1Wt+j+1] = Et[qt+jWt+j + qt+j(Pt+jgt+j − τt+jPt+jwt+jht+j)]

Now sum for j = 0 to j = J .

Et

J∑

j=0

[qt+jMt+j(1 − rt+j+1) − qt+j(Pt+jgt+j − τt+jPt+jwt+jht+j)] = −Etqt+J+1Wt+J+1 + qtWt

Divide by qtPt

Et

J∑

j=0

qt+jPt+j

qtPt
[(ct+j/vt+j)(1−rt+j+1)−(gt+j−τt+jwt+jht+j)] = −Etqt+J+1Wt+J+1/(qtPt)+

Wt

Pt

15



Using the definition of Pt given by (25), we have already shown that the limit of the left-hand

side of the above expression as J → ∞ is Wt/Pt. Hence the limit of the right-hand side is

well defined. It then follows that

lim
J→∞

Etqt+J+1Wt+J+1 = 0

for every date t. Using the definition of Wt, one obtains immediately (19).

3.2 The Ramsey Problem

It follows from proposition 1 that the Ramsey problem can be stated as choosing contingent

plans ct, ht, vt > 0 so as to maximize

E0

∞∑

t=0

βtU(ct, ht)

subject to

ztht = [1 + αs(vt)]ct + gt, (23)

E0

∞∑

t=0

βt

{
Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht +

Uc(ct, ht)

γ(vt)

ztht

η

}
=
Uc(c0, h0)

γ(v0)

R−1B−1 +M−1

P0
,

(24)

and v2
t s

′(vt) < 1, taking as given (M−1 +R−1B−1)/P0 and the exogenous stochastic processes

gt and zt.

The Lagrangian of the Ramsey planner’s problem is

L = E0

∞∑

t=0

βt [U(ct, ht)+

ξ

(
Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht +

Uc(ct, ht)

γ(vt)

ztht

η

)

+ ψt(ztht − [1 + αs(vt)]ct − gt)]

−ξUc(c0, h0)

γ(v0)

R−1B−1 +M−1

P0
,
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where ψt and ξ are the Lagrange multipliers on the feasibility and implementability con-

straints, respectively. The partial derivatives of the Lagrangian with respect to vt, ct, ht, for

t > 0 are:

∂L
∂vt

= ξUc(ct, ht)ctφ
′(vt) − ξ

ztht

η
Uc(ct, ht)

γ′(vt)

γ(vt)2
− ψtαs

′(vt)ct

∂L
∂ct

= Uc(ct, ht)[1 + ξφ(vt)] + ξ

[
Ucc(ct, ht)ctφ(vt) + Uhc(ct, ht)ht + Ucc(ct, ht)

ztht

γ(vt)η

]

−ψt[1 + αs(vt)]

∂L
∂ht

= Uh(ct, ht) + ξ

[
Uch(ct, ht)ctφ(vt) + Uh(ct, ht) + htUhh(ct, ht) + Uch(ct, ht)

ztht

γ(vt)η

+Uc(ct, ht)
zt

γ(vt)η

]
+ ztψt

The partial derivatives of the Lagrangian with respect to c0, h0, and v0 are:

∂L
∂v0

= ξUc(c0, h0)c0φ
′(v0) − ξUc(c0, h0)

γ′(v0)

γ(v0)2

[
z0h0

η
− R−1B−1 +M−1

P0

]
− ψtαs

′(v0)c0

∂L
∂c0

= Uc(c0, h0)[1 + ξφ(v0)] + ξ

[
Ucc(c0, h0)c0φ(v0) + Uhc(c0, h0)h0 + Ucc(c0, h0)

z0h0

γ(v0)η

−Ucc(c0, h0)

γ(v0)

R−1B−1 +M−1

P0

]
− ψ0[1 + αs(v0)]

∂L
∂h0

= Uh(c0, h0) + ξ

[
Uch(c0, h0)c0φ(v0) + Uh(c0, h0) + h0Uhh(c0, h0) + Uch(c0, h0)

z0h0

γ(v0)η

+Uc(c0, h0)
z0

γ(v0)η
− Uch(c0, h0)

γ(v0)

R−1B−1 +M−1

P0

]
+ z0ψ0

The first-order conditions associated with the Ramsey problem are: (23), (24), vt ≥ v,
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v2
t s

′(vt) < 1, and

∂L
∂vt

≤ 0 (= 0 if vt > v) ∀t ≥ 0 (26)

∂L
∂ct

= 0 ∀t ≥ 0 (27)

and

∂L
∂ht

= 0 ∀t ≥ 0. (28)

One must check that the solution also satisfies v2
t s

′(vt) < 1.

