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ABSTRACT

Researchers interested in estimating productivity can choose from an array of methodologies, each

with its strengths and weaknesses. Methods differ by the assumptions they rely on and imply very

different calculations. I compare five widely used techniques: (a) index numbers, (b) data

envelopment analysis, and three parametric methods, (c) instrumental variables estimation, (d)

stochastic frontiers, and (e) semi-parametric estimation. I compare the estimates directly and

evaluate three productivity debates using a panel of manufacturing plants in Colombia. The

different methods generate surprisingly similar results. Correlations between alternative productivity

estimates are invariably high. All methods confirm that exporters are more productive on average

and that only a small portion of the productivity advantage is due to scale economies. Productivity

growth is correlated more strongly with export status, frequent investments in capital equipment,

and employment of managers than with the use of imported inputs or foreign ownership. On the

debate whether aggregate productivity growth is driven by plant-level changes or output share

relocation, all methods point to the importance of plant-level changes, in contrast to results from the
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1 Motivation

Productivity is used and discussed widely. Ever since Solow (1957) decomposed output growth

into the contribution of input growth and a residual productivity term, the concept has in-

creased in popularity. Productivity has generated a lot of interest in its own right and is

used as a benchmark to rank firms or countries. Such rankings gained credibility once other

studies documented that productivity is correlated with other indicators of success such as

employment growth, export status, or technology adoption. Low productivity has also been

found to predict exit, the ultimate performance standard. Its importance can also be gauged

from the attention it receives as a criterion to evaluate policy interventions or firms’ decisions.

In industrial economics, for example, a large literature investigates the effect of R&D on pro-

ductivity and the resulting impact on industry structure. In international economics, efforts

to evaluate the impact of trade liberalization has turned from estimating changes in price-cost

margins to productivity changes.

Fundamentally, the objective of productivity measurement is to identify output dif-

ferences that cannot be explained by input differences. Because the production technology

of each firm and the input tradeoff it allows, is not observed, our ability to control for input

substitution is subject to error. In addition, inputs and outputs are likely to be measured with

error, certainly in less intensively used data sets from developing countries. Methodologies for

productivity measurement differ vastly in their sensitivity to measurement and specification

error.1

I evaluate five widely-used methodologies, which fall in three broad classes. The first

two, index numbers and data envelopment analysis, are flexible in the specification of technol-

ogy, but do not allow for measurement errors in the data. The other three parametric methods

calculate productivity from an estimated production function. Because the framework is ex-

plicitly stochastic they are less vulnerable to measurement error, certainly in the dependent

variable, but misspecification of the production function might be an issue. I use three esti-

mators for the production function that address the simultaneity of productivity and input

choices differently: instrumental variables, stochastic frontiers, semiparametric estimation.

1See Van Biesebroeck (2003c) for a comparison in a Monte Carlo framework.

2



Using a sample of manufacturing plants from Colombia, I compare productivity esti-

mates with the different methods directly and I review a number of debates with important

policy implications. The results indicate that the productivity level and growth estimates are

surprisingly similar. Partial correlation coefficients across most methodologies are invariably

high. From a policy perspective, the important issue is whether the different methods reach

the same conclusions on underlying economic phenomena. In particular, I find that the answer

to the following three questions is robust to measurement methodology.

• Are exporters more productive than nonexporters?

• What causes technological change? Better capital equipment, foreign expertise, or high

levels of human capital?

• Is aggregate productivity growth driven by plant-level productivity increases or by the

reallocation of inputs from less to more productive establishments?

The three debates have received a fair amount of attention in the literature on economic

development. Because they involve very different aspects of the productivity distribution—

the first question compares productivity levels across firms, the second compares growth rates,

and the third question relies on changes in the entire productivity distribution—they allow a

comprehensive overview of the impact of measurement methodology.

In the next section, I give some background on productivity measurement and introduce

the different methodologies. Only the general idea and crucial equations are presented to

convey the distinctive features of each methodology. Links to the literature for more detailed

information are provided in the respective sections. Section 3 introduces the data and directly

compares productivity measures across methodologies. Subsequently, I verify whether the

answers to each of the three debates vary by estimation methodology. The final section

summarizes what the comparisons teach us about the measuring methodologies and about

the economic phenomena they describe.
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2 Measuring Productivity

In plain English, one firm is more productive than another if it is able to produce the same

outputs with less inputs or if it produces more outputs using the same inputs. Similarly, a firm

has experienced positive productivity growth if outputs have increased more than inputs or

inputs decreased more than outputs. The comparison is more difficult when a first production

plan uses more of one input, while a second plan relies more on a second input, keeping output

constant. Clearly, the possibility for input substitution embedded in the technology will govern

such a comparison. This makes it impossible to talk about productivity without specifying a

production function (or a cost function or any other representation of technology). Measuring

productivity necessarily involves decomposing differences in the input-output combination

into shifts along a production function and shifts of the function itself.

Figure 1 illustrates the objective of productivity comparisons. In the simple case of

one output, which will be maintained throughout, it compares two unit production plans,

P0 and P1, in input space. Part of the difference, from P0 to 1, is a shift along the frontier

—represented here by the unit isoquant— exploiting the input substitution possibilities of

the technology. Part of the difference, from 1 to P1, is an actual shift of the frontier, which

is counted as technical change or productivity growth. If technical change is restricted to be

Hicks-neutral, the shape of the unit isoquant will be unchanged after the shift. Capital-biased

or labor-saving technical change, on the other hand, makes the isoquant shift more down than

left.

[Figure 1]

The shape of the unit isoquant in Figure 1 can be estimated if one is willing to make

functional form assumptions. An econometric problem arises as input choices, the explanatory

variables in the production function equation, depend on unobserved productivity differences.

I will rely on three different solutions to this simultaneity problem. The difficulty is to estimate

the shape of the isoquant in Figure 1, which is common across firms, when the observed

position along the isoquant of each firm depends on the exact location of the isoquant, which

varies across firms.
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Alternatively, if factor prices for each firm are observed, one can rely on the theory

of index numbers. No production function has to be specified or estimated. Assuming that

the first order conditions for profit maximization hold, the observed production plans are

tangency points of the budget constraint and isoquant. Assuming further that the isoquants

for all firms have the same curvature allows us to infer the relative position of the isoquants.

A third, nonparametric approach constructs a piece-wise linear isoquant to maximize

the productivity for the unit under consideration, with the constraint that no other production

plan lies below the isoquant. The section of the isoquant that intersects the line through the

origin for the observation under consideration, implicitly defines relative weights for labor and

capital. The weights are calculated separately for each observation using linear programming

techniques to minimize the distance to the isoquant.

Each method compares two production plans, it and jτ , which can refer to two different

firms (t = τ) or to the production plans of a single firm at two different points in time (i = j).

I adopt a number of standard assumptions—single output2, only Hicks-neutral productivity

differences3, output-based productivity comparisons4—and abstract from a number of thorny

issues that researchers have dealt with.5 The production function

Qit = Ait F(i)(Xit),

concentrates all productivity differences in the multiplicative factor Ait, which differs between

2Using deflated sales or value added as a single output implies aggregation of different products using
firm-specific prices.

3In practice, most studies use a Cobb-Douglas production function, which makes it impossible to identify
the factor-bias of technological change.

4The output-based comparison provides an answer to the question: “How much extra output does a firm
produce, relative to another firm, conditional on its (extra) input use?” An alternative measure is input-based
and asks “What is the minimum input requirement for one firm to produce the same output as another firm?”
Under constant returns to scale the two measures coincide for each of the methods I adopt.

5If competition is less than perfect, the use of deflated sales as output measure is problematic. Klette
and Griliches (1996) provide a solution if one is willing to make assumptions on the type of competition
and functional form of demand. In the first study using a full census of manufacturing plants, Griliches
and Ringstad (1971) discuss the relative merits of a value added and gross output production function. The
problems associated with the aggregation of inputs and outputs, as well as quality differences in heterogeneous
inputs are the subject of an exchange between some of the pioneers of productivity decompositions, see
Jorgenson and Griliches (1967) and Denison (1972). Methods have also been developed to deal with variations
in capacity utilization (Berndt and Fuss (1986)) and regulated firms (Denny et al. (1981)).
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firms and changes over time. If the production function F (.) varies between firms it has to be

specified which firm’s technology (i or j) is used for productivity comparisons.

