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ABSTRACT

It is a common practice in finance to estimate volatility from the sum of frequently-sampled squared

returns. However market microstructure poses challenges to this estimation approach, as evidenced

by recent empirical studies in finance. This work attempts to lay out theoretical grounds that

reconcile continuous-time modeling and discrete-time samples. We propose an estimation approach

that takes advantage of the rich sources in tick-by-tick data while preserving the continuous-time

assumption on the underlying returns. Under our framework, it becomes clear why and where the

"usual" volatility estimator fails when the returns are sampled at the highest frequency.
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1 INTRODUCTION

In the analysis of high frequency �nancial data, a major problem concerns the nonparametric
determination of the volatility of an asset return process. A common practice is to estimate volatility
from the sum of the frequently-sampled squared returns. Though this approach is justi�ed under
the assumption of a continuous stochastic model in an idealized world, it meets the challenge
from market microstructure in real applications. We argue that this customary way of estimating
volatility is �awed in that it overlooks observation error. The usual mechanism for dealing with the
problem is to throw away some data, by sampling less frequently or constructing �time-aggregated�
returns from the underlying high frequency asset prices. We propose here a statistically sounder
device. Our device is model-free, it takes advantage of the rich sources in tick-by-tick data, and to a
great extend it corrects the e¤ect of the microstructure noise on volatility estimation. In the course
of constructing our estimator, it becomes clear why and where the �usual�volatility estimator fails
when the returns are sampled at high frequency.

Our interest lies in using high frequency intraday data to estimate the integrated volatility over
some time periods. To �x the ideas, let fStg denote the price process of a security, and suppose
the log-return process fXtg, where Xt = logSt, follows an Itô process

Xt = �tdt+ �tdBt (1)

where Bt is a standard Brownian motion. Typically, �2t ; the instantaneous variance (or di¤usion
coe¢ cient) of the return process fXtg; will be stochastic. The parameter of interest is the integrated
(cumulative) volatility over one or successive time periods,

R T1
0 �2tdt ,

R T2
T1
�2tdt; .... A natural way

to estimate the cumulative volatility over, say, a single time interval from 0 to T , is to use the sum
of squared incremental returns, X

ti

(Xti+1 �Xti)2 �
Z T

0
�2tdt; (2)

where the Xti�s are all the observations of the return process in [0; T ]. The estimator
P
ti
(Xti+1 �

Xti)
2 is commonly used and generally called �realized volatility� or �realized variance.� For a

sample of the recent literature in integrated volatility, see Hull and White (1987), Jacod and Protter
(1998), Gallant, Hsu, and Tauchen (1999), Chernov and Ghysels (2000), Gloter (2000), Andersen,
Bollerslev, Diebold, and Labys (2001), Barndor¤-Nielsen and Shephard (2001), Mykland and Zhang
(2002) and others.

Under model (1), the approximation in (2) is justi�ed by theoretical results in stochastic
processes which state that

plim
X
ti

(Xti+1 �Xti)2 =
Z T

0
�2tdt; (3)

as the sampling frequency increases. In other words, the estimation error of the realized volatility
diminishes. According to (3), realized volatility computed from the highest frequency data ought
to provide the best possible estimate for

R T
0 �

2
tdt the integrated volatility.
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However, this is not the general viewpoint from the �nance literature. It is generally held there
that the returns process Xt should not be sampled too often, regardless of the fact that the asset
prices can often be observed with extremely high frequency, such as several times per second. It has
been found empirically that the estimator is not robust when the sampling interval is quite small.
Issues including bigger bias in the estimate and non-robustness to changes in sampling interval have
been reported (see e.g., Brown (1990), Campbell, Lo, and MacKinlay (1997), Bai, Russell, and Tiao
(2000)). The main explanation for this phenomenon is a vast array of issues collectively known
as market microstructure, such as, but not limited to, the existence of the bid-ask spread: see
Aït-Sahalia, Mykland, and Zhang (2003) for a description of these phenomena and their grounding
in the vast theoretical literature describing the frictions inherent in the trading process. When
prices are sampled at �ner intervals, microstructure issues become more pronounced. It is then
suggested that the bias induced by market microstructure e¤ects makes the most �nely sampled
data unusable for the calculation, and many authors prefer to sample over longer time horizons to
obtain reasonable estimates. The length of the the typical choices in the literature is ad hoc and
ranges from 5 to 30 minutes for exchange rate data, for instance.

This approach to handling the data poses a conundrum from the statistical point of view. We
argue here that sampling over longer horizon merely reduces the impact of microstructure, rather
than quantifying and correcting its e¤ect for volatility estimation. And it goes against the grain
to throw away data. On the other hand, market microstructure may pose so many problems that
subsampling is the only way out.

In this paper we analyze the trade o¤s involved in the choice of sampling frequency and develop
a method to estimate integrated volatility in such a way as to lessen this con�ict. Our contention
in the following is that the contamination due to market microstructure is, to �rst order, the same
as what statisticians usually call �observation error�. We shall incorporate the observation error
into the estimating procedure for integrated volatility. In other words, we shall suppose that the
return process as observed at the sampling times is of the form

Yti = Xti + �ti : (4)

Here Xt is a latent true, or e¢ cient, return process, and the �0tis are independent noise around the
true return. A similar structure was used in the parametric context where �t = � is constant by
Aït-Sahalia, Mykland, and Zhang (2003). In that paper, due to the parametric nature of volatility,
we proposed likelihood-based corrections for market microstructure.

We show in Section 2.2 that, if the data have a structure of the form (4), ignoring microstructure
noise would have a devastating e¤ect on the use of the realized volatility. Instead of (2), one getsX

ti;ti+12[0;T ]
(Yti+1 � Yti)

2 = 2nV ar(�) +Op(n
1=2) (5)

where the errors �ti�s are i.i.d. with mean 0, and n is the number of sampling intervals over [0; T ].
As we will show, ignoring market microstructure noise in the context of stochastic volatility leads to
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an even more dangerous situation than when � is constant and T !1: The results from equation
(5) suggest that the realized volatility does not estimate the true integrated volatility, but rather
the variance of the contamination noise. In fact, we will show that the true integrated volatility,
which is Op(1), is even dwarfed by the magnitude of the asymptotically Gaussian Op(n1=2) term in
(5).

Of course, the model (4) may also not be correct. When made the basis of inference, it could still
occur that one does not wish to sample as frequently as the data would permit. It may, however,
make it possible to use substantially larger amounts of data than what would be possible under
(2). Subsampling-based schemes can be made to incorporate all the data.

In seeking to create an inference procedure under measurement error, we have sought to draw
some lessons from the empirical practice that one should not use all the data, while at the same
time not violating basic statistical principles. Our procedure estimates parameters at two di¤erent
frequencies of sampling, and then by cancellation removes the e¤ect of the �0s to the required order.
We show in Section 4 that this leads to a variance-variance trade-o¤ between the e¤ect in (5) and
an e¤ect due to the sampling frequencies.

The theory, including asymptotic distributions, is developed in Section 2-4 for the case of one
time period [0; T ]. The multi-period problem is treated in Section 5. Section 6 discusses how to
estimate the asymptotic variance for equidistant sampling. And Section 7 discusses what to do if
one really wants to use the customary realized volatility, sampled at high frequency despite the
presence of microstructure noise.