4 Non-optimality of the Friedman rule

In this section, we analyze conditions under which the Friedman rule, that is, Rt = 1 for

all t > 0, is optimal as well as conditions under which it fails to be optimal. To keep the

presentation simple, we restrict attention to the case that transaction costs represent true

resource costs to the economy (α = 1) and reserve the analysis of the case that only some

part of the transactions cost are resource costs (0 ≤ α < 1) for the appendix. Note that

when α = 1, φ(vt) = 1 at all times so that φ′(vt) = 0.

We begin by establishing that the Friedman rule is optimal in our economy in the absence

of market power. While the optimality of the Friedman rule has been shown in a number of

different flexible price monetary economies (see, for example, Chari et al., 1996; Correia and

Teles, 1996), to our knowledge, it has not previously been established for a transactions cost

based monetary economy like the one we consider; thus this result is of interest in its own.5

In our framework the case of perfect competition obtains when the demand function

Ytd(pt) becomes perfectly elastic, that is, when η = −∞. In this case the partial derivative

of the Lagrangian with respect to vt for t > 0 becomes ∂L/∂vt = −ψts
′(vt)ct so that the

5Chari and Kehoe (1999) analyze three models of money in which the Friedman rule is optimal if the
consumption elasticity of money demand is one. Specifically, they consider money-in-the-utility function,
shopping-time, and cash-in-advance models. Thus, our result on the optimality of the Friedman rule under
perfect competition adds one more model to the list of economies for which in the presence of a unit
consumption elasticity of money demand a zero nominal interest rate is optimal.
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first-order condition of the Ramsey problem with respect to velocity is

−ψts
′(vt)ct ≤ 0 (= 0 if vt > v)

The only solution to this first-order condition is vt = v. To see this, note first that, given our

maintained assumption of no satiation in consumption and leisure, the Lagrange multiplier

on the feasibility constraint, ψt, is strictly positive. Also, by assumption 1, s′(vt) is strictly

positive for vt > v. It follows that the above first-order condition is violated when vt > v.

Finally, note that by assumption 1, s′(v) = 0. From the liquidity preference function (14)

it then follows immediately that Rt = 1 for all states and dates t > 0. We summarize this

result in the following proposition.

Proposition 2 (Optimality of the Friedman rule under perfect competition) Sup-

pose product markets are perfectly competitive (η = −∞), transaction costs are not rebated

(α = 1), and assumption 1 holds. Then, under the Ramsey allocation

Rt = 1

for all t > 0.

We now turn to one of the central results of this paper, namely, that the Friedman rule

fails to be optimal under imperfect competition. In this case the first-order condition of the

Ramsey problem with respect to velocity for t > 0 becomes

−ξ ztht

η
Uc(ct, ht)

γ′(vt)

γ(vt)2
− ψts

′(vt)ct ≤ 0 (= 0 if vt > v) (29)

To see that the Friedman rule cannot be optimal, evaluate the above expression at vt =

v. At vt = v, s′(v) = 0, thus the second term on the left-hand side of the above first-

order condition vanishes. The Lagrange multiplier on the implementability constraint, ξ, is

positive, otherwise an increase in initial government debt would be welfare improving. Since η
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is negative, it follows that the first-order condition can be satisfied only if γ′(v) = vs′′(v) ≤ 0.

However, given assumption 1, this can never be the case.6 Thus, we have the following

proposition

Proposition 3 (Non-optimality of the Friedman rule under imperfect competi-

tion) Suppose that product markets are imperfectly competitive (−∞ < η < −1), transaction

costs are not rebated (α = 1), and assumption 1 holds. Then, if a Ramsey allocation exists,

it must be the case that

Rt > 1

for all t > 0.

4.1 Intuition

The intuition behind the breakdown of the Friedman rule under imperfect competition is

the following: In the imperfectly competitive economy, part of income takes the form of

pure monopoly rents. By definition, the labor income tax rate cannot tax profits. As a

result, the social planner resorts to the inflation tax as an indirect way to tax profit income.

Specifically, when the household transforms profit income into consumption, it must use fiat

money, which is subject to the inflation tax.

Because profits represent payments to a fixed factor, namely monopoly rights, a tax on

profits would be nondistortionary. Thus, when a benevolent government has the ability to

tax profits, it would like to tax them at a hundred percent rate. Formally, this result can be