In this framework, productivity comparisons boil down to the ratio of ratios in equation

(1), which illustrates that productivity is intrinsically a relative concept:

Ait

Ajτ

=

Qit
/
Qjτ

F (Xit)
/
F (Xjτ )

. (1)

The calculation of the denominator in (1)—the ratio of input aggregators—distinguishes the

different methods.6

Readers familiar with the different methodologies might still find the following exposi-

tions useful, as it summarizes a number of different literatures in a unified framework.7

2.1 Data Envelopment Analysis (DEA)

The first approach to productivity measurement is completely nonparametric and uses linear

programming. The method dates back to Farrell (1957) and it was operationalized by Charnes,

Cooper, and Rhodes (1978).8 No particular production function is assumed. Instead, the ratio

of a linear combination of outputs over a linear combination of inputs is compared across

observations. The intuition is to lay a piece-wise linear production frontier in input-output

space over the most efficient observations, as in Figure 2. Observations that are not dominated

are labeled 100% efficient. Domination occurs when another firm, or a linear combination of

6For level comparisons, the benchmark in the denominator will be the average productivity level for all
plants in the industry, At, which facilitates multilateral comparisons. In practice, most studies have used
log Ait−log At as multilateral productivity comparison, taking the average of the logarithm. For comparability,
I follow this practice.

7I try to avoid the frontier versus nonfrontier distinction. Some authors argue that some output shortfall,
given inputs, is the result of inefficiency at the firm-level. To be consistent with a profit maximizing, I include
such shortfalls in productivity as they might be caused by technology differences, unmeasured inputs, or quality
differences in outputs, among other possibilities. Rather than placing some firms below the production frontier,
I assume that they are on their own firm-specific frontier which lies below the industry best-practice. The
difference represents lower productivity. See Stigler (1976) for a more elaborate and more powerful motivation.
An alternative perspective is provided in Coelli, Rao, and Battese (1997), which reviews the index, DEA, and
stochastic frontier methods with the goal of efficiency measurement.

8More information on the method and applications can be found in Seiford and Thrall (1990).
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other firms, uses less of all inputs to produce the same outputs (for an input-based measure) or

produces more of all outputs using the same inputs (for an output-based measure). Multiple

inputs or outputs are aggregated linearly with weights chosen optimally for the unit under

consideration. Weights are restricted such that the efficiency of all observations does not

exceed 100% when the same weights are applied to them.

The example in Figure 2 is drawn for a single input and output, but the intuition is

similar for higher dimensional problems as inputs and outputs are aggregated linearly. P1 to

P5 represent the production plans of different firms. The solid line represents the frontier if

variable returns are allowed. Four of the five observations lie on the frontier and are deemed

100% efficient. If the technology is restricted to constant returns to scale, the frontier is forced

to go through the origin and is extrapolated beyond observed data points, resulting in the

dashed line as production frontier. Only the second plan is efficient in this case.9 The distance

of each unit to the frontier measures the estimated efficiency. In an input orientation, one

improves efficiency by reducing inputs: a horizontal projecting onto the frontier. In an output

orientation, efficiency is increased by increasing output until the unit produces on the frontier

given its observed inputs: a vertical projection.10

[Figure 2]

A linear programming problem is solved separately for each observation. Input and

output weights are chosen to maximize efficiency (θ1). The number of restrictions equals the

number of observations, plus sign restrictions on the weights. For unit 1 the problem amounts

to
max
vl, uk θ1 =

∑L
l=1 vlq

l
1∑K

k=1 ukxk
1

subject to
∑

l
vlq

l
i∑

k
ukxk

i
≤ 1 i = 1...N

vj, uk ≥ 0 l = 1...L, k = 1...K,

(2)

i indexes firms, l outputs, and k inputs. It is converted to a linear programming problem by

9Imposing constant returns to scale adds a constraint to the problem and the maximized objective value
will be (weakly) lower.

10Clearly, under variable returns both orientations yield different results, as the frontier does not go through
the origin and the slope of the segments the unit gets projected onto might differ.
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multiplying the objective and restrictions by their denominator and adding a normalization.11

In practice, most applications solve the dual problem, where θ1 is chosen directly. The current

formulation implicitly incorporate a constant returns to scale assumption. To relax this, an

extra slack-variable is introduced in (2) or an extra constraint is added to the dual problem.

The efficiency measures θi can be interpreted as the productivity difference between

unit i and the most productive unit: θi = Ai
Amax

. To obtain a measure comparable with other

methodologies, I define

logADEA
it − logA

DEA

t = log θi −
1

N

N∑
i=1

log θi, (3)

logADEA
it − logADEA

it−1 = log θit − log θit−1.

as the relative productivity level and growth rate. Productivity growth is less commonly

measured in the DEA framework. Nevertheless, including the different firm-years as separate

observations in the analysis, it is possible to calculate productivity growth as indicated. While

these transformations are arbitrary, they do not change the ranking of firms, only the absolute

productivity levels and growth rates.

DEA has the advantage to deal with many outputs in a consistent way. It leaves the

underlying technology unspecified and allows for heterogeneity, without functional form or

behavioral assumptions. While there is no theoretical justification for the linear aggregation,

it is natural in an activities analysis framework. The flexibility in weighting can be a drawback.

It has the implication that each firm with the highest output-input ratio for any combination

of outputs and inputs will be considered efficient. The method is not stochastic, which is

demanding on the data and makes the method sensitive to outliers.12 One might object to

the label “100% efficient” for the best practice firms in the sample. In some situations no firm

might be efficient, e.g. due to regulation.

11The scale of weights is not defined: multiplying all weights by the same multiplier does not change the
problem. Usually, the linear combination of inputs is set to unity for the unit under investigation. Inter-
changing the roles of inputs and output in (2) and minimizing the objective function, gives the corresponding
output-oriented programming problem for 1

θ
12With variable returns to scale, each firm with the lowest input or highest output level in absolute terms is

also fully efficient. More recently, stochastic DEA methods have been developed, but they are not universally
accepted yet. Most application still apply the deterministic variants.
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2.2 Index numbers (TFP)

The second approach provides a theoretically motivated aggregation method for inputs and

outputs, while remaining fairly agnostic on the shape of the underlying technology. Under

a number of assumptions, it is possible to calculate the last term in (1) from observables,

without having to specify the exact production function, nor forcing it to be uniform across

observations.

The work of Solow (1957) and Diewert (1976) led to the total factor productivity (TFP)

formula

log
Ait

Ajτ

= log
Qit

Qjτ

− (
sL
it+sL

jτ

2
) log

Lit

Ljτ

− (1− sL
it+sL

jτ

2
) log

Kit

Kjτ

. (4)

where sL
it is the fraction of the wage bill in output or total cost. Deducting input differentials

weighted by their share in output from the output differential produces an exact measure for

Hicks-neutral technical change. At least if a number of assumptions are satisfied: returns to

scale are constant, firms are profit maximizing and operate in competitive input and output

markets, and the underlying production function is translog.13

Caves, Christensen, and Diewert (1982a) extended (4), allowing for technical change

that is not Hicks-neutral and variable returns to scale, and giving it a more general inter-

pretation. They start from the Malmquist productivity index and represent the technology

by output and input distance functions. Under the same assumptions as before, the geo-

metric mean of the two output-based productivity indices based on each firm’s technology,

mO(xit, xjτ , yit, yjτ ), exactly equals the difference between a Törnqvist output index and the

corresponding input index with a scale factor to account for non-constant returns to scale:14

logmO(xit, xjτ , qit, qjτ ) =
L∑
l

rl
it+rl

jτ

2
(log ql

it − log ql
jτ )−

K∑
k

sk
it+sk

jτ

2
(log xk

it − log xk
jτ )

+
K∑
k

sk
it(1−εit)+sk

jτ (1−εjτ )

2
(log xk

it − log xk
jτ ). (5)

13In the single-output case, only cost minimization is needed. With multiple outputs, the output ratio is
replaced by the ratio of a revenue-weighted sum of outputs, similar to the cost shares as input-weights. Only
the second order terms in the technology have to be equal for the two units compared.