2 ANALYSIS OF THE �REALIZED VOLATILITY�

2.1 Set-up

To spell out the model above, we let Y be the logarithm of the transaction price, which is observed
at times 0 = t0; t1; � � � ; tn = T . We assume that at these times, Y is related to a latent true price
X (also in logarithm scale) through equation (4). The latent price X is given in (1). The noise �ti
satis�es the following assumption,

�ti i:i:d: with E�ti = 0; and V ar(�ti) = �: Also � ?? X process (6)

where ?? denotes independence between two random quantities. Our modeling as in (4) does not
require that �t exists for every t, in other words, our interest in the noise is only at the observation
times ti�s.

For the moment, we focus on determining the integrated volatility of X for the entire time
period [0; T ]. This is also known as the continuous quadratic variation < X;X > of X. In other
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words,

< X;X >T=

Z T

0
�2tdt (7)

To describe succinctly the realized volatility, we use the notion of observed quadratic variation
[�; �] . Given the grid G = ft0; :::; tng, the observed quadratic variation for a generic process Z is

[Z;Z]t =
X
ti+1�t

(�Zti)
2 (8)

where �Zti = Zti+1 � Zti . We shall later have occasion to vary the grid G. Quadratic covariations
are similarly de�ned (see e.g., Karatzas and Shreve (1991) for more details on quadratic variations.)

Our interest is to assess how well the realized volatility, [Y; Y ]T , approximates the integrated
volatility < X;X >T of the true returns process. In our asymptotic considerations, we shall always
assume that the number of observations in [0; T ] goes to in�nity, and also that the maximum
distance in time between two observations goes to zero:

max
i
�ti ! 0 as n!1 (9)

2.2 The Realized Volatility: An Estimator of the Spread of the Noise?

Under the additive model Yti = Xti + �ti , the realized volatility based on the observed returns Yti
now has the form

[Y; Y ]T = [X;X]T + 2[X; �]T + [�; �]T :

This gives the conditional mean and variance of [Y; Y ]T , given the process of latent true prices X.
As derived in the Appendix,

E([Y; Y ]T j X process) = [X;X]T + 2n�; (10)

under assumption (6) and the de�nition of [�; �] in (8). Similarly,

V ar([Y; Y ]T j X process) = 4nE�4 +Op(1); (11)

subject to condition (6) and E�4ti < 1, for all i. The exact expression for the variance is given in
Appendix A.1.

Following the discussion in Appendix A.2, it is also the case that as n ! 1, the distribution
of n�1=2([Y; Y ]T � 2n�) becomes normal conditionally on the X process, with mean 0 and variance
4E�4.

Equations (10) and (11) suggest that in the discrete world where microstructure e¤ects are
unfortunately present, realized volatility [Y; Y ]T is not a reliable estimator for the true variation
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[X;X]T of the returns. For large n, realized volatility could have little to do with the true returns.
As seen in (10), [Y; Y ]T has a positive bias whose magnitude increases linearly with the sample
size n. If one really wants to live with this bias �which we do not recommend � and use the
customary realized volatility as a measure of variation, the above provides theoretical evidence for
not sampling too often (see Section 7 for a formal analysis).

Interestingly, apart from revealing the biased nature of [Y; Y ]T at high frequency, our analysis
also delivers an estimator for the spread of the noise term. In other words, the realized volatility
[Y; Y ]T yields a consistent and asymptotically normal estimator of noise spread �, namely �̂ =
1
2n [Y; Y ]T . We have, for a �xed true return process X,

n1=2(�̂ � �)! N(0; E�4); as n!1; (12)

see Theorem A.1 in the Appendix.

3 SAMPLING SPARSELY WHILE USING ALL THE DATA:
ANALYSIS IN THE MULTIPLE GRID CASE

3.1 Multiple Grids and Su¢ ciency

We have argued in the previous section that one can indeed bene�t from using infrequently sampled
data. And yet, one of the most basic lessons of statistics is that one should not do this. We present
here two ways of tackling the problem. Both are based on selecting a number of subgrids of the
original grid of observation times, G = ft0; :::; tng, and then averaging the estimators derived from
the subgrids. The principle is that to the extent that there is a bene�t to subsampling, this bene�t
can now be retained, while the variation of the estimator can be lessened by the averaging. The
bene�t of the averaging is clear from su¢ ciency considerations, and many statisticians would say
that subsampling without subsequent averaging is inferentially incorrect.

In the following, we �rst introduce a set of notations, and then turn to studying the realized
volatility in the multi-grid context. In Section 4, we show how to explicitly estimate the model (4)
by using a combination of the single grid G and the multiple grids.

3.2 Notation for the Multiple Grids

We speci�cally suppose that the total grid G, G = ft0; :::; tng as before, is partitioned into K
non-overlapping subgrids G(k), k = 1; :::;K, in other words,

G = [Kk=1G(k) where G(k) \ G(l) = ; when k 6= l:
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For most purposes, the natural way to select the kth subgrid G(k) is to start with tk�1 and then
pick every Kth sample point after that, until T . That is to say that

G(k) = (tk�1; tk�1+K ; tk�1+2K ; � � � ; tk�1+nkK)

for k = 1; � � � ;K, and nk is the integer making tk�1+nkK the last element in G(k). We shall refer to
this as regular allocation of sample points to subgrids.

Whether the allocation is regular or not, we let nk be such that the subgrid G(k) has nk + 1
elements. As before, the number of elements in the total grid G is n+1. More general schemes for
allocating sample points to grids can also be used, subject to the restrictions in Theorem A.1 in
Appendix A.2. The realized volatility based on all observation points G, so far denoted [Y; Y ]T , will
now for clarity be written as [Y; Y ](all)T . Meanwhile, if one uses only the subsampled observations

Yt, t 2 G(k), the realized volatility will be denoted as [Y; Y ](k)T . It has the form

[Y; Y ]
(k)
T =

X
tj ;tj;+2G(k)

(Ytj;+ � Ytj )
2:

where, if ti 2 G(k), then ti;� and ti;+ denote respectively the preceding and following elements in
G(k).

A natural competitor to [Y; Y ](all)T is then given by

[Y; Y ]
(avg)
T =

1

K

KX
k=1

[Y; Y ]
(k)
T ; (13)

and this is the statistic we analyze in the following.

As before, we �x T and use only the observations within the time period [0; T ]. Asymptotics
will still be under (9) and under

as n!1; n=K !1: (14)

In general, the nk need not be the same across k. We de�ne

�n =
1

K

KX
k=1

nk =
n�K + 1

K
: (15)

3.3 Error Due to the Noise �

Recall that we are interested in determining the integrated volatility < X;X >T , or quadratic
variation, of the true but unobservable returns. As an intermediate step, we study in this subsection
how well the �pooled� realized volatility [Y; Y ](avg)T approximates [X;X](avg)T , where the latter is
the �pooled�true integrated volatility when X is considered only on the discrete time scale. [X;X]
has the form given in equation (8).



A Tale of Two Time Scales: Determining Integrated Volatility 8

From (10) and (13),

E([Y; Y ]
(avg)
T j X process) = [X;X](avg)T + 2�n�: (16)

Also, since f�t; t 2 G(k)g are independent for di¤erent k,

V ar([Y; Y ]
(avg)
T j X process) =

1

K2

KX
k=1

V ar([Y; Y ]
(k)
T jX process)

=
1

K2

KX
k=1

nk4E�
4 + Remainder,

= 4
�n

K
E�4 +Op(

1

K
) (17)

in the same way as in (11). The order of the remainder follows as in the single grid case, see (A.3)
in the Appendix.