6One may argue that assumption 1(d), which implies that the nominal interest rate is a strictly increasing
function of v for all v ≥ v, or alternatively, that the elasticity of the liquidity preference function at a zero
nominal interest rate is finite, is too restrictive. Suppose instead that assumption 1(d) is relaxed by assuming
that it must hold only for v > v but not at v = v. In this case, a potential solution to (29) is v = v provided
s′′(v) = 0. However, v = v may not be the only solution to this first-order necessary condition. It could
very well be the case that there exists another v > v such that s′′(v) > 0 and that (29) is satisfied. Then it
has to be determined whether both solutions represent Ramsey allocations. If this were indeed found to be
the case, then the Friedman rule would not be a necessary feature of the Ramsey allocation. To establish
that the Friedman rule is a necessary characteristic of the Ramsey allocation, one would have to determine
that the solution involving a strictly positive nominal interest rate does not represent a maximum and that
the one involving the Friedman rule does. To establish such result it would be necessary to show that the
Ramsey problem is concave or alternatively to consider second-order conditions.
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shown as follows. In equilibrium, profits are given by ztht − wtht. Suppose the government

has access to a proportional tax on profits, τπ
t ∈ [0, 1]. Then the Ramsey problem can be

shown to be the same as above but for the implementability constraint (24), which now takes

the form

E0

∞∑

t=0

βt

{
Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht + (1 − τπ

t )
Uc(ct, ht)

γ(vt)

ztht

η

}
=
Uc(c0, h0)

γ(v0)

R−1B−1 +M−1

P0

.

(30)

Because the derivative of the Lagrangian associated with the Ramsey problem with respect

to τπ
t is strictly positive, the optimal profit tax rate is one at all dates and under all contingen-

cies. Note that when τπ
t = 1, the implementability constraint is the same as in the perfectly

competitive economy. It then follows immediately that the Friedman rule reemerges as the

optimal monetary policy. On the other hand, if the government is constrained to tax profits

at a rate strictly less than unity (τπ
t < τπ < 1), which is clearly the case of greatest empirical

interest, then the Ramsey planner chooses to set the profit tax rate at that upper bound

(τπ
t = τπ for all t). In this case the implementability constraint is the same as that of an

imperfectly competitive economy without profit taxes (equation (24)) but with an elasticity

of demand of η/(1 − τπ). That is, the presence of profit taxes is equivalent, from a Ramsey

point of view, to an economy without profit taxes but with less market power. It therefore

follows directly from proposition 3 that as long as τπ < 1, the Friedman rule is suboptimal.7

5 Dynamic properties of Ramsey allocations

In this section we characterize numerically the dynamic properties of Ramsey allocations.

We begin by proposing a solution method that does not rely on any type of approximation

of the nonlinear Ramsey conditions. Then we describe the calibration of the model. Finally,

7One can show that if the Ramsey planner is constrained to apply a uniform tax rate to all forms of
income, that is, τt = τπ

t for all t, the Friedman rule is optimal. (The derivation of this result is available
from the authors upon request.). However, this case is of marginal interest, for if the Ramsey planner had
the ability to set both tax rates independently, he would never find it optimal to set the same tax rate for
labor and profit income, thus neither to follow the Friedman rule.
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we present the quantitative results.

5.1 Solution method

We propose a method to find a numerical solution to the exact nonlinear equations describing

the Ramsey planner’s first-order conditions. We look for stochastic processes {ct, ht, vt, ψt}

and a positive scalar ξ satisfying

ztht = [1 + αs(vt)]ct + gt (31)

E0

∞∑

t=0

βt

{
Uc(ct, ht)ctφ(vt) + Uh(ct, ht)ht +

Uc(ct, ht)

γ(vt)

ztht

η

}
=
Uc(c0, h0)

γ(v0)
d0 (32)

ξUc(ct, ht)ctφ
′(vt) − ξUc(ct, ht)

γ′(vt)

γ2(vt)

[
ztht

η
− I(t = 0)d0

]
= ψtαs

′(vt)ct (33)

Uc(ct, ht)[1 + ξφ(vt)] + ξ

[
Ucc(ct, ht)

(
ctφ(vt) − I(t = 0)

d0

γ(vt)

)
+

Uhc(ct, ht)ht + Ucc(ct, ht)
ztht

γ(vt)η

]
= ψt[1 + αs(vt)] (34)

−ztψt = Uh(ct, ht) + ξ

[
Uch(ct, ht)

(
ctφ(vt) − I(t = 0)

d0

γ(vt)

)
+ Uh(ct, ht)

+htUhh(ct, ht) + Uch(ct, ht)
ztht

γ(vt)η
+ Uc(ct, ht)

zt

γ(vt)η

]
(35)

given exogenous processes {gt, zt} and the initial condition d0 ≡ (R−1B−1 + M−1)/P0. In

these expressions, I(t = 0) is an indicator function that takes the value of one if t = 0 and

zero otherwise. The following procedure describes a method to compute exact numerical

solutions to the above system.