14The geometric mean of the two input-based productivity indices differs only in the scale factor.
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rl
z is the revenue share of output l and firm z (l = 1...L, z = it, jτ), sk

z is the cost share of

input k and firm z (n = 1...N), and εz are the (local) returns to scale for firm z.

In most applications, the scale adjustment is omitted. Only the first two terms of (5)

are included, reproducing equation (4), which amounts to lumping the effect of scale economies

in the productivity measure. For comparability with the other methodologies, I do include

the scale factor.15 If some conditions do not hold the index number is not exact, but still a

valid second-order approximation to the productivity ratio.16

Equation (5) accommodates productivity growth and level comparisons. For compar-

isons between different firms, multilateral comparisons are generally preferred over bilateral

ones, because Törnqvist indices are not transitive. Caves, Christensen, and Diewert (1982b)

propose an alternative formula, where each firm is compared to a hypothetical firm (with

average log-output logQ, labor share sL, etc.). Assuming returns to scale are equal across

observations, the index formulas are

log AIN
it − log A

IN
t = (log Qit − log Qt)− ε

[
sit(log Lit − log Lt)− (1− sit)(log Kit − log Kt)

]
log AIN

it − log AIN
it−1 = log(Qit/Qit−1) − ε

[
sit log(Lit/Lit−1) − (1− sit) log(Kit/Kit−1)

]
(6)

where sit =
sL
it+sL

it−1

2
and sit =

sL
it+sL

t

2
. This permits multilateral comparisons, yields bilateral

comparisons that are transitive, and still allows for technology that is firm-specific.

One of the main advantages of the index number approach is the ease of calculation.

Also, the specification of technology is flexible, allowing firms to produce with different tech-

nologies, and the method can easily handle multiple outputs and a large number of inputs.

The main disadvantages are the requirements on data quality and the assumptions on firm

behavior and market structure. It is impossible to account for measurement errors or to deal

with outliers, except for some ad hoc trimming of the data. Factor prices information and

returns to scale have to be estimated or available independently.

15The unobservability of capital prices forces me to obtain an outside estimate for returns to scale (ε̂) to
implement the Törnqvist index number. I estimate returns to scale using least squares and use the came
input shares under variable as under constant returns to scale. The productivity growth calculation becomes:
TFPG = q̇ − (sLε̂)l̇ − (1− sLε̂)k̇.

16The Törnqvist index is just one possibility and different technologies require a different index number. It
is the most popular one because it conveniently rationalizes Solow’s original TFP formula.
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2.3 Parametric methods

The third approach assumes that the input tradeoff and returns to scale are the same for

all observations, as in Figure 1. All firm heterogeneity is concentrated in the productivity

term.17 On the plus side, the explicit stochastic framework is likely to make estimates less

susceptible to measurement errors. I follow most of the literature by using a simple Cobb-

Douglas production function,

qit = α0 + αllit + αkkit + ωit + εit, (7)

in logarithms. Productivity comparisons are straightforward as the input aggregator in (1) is

now assumed constant over time and across firms. Substituting (7) in (1) yields the following

productivity comparison

log
Ait

Ajτ

= log
Qit

Qjτ

− αl log
Lit

Ljτ

− αk log
Kit

Kjτ

− (εit − εjτ ), (8)

which satisfies E
[
log Ait

Ajτ

]
= ωit − ωjτ . For some methods it will be possible to calculate the

last term in (8) explicitly and subtract the errors from the deterministic component. In other

cases, the last term is simply dropped because E(εit− εjτ ) = 0, in which case the difference in

random noise (ε̂it − ε̂jτ ) ends up in the productivity term. Equation (8) describes an output-

based productivity comparison. It measures the change in output necessary to put one firm

on the production frontier of another.18

Consistent estimation of the input parameters faces an endogeneity problem, first dis-

cussed by Marschak and Andrews (1944). Firms choose inputs, knowing their own level

of productivity, which is unobservable to the econometrician. A least squares regression of

output on inputs will give biased estimates of the production function coefficients. Three

different types of identifying assumptions are implemented to overcome this problem. The

most straightforward solution is to use instrumental variables that are uncorrelated with pro-

17While it is possible to estimate production functions with random coefficients, allowing for some technology
differences between firms, this approach has not been fruitful, see Mairesse and Griliches (1990) for a discussion.

18For homogeneous production functions of degree ε, it is straightforward to show that the input (AI) and
output (AO) based measures satisfy the following identity: log AO

log AI = ε.
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ductivity. I rely on the method proposed by Blundell and Bond (1998) to generate moment

conditions using lagged variables. The stochastic frontier literature makes explicit distribu-

tional assumptions about the unobserved productivity factor and estimates the primitives of

the distribution. In a more recent approach, Olley and Pakes (1996) obtain an expression

for unobserved productivity by inverting the investment function nonparametrically and sub-

stitute the expression in the production function. I discuss each of the three approaches in

turn.

2.3.1 Instrumental variables estimation (GMM)

A general approach to estimate error component models was developed in Blundell and Bond

(1998) and applied to production functions in Blundell and Bond (2000). The model they

estimate takes the form

qit = αt + αllit + αkkit + (ωi + ωit + εit)

ωit = ρωit−1 + ηit |ρ| < 1

εit, ηit ∼ i.i.d.

The production function contains three error components, a firm fixed-effect ωi, an autore-

gressive component ωit, with ηit an idiosyncratic productivity shock, and measurement error

εit. The equation includes year-specific intercepts. In its dynamic representation the model

becomes

qit = αllit + ραllit−1 + αkkit + ραkkit−1 + ρqit−1 (9)

+ (αt − ραt−1)︸ ︷︷ ︸
α∗t

+ωi(1− ρ)︸ ︷︷ ︸
ω∗i

+ (ηit + εit − ρεit−1).︸ ︷︷ ︸
εit

All variables on the first line are observable; firm and year dummies will take care of the

first two terms on the second line. There is still a need for moment conditions to provide

instruments because the inputs and lagged output will be correlated with the composite error

εit.
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Standard assumptions on the initial conditions,

E[Xi1ηit] = 0 for X = l, k, q t = 2, ..., T

E[Xi1εit] = 0 for X = l, k, q t = 2, ..., T

yield three times T − 3 moment conditions

E[Xit−s∆εit] = 0 for X = l, k, q. s = 3, ..., T

They allow estimation of (9) in first-differenced form using three times lagged inputs and

output as instruments. Blundell and Bond (2000) illustrate theoretically and with a practical

application that these instruments can be weak. Estimating a production function with firm-

dummies or in first differences often leads to very low coefficient estimates, see Mairesse and

Griliches (1998).

If one is willing to make the additional assumptions that

E[∆Xitω
∗
i ] = 0 for X = l, k t = 2, ..., T

and that the initial conditions satisfy

E[∆qi2ω
∗
i ] = 0,

one can derive two additional moment conditions

E[∆Xit−2(ω
∗
i + εit)] = 0 for X = l, k. (10)

Twice lagged first differences of inputs are valid instruments for the production function (9) in

levels. Further lagged differences can be shown to be redundant once the moment conditions

in (10) have been exploited. Blundell and Bond (1998) show that joint stationarity of the

inputs and output, conditional on common year dummies, is sufficient, but not necessary for

(10) to hold.
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The GMM-SYS estimator I adopt estimates both versions of the production function,

in first differences and levels, as a system with the appropriate set of instruments for each

equation. Productivity is calculated by substituting the estimated coefficients in (8), ignoring

the error terms.

Advantages of this method are the flexibility in generating instruments and the possibil-

ity of testing for overidentification. It allows for an autoregressive component to productivity,

in addition to a fixed-effect and an idiosyncratic component. The major disadvantage is the

need for a longer panel. At least five years of data are needed to generate overidentifying

moment conditions. It is also uncertain, as of yet, how well the instruments work in practice.

2.3.2 Stochastic frontier estimation (SF)

The stochastic frontier literature uses assumptions on the distribution of the unobserved pro-

ductivity component to separate productivity from the deterministic part of the production

function and the random error. The productivity term is modeled as a stochastic variable with

negative support. The method is credited to Aigner, Lovell, and Schmidt (1977) and Meeusen

and van den Broeck (1977). Stevenson (1980) introduced a truncated normal distribution for

ωit that is more flexible on the location of the mode of the distribution. Estimation is usually

with maximum likelihood.