By Theorem A.1 in Appendix A.2, the conditional asymptotics for the estimator [Y; Y ](avg)T are
as follows

Theorem 1. Suppose X is an Itô process of form (1). Suppose Y is related to X through model
(4), and that (6) is satis�ed with E�4 < 1. Also suppose that ti and ti+1 are not in the same
subgrid for any i. Under assumption (14), as n!1r

K

�n
([Y; Y ]

(avg)
T � [X;X](avg)T � 2��n) L�! 2

p
E�4Z(avg)� ; (18)

conditional on the X process, where Z(avg)� is standard normal.

This can be compared with the result which is stated below in equation (48) in Section 7.
Notice that Z(avg)� in (18) is almost never the same as Z� in (48), in particular, Cov(Z�; Z

(avg)
� ) =

V ar(�2)=E�4, based on the proof in Theorem A.1 in the Appendix.

In comparison to the realized volatility using the full grid G, the aggregated estimator [Y; Y ](avg)T

provides an improvement in that both the asymptotic bias and variance are of smaller order of n.
Cf. equations (10) and (11) in the preceding section. We shall use this in Section 4, and also in
Section 7 below.

3.4 Error Due to the Discretization E¤ect: [X;X](avg)T � < X;X >T

In this subsection, we study the impact of the time discretization. In other words, we investigate
the deviation of [X;X](avg)T from the integrated volatility < X;X >T of the true process. Denote



A Tale of Two Time Scales: Determining Integrated Volatility 9

the discretization e¤ect as DT , where

Dt = [X;X]
(avg)
t � < X;X >t

=
1

K

KX
k=1

([X;X]
(k)
t � < X;X >t ) (19)

with
[X;X]

(k)
t =

X
ti2G(k):ti;+�t

(Xti;+ �Xti)
2 (20)

We consider in the following the asymptotics of DT . The problem is similar to that of �nding the
limit of [X;X](all)T � < X;X >T , cf. equation (49) below. This present case, however, is more
complicated due to the multiple grids.

We suppose in the following that the sampling points are allocated to subgrids as described by
equation (A.20) in Appendix A.3. In particular, this covers the regular allocation, as de�ned in
Section 3.2. We also assume that

max
i
j�tij = O(

1

n
): (21)

De�ne the weight function

hi =
8n

TK3

KX
l=1

[ti � t(l)i +
1

2
�ti][f#k : t(k)i > t

(l)
i g+

1

2
] (22)

In the case where the ti are equidistant, and under regular allocation of points to subgrids, �ti = �t,
and so all the hi are equal, and

hi =
2

�tK3
�t(1 + 32 + :::+ (2K � 1)2) = 2K(2K � 1)(2K + 1)

3K3
=
8

3
+ o(1): (23)

More generally, assumptions (21) and (A.20) assure that

sup
i
hi = O(1): (24)

We take < D;D >T to be the quadratic variation of Dt when viewed as a continuous time
process (19). This gives the best approximation to the variance of DT .

We show the following results in Appendix A.3.

Theorem 2. Suppose X is an Itô process of the form (1), with drift coe¢ cient �t and di¤usion
coe¢ cient �t, both continuous almost surely. Assume (21) and (A.20). Then the quadratic variation
of DT is approximately

< D;D >T=
TK

n
�2n + op(

K

n
) (25)

where
�2n =

X
i

hi(< X;X >0ti)
2�ti: (26)
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In particular, DT = Op((K=n)
1=2). From this, we shall derive a variance-variance trade-o¤

between the two e¤ects that have been discussed �noise and discretization.

First, however, we discuss the asymptotic law of DT . Stable convergence is discussed at the
end of this section.

Theorem 3. Assume the conditions of Theorem 2, and also that

�2n
P�! �2 (27)

Also assume Condition E in Appendix A.3. Then

DT =(K=n)
1=2 L�! �Z; (28)

where Z is standard normal, and independent of the data. The convergence in law is stable.

In other words, DT =(K=n)
1=2 can be taken to be asymptotically mixed normal �N(0; �2).�

For most of our discussion, it is most convenient to suppose (27), and this is satis�ed in many
cases. For example, when the ti are equidistant, and under regular allocation of points to subgrids,

�2 =
8

3

Z T

0
�4tdt; (29)

following (23). One does not need to rely on (27); we argue in Appendix A.3 that without this
condition, one can take DT =(K=n)

1=2 to be approximately N(0; �2n). For estimation of �
2 or �2n,

see Section 6 below.

Finally, stable convergence (Rényi (1963), Aldous and Eagleson (1978), Chapter 3 of Hall and
Heyde (1980)) means for our purposes that the left hand side of (28) converges to the right hand
side jointly with the X process, and that Z is independent of X. This is slightly weaker than
convergence conditional on X, but serves the same function of permitting the incorporation of
conditionality-type phenomena into arguments and conclusions, cf. the following sections.

3.5 Combining the Two Sources of Error

We can now combine the two error terms arising from discretization and from the observation noise,
respectively. It follows from Theorems 1 and 3 that

[Y; Y ]
(avg)
T � < X;X >T �2��n

L� �Ztotal; (30)

where Ztotal is a standard normal random variable independent of the X process, and

�2 = 4
�n

K
E�4 +

T

�n
�2: (31)
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Here, the symbol �
L��means that when multiplied by a suitable factor, the convergence is in law

(and stable, by the preceding results): see also the proof of Theorem 4 in the next section.

It is easily seen that if one takes K = cn2=3, both components in �2 will be present in the limit,
otherwise one of them will dominate. Based on (30), [Y; Y ](avg)T is yet a biased estimator of the
quadratic variation < X;X >T of the true return process. In particular, the bias 2��n still increases
with the number of the sub-samples. One can recognize that, as far as the asymptotic bias is
concerned, [Y; Y ](avg)T is a better estimator than [Y; Y ](all)T , since �n � n, suggesting that the bias

in the subsampled estimator [Y; Y ](avg)T increases in a slower pace than the full-sampled estimator.
One can also construct a bias-adjusted estimator from (30), and this further development would
involve the higher order analysis between the bias and the subsampled estimator. We show the
methodology of bias correction in Section 4.

4 ESTIMATION FOR THE MODEL WITH MEASUREMENT
ERROR: COMBINING TWO SAMPLING FREQUENCIES

4.1 The Estimator: Main Result

In previous sections, we have seen that the multigrid estimator [Y; Y ](avg) is yet another biased
estimator of the true integrated volatility < X;X >. In this section we improve the multigrid
estimator by adopting bias adjustment.

To access the bias, one utilizes the full grid. As mentioned from equation (12) in single-grid
case (Section 2), � can be consistently approximated by

�̂ =
1

2n
[Y; Y ]

(all)
T : (32)

Hence the bias of [Y; Y ](avg) can be consistently estimated by 2�n�̂. A bias-adjusted estimator for
< X;X > can thus be obtained by

\< X;X >T = [Y; Y ]
(avg)
T � 2�̂�n: (33)

To study the asymptotic behavior of \< X;X >T , note �rst that under the conditions of Theorem
A.1 in Appendix A.2�

K

�n

�1=2 �
\< X;X >T � [X;X]

(avg)
T

�
=

�
K

�n

�1=2 �
[Y; Y ]

(avg)
T � [X;X](avg)T � 2��n

�
� 2(K�n)1=2(�̂ � �)
L�! N(0; 8�2); (34)
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where the convergence in law is conditional on X.