1. We assume that gt and zt follow independent 2-state symmetric Markov processes. Let
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gt take on the values gh and gl and zt the values zh and zl.8 Let φg =Prob(gt+1 =

gi|gt = gi) and φz =Prob(zt+1 = zi|zt = zi) for i = h, l. Then the possible states of the

economy are described by the 4 × 1 state vector S, where

S =




s1

s2

s3

s4




=




(gh, zh)

(gh, zl)

(gl, zh)

(gl, zl)




Let Φ denote the transition matrix of the state vector S. Then,

Φ =




φgφz φg(1 − φz) (1 − φg)φz (1 − φg)(1 − φz)

φg(1 − φz) φgφz (1 − φg)(1 − φz) (1 − φg)φz

(1 − φg)φz (1 − φg)(1 − φz) φgφz φg(1 − φz)

(1 − φg)(1 − φz) (1 − φg)φz φg(1 − φz) φgφz




2. Choose an initial state s0 ≡ (g0, z0).

3. Choose a positive value for ξ. Note that there is one equilibrium value of ξ for each

possible initial state.

4. For t > 0, given a value for ξ and a realization of the state of the economy si, equations

(31) and (33)-(35) form a static system that can be solved for c, v, h, and ψ as functions

of ξ and si. Since there are only 4 possible values for si, given ξ, the variables c, v,

h, and ψ take only 4 different values, one for each possible state. Thus, for t > 0 and

a given value of ξ, the solution to the Ramsey conditions can be written as c(ξ, si),

h(ξ, si), v(ξ, si), and ψ(ξ, si).

Similarly, for t = 0, given an initial state, s0 = (g0, z0) and a value for ξ, the variables

c0, h0, ψ0, v0 are the solution to (31) and (33)-(35) with I(t = 0) = 1. Thus, the

8The generalization of the method to N -state Markov processes is trivial.
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solutions will be different from those obtained for t > 0. We denote the time 0 solution

by c0(ξ, s0), h0(ξ, s0), v0(ξ, s0), and ψ0(ξ, s0).

We use a numerical nonlinear equation solver, such as the MATLAB routine fsolve.m,

to find given ξ and s0, the values of c(ξ, si), h(ξ, si), v(ξ, si), ψ(ξ, si) for i = 1, . . . 4 and

of c0(ξ, s0), h0(ξ, s0), v0(ξ, s0), and ψ0(ξ, s0).

5. Having computed the values taken by c, h, ψ, and v at every state and date for a given

guess of ξ, we now check whether this guess of ξ is the correct one by evaluating the

implementability constraint, equation (32).

To do this, start by evaluating the left-hand side of the implementability constraint.

For t > 0, let lhs(ξ, si) be defined as

lhs(ξ, si) = Uc(c(ξ, si), h(ξ, si))c(ξ, si)φ(v(ξ, si)) +

Uh(c(ξ, si), h(ξ, si))h(ξ, si) +

Uc(c(ξ, si), h(ξ, si))

γ(v(ξ, si))

z(si)h(ξ, si)

η

where z(si) is the value of z in state i for i = 1, . . . , 4. Let

lhs(ξ) =




lhs(ξ, s1)

lhs(ξ, s2)

lhs(ξ, s3)

lhs(ξ, s4)




Similarly, let lhs0(ξ, s0) be defined as

lhs0(ξ, s0) = Uc(c0(ξ, s0), h0(ξ, s0))c0(ξ, s0)φ(v0(ξ, s0)) +

Uh(c0(ξ, s0), h0(ξ, s0))h0(ξ, s0) +

Uc(c0(ξ, s0), h0(ξ, s0))

γ(v0(ξ, s0))

z(s0)h0(ξ, s0)

η
,
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where z(s0) is the value taken by the technology shock in the initial state s0.

Using this notation the left-hand side of (32), which we denote by LHS(ξ, s0), can be

written as

LHS(ξ, s0) = lhs0(ξ, s0) + βΦ(s0)(I − βΦ)−1lhs(ξ)

where Φ(s0) is the row of the transition matrix Φ corresponding to the state s0. Now

compute the right-hand side of (32)

RHS(ξ, s0) =
Uc(c0(ξ, s0), h0(ξ, s0))

γ(v0(ξ, s0))
d0

Then compute the difference

y(ξ, s0) = LHS(ξ, s0) − RHS(ξ, s0)

6. Use a numerical solver, such as the MATLAB routine fsolve.m, to find ξ such that

y(ξ, s0) = 0. This yields the equilibrium value of ξ (and with it the equilibrium

processes for c, h, v, and ψ.) for a given initial state s0.

7. The computation of the inflation rate process πt deserves special discussion. This

process can be computed using the following steps.

(a) Note that because P0 is assumed to be given, so is π0 = P0/P−1.

(b) Define the real value of outstanding liabilities at the beginning of period t as

dt ≡ (Rt−1Bt−1 +Mt−1)/Pt. Note that d0 is given.

(c) Use the sequential budget constraint of the government to write

πt+1 = Rt/dt+1

[
dt + gt − τtwtht − ct/vt(1 − R−1

t )
]
; t ≥ 0
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(d) From the proof of proposition 1 it follows that

dt+1 =
γ(vt+1)

Uc(t + 1)
LHS(t+ 1)

where

LHS(t) = Et

∞∑

j=0

βj

[
Uc(t+ j)ct+jφ(t+ j) + Uh(t+ j)ht+j +

zt+jht+jUc(t + j)

ηγ(t+ j)

]

(e) The construction of LHS(t) is similar to that of LHS(ξ, s0) described above.