In the production function (7), the term ωit is weakly negative and is interpreted as

the inefficiency of firm i at time t. The production plan of firm i is said to lie below the best

practice production frontier. Alternatively, one can say that firm i produces according to its

own production function which is shifted down by ωit relative to best practice.

The original stochastic frontier models were developed to assess productivity in a cross

section of firms.19 The model was subsequently generalized for panel data in a number of

ways; I implement two.

Battese and Coelli (1992) provide the most straightforward, but also the most restric-

19The same holds for DEA, which is also called deterministic frontier analysis.

14



tive generalization, modeling the inefficiency term as

ωit = −e−η(t−T ) ωi (11)

with ωi ∼ N+(γ, σ2).

A firm fixed-effect, ωi, is drawn from a truncated normal distribution and is multiplied by a

factor that increases (if η is positive) or decreases (if η is negative) over time. The ranking

of firms is unchanged over time and the inefficiency evolves identically and deterministically

for all firms. For comparison with the other methods, I calculate productivity according to

equation (8), ignoring the last term. The best estimate of logASF1
it = E(ωit|ω̂it + ε̂it) is ω̂it + ε̂it

if ωit is independent of εit.
20

If one observes firms only once, making strong assumptions is the only possibility

to separate the productivity component from the random error. Panel data contains more

information on each firm and allows identification under weaker assumptions. Schmidt and

Sickles (1984) simply use the standard fixed-effects panel data estimator to estimate a constant

firm-level productivity term. The problematic correlation between inputs and unobserved pro-

ductivity has been ruled out by assumption. Cornwell, Schmidt, and Sickles (1990) generalize

the method by estimating a time-varying component that is still firm-specific. They adopt a

quadratic specification and estimate three coefficients per firm:

ωit = αi0 + αi1t+ αi2t
2. (12)

Firm-level productivity evolves deterministically over time, but the growth rate varies over

time and between firms. The productivity level and growth rate can be calculated as

logASF2
it − logA

SF2

t = (α̂i0 − α̂0) + (α̂i1 − α̂1)t+ (α̂i2 − α̂2)t
2, (13)

logASF2
it − logASF2

it−1 = (α̂i1 − α̂i2) + 2α̂i2t,

where the overlined variables denote the average over all firms active in year t. Note that

20In the stochastic frontier literature, it is customary to estimate technical (in)efficiency as E(eωit |ωit + εit),
which is complicated by the nonlinear transformation.
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these formulas purge the random errors from the productivity terms.

An advantage of the stochastic frontiers is their relative simplicity to implement. The

deterministic part of the production function can be generalized easily, to allow more sophis-

ticated specifications, e.g. incorporating biased technological change. With a short panel, the

results for the second estimator are not very robust and that estimator always uses a lot of

degrees of freedom. One might also be uncomfortable with the identification coming solely

from functional form assumptions, which are especially restrictive in the first specification.

2.3.3 Semi-parametric estimation

The last method was developed by Olley and Pakes (1996) to estimate the productivity effects

of restructuring in the U.S. telecommunications equipment industry. They argue that an

additional sample selection problem exists if exit is correlated with inputs. If firms exit when

productivity drops below a threshold and the exit threshold is decreasing in capital, sample

selection will bias the least squares estimate of the capital coefficient downwards.21

Olley and Pakes propose a three step estimator to remedy both the selection and en-

dogeneity problem. Under some weak conditions, the investment equation is a monotonically

increasing function of productivity and the other state variables—capital and age. The rela-

tionship can be inverted, expressing productivity as an unknown function of investment and

capital (I ignore age). Substituting that expression in the production function (7) gives the

estimating equation for the first step:

qit = α0 + αllit + φt(iit, kit) + ε1it.

The unknown function φt(.) is approximated nonparametrically by a fourth order polyno-

mial or a kernel density. In the first step, α̂l is estimated and φ̂it, which is needed later, is

21The general idea of this approach is to use another decision by the firm to provide separate information
on the unobserved productivity term. In Olley and Pakes (1996), investment is a monotonic function of
productivity. An alternative approach, by Levinsohn and Petrin (2003), inverts the material input equation.
An advantage is that firms with zero investment do not have to be dropped from the sample. The estimator
in Van Biesebroeck (2003b) inverts another first order condition for automobile assembly plants: the decision
how many workers to employ on each shift.
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calculated.22

The second step deals with the exit decision. Exit is conditional on the realization of

productivity and the exit threshold for productivity. Both are different, unknown functions of

investment and capital, approximated with a fourth order polynomial on the right-hand side

of a probit regression for exit. In the second step, the continuation probability P̂it, i.e. the

probability a firm remains in the sample, which is needed in the last step, is predicted.

Finally, in the third step, the capital coefficient is estimated. Details on the estimation

are in Olley and Pakes (1996), but the intuition is straightforward. From the production

function (7), one can write the conditional expectation of qit − αllit as α0 + αkkit plus the

conditional expectation of productivity in period t. If productivity evolves according to a

stochastic Markov process, it is a function of its value in the previous period and the exit

threshold. Similar to the previous stages, current productivity is approximated nonparamet-

rically using these two variables. The lagged value of productivity can be calculated from the

results in the first step as φ̂it−1−αkkit−1. An expression for the exit threshold can be obtained

from the second step, because the continuation probability is a monotonically increasing func-

tion of the exit threshold, again an invertible relationship. The estimation equation for the

third step is given by

qit − α̂llit = αkkit + ψt(φ̂it−1 − αkkit−1, P̂it−1) + ε2it.

Only the capital coefficient is left to estimate at this stage.

Once the coefficients in the production function are estimated, productivity is calcu-

lated from (8) ignoring the last term, as in Olley and Pakes (1996). These results are indexed

by OP1. It is also possible to calculate a direct estimate of ω̂it, purged from random noise ε̂it,

as

logAOP2
it − logAOP2

jτ = (φ̂it − α̂kkit)− (φ̂jτ − α̂kkjτ ). (14)

This measure can only be calculated for firms with positive investment, i.e. the firms included

22When constant returns to scale is enforced, only the first stage is estimated, and α̂k = 1− α̂l.
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in the estimation procedure.

The main advantage of this approach is the flexible characterization of productivity.

The only assumptions are the Markov process for the evolution of productivity and that the

nonparametric approximations are adequate. The investment function to be inverted is likely

to be a complicated mapping from states to actions since it has to hold for all firms regardless

of their size or competitive position. It is unsure how good an approximation the fourth order

polynomials or kernel densities provide in a small sample.

3 Direct Comparison of Methodologies

3.1 A panel of Colombian manufacturing plants

Even though the calculations for each method differ substantially, they all intend to compare

output differences, while controlling for input differences, as in equation 1. It is therefore un-

certain how much the estimates will differ in practice. I evaluate the different methodologies

using a sample of manufacturing plants from Colombia. In this section, the productivity level

and growth estimates are compared directly. In the next section, estimates from all method-

ologies are used to revisit three debates that received a lot of attention in the development

economics literature.

The data comes from the annual census of manufacturing, which covers all active es-

tablishments, between 1977 and 1991. Only establishments that are classified in the ISIC

(Revision 2) 322 industry—Clothing and Apparel—at some point during the sample are in-

cluded.23 The sample is further limited by only including plants that operate for at least three

years, as many estimation methods need at least three observations per plant. This results

in an unbalanced panel of 14348 observations from 1957 plants with nonmissing information

on output, labor and capital input, wages, and investment. 8% of observations employ 10

or less employees, 13% employ 100 or more. More information about the data and variable

23This industry was chosen as plants are expected to be relatively homogeneous in technology and because
this sector has a large foreign exposure, which will be important in the debates. At the end of the sample
period, this industry accounts for 10% of manufacturing employment, 3% of value added, and 8% of exports.
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construction can be found in Roberts (1996). Table 1 contains some summary statistics.

[Table 1]

The output concept used is value added, defined as sales minus indirect costs and

material input. Labor input is total employment and capital input is the reported book value

of the plant and equipment. Value added is deflated with the same sectoral output deflator as

used in Roberts (1996). For capital, the capital goods deflator from the IMF Financial Tables

is used.