We can now combine this with the results of Section 3.4 to determine the optimal choice of K
as n!1:

\< X;X >T� < X;X >T = ( \< X;X >T � [X;X]
(avg)
T ) + ([X;X]

(avg)
T � < X;X >T )

= Op

 
�n1=2

K1=2

!
+Op

�
�n�1=2

�
: (35)

The error is minimized by equating the two terms on the right hand side of (35), yielding that the
optimal sampling step for [Y; Y ](avg)T is K = O(n2=3). The right hand side of (35) then has order
Op(n

�1=6).

In particular, if we take
K = cn2=3; (36)

we �nd the limit in (35), as follows.

Theorem 4. Suppose X is an Itô process of form (1), and assume the conditions of Theorem 3 in
Section 3.4. Suppose Y is related to X through model (4), and that (6) is satis�ed with E�2 <1.
Also suppose that ti and ti+1 is not in the same subgrid for any i. Under assumption (36),

n1=6
�

\< X;X >T� < X;X >T

�
L�! N(0; 8c�2�2) + �

p
TN(0; c)

=
�
8c�2�2 + c�2T

�1=2
N(0; 1); (37)

where the convergence is stable in law (see Section 3.4).

Proof of Theorem 4. Note that the �rst normal distribution comes from equation (34) and
the second from Theorem 3 in Section 3.4. The two normal distributions are independent since
the convergence of the �rst term in (35) is conditional of the X process, which is why they can
be amalgamated as stated. The requirement that E�4 <1 (Theorem A.1 in the appendix) is not
needed since only a law of large number is required for M (1)

T (see the proof of that theorem) when
considering the di¤erence in (34) above. This �nishes the proof.

The estimation of the asymptotic spread s2 = 8c�2�2+c�2T of \< X;X >T is deferred to Section
6 below. Also, note that, by Theorem A.1 and the same methods as in Appendix A.2, a consistent
estimator of the asymptotic variance of �̂ is given by

1

2n

X
i

(�Yti)
4 � 3�̂2: (38)
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4.2 Properties of \< X;X >T : Optimal Sampling, and Bias Adjustment

To further pin down the optimal sampling frequency K one can minimize the expected asymptotic
variance in (37) to obtain

c =

�
16�2

T E�2

�1=3
(39)

which can be consistently estimated from data in past time periods (before time t0 = 0), using �̂ and
an estimator of �2, cf. Section 6. As mentioned in Section 3.4, �2 can be taken to be independent
of K so long as one allocates sampling points to grids regularly, as de�ned in Section 3.2. Hence
one can choose c, and so also K, based on past data.

Example 1. If �2t is constant, and for equidistant sampling and regular allocation to grids, �
2 =

8
3�

4T , and the asymptotic variance in equation (37) is

8c�2�2 + c�2T = 8c�2�2 +
8

3
c�4T 2

and the optimal choice of c becomes

copt =

�
6�2

T 2�4

�1=3
: (40)

In this case, the asymptotic variance is

4(6�2)
1=3
(�2T )

4=3
:

One can also, of course, estimate c to minimize the actual asymptotic variance in (37) from data
in the current time period (0 � t � T ). It is beyond the scope of this paper to consider whether
such a device for selecting the frequency has any impact on our asymptotic results.

In addition to large sample arguments, one can study \< X;X >T from a �smallish� sample
point of view. We argue in the following that one can apply a bias type adjustment to get

\< X;X >
(adj)

T =
�
1� �n

n

��1
\< X;X >T : (41)

The di¤erence from the estimator in (33) is of order Op(�n=n) = Op(K
�1), and thus the two

estimators behave the same to the asymptotic order that we consider. The estimator (41), however,
has the appeal of being, in a certain way, �unbiased�, as follows. Consider all estimators of the
form

\< X;X >
(adj)

T = a[Y; Y ]
(avg)
T � 2b�̂�n;

then, from (10) and (16),

E( \< X;X >
(adj)

T jX process) = a([X;X]
(avg)
T + 2�n�)� b �n

n
([X;X]

(all)
T + 2n�)

= a[X;X]
(avg)
T � b �n

n
[X;X]

(all)
T + 2(a� b)�n�:
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It is natural to choose a = b to completely remove the e¤ect of �. Also, following Section 3.4, both
[X;X]

(avg)
T and [X;X](all)T are asymptotically unbiased estimators of < X;X >T . Hence one can

argue that one should take a(1� �n=n) = 1, yielding (41).

Similarly, an adjusted estimator of � is given by

�̂(adj) =
1

2
(n� �n)�1

�
[Y; Y ]

(all)
T � [Y; Y ](avg)T

�
; (42)

which satis�es that E(�̂(adj)jX process ) = � + 1
2(n� �n)

�1
�
[X;X]

(all)
T � [X;X](avg)T

�
, and is there-

fore unbiased to high order. As for the asymptotic distribution, One can see from Theorem A.1 in
the Appendix that

�̂(adj) � � = (�̂ � �)(1 +O(K�1)) +Op(Kn
�3=2)

= �̂ � � +Op(n�1=2K�1)) +Op(Kn
�3=2)

= �̂ � � +Op(n�5=6)

from (36). It follows that n1=2(�̂ � �) and n1=2(�̂(adj) � �) have the same asymptotic distribution.

5 MULTIPLE PERIOD INFERENCE

For a given family A = fG(k); k = 1; � � � ;Kg, we denote by

\< X;X >t = [Y; Y ]
(avg)
t � �n

n
[Y; Y ]t (43)

where, as usual, [Y; Y ]t =
P
ti+1�t�Y

2
ti and [Y; Y ]

(avg)
t = 1

K

PK
k=1[Y; Y ]

(k)
t , with

[Y; Y ]
(k)
t =

X
ti2G(k):ti;+�t

(Yti;+ � Yti)
2:

In order to estimate < X;X > for several discrete time periods, say [0; T1], [T1; T2], � � � , [TM�1; TM ],
where M is �xed, this amounts to estimating < X;X >Tm � < X;X >Tm�1=

R Tm
Tm�1

�2udu, for

m = 1; � � � ;M , and the obvious estimator is \< X;X >Tm � \< X;X >Tm�1 .

To carry out the asymptotics, let nm be the number of points in the mth time segment, and
similarly let Km = cmn

2=3
m , where cm is a constant. Then fn1=6m ( \< X;X >Tm � \< X;X >Tm�1 �R Tm

Tm�1
�2udu);m = 1; � � � ;Mg converge stably to f(8c�2m �2 + cm�2m(Tm � Tm�1))

1=2
Zmg, where the

Zm are i.i.d. standard normals, independent of the underlying process, and �2m is the limit �2

(Theorem 3) for time period m. In the case of equidistant ti and regular allocation of sample
points to grids, �2m =

8
3

R Tm
Tm�1

�4udu.