Note that given ξ, the expression within square brackets in the above equation

for LHS takes on only 4 distinct values, one for each of the 4 possible states of

(gt, zt). This means that, given ξ, LHS(t) (for t > 0) depends only on (gt, zt).

We now put this method to work by computing the dynamic properties of the Ramsey

allocation in a simple calibrated economy.

5.2 Calibration

We calibrate our model to the U.S. economy. The time unit is meant to be a year. We assume

that up to period 0, the economy is in a steady state with an inflation rate of 4.2 percent

per year, which is consistent with the average growth rate of the U.S. GDP deflator over

the period 1960:Q1 to 1998:Q3 and a debt-to-GDP ratio of 0.44 percent, which corresponds

to the figure observed in the United States in 1995 (see the 1997 Economic Report of the

President, table B-79), and government expenditures equal to 20 percent of GDP, a figure

that is in line postwar U.S. data. We follow Prescott (1986) and set the subjective discount

rate β to 0.96 to be consistent with a steady-state real rate of return of 4 percent per year.

Drawing from the empirical study of Basu and Fernald (1997), we assign a value of 1.2 to the

gross value added markup, µ, defined by equation (11). These authors estimate gross output

production functions and obtain estimates for the gross output markup of about 1.1. They
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show that their estimates correspond to values for the value added markup of 25 percent.

We assume that the single-period utility index is of the form

U(c, h) = ln(c) + θ ln(1 − h)

We set θ so that in the steady state households allocate 20 percent of their time to work.9

We use the following specification for the transactions cost technology:

s(v) = Av +B/v − 2
√
AB (36)

This functional form implies a satiation point for consumption-based money velocity, v, equal

to
√
B/A. The money demand function implied by the above transaction technology is of

the form

v2
t =

B

A
+

1

A

Rt − 1

Rt

,

To identify the parameters A and B, we estimate this equation using quarterly U.S. data

from 1960:1 to 1999:3. We measure v as the ratio of non-durable consumption and services

expenditures to M1. The nominal interest rate is taken to be the three-month Treasury

Bill rate. The OLS estimate implies that A = 0.0111 and B = 0.07524.10 In our baseline

calibration we assume that transaction costs are true shoe leather costs, that is, we set α = 1.

As in Chari et al. (1991), the processes for government spending and the technology

shock are assumed to follow independent, symmetric, two-state Markov chains. Government

consumption, gt, has a mean value of 0.04, a standard deviation of 0.0028 (or 7 percent of

mean g), and a first-order serial correlation of 0.9. The technology shock, zt, has a mean value

of unity, a standard deviation of 0.04, and a serial corelation of 0.82. Table 1 summarizes

the calibration of the economy.

9See the appendix for a derivation of the exact relations used to identify θ.
10The estimated equation is v2

t = 6.77+90.03(Rt−1)/Rt. The t-statistics for the constant and slope of the
regression are, respectively, 6.81 and 5.64; The R̄2 of the regression is 0.16. Instrumental variable estimates
using three lagged values of the dependent and independent variables yield similar estimates for A and B.
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Table 1: Calibration

Symbol Definition Value Description

Calibrated Parameters:

β 0.96 Subjective discount factor

π 1.04 Gross inflation rate

h 0.2 Fraction of time allocated to work

sg g/y 0.2 Government consumption to GDP ratio

sb B/(Py) 0.44 Public debt to GDP ratio

µ η/(1 + η) 1.2 Gross value-added markup

A s(v) = Av +B/v − 2
√
AB 0.01 Parameter of transaction cost function

B 0.08 Parameter of transaction cost function

α 1 Fraction of transaction not rebated

zh 1.04 High value of technology shock

zl 0.96 Low value of technology shock

gh 0.043 High value of gov’t consumption shock

gl 0.037 Low value of gov’t consumption shock

φz 0.91 Prob(zt = zi|zt−1 = zi) i = h, l

φg 0.95 Prob(gt = gi|gt−1 = gi) i = h, l

Implied Parameters:

θ U(c, h) = ln(c) + θ ln(1 − h) 2.90 Preference parameter

Note. The time unit is a year. The variable y ≡ zh denotes steady-state output.

5.3 Numerical results

Table 2 displays a number of unconditional moments of key macroeconomic variables under

the Ramsey policy. Each panel corresponds to a different degree of market power, measured

by µ, the gross markup of prices over marginal cost. All economies are assumed to start

out in period 0 with the same level of real total government liabilities (R−1B−1 +M−1)/P0.

Thus, the moments shown on table 2 are unconditional with respect to the exogenous shocks

gt and zt, but not with respect to the initial level of government liabilities.