3.2 Estimation results

Productivity levels and growth rates are estimated using each methodology, under constant

and variable returns to scale. The table below summarizes the superscripts used for the

different estimation methods. The coefficient estimates for the production function parameters

index method (equation)

OLS Least squares estimation of VA on L and K (benchmark) (8)
IN Törnqvist Index with correction for returns to scale (6)
DEA Data Envelopment Analysis, pooling all years (3)
GMM GMM-SYS estimation of equation (9) (8)
SF1 Stochastic frontier, productivity as in equation (11) (8)
SF2 Stochastic frontier, productivity as in equation (12) (13)
OP1 Semiparametric, as in Olley and Pakes (1996) (8)
OP2 Estimation as in OP1, productivity calculated differently (14)

and comparable statistics for the Törnqvist index and DEA analysis are in Table 2.

[Table 2]

If constant returns to scale are enforced the parameter estimates are quite similar for the

different parametric methods. Relative to the OLS estimates, accounting for the simultaneity

bias lowers the labor coefficient and increases the capital coefficient, with the largest change
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for the GMM estimator. All estimates are very precise and standard errors are omitted.24

The index number and DEA calculations allow for heterogeneity in technology for different

observations. The average labor coefficients are substantially lower than with the parametric

methods. This might suggest that the corrections for the endogeneity of productivity in the

factor input choices that the parametric methods employ are only partially successful.

If returns to scale are estimated freely, the differences between the different method-

ologies become more pronounced. The OLS estimate of the labor coefficient increases slightly,

with no change for capital. This results in small, but significantly higher than unity, re-

turns to scale (RTS). The index number calculations use the RTS estimate from OLS for

all observations—as an exogenous estimate is needed.25 The DEA method finds remarkably

similar average RTS, but a relatively lower weight for capital. The weights vary less across

observations under VRS. The standard deviation of the labor weight across all observations

drops from 0.39 to 0.30.

The coefficient estimates with the parametric methods look altogether more trouble-

some. The adjustments for the endogeneity of productivity tend to reduced the labor coef-

ficient estimate more than the capital coefficient increases, relative to OLS. Returns to scale

are invariable estimated to be decreasing, which is unexpected for manufacturing plants in a

developing country. Such result are fairly common when the production function is estimated

in first-difference form (as in GMM) or with a full set of plant-dummies (as in SF2), see

Mairesse and Griliches (1998). With the other two methods, SF1 and OP, scale economies

are estimated closer to unity. One consistent finding is that the capital coefficient is relatively

more important than in the least squares or the CRS results, as expected.

24More detailed estimation results are available from the author upon request.
25Monte Carlo simulation results in Van Biesebroeck (2003c) show that OLS estimates RTS relatively accu-

rately when measurement error or the extent of simultaneity bias varies. The labor coefficient is overestimated,
but a corresponding underestimation of the capital coefficient leaves the sum largely unaffected.
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3.3 Productivity levels

A first way to compare the productivity estimates is to compare the dispersion they imply.

The first two columns in Table 3 contain the interquartile range under constant returns to

scale for each method. The median is normalized to zero by year. The ranges are very similar,

which is remarkable because the methods rely on very different calculations and assumptions.

Dispersion appears to be relatively large in Colombia. On average, only half of the firms have

a productivity level between 32% below and 35% above the median firm in the sample. The

two nonparametric methods, IN and DEA, allow for the technology to differ between plants

and they find intervals that are approximately 25% wider than for the parametric methods.

All methods find the distribution of productivity to be slightly skewed to the right. Even the

SF1 methodology finds this, while left-skewness is built in, as productivity is the sum of a

symmetric normal error and a “productivity” term with a negative half-normal distribution.

An underlying economic model with a frontier technology that firms aspire to (SF1) appears

to be less plausible than a model where firms are forced to exit when their productivity drops

below a threshold (OP), cutting off the lower tail of the distribution.

The one anomalous range is for the OP2 method. It deducts the random measurement

error from the OP1 results, to obtain a pure productivity estimate, while OP1 results reflect the

sum of productivity and measurement error (ω̂+ ε̂). The OP2 estimate should be interpreted

as the firm’s own estimate of its productivity level that it takes into account when choosing

its inputs. Idiosyncratic productivity shocks that are realized only after inputs are chosen will

show up in the OP1 estimates but not in OP2. The semiparametric approach suggests that

only a small part of the estimates that the other methods come up with can be identified as

true underlying productivity, while most of it is random error or idiosyncratic productivity

shocks.

The results under VRS generally confirm the previous findings. The methods that

estimated RTS to be very low (GMM and SF) and the DEA method see a substantial widening

of the interquartile range, with much smaller and mixed changes for the other methods. The

right-skewness also becomes more pronounced. Again, the interquartile range for OP2 is much

smaller than for the other methods, while the SF2 methodology—the only other method that
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explicitly purges the regression error from the productivity estimates—produces one of the

widest intervals.

[Table 3]

Another way to compare the methodologies is to look at the correlations between the

productivity level estimates. Table 4 contains the correlations both under CRS (in the bottom-

left) and under VRS (in the top-right). Only the OP2 calculations produce results that differ

substantially from the other methods. This could be expected from the previous discussion, as

it is really estimating something else. The OP2 method does generate the highest correlation

with the SF2 method, the only other one that subtracts measurement error, especially when

returns to scale are estimated freely.

The results imposing constant returns to scale produce more highly correlated produc-

tivity estimates than the variable returns results. Apart from the OP2 results, the lowest

correlation under CRS is 0.79. Even the DEA method, that leaves technology completely

unrestricted, produce highly similar estimates. The two nonparametric methods—DEA and

IN—produce results most alike each other. The parametric methods that use equation (8)—

OLS, GMM, SF1, OP1—are virtually indistinguishable under CRS.

Allowing scale economies or diseconomies generates more disparate measures, but even

then only correlation coefficients with OP2 are ever below 0.50. The SF2 results become less

highly correlated with the other methods, while the GMM method that estimates RTS equally

low still produces results that are very similar to other methods. While the index number

and DEA methods are still most alike each other, they still resemble the parametric results

remarkably well, even though the range of RTS estimated is quite large. The estimates from

the four parametric methods—omitting OLS—all produce correlation coefficients between 0.75

and 0.99.26

[Table 4]

26Spearman-rank correlations between the different methods are similar, but slightly lower for the stochastic
frontier estimates. Calculating the correlations separately by year, yields virtually identical results.
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3.4 Productivity growth

To compare the productivity growth estimates, Table 5 lists the unweighted and aggregate

input weighted averages for the entire sample. The period from 1977 to 1991 was a very

successful one for Colombian clothing plants. The average growth rate, across all methods

but OP2, is 6% per firm per year under CRS and 5.6% under VRS. By all standards, these

are very high numbers for total factor productivity growth. The two methods that take

out measurement error, SF2 and OP2, produce the lowest estimates, indicating that whatever

they subtract—measurement error or something else—was trending upwards. The unweighted

average growth rates are estimated very similar across methods, again omitting OP2, differing

by at most 0.6% under CRS and 1.5% under VRS.

A different pictures emerges when plants are weighted. The issue of correct weights in

aggregation is revisited below when aggregate productivity growth is decomposed. Using input

weights will generally lower the average, as plants that improve productivity most—those that

decreased input use relative to output—end up with low inputs and receive a low weight. The

reverse happens with output weights; plants with high output growth have, ceteris paribus,

high productivity growth and receive a higher weight. An advantage of denominator (input)

weights is that the average approximates the growth rate that one obtains from aggregate

input and output statistics. For labor productivity, aggregate growth is reproduced exactly.

An input aggregate is used as weight in Table 5.27

Under CRS, four parametric methods—OLS, GMM, SF1, OP1—see an almost equal

drop in average growth rate to 2.7% per year. Under VRS, they differ somewhat more, but

still experience a similar reduction in mean growth rate, on average to 3.5%. The two methods

that take out measurement error—SF2 and OP2—are less affected by weighting, both under

CRS and VRS. Moreover, they produce similar results under CRS and VRS. The results from

27An input-aggregate is calculated as follows:

θZ
it =

Zit∑N
j=1 Zjt

with Zit = Lα̂L
it Kα̂K

it
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IN and DEA differ to a greater extent, but that could be expected. These two methods allow

different input weights across plants when productivity is calculated, while the aggregate input

weight necessarily uses the same weights for all plants. When output weights are used they

generate similar results as the other methods (results available upon request). In sum, the

different methods paint a very similar picture about the average productivity growth that

these plants experienced.