In other words, the one period asymptotics generalizes straightforwardly to the multiperiod
case. This is because \< X;X >Tm � \< X;X >Tm�1 �

R Tm
Tm�1

�2udu has, to �rst order, a martingale
structure. This can be seen from the Appendix.
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An advantage of our proposed estimator is that if �ti has di¤erent variance in di¤erent time
segments, say V ar(�ti) = �m for ti 2 (Tm�1; Tm], then both consistency and asymptotic (mixed)
normality continue to hold, provided that one replaces � by �m. This adds a measure of robustness
to the procedure. If one were convinced that � is the same across time segments, an alternative
estimator has the form

\< X;X >t = [Y; Y ]
(avg)
t � ( 1

K
#fti+1 � tg � 1)

1

n
[Y; Y ]

(all)
t : (44)

The errors \< X;X >Tm� \< X;X >Tm�1�
R Tm
Tm�1

�2udu, however, are in this case not asymptotically

independent. Note that for T = Tm, both candidates (43) and (44) for \< X;X >t coincide with
the quantity in (33).

6 DETERMINING THE ASYMPTOTIC VARIANCE

In the one period case, the main goal is to �nd the spread s2 = 8c�2�2 + c�2T , cf. (36)-(37). The
multigrid case is a straightforward generalization, as indicated in Section 5.

Here, we shall only be concerned with the case where the points ti are equally spaced (�ti = �t),
and are regularly allocated to the grids A1 = fG(k); k = 1; � � � ;K1g. The more general case where
the sampling intervals are irregular, and proof of the method, is treated in Zhang and Mykland
(2003). A richer set of ingredients are required to �nd the spread than just to estimate \< X;X >T .
To implement the estimator, create an additional family A2 = fG(k;i); k = 1; � � � ;K1; i = 1; � � � ; Ig
of grids where G(k;i) contains every i-th point of G(k). We assume that K1 � c1n

2=3. The new
family then consists of K2 � c2n2=3 grids, where c2 = c1I.

In addition, we need a division of the time line into segments (Tm�1; ; Tm], where Tm = m
M T .

For the purposes of this discussion, M is large but �nite.

We now get an initial estimator of spread as

ŝ20 = n
1=3

MX
m=1

�
\< X;X >

K1

Tm � \< X;X >
K1

Tm�1 � ( \< X;X >
K2

Tm � \< X;X >
K2

Tm�1)

�2
where < X;X >Ki

t is the estimator (43) using grid family i, i = 1; 2.

Using the discussion in Section 5, one can see that

ŝ20 � s20; (45)

where, for c1 6= c2 (I 6= 1),

s20 = 8�2(c�21 + c�22 � c�11 c
�1
2 ) + (c

1=2
1 � c1=22 )

2
T�2

= 8�2c�21 (1 + I
�2 � I�1) + c1(I1=2 � 1)

2
T�2: (46)
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In (45), the symbol � means �rst convergence in law as n ! 1, and then a limit in probability
as M !1. Since � can be estimated by �̂ = [Y; Y ](all)=2n, one can put hats on s20, �2, and �2 in
(46) to obtain an estimator of �2. Similarly,

s2 = 8�2

0@c�2 � c(c�21 + c�22 � c�11 c
�1
2 )

(c
1=2
1 � c1=22 )

2

1A+ c

(c
1=2
1 � c1=22 )

2 s
2
0

= 8

 
c�2 � cc�31

I�2 � I�1 + 1
(I1=2 � 1)2

!
�2 +

c

c1

1

(I1=2 � 1)2
s20; (47)

where c � Kn�2=3 where K is the number of grids used originally to estimate < X;X >T .

Normally, one would take c1 = c. Hence an estimator ŝ2 can be found from ŝ20 and �̂. When
c1 = c, we argue that the optimal choice is I = 3 or 4, as follows. The coe¢ cients in (47) become

coe�(s20) = (I1=2 � 1)�2

coe�(�2) = 8c�2(I1=2 � 1)�2f(I)

where f(I) = I � 2I1=2 � I�2 + I�1. For I � 2, f(I) is increasing, and f(I) crosses 0 for I
between 3 and 4. These, therefore, are the two integer values of I which give the lowest ratio of
coe�(�2)=coe�(s20). Using I = 3 or 4, therefore, would maximally insulate against �̂

2 dominating
over ŝ20. This is desirable as ŝ

2
0 is the estimator of carrying the information about �

2. Numerical
values for the coe¢ cients are given in Table 1. If c is such that �̂2 still overwhelms ŝ20, then a choice
of c1 6= c should be considered.

Table 1. Coe¢ cients of �̂2 and ŝ2 when c1 = c
I coe�(s20) coe�(�2)

3 1:866 �3:611c�2
4 1:000 1:5000c�2

7 THE BENEFITS OF SAMPLING SPARSELY

In the above, we have constructed a method to directly estimate the integrated volatility of the
process X, by combining di¤erent sampling frequencies. If one really insists, however, one can
pretend that the noise term � is so negligible that one can ignore it. In the following, we discuss
whether this approach can possibly have at least some merit.
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7.1 The Single Grid Case

In Section 2, we argued that the realized volatility estimates the wrong quantity. This problem
only gets worse when observations are sampled more frequently. Its �nancial interpretation boils
down to market micro-structure, measured by � in (4). As the data record is sampled �nely, the
change in true returns gets smaller while the microstructure noise, such as bid-ask spread and
transaction cost, remains at the same magnitude. In other words, when the sampling frequency
is extremely high, the observed �uctuation in the returns process is more heavily contaminated
by microstructure noise and becomes less representative of the true variation < X;X >T of the
returns. Along this line of discussion, the broad opinion in �nancial applications is not to sample
too often, at least when using realized volatility. We now discuss how this can be viewed in the
context of the model (4) with stochastic volatility.

Intuitively, suppose that � is small. It could formally be taken to tend to zero as n!1, along
with E�4. The asymptotic normality in Section 2.2 then takes the form

[Y; Y ]T
L� [X;X]T + 2�n+ 2

p
nE�4Z�; (48)

where the symbol �
L��is used in a similar way to that of Section 3.5. Here Z� is standard normal, the

subscript � indicates that the randomness comes from the noise, or the deviation of the observables
Y from the true process X. The convergence in law is conditional on the X process.

Following Rootzen (1980), Jacod and Protter (1998) and Mykland and Zhang (2002), and under
the conditions stated in these papers, one can show that

�n
T

�1=2
([X;X]T� < X;X >T )

L�!
�Z T

0
2H 0(t)�4tdt

�1=2
� Zdiscr; (49)

stably in law (see the end of Section 3.4). Zdiscr is standard normal random variable, the subscript
indicates that the randomness is due to the discretization e¤ect in [X;X]T when evaluating <
X;X >T . H(t) is the asymptotic quadratic variation of time, as discussed in Mykland and Zhang
(2002). In the case of equidistant observations which we consider here, �t0 = ::: = �tn�1 = �t

and H 0(t) = 1. Again the convergence is in law, and it is stable, cf. the end of Section 3.4. Since
the �0s are independent of the X process, Z� is independent of Zdiscr.

For small �, one now has a chance at estimating < X;X >T . It follows from (48)-(49) that

[Y; Y ]T
L� < X;X >T +2�n+�Ztotal; (50)

in the sense of stable convergence, where Ztotal is standard normal, and where the variance has the
form

�2 = 4nE�4 +
T

n

Z T

0
2H 0(t)�4tdt (51)
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Seen from this angle, there is scope for using the realized volatility [Y; Y ] to estimate < X;X >.
It is achieved with bias 2�n, but the bias goes down if one uses fewer observations. This, then, is
consistent with the practice in empirical �nance.