The top panel shows the case of perfect competition (µ = 1). In this case, the nominal

interest rate is constant and equal to zero, in line with our analytical results. Because under
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perfect competition the nominal interest rate is zero at all times, the distortion introduced

by the transaction cost is driven to zero in the Ramsey allocation (s(v) = s′(v) = 0). On

the other hand, distortionary income taxes are far from zero. The average value of the labor

income tax rate is 18.8 percent. The Ramsey planner keeps this distortion smooth over the

business cycle; the standard deviation of τ is 0.05 percentage points. This means that a

two-standard deviation interval around the mean tax rate is 18.7-18.9 percent.

In the Ramsey allocation with perfect competition, inflation is on average negative and

equal to -3.4 percent per year. This value is close to the negative of the subjective discount

rate of 4 percent. Average inflation does not exactly equal the subjective discount rate

because the real interest rate (given by the intertemporal marginal rate of substitution in

consumption) is correlated with the inflation rate. The inflation rate is highly volatile. A

two-standard deviation band around the mean features a deflation rate of 10.9 percent at

the lower end and inflation of 4.1 percent at the upper end. The Ramsey planner uses the

inflation rate as a state-contingent lump-sum tax on households’ financial wealth. This lump-

sum tax appears to be used mainly in response to unanticipated changes in the state of the

economy. This is reflected in the fact that inflation displays a near zero serial correlation.11

The high volatility and low persistence of the inflation rate stands in sharp contrast to the

smooth and highly persistent behavior of the labor income tax rate. Our results on the

dynamic properties of the Ramsey economy under perfect competition are consistent with

those obtained by Chari et al. (1991).12

11The observation that in the Ramsey equilibrium inflation acts as a lump-sum tax on wealth was, to our
knowledge, first made by Chari et al. (1991) and has recently been stressed by Sims (2001).

12The main quantitative difference in results is that Chari et al. find a standard deviation of inflation
of 19.93 percentage points which is more than twice the value we report in table 2. The source of this
discrepancy may lie in the fact that Chari et al. use a different solution method. One might think that
the disparity could be due to the fact that the models incorporate different motivations for the demand
for money. We assume that money reduces transactions costs, whereas Chari et al. use a cash-credit goods
model. However, since in both frameworks the Friedman rule is optimal, the monetary distortion vanishes in
both setups and thus should not play any role for the properties of the Ramsey allocation. Of course, the two
models might imply different values for the average ratio of money to GDP. Since money is one component of
households’ financial wealth, which in turn is the tax base of the state contingent lump-sum tax embodied in
inflation, the different money demand specifications may in principle explain the difference in the volatility
of inflation. However, we experimented using the steady-state money-to-GDP and the debt-to-GDP ratios
used by Chari et al. and found that the volatility of inflation is not significantly different from the value we
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As soon as one moves away from the assumption of perfect competition, the Friedman

rule ceases to be optimal. A central result of table 2 is that the average optimal nominal

interest rate is an increasing function of the profit share, which in our economy is related

to the markup by the function (µ− 1)/µ.13 As the markup increases from 1 to 1.35, or the

profit share increases from 0 to 25 percent, the average nominal interest rate increases from

0 to 7.8 percent per year.

Because when the interest rate increases so do interest savings from the issuance of money,

one might be led to believe that as the markup increases the government might lower income

tax rates to compensate for the increase in seignorage revenue. However, as table 2 shows,

this is not the case here. The average labor income tax rate increases sharply from 18.8

to 33.3 percent as the markup rises from zero to 35 percent. The reason for the Ramsey

planner’s need to increase tax rates when the markup goes up is that the labor income tax

base falls as both employment and wages fall as the economy becomes less competitive.

Indeed employment falls from 0.24 to 0.17 and wages fall from 1 to 0.74 as µ increases from

1 to 1.35.

Another result that emerges from inspection of table 2 is that, unlike under perfect

competition, in the presence of market power the Ramsey planner chooses not to keep the

nominal interest rate constant along the business cycle. Although small, the volatility of

the nominal interest rate increases with the markup. The standard deviation of the nominal

interest rate increases to 22 basis points as the degree of market power increases from zero to

35 percent. In addition, the nominal interest rate is highly persistent, with a serial correlation

of 0.88, highly correlated with government purchases, with a correlation coefficient of 0.86,

and negatively correlated with the technology shock, with a correlation of -0.5.

Finally as in the case of perfect competition, tax rates are little volatile and persistent

and inflation is highly volatile and almost serially uncorrelated.

report in table 2.
13Profits and monopoly power need not be related in this way. For instance, in the presence of fixed costs

the average profit share can be significantly smaller than (µ − 1)/µ.
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6 Summary and conclusion

In this paper we have characterized optimal fiscal and monetary policy in an economy with

market power in product markets. The study was conducted within a standard stochastic,

dynamic, monetary economy with production but no capital. The production technology

is assumed to be subject to exogenous stochastic productivity shocks. The government

finances an exogenous and stochastic stream of government purchases by issuing money,

levying distortionary income taxes, and issuing bonds. Public debt takes the form of nominal,

non-state-contingent government obligations.