[Table 5]

Finally, the correlations of productivity growth estimates between methods, follows the

pattern of the level correlations closely. The OLS, GMM, SF1, and OP1 methods produce vir-

tually identical results under CRS. Only the GMM method produces slightly different results

under VRS—recall the very low estimate for RTS—, but even then correlation coefficients are

around 0.95. The DEA and IN methods still resemble each other most, but produce results

that are very close to the parametric results as well. The differences in input coefficients are

swamped by the huge differences in output and input growth rates across firms. The OP2

results are hardly correlated with any other method. The part of productivity known to the

firm is more stable than the productivity growth that other methods come up with, see results

in Table 5. The changes are likely to be swamped by idiosyncratic productivity shocks. The

growth estimates obtained by the SF2 method differ more from other methods than the level

estimated did. OP2 estimates are equally similar to the parametric as to the nonparametric

results.

[Table 6]

The results in Tables 5 and 6 suggest that the different methods are even more alike

when productivity growth rates are calculated than for productivity levels. Especially, the

similarity between the nonparametric and parametric results is remarkable.
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4 Three Debates

A completely different approach to evaluate how similar the productivity estimates are is to

investigate whether the answers to a number of debates are sensitive to the specific measure-

ment methodology used. I revisit three debates using each methodology and summarize the

Colombian experience.

4.1 Have exporters higher productivity levels?

Many studies have found that exporting plants have higher productivity, see for example

Bernard and Jensen (1995) and Aw, Chen, and Roberts (2001). The direction of causality, on

the other hand, is still debated. Some authors argue that the positive correlation is solely the

result of self-selection of the most productive producers into the export market, see Clerides,

Lach, and Tybout (1998) and Bernard and Jensen (1999). Others argue that there is a role

for learning-by-exporting effects. Firms that are exposed to foreign competition will benefit

and improve productivity, see for example Kraay (1999) and Van Biesebroeck (2003a).

Equally well established is the notion that exporters are larger than average firms.

This finding is robust across continents; evidence for the United States is in Bernard and

Jensen (1995), for Colombia in Roberts and Tybout (1997), and for Africa in Van Biesebroeck

(2003a). One benefit of exporting, especially in developing countries, is the ability to realize

scale economies. Tybout (2000) summarizes the evidence and concludes that scale economies

in the manufacturing sector of developing countries ranges from 1.05 to 1.1. It is an open

question, what percentage of the productivity advantage that exporters enjoy can be attributed

to their size.

I calculate the productivity premium for exporters under different assumptions on

returns to scale. If scale economies are present and exporters are larger, the productivity

effect associated with export status will be estimated higher under CRS. The export dummy

will soak up some of the scale effect because exporters are undeniably larger on average. If

the coefficient is unchanged when scale economies are estimated freely, size is immaterial in

explaining the export premium. The reduction of the export status coefficient if productivity
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is calculated allowing VRS can be interpreted as the part of the export premium that is

explained by scale effects.

Not surprisingly, the results in Table 7 are for a large part driven by the disparity

in returns to scale estimates. The statistics in the first column are coefficient estimates

on an export dummy in separate regressions. The dependent variable is log-productivity,

calculated under the CRS assumption, and a number of controls are included. All coefficients

are estimated to be positive and significantly different from zero. All parametric methods find

virtually the same productivity premium for exporters, on average 31%. The OP2 method

finds a smaller advantage in absolute value, but attributes to them a productivity premium

that would place the median firm above the 75th percentile in the productivity distribution.

The two nonparametric methods—IN and DEA—estimate a substantially lower pro-

ductivity premium. Recall that these methods allow different input coefficients for different

plants. Previous studies have shown that exporters are not only larger, they also produce with

a larger capital stock per employee. Given that only few plants export, 9% in this sample,

the estimated input coefficients for the parametric methods are more representative of non-

exporters’ production plans. Properly accounting for the higher capital intensity of exporters

explains more than half of the estimated productivity advantage, reducing it to 13%.

All coefficients remain positive and significant when returns to scale are allowed to

vary, but the results vary a lot by method. The OLS results are consistent with our prior.

The larger size of exporters and the estimated increasing returns to scale combine to reduce

the productivity premium estimate by almost one quarter. The index numbers, on the other

hand, estimate a larger productivity premium under VRS, even though returns to scale are

increasing. The DEA result, which allow firm specific scale economies as well as input weights,

finds a very high productivity premium for exporters. Finally, the parametric methods found

decreasing scale economies, which lead them to interpret the larger size of exports as even

higher productivity advantages. For the GMM and SF1 results, the implausibly low estimates

for scale economies lead to implausibly high productivity premiums for exporters.

In the third and fourth column of Table 7, I use lagged instead of contemporaneous

export status in an attempt to control for the self-selection of more productive plants into the
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export market. Unfortunately, the large persistence in export status, potentially due to sunk

export costs as argued in Roberts and Tybout (1997), makes it a a weak control at best.28

With few exceptions, the productivity premium only drops slightly. Rather than addressing

the tricky question of causality, I would like to draw attention to the similarity in the changes.

Every coefficient estimate decreases by a small amount, 1.1 to 4.3%, which is very similar

across methods. The only instances where the productivity premiums increase are for the

two methods that subtract the error term—SF2 and OP2. Self-selection of plants into the

export market due to idiosyncratic productivity shocks is consistent with a higher productivity

premium for current relative to lagged export status for the other methods and not for these

two.

Results in the last two columns of Table 7 add the share of sales exported to the equa-

tion. It reveals that the productivity premium exporters enjoy is certainly not proportional to

the amount of exporting they do. Higher export shares are associated with correspondingly

lower productivity premiums. Again, the results are very consistent across methods. It mir-

rors findings for Colombia in Isgut (2001) and contrasts with the positive estimates previous

studies have found for the U.S. and Germany.

In sum, all methods find that exporters are more productive and that the productivity

advantage cannot be explained solely by scale economies. The extent to which the premium

is due to scale economies, on the other hand, is sensitive to the specific method used to

estimate productivity. The results also suggest that assuming all plants produce with the

same technology, in particular that they face the same capital-labor tradeoff, is likely to lead

to an overestimate of the productivity premium for exporters.

[Table 7]

28The correlation between lagged and current export status is 0.76.
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4.2 What brings about technological change?

The main trust of the growth model in Solow (1956) was that long term per capita growth can

only come from technological change. The source of technological change was left unspecified,

exogenous to the model. Capital accumulation can only increase output in the transition

to the long run, until it runs out of steam because of diminishing marginal return. In later

developed endogenous growth models, e.g. Romer (1986), the additional knowledge is created

endogenously in the economy by profit maximizing firms. Jones (1995) tests the endogenous

growth model using U.S. data, but did not find support for it.

In developing countries, the amount of domestic R&D is negligible. The main engines

of growth that researchers have investigated are improvements in physical and human cap-

ital and imported knowledge from more advanced economies. While capital accumulation

cannot account for long term economic growth, it can be the vehicle for embodied technical

change to enter the economy. Computers are often thought to perform this task in developed

countries, see Brynjolfsson and Hitt (2003) for recent evidence. In developing countries, im-

ported machinery is often important. Tybout (2000) summarizes some of the evidence. Many

factors are found to have a positive correlation with the productivity level. Foreign owned

plants and exporters are more productive; firms that employ many engineers, scientist, and

technical workers are more productive; high rates of investment in fixed equipment improves

productivity, see De Long and Summers (1991) for an influential investigation at the aggregate

level.

While in the long run the effects on productivity growth are more important than level

effects, they have also proven to be more elusive. The correlation of many variables with the

level of productivity can be misleading as it might simply capture differences in input quality.

Productivity growth comparisons are less susceptible to this criticism. In Table 8, the growth

effects of international exposure is investigated. In Table 9, the same exercise is performed

for different measures of human and physical capital investment. In both tables, the average

growth rate of a plant over the entire period it is active is regressed on a dummy variable.

Each coefficient is estimated in a separate regression.