As can be seen from (51), there is, however, a trade-o¤between sampling too often and sampling
too rarely, as in the constant � case. Consider again the situation where the observation times are
equidistant, so that H 0(t) = 1 independently of the sampling frequency. It is then natural to
minimize the mean squared error

MSE = (2�n)2 +�2; (52)

which means that one should choose n to satisfy @MSE=@n � 0, in other words,

8�2n+ 4E�4 � T

n2

Z T

0
2H 0(t)�4tdt � 0: (53)

To solve for n, we suppose as mentioned above that � ! 0 as n ! 1, and we suppose that
E�4=(E�2)2 is of order O(1). Thus

n3 +
1

2
n2

E�4

(E�2)2
� ��2T

8

Z T

0
2H 0(t)�4tdt � 0: (54)

Hence, �nally,

n = ��2=3
�
T

8

Z T

0
2H 0(t)�4tdt

�1=3
+ o(��2=3) as � ! 0: (55)

The equation (55) is the formal statement saying that one can sample more frequently when the
error spread is small. Note that to �rst order, the �nal trade-o¤ is between the bias 2vn and the
variance due to discretization. The e¤ect of the variance associated with Z� is of lower order when
comparing n and �. It should be emphasized that (55) is a feasible way of choosing n. One can
estimate � using all the data following the procedure in Section 2.2. The integral

R T
0 2H

0(t)�4tdt

can be estimated by the methods discussed in Section 6 below. For a general procedure, see Zhang
and Mykland (2003).

We can do better, however, than using the �realized volatility�, as we shall see in the following.

7.2 The Multiple Grid Case

Following the development in Section 3, one can go to the multi-grid case and search for an optimal
frequency �n for subsampling to balance the coexistence of the bias and the variance in (30). To
reduce the mean squared error of [Y; Y ](avg)T , we set @MSE=@�n = 0. From (31)-(30), bias = 2��n
and �2 = 4 �nKE�

4 + T
�n �

2, then

MSE = bias2 + �2 = 4�2�n2 + 4
�n

K
E�4 +

T

�n
�2 = 4�2�n2 +

T

�n
�2 to �rst order;
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thus the optimal �n� satis�es that

�n� =

�
T�2

8�2

�1=3
: (56)

Therefore, assuming the estimator [Y; Y ](avg)T is adopted, one could bene�t from a minimum MSE
if one subsamples �n� data in an equidistant fashion. In other words, all n observations can be used
if one uses K�, K� � n=�n�, subgrids. This is in contrast to the drawback of using all the data in
the single grid case. The subsampling coupled with aggregation brings out the advantage of using
the entire data. Of course, for the asymptotics to work, we need �2 ! 0.

Our recommendation, however, is to use the methods in Sections 4 -6.

8 CONCLUSION

In this work, we have quanti�ed and corrected the e¤ect of noise on the nonparametric assessment
of integrated volatility. In the setting of high frequency data, the usual �nancial practice is to use
sparse sampling, in other words, throwing away most of the available data. We have argued that
this is caused by not incorporating the noise in the model. While it is statistically unsound to
throw away data, we have shown that it is possible to build on this practice to construct estimators
that make statistical sense.

Speci�cally, we have found that the usual realized volatility mainly estimates the magnitude of
the noise term rather than anything to do with volatility. An approach that is built on separating
the observations into multiple �grids� lessens this problem. We found that the best results can
be obtained by combining the usual (�single grid�) realized volatility with the multiple grid based
device. This gives an estimator which is approximately unbiased, and we have also shown how to
assess the (random) variance of this estimator. Most of the development is in the context of �nding
the integrated volatility over one time period; at the end, we extend this to multiple periods. Also,
in the case where the noise can be taken to be almost negligible, we provide a way of optimizing the
sampling frequency if one wishes to use the classical �realized volatility�or its multi-grid extension.

One important message of the paper: Any time one has an impulse to sample sparsely, one can
always do better with a multi-grid method. No matter what the model is, no matter what quantity
is being estimated.

APPENDIX: PROOFS OF RESULTS

When the total grid G is considered, we use
Pn�1
i=1 ,

P
ti+1�T and

P
ti2G interchangeably in the

following proofs. And we write jX to indicate expressions that are conditional on the entire X
process.
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A.1 Variance of [Y; Y ]T Given the X Process

We here calculate explicitly the variance in equation (11), from which the stated approximation
follows. The explicit remainder term is also used for equation (17).

Let a partition of [0; T ] be 0 = t0 � t1 � � � � � tn = T . Under assumption (6),

V ar([Y; Y ]T jX) = V ar[
X

ti+1�T
(�Yti)

2jX]

=
X

ti+1�T
V ar[(�Yti)

2jX]

| {z }
IT

+ 2
X

ti+1�T
Cov[(�Yti�1)

2; (�Yti)
2jX]

| {z }
IIT

since �Yti = �Xti +��ti is 1-dependent given X process.

V ar[(�Yti)
2jX] = �4(�Yti jX) + 2[V ar(�Yti jX)]

2

+4[E(�Yti jX)]
2V ar(�Yti jX)

+4E(�Yti jX)�3(�Yti jX)
= �4(��ti) + 2[V ar(��ti)]

2 + 4(�Xti)
2V ar(��ti)

+4(�Xti)�3(��ti); under Assumption 6

= 2�4(�) + 8�
2 + 8(�Xti)

2�

since �3(��ti) = 0. The �
0s are the cumulants of the relevant order. So, IT = n

�
2�4(�) + 8�

2
�
+

8�[X;X]T .

Similarly, for the covariance,

Cov[(�Yti�1)
2; (�Yti)

2jX] = Cov[(��ti�1)
2; (��ti)

2] + 4(�Xti�1)(�Xti)Cov(��ti�1 ;��ti)

+2(�Xti�1)Cov[��ti�1 ; (��ti)
2] + 2(�Xti)Cov[(��ti�1)

2;��ti ]

= �4(�) + 2�
2 � 4(�Xti�1)(�Xti)�2(�) (A.1)

�2(�Xti)�3(�) + 2(�Xti�1)�3(�)

because �1(�) = 0, �2(�) = V ar(�) = E(�2), �3(�) = E�3, and �4(�) = E(�4)� 3�2.

Thus, assuming the coe¢ cients in (A.1)

IIT = 2(n� 1)(�4(�) + 2�2)
�8�

X
ti+1�T

(�Xti�1)(�Xti)� 4�3(�)(�Xtn�1 ��Xt0)

Amalgamating the two expressions one obtains

V ar([Y; Y ]T jX) = n
�
2�4(�) + 8�

2
�
+ 8�[X;X]T + 2(n� 1)(�4(�) + 2�2)

� 8�
X
(�Xti�1)(�Xti)� 4�3(�)(�Xtn�1 ��Xt0)

= 4nE�4 +Rn; (A.2)
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where the remainder term Rn satis�es

jRnj � 8�[X;X]T + 2(�4(�) + 2�
2)

+8�j
X
(�Xti�1)j(�Xti)j+ 4j�3(�)j(j�Xtn�1 j+ j�Xt0 j)

� 16�[X;X]T + 2(�4(�) + 2�
2) + 2j�3(�)j(2 + [X;X]T ) (A.3)

by the Cauchy-Schwarz inequality and since jxj � (1 + x2)=2.

Since [X;X]T = Op(1), (11) follows. Similarly, (17) follows since [X;X]
(avg)
T = Op(1).