In this economy, under perfect competition the Friedman rule is optimal. The central

result of this paper is that once pure profits are introduced through imperfect competition,

the Friedman rule ceases to be optimal. Indeed, the nominal interest rate increases with

the profit share. In addition, in the presence of pure monopoly rents, the optimal nominal

interest rate is time varying and its unconditional volatility increases with the magnitude of

such rents.

A number of important properties of the Ramsey allocation under perfect competition

are, however, robust to the introduction of market power. In particular, regardless of the

degree of monopoly power the income tax rate displays very little volatility and is highly

persistent. By contrast, the inflation rate is highly volatile and nearly serially uncorrelated.

This shows that as in the case of perfect competition, under monopoly power the government

uses the inflation rate as a state-contingent, lump-sum tax on total financial wealth. This

lump-sum tax allows the government to refrain from changing distortionary taxes in response

to adverse government purchases or productivity shocks.

In conducting the analysis of optimal fiscal and monetary policy we restricted attention

to a specific motivation for the demand for money. Namely, one in which money reduces

transaction costs associated with purchases of final goods. We conjecture, however, that our

central result regarding the breakdown of the Friedman rule in the presence of imperfect

competition holds in any monetary model where inflation acts as a tax on income or con-
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sumption. This is the case because as long as profit tax rates are bounded away from one

hundred percent, which is arguably the most realistic case, a benevolent government will

have an incentive to use inflation as an indirect way to tax profits.

This paper can be extended in several directions. A natural one, which we persue in

Schmitt-Grohé and Uribe (2003), is to introduce nominal rigidities in the form of sticky

prices. One motivation for considering such an extension is that under price flexibility the

Ramsey allocation calls for highly volatile inflation rates. This aspect of the optimal policy

regime is at odds with conventional wisdom about the desirability of price stability. Sticky

prices may contribute to bringing down the optimal degree of inflation volatility. In Schmitt-

Grohé and Uribe (2003), we show that the incorporation of sticky prices into a model like

the one analyzed in this paper introduces a significant modification in the primal form of

the Ramsey problem. Specifically, under sticky prices and non-state-contingent nominal

government debt, it is no longer the case that the implementability constraint takes the

form of a single intertemporal restriction. Instead, it is replaced by a sequence of constraints

like (24), one for each date and state of the world. This modification of the Ramsey problem

is similar to the one that takes place in real models in which real public debt is restricted to

be non-state-contingent like the one studied by Aiyagari et al. (2002).

More broadly, because imperfect competition is an essential element of modern general

equilibrium formulations of sticky-price models, the present study can be viewed as an in-

termediate step in the quest for understanding the properties of optimal fiscal and monetary

policy in models with sluggish nominal price adjustment.
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7 Appendix

7.1 Optimality of the Friedman Rule when transactions costs are

not fully rebated (0 ≤ α < 1)

The first-order necessary condition of the Ramsey problem for the choice of vt for t > 0 in

this case takes the form

ξUc(ct, ht)ctφ
′(vt) − ξ

ztht

η
Uc(ct, ht)

γ′(vt)

γ(vt)2
− ψtαs

′(vt)ct ≤ 0 (= 0 if vt > v), (37)

where

φ′(v) = (1 − α)

(
s(v)[s′(v) + vs′′(v)] − s′(v)[1 + vs′(v)]

γ2

)

Perfect Competition (η = −∞)

Suppose first that product markets are perfectly competitive (η = −∞). In this case,

equation (37) reduces to

ξUc(ct, ht)ctφ
′(vt) − ψtαs

′(vt)ct ≤ 0 (= 0 if vt > v)

At v = v, φ′(v) = 0 as long as assumption 1 holds and s′′(v) is finite. Therefore, the above

first-order condition is satisfied. There may exist additional solutions v > v to this first-

order condition if φ′(v) > 0. On the other hand, if φ′(v) < 0 for all v > v, then v = v is

the only solution to the first-order condition, and thus, if a Ramsey equilibrium exists it will

feature a zero nominal interest rate. An example of a transaction cost function that satisfies

assumption 1 and for which φ′(v) < 0 for all v > v is the given in equation (36), which we

reproduce here for convenience:

s(v) = Av +B/v − 2
√
AB A,B > 0
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To see why, note that in this case the marginal transaction cost is given by

s′(v) = A− B/v2

At the satiation point v =
√
B/A, we have s(v) = s′(v) = 0, so that assumption 1(b) holds.