In Table 8, only the export dummy consistently has some explanatory power. Plants
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that export improve their productivity at a faster rate, regardless of the measurement method-

ology used. On average they record 2% higher productivity growth, which is significantly

different from zero for the parametric methods. The effect of the export dummy is often

interpreted as a spillover effect. Competing with foreign firms for business or having to satisfy

demanding foreign clients exposes firms to best practice methods and forces firms to improve

their own production technology. How this happens is generally not specified. It was discussed

before that firms with a high productivity level might self-selected into the export market. It

cannot be ruled out that firms with high productivity growth self-select similarly.

Productivity improvements does not seem to happen through more advanced inputs,

foreign workers, or direct payments for new technology. These other characteristics are not in-

formative, producing ambiguous and mostly insignificant effects. Paying royalties, importing

inputs, or employing foreign workers have a negative, if any, impact on productivity growth.

This is consistent with the model in Acemoglu and Ziliboth (2001). They show that many

technologies used in developing countries are developed in OECD countries and are inappro-

priate for the local mix of skills. Having access to new technologies will not suffice to improve

productivity in developing countries.

[Table 8]

The results in Table 9 look more promising. The first columns indicate that investments

in new production or office equipment (physical capital) tends to increase productivity growth.

Each dummy is defined to take on the value of one for one third of the plants: in the first

column, for the third of plants with the highest average investment as a percentage of capital

stock (i.e. plants whose yearly investments average at least 17% of their capital stock); in the

second column, for plants with the highest one-year investment spike (higher than 60%); in

the third column, for plants that made investments most frequently (at least 70% of the years

that they were active). The results indicate that it is more important to invest frequently

than investing a lot. For most methods, frequent investments are strongly correlated with high

productivity growth. Plants that make frequent investments are rewarded with 2.3% higher

productivity growth, on average. The results for high average or peak investments tend to

confirm this finding, but with some exceptions and the effects are uniformly smaller.
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The last three columns in Table 9 hint at a human capital effect. The “managers”

column contains the coefficient of a regression of average productivity growth on a dummy

that takes on the value of one if the plant is in the top one-third of plants in terms of the share

of managers in total employment. All but one coefficients are positive and five are significantly

different from zero. The results are also fairly homogeneous. The parametric methods point

to a 2% productivity growth advantage, while the nonparametric methods do not find any

effect. A glance at the last two columns reveals that the results completely disappear or

even turn negative for the other two worker categories that would be associated with high

levels of human capital. The other, omitted, worker categories are owners not paid a fixed

wage, unskilled workers, and apprentices. It is noteworthy that the average salary difference

between skilled and unskilled workers are very small. The skilled denomination might not

proxy human capital differences very well.

While few variables are consistently associated with above average productivity growth,

the different methods are in in close agreement. Export status, frequent investments, and a

high fraction of managers in the workforce are associated with high growth. While the effects

are rarely significant, paying royalties, employing foreign, high skilled, or technical workers,

is associated with lower growth.

[Table 9]
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4.3 What drives aggregate productivity growth?

A final debate concerns the decomposition of aggregate productivity growth into the contri-

bution of plant-level changes in productivity and the reallocation of input or output shares

between plants. Obviously, the aggregate productivity level increases if individual plants be-

come more productivity. At the same time, it is possible for aggregate productivity to increase

without any plant-level productivity growth, if inputs are moved from plants with a below

average productivity level to plants with above average productivity. The question is then:

which of the two effects is most important in practice?

To my knowledge, the first decomposition using the universe of plants was performed

by Baily, Hulten, and Campbell (1992) for the United States. Haltiwanger (1997) introduced

an improved formula for unbalanced panels with an extra covariance term:

∆TFPt = TFPt − TFPt−1 =
stay, enter∑

n=j,k

θnt TFPnt −
stay, exit∑

m=j,l

θmt−1 TFPmt−1

=
stay∑

j

[
θjt−1 ∆TFPjt + ∆θjt (TFPjt−1 − TFPt−1) + ∆θjt ∆TFPjt

]

+
enter∑

k

θkt (TFPkt − TFPt−1) −
exit∑

l

θlt−1 (TFPlt−1 − TFPt−1). (15)

TFPit is the logarithm of productivity calculated using the different methods introduced be-

fore, without the normalization. Aggregate productivity growth is defined as TFPt−TFPt−1,

the difference between the aggregate productivity levels, which are defined as
∑

i θiτTFPiτ .

Plants that stayed in the sample from t− 1 to t are indexed by j. Their contribution is split

into three terms. The first term measures the total effect of plant-level productivity changes,

weighted by the initial share. The second term captures the reallocation effect; it sums changes

in shares using a plant’s productivity relative to the average productivity level in the initial

period as weight. If a plant with above average productivity becomes larger, the contribution

will be positive. The third term captures the covariance between the plant-level growth and

reallocation. In the original decomposition by Baily, Hulten, and Campbell (1992) the covari-

ance term was lumped with the reallocation term, even though it captures both within plant

and between plant effects. Plants that enter in t are indexed by l and contribute positively if
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they have higher productivity than the aggregate in the previous period. Plants that are last

observed in the sample in t− 1 are indexed by k and their contribution is subtracted.

Most studies have used output-weights. Bartelsman and Dhrymes (1998) correctly

point out that it is more intuitive to use an input aggregate as weight.29 For labor productivity,

weighing individual measures by labor shares exactly reproduces aggregate productivity.30 For

TFP, it is still impossible to reproduce the aggregate from the individual measures.31

Baily, Hulten, and Campbell (1992) concluded that the bulk of growth in aggregate

TFP was accounted for by reallocation of output shares. More productive plants gradually

capture a larger market share. Alternatively, Bartelsman and Dhrymes (1998) plot aggregate

TFP growth against the simple average of plant-level TFP growth for the same sample. They

find that the unweighted average is almost constant over time, while the weighted average

increases substantially and also conclude that reallocation effects dominate. The modified

decomposition by Haltiwanger (1997) revealed that it was the covariance effect that was re-

sponsible for the reallocation effect. The comparison with the Colombian results from Tybout

and Liu (1996) should be done cautiously as they used the old decomposition, input-weights,

and looked at year by year changes. The positive contribution of the combined term might

mask a negative between effect and a positive covariance.

New results for the Colombian textile industry, using aggregate input weights, are in

Table 10. The first column contains the cumulative change in aggregate productivity level

over the 1977-1987 period, calculated using the productivity estimates from each method,

enforcing constant returns to scale. The next five columns decompose the aggregate into the

five terms of equation (15). Comparable results using output weights are in Table 11.

The index numbers results were omitted, because the heterogeneity of technology makes

29 θZ
it =

Zit∑
j Zjt

, with Zit = Lα̂L

it Kα̂K

it .

30 LPt =
∑

i Qit∑
i Lit

=
∑

i

( Lit∑
j Ljt

)Qit

Lit
=

∑
i

θL
itLPit

31Aggregate productivity is calculated as TFPt =
∑

i
Qit(∑

i
Lit

)α̂L(∑
i
Kit

)α̂K , while the sum of input-weighted

plant-level productivity produces TFP ∗
t =

∑
i
Qit∑

i

(
Lα̂L

it
Kα̂K

it

) . The two formulas differ by the order of summation

and geometric weighting.
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Country Period Total Within Between Covariance Net entry

(1) U.S. 1977-87 10.7 5.8 -1.1 4.0 2.0
1977-82 2.4 -0.3 -1.3 3.5 0.4
1982-87 8.3 4.8 -1.4 3.9 1.0

(2) Colombia 1977-86∗ 1.0 1.0 1.0 -1.0
1977-82∗ -4.4 -2.5 0.3 -2.3
1982-86∗ 5.4 3.5 0.7 1.3

(1) Haltiwanger (1997); all industries; output weights
(2) Tybout and Liu (1996); all industries; aggregate input weights.
∗ sum of year-by-year changes.

it impossible to fit them in the decomposition formula. To make the different terms sum up,

productivity growth at the plant level should be redefined, because it is not simply the log

difference between the productivity level estimates. Even that fix would be inappropriate

because input weights differ by firm and are year specific. The resulting productivity level or

growth comparisons would not be not invariant to the unit of measurement, e.g. measuring

the capital stock in pesos or thousands of pesos would produce different results.