A.2 Relevant Central Limit Theorem

Lemma A.1. Suppose X is an Itô process. Suppose Y is related to X through model (4). Then
under assumption (6) and de�nitions (8) and (13),

[Y; Y ]
(all)
T = [�; �]

(all)
T +Op(1), and [Y; Y ]

(avg)
T = [�; �]

(avg)
T + [X;X]

(avg)
T +Op(

1p
K
)

Proof of Lemma A.1

(a) The one grid case:

[Y; Y ]
(all)
T = [X;X]

(all)
T + [�; �]

(all)
T + 2[X; �]

(all)
T (A.4)

We show:

E

�
([X; �]

(all)
T )

2
jX
�
= Op(1) (A.5)

and in particular
[X; �]

(all)
T = Op(1) (A.6)

To see (A.5):

[X; �]
(all)
T =

n�1X
i=0

(�Xti)(��ti)

=

n�1X
i=0

(�Xti)�ti+1 �
n�1X
i=0

(�Xti)�ti

=

n�1X
i=1

(�Xti�1 ��Xti)�ti +�Xtn�1�tn ��Xt0�t0
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Since E([X; �](all)T jX) = 0 and �ti i.i.d. for di¤erent ti, we get

E

�
([X; �]

(all)
T )

2
jX
�

= V ar([X; �]
(all)
T jX)

= �[
n�1X
i=1

(�Xti�1 ��Xti)
2 +�X2

tn�1 +�X
2
t0 ]

= 2�[X;X]T � 2�
n�1X
i=1

(�Xti�1)(�Xti)

� 4�[X;X]T (A.7)

by the Cauchy-Schwarz Inequality, from which and from [X;X](all) being of order Op(1), (A.5)
follows. Hence (A.6) follows by the Markov Inequality.

(b) The multiple grid case:

Notice that
[Y; Y ](avg) = [X;X]

(avg)
T + [�; �]

(avg)
T + 2[X; �]

(avg)
T (A.8)

(A.8) strictly follows from model (4) and the de�nitions of grids and [ ; ](avg)t , see Section 3.2.

We need to show:
E([X; �]

(avg)
T

2
jX) = Op(

1

K
) (A.9)

in particular

[X; �]
(avg)
T = Op(

1

K1=2
): (A.10)

and V ar([X; �](avg)T jX) = E[([X; �](avg)T )
2
j X]:

To show (A.9), note that E([X; �](avg)T jX) = 0,

E[([X; �]
(avg)
T )

2
j X] = V ar([X; �]

(avg)
T jX)

=
1

K2

KX
k=1

V ar([X; �]
(k)
T jX)

� 4�

K
[X;X]

(avg)
T = Op(

1

K
)

where the second equality follows from the disjointness of di¤erent grids as well as � ?? X . The
inequality follows from the same argument as in (A.7). Then the order follows since [X;X](avg)T =

Op(1): see the method in Mykland and Zhang (2002) if one wants a rigorous development for the

order of [X;X](avg)T .

Theorem A.1. Suppose X is an Itô process of form (1). Suppose Y is related to X through model
(4), and that (6) is satis�ed with E�4 <1. Also suppose that ti and ti+1 is not in the same subgrid
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for any i. Under assumption (14), as n ! 1, (
p
n(�̂ � �);

q
K
�n ([Y; Y ]

(avg)
T � [X;X](avg)T � 2��n))

converges in law to a bivariate normal, with mean 0 and covariance matrix 
E�4 2V ar(�2)

2V ar(�2) 4E�4

!
(A.11)

conditional on X process. where the limiting random variable is independent of the X process.

Proof of Theorem A.1:

By Lemma A.1, need the distribution of [�; �](avg) and [�; �](all).

First, we explore the convergence of
1p
n

�
[�; �]

(all)
T � 2�n; [�; �](avg)T K � 2��nK

�
(A.12)

Recall that all the sampling points t0; t1 � � � ; tn are within [0; T ]. We use G to denote the time
points in the full sampling, as in the single grid. G(k) denotes the subsamplings from kth grid.

As before, if ti 2 G(k), then ti;� and ti;+ are, respectively, the previous and next element in G(k).
�ti;� = 0 for ti = minG(k) and �ti;+ = 0 for ti = maxG(k).

Set

M
(1)
T =

1p
n

X
ti2G

(�2ti � �)

M
(2)
T =

1p
n

X
ti2G

�ti�ti�1 (A.13)

M
(3)
T =

1p
n

KX
k=1

X
ti2G(k)

�ti�ti;�

We �rst �nd the asymptotic distribution of (M (1)
T ;M

(2)
T ;M

(3)
T ) using the martingale central limit

theorem, and then we use the result to �nd the limit of (A.12).

Note that (M (1)
T ;M

(2)
T ;M

(3)
T ) are the end points of martingales with respect to �ltration Fi =

�(�tj ; j � i;Xt; all t). We now derive its (discrete-time) predictable quadratic variation< M (l);M (k) >,
l; k = 1; 2; 3. (Discrete time predictable quadratic variations are only used in this proof, and are
di¤erent from the continuous time quadratic variations in (7)).

< M (1);M (1) >T =
1

n

X
ti2G

V ar(�2ti � � j Fti�1) = V ar(�
2)

< M (2);M (2) >T =
1

n

X
ti2G

V ar(�ti�ti�1 j Fti�1) =
�

n

X
ti2G

�2ti�1 = �
2 + op(1)

< M (3);M (3) >T =
1

n

KX
k=1

X
ti2G(k)

V ar(�ti�ti;� j Fti�1) =
�

n

KX
k=1

X
ti2G(k)

�2ti;� = �
2 + op(1)
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by the law of large numbers.

Similarly, for the predictable quadratic covariations,

< M (1);M (2) >T =
1

n

X
ti2G

Cov(�2ti � �; �ti�ti�1 j Fti�1) = E�
3 1

n

X
ti2G

�ti�1 = op(1)

< M (1);M (3) >T =
1

n

KX
k=1

X
ti2G(k)

Cov(�2ti � �; �ti�ti;� j Fti�1) = E�
3 1

n

KX
k=1

X
ti2G(k)

�ti;� = op(1)

< M (2);M (3) >T =
1

n

KX
k=1

X
ti2G(k)

Cov(�ti�ti�1 ; �ti�ti;� j Fti�1)

=
�

n

KX
k=1

X
ti2G(k)

�ti�1�ti;� = op(1)

since ti+1 is not in the same grid as ti.

Since the �ti�s are i.i.d. and E�
4
ti <1, the conditional Lindeberg conditions are satis�ed. Hence

by the martingale CLT (see condition 3.1, p. 58 of Hall and Heyde (1980)), (M (1);M (2);M (3)) are
asymptotically normal, with covariance matrix as the asymptotic value of < M (l);M (k) >. In
other words, asymptotically, (M (1);M (2);M (3)) are independent normal with respective variances
V ar(�), �2, and �2.

Returning to (A.12),

[�; �](all) � 2n� = 2
X
i6=0;n

(�2ti � �) + (�
2
t0 � �) + (�

2
tn � �)� 2

X
ti>0

�ti�ti�1

= 2
p
n(M (1) �M (2)) +Op(1) (A.14)

Meanwhile:

[�; �](k) � 2nk� =
X

ti2G(k); ti 6=maxG(k)
(�ti;+ � �ti)

2 � 2nk�

= 2
X
ti2G(k)

(�2ti � �)� (�
2
minG(k) � �)� (�

2
maxG(k) � �) (A.15)

�2
X
ti2G(k)

�ti�ti;�

where nk + 1 is the total number of sampling points in G(k).