Furthermore,

s′′(v) = 2B/v3 > 0

which implies that assumption 1(d) is satisfied. Finally, we wish to show that φ′(v) = 0 and

φ′(v) < 0 for all v > v. Taking derivative of φ(v) with respect to v yields:

φ′(v) = (1 − α)
(A+B/v2)(1 + 2Av − 2

√
AB) − 2A(1 + Av − B/v)

(1 + 2Av − 2
√
AB)2

Let N(v) and D(v) denote, respectively, the numerator and denominator of the fraction

on the right-hand side of this expression. Note that N(v) = 0 and that D(v) = 1. Thus,

φ′(v) = 0. Also, D(v) > 0 for v > v. Finally, N ′(v) = −B/v2[1 + 2A(v − vs)] < 0 for v > v.

Thus, φ′(v) < 0 for all v > v. This means that if a Ramsey equilibrium exists, then the

associated nominal interest rate is zero for all t > 0. We formalize this result in the following

proposition:

Proposition 4 (Optimality of the Friedman rule under perfect competition with-

out full rebate) Suppose product markets are perfectly competitive (η = −∞), transaction

costs are partially rebated (0 ≤ α < 1), and the transaction cost function is given by (36).

Then

Rt = 1

for all t > 0.
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Imperfect competition (−∞ < η < −1)

Consider next the case of imperfectly competitive product markets, −∞ < η < −1. The

analysis of this case is essentially the same as for the case that α = 1. For in this case,

φ′(v) = 0, so that the first-order condition of the Ramsey problem with respect to velocity,

equation (37), can never be satisfied at vt = v. We summarize this result in the following

proposition:

Proposition 5 (Non-optimality of the Friedman rule under imperfect compe-

tition without full rebate) Suppose that product markets are imperfectly competitive

(−∞ < η < −1), transaction costs are partially rebated (0 ≤ α < 1), and assumption 1

holds. Then, if a Ramsey allocation exists, it must be the case that

Rt > 1

for all t > 0.

7.2 Calibration of θ

To find the value of θ we first need to compute the steady state value of τ . To do this, write

the government budget constraint (18) in real terms as:

mt + bt + τtwtht =
Rt−1

πt
bt−1 +

mt−1

πt
+ gt

Divide through by h to express variables in terms of GDP (note that mt = ct/vt and that

w = (1 + η)/η = 1/µ)

sc

(1 + s(v))v
+ sb + τt/µ =

R

π
sb +

sc

v(1 + s(v))π
+ sg
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Where sb = b/h, sc = (1 + s(v))c/h and sg = g/h. Solving for τ yields

τ = µ

[
(R/π − 1)sb +

sc

v(1 + s(v))

(
1

π
− 1

)
+ sg

]

To obtain θ, use equation (13) to get

θ =
1 − τ

γ(v)

1 + s(v)

sc

1 + η

η

1 − h

h
.
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Table 2: Dynamic properties of the Ramsey allocation at different degrees of market power

Variable Mean Std. Dev. Auto. corr. Corr(x, y) Corr(x, g) Corr(x, z)
µ = 1

τ 18.8 0.0491 0.88 -0.276 0.865 -0.5
π -3.39 7.47 -0.0279 -0.214 0.315 -0.299
R 0 0 0 0 0 0
y 0.241 0.0087 0.825 1 0.242 0.97
h 0.241 0.00243 0.88 -0.276 0.865 -0.5
c 0.201 0.00846 0.82 0.948 -0.0784 0.997

µ = 1.1
τ 22.6 0.0296 0.88 -0.237 0.865 -0.5
π -2.81 7.52 -0.0273 -0.199 0.317 -0.299
R 0.59 0.00938 0.88 -0.237 0.865 -0.5
y 0.219 0.00781 0.826 1 0.281 0.96
h 0.219 0.00254 0.88 -0.237 0.865 -0.5
c 0.179 0.00752 0.82 0.936 -0.0757 0.997

µ = 1.2
τ 26.6 0.042 0.88 0.179 -0.864 0.5
π -1.46 7.92 -0.0239 -0.174 0.323 -0.3
R 1.95 0.0369 0.88 -0.18 0.864 -0.5
y 0.199 0.00701 0.829 1 0.337 0.942
h 0.199 0.00273 0.88 -0.18 0.865 -0.5
c 0.159 0.00661 0.82 0.919 -0.0616 0.998

µ = 1.35
τ 33 0.27 0.88 0.0447 -0.865 0.5
π 4.4 9.48 -0.00953 -0.11 0.349 -0.305
R 7.83 0.222 0.88 -0.0447 0.862 -0.499
y 0.172 0.00595 0.837 1 0.461 0.887
h 0.172 0.00318 0.88 -0.045 0.865 -0.5
c 0.131 0.00527 0.82 0.884 -0.00668 1

Note. τ , π, and R are expressed in percentage points and y, h, and c in levels.
The parameter µ denotes the markup of prices to marginal cost.
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