Hence,

[�; �]
(avg)
T K � 2�n�K =

p
n(2M (1) � 2M (3))�R = 2

p
n(M (1) �M (3)) +Op(K

1=2); (A.16)

since R =
PK
k=1

h
(�2
minG(k) � �) + (�

2
maxG(k) � �)

i
satisfying ER2 = V ar(R) � 4KV ar(�2):
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Since n�1K ! 0, and since the error terms in (A.14) and (A.15) are uniformly integrable, it
follows that

(A:12) = 2(M (1) �M (2);M (1) �M (3)) + op(1) (A.17)

Hence, (A.12) is also asymptotically normal with covariance matrix 
4E�4 4Var(�2)

4Var(�2) 4E�4

!
:

By Lemma A.1, and as n�1K ! 0,

1p
n

�
[Y; Y ]

(all)
T � 2�n;K([Y; Y ](avg)T � [X;X](avg)T � 2��n)

�
jX

is asymptotically normal,

1p
n

 
[Y; Y ]

(all)
T � 2�n

[Y; Y ]
(avg)
T K � 2��nK � [X;X](avg)T K

j X
!
= 2

 
M (1) �M (2)

M (1) �M (3)

!
+ op(1)

L�! 2N

 
0;

 
E�4 Var(�2)

Var(�2) E�4

!! (A.18)

Since

�̂ =
1

2n
[Y; Y ]

(all)
T and

Kp
n
=

r
K

�n
(1 + o(1)); (A.19)

Theorem A.1 follows.

A.3 Asymptotics of DT

For transparency of notation, we take �t = T=n, in other words, the average of the �ti. For given
s 2 [0; T ], let s(k)� be the closest point on grid G(k) smaller than s, i.e., s(k)� = maxfu � s : u 2 G(k)g.
In particular, for grid points ti, let t

(k)
i be the closest point on the grid G(k) smaller than ti, i.e.,

t
(k)
i = maxfu � ti : u 2 G(k)g. Observe that t(k)i = (ti)

(k)
� .

We do not assume regular allocation of sample points to subgrids, but instead that

max
i

KX
l=1

f#k : t(k)i > t
(l)
i g

2 = O(K3): (A.20)

Note that f#k : t(k)i > t
(l)
i g is the number of points in the total grid G between t

(l)
i and ti. The

requirement (A.20) is satis�ed under regular allocation of sample points to subgrids, as de�ned in
Section 3.2, in other words, G(l) = ftl�1; tK+l�1; :::g.
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Proof of Theorem 2. Rewrite

DT = [X;X]
(avg)
T � < X;X >T

=
1

K

KX
k=1

([X;X]
(k)
T � < X;X >T )

=
1

K

KX
k=1

X
fti;ti;+2G(k)g

2

Z ti+1

ti

(Xs �Xti)dXs by Itô�s formula

= 2

Z T

0

1

K

KX
k=1

(Xs �Xs(k)�
)dXs

Denote the integrand as Zs. We can write Zs = Xs � 1
K

PK
k=1Xs(k)�

Following the arguments in Mykland and Zhang (2002), the quadratic variation of DT is

< D;D >T = 4

Z T

0
Z2sd < X;X >s

= 4

Z T

0
< Z;Z >s d < X;X >s +op(

K

n
)

= 4

Z T

0
< Z;Z >s< X;X >0s ds+ op(

K

n
)

= 4
X
i

Z ti+1

ti

< Z;Z >s< X;X >0s ds+ op(
K

n
);

where the sum is over all (except the last) observation points ti. To calculate the integrand, note
that for ti � s < ti+1,

< Z;Z >s< X;X >0s =
1

K2

KX
k=1

KX
l=1

(< X;X >s � < X;X >
s
(k)
� ^s(l)�

) < X;X >0s

=
1

K2

KX
l=1

(< X;X >s � < X;X >
s
(l)
�
)(2f#k : s(k)� > s

(l)
� g+ 1) < X;X >0s

=
1

K2

KX
l=1

(s� t(l)i )(2f#k : t
(k)
i > t

(l)
i g+ 1)(< X;X >0ti)

2 + op(
K

n
);
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since the s(l)� = t
(l)
i as s varies over the relevant time interval [ti; ti+1). HenceZ ti+1

ti

< Z;Z >s< X;X >0s ds

=
1

K2

KX
l=1

�Z ti+1

ti

(s� t(l)i )ds
�
(2f#k : t(k)i > t

(l)
i g+ 1)(< X;X >0ti)

2 + op(
K

n2
)

=
1

K2

KX
l=1

�
1

2
�t2i + (ti � t

(l)
i )�ti

�
(2f#k : t(k)i > t

(l)
i g+ 1)(< X;X >0ti)

2 + op(
K

n2
)

=
1

4
��tKhi(< X;X >0ti)

2�ti + op(
K

n2
)

where the hi are de�ned by (22). Hence, since the error term above is uniform in i (in probability),

< D;D >T= �tK
X
i

hi(< X;X >0ti)
2�ti + op(

K

n
) (A.21)

thus showing Theorem 2.

We now proceed to the asymptotic distribution of DT . We �rst state a technical condition on
the �ltration (Ft)0�t�T to which Xt and �t (but not the �0s) are assumed to be adapted.

Condition E (Description of the �ltration): There is a continuous multidimensional P -local
martingale X = (X (1); � � � ;X (p)), any p, so that Ft is the smallest sigma-�eld containing �(Xs; s �
t) and N , where N contains all the null sets in �(Xs; s � T ).

For example, X can be a collection of Brownian motions.

Proof of Theorem 3. One shows by methods similar to those in the proof of Theorem 2 that
if L is any martingale adapted to the �ltration generated by X , then

sup
t
j 1

�tK
< D;L >t j !p 0; (A.22)

The stable convergence with respect to the �ltration (Ft)0�t�T then follows in view of Rootzen
(1980) or Jacod and Protter (1998). This ends the proof of Theorem 3.

Finally, in the case where �2 does not converge, one can still use the mixed normal with variance
�2n. This is because every subsequence of �

2
n has a further subsequence which does converge in

probability to some �2 in probability, and hence for which the assumption (27) in Theorem 3 would
be satis�ed.

The reason for this is that one can de�ne the distribution function of a �nite measure by

Gn(t) =
X
ti+1�t

hi�ti (A.23)
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Since Gn(t) � T supi hi, it follows from (24) that the sequence Gn is weakly compact in the sense
of weak convergence (see Helly�s Theorem, e.g. Billingsley (1995) p. 336). For any convergent
subsequence Gn ! G, we then get that

�2n =

Z T

0
(< X;X >0t)

2dGn(t)!
Z T

0
(< X;X >0t)

2dG(t): (A.24)

almost surely, since be have assumed < X;X >0t to be a continuous function of t. One then de�nes
�2 to be the (subsequence dependent) right hand side of (A.24).

To proceed further with the asymptotics, continue the subsequence from above, and note that

1

�tK
< D;D >t �

Z t

0
(< X;X >0s)

2dGn(s)

!
Z t

0
(< X;X >0s)

2dG(s)

to conclude.
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