In both tables, the results are remarkably similar for all but one method. The OP2

method produces different results, but we know from before that it measures a different

concept. It is no surprise that it generates different findings when we disentangle within

and between firm effects. In the bottom rows, the same decompositions are performed for

labor productivity. Here, input (labor) weights are clearly preferable. The results mirror the

findings for total factor productivity very closely.

Using input weights, in Table 10, the majority of the cumulative change in aggregate

productivity is caused by changes at the plant level. All methods produce very similar num-

bers, around 29% or between two thirds and three quarters of the total changes comes from

within plant changes. The second most important effect, by far, is the entry of more pro-

ductivity plants into the economy. Note that they are not necessarily more productive at the

time of entry. They enter some time between 1977 and 1987. Conditional on surviving till the

end of the period, they are more productive than the average plant was in 1977. All methods

estimate the importance of entry between 40% and 50% of the total effect. These findings
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confirm the importance of net entry for the U.S. when a longer time horizon is considered.

They contrast with U.S. result in Haltiwanger (1997) on the plant level effects. However, a

recent study on the U.S. textile industry finds a similar importance of within plant changes,

see Levinsohn and Petropoulos (2001).32

The other three terms have uniformly negative and much smaller contributions. Inputs

tend to flow from more to less productive plants and this effect is most pronounced for the

labor productivity growth decomposition. Plants that tended to employ a lot of workers in

1977 for the output they produced and that survived till the end employ even more workers

in 1987. Plants that exited between 1977 and 1987 were on average more productive than

the average plant in 1977 and their exit lowers productivity growth. This is in contrast with

findings for other, more developed, countries. The market in Colombia does not seem to

do a good job wielding out less efficient producers. Because the exit effect is smaller than

the entry effect, net entry contributes positively to aggregate growth. Finally, the covariance

term is relatively unimportant and negative for all methods except OP2. Plants that improve

productivity tend to reduce their input share and plants that deteriorate tend to increase

their share in input use. It indicates that outputs and inputs move in opposite directions

or that input changes dominate output changes. A positive contribution is only possible if

higher input use is accompanied by even more rapid output growth or if a declining input

share leads to negative productivity growth because output declines more than proportionally.

Both phenomena are not very common. Comparison with the U.S. has to wait, because it

really matters which weights are used for the covariance term.

[Table 10]

Using output weights, in Table 11, the results only differ substantially for the covariance

term. The results from each method are equally close. Only the OP2 method produces

anomalous results, as before, and won’t be discussed further.

Aggregate growth is estimated slightly lower for every method. The contribution of

plant-level changes and net entry are still the two most important effects. The within plant

32Because the different terms fail to sum to aggregate productivity growth, I did not include these results
in the table above.
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component is slightly less important, on average accounting for 62% instead of 73% of the

total growth, while the entry effect is more pronounced, contributing 54% versus 45% of the

total.

The negative between component indicates that surviving low productivity plants grab

a larger share of the market in 1987 than in 1977. It can be indicative of markets failing to

allocate resources efficiently or it can capture plants converging to the industry average. In

the period from 1977 to 1987, the economy was liberalized and deregulated substantially. The

production index for the textile sector increased by only 7.5%, while the average was 37% and

a third of all three digit industries saw output jump by more than 50%. The exit term still

contributes negatively to aggregate growth. Plants that exit had above average productivity

level in 1977. Note that a firm exits the sample only if it does not show up anymore in the

census, not if it changes industry. Net entry is still positive, but uniformly smaller than using

input weights.

Finally, the one term that changed most is the covariance term. The correlation be-

tween productivity growth and output growth is positive. Plants that improve productivity

also increase their output share; or, alternatively, plants that deteriorate productivity lose

market share. Market share does not increase for plants that were above average productive

last period, but it does increase for plants that increased their productivity over the period.

This is consistent with all inputs remaining put, and output alone shifting. As were the results

in Table 10 consistent with solely inputs moving between plants without any output changes.

In reality, both output and input shares change and each decomposition stresses one of the

two effects. The contribution of the covariance term is estimated to be just over 10% with

each methods.

[Table 11]

In both tables, the different methods produce very similar results. The choice of

weights turns out to be more important for the results than the choice of estimation method

for productivity.
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5 Lessons

To conclude, in response to the question “Does it matter which method we use to estimate

productivity,” I answer with a qualified no. Only the method that calculates a distinct under-

lying concept—OP2—produces different productivity level and, especially, growth estimates.

The only other method that explicitly takes out random measurement error—SF2—also pro-

duces somewhat different estimates (except for productivity levels enforcing constant returns

to scale). Correlations, interquartile ranges, and averages are very close for all other methods.

Even the deterministic DEA and index number approaches generate similar results.

I reach the same conclusion when revisiting the three productivity debates. The choice of

estimation method for productivity is largely immaterial to the conclusions reached.

• Exporters have higher productivity using each method. The extent to which this is due

to scale economies, on the other hand, differs tremendously by method, as the returns

to scale are estimated very low for some parametric methods.

• The association between productivity growth and foreign exposure is weak at best. It

is positive for exporters, possibly due to self-selection, but all other foreign exposure

dummies have no or a negative impact on productivity growth, using each method. The

association between productivity growth and human or physical capital investments is

slightly stronger. Most methods find a positive and significant effect from frequent

capital investments and the presence of many managers.

• Using input or output weights, all methods except OP2 find large and positive con-

tributions of plant-level changes and net entry on aggregate productivity growth. The

between firm component is negative, while the sign and interpretation of the covariance

term depends on the weights. Again, all methods except OP2 result in extremely similar

decomposition results.
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Figure 1: Decomposing shifts along the frontier from a shift of the frontier
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Table 1: Summary statistics for the sample of manufacturing plants in Colombia

mean standard 5th median 95th
deviation percentile percentile

Number of observations 14348
Number of plants 1957
Number of years 9.42 4.13 3 9 15

Value added 4007 30575 201 971 10511
Employment 66 141 9 30 213
Capital (in % of VA) 0.38 1.05 0.02 0.18 1.07
Investment (in % of VA) 0.09 0.31 0.00 0.01 0.38
Wage share (in % of VA) 0.55 0.22 0.20 0.54 0.86

Output growth 0.04 0.52 -0.68 0.05 0.73
Employment growth -0.01 0.36 -0.51 0.00 0.44
Capital growth -0.03 0.56 -0.54 -0.18 0.96

Table 2: Coefficient estimates for the production function

CRS VRS
αl αk αl αk RTS

OLS 0.83 0.17 0.89 0.17 1.06
IN1 0.55 0.45 0.58 0.48 1.06
DEA2 0.57 0.43 0.72 0.32 1.04
GMM 0.71 0.29 0.21 0.24 0.45
SF1 0.80 0.20 0.68 0.17 0.85
SF2 0.76 0.24 0.32 0.09 0.41
OP 0.75 0.25 0.74 0.18 0.92
1 Average revenue share multiplied by RTS
2 Average percentage weight multiplied by RTS
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Table 3: Interquartile range for productivity levels

CRS VRS
25th % 75th % 25th % 75th %

OLS -0.289 0.332 -0.279 0.324
IN -0.384 0.415 -0.364 0.400
DEA -0.387 0.385 -0.500 0.525
GMM -0.318 0.350 -0.487 0.550
SF1 -0.293 0.332 -0.328 0.370
SF2 -0.287 0.313 -0.479 0.554
OP1 -0.306 0.339 -0.304 0.348
OP2 -0.047 0.050 -0.052 0.084

Table 4: Correlations between productivity level estimates

CRS \ VRS OLS IN DEA GMM SF1 SF2 OP1 OP2
OLS 1 0.82 0.70 0.70 0.94 0.59 0.97 0.16
IN 0.81 1 0.87 0.70 0.80 0.50 0.82 -0.02
DEA 0.83 0.96 1 0.87 0.82 0.71 0.79 0.14
GMM 0.97 0.91 0.93 1 0.90 0.93 0.84 0.51
SF1 1.00 0.83 0.85 0.98 1 0.81 0.99 0.36
SF2 0.89 0.79 0.81 0.90 0.90 1 0.75 0.61
OP1 0.99 0.88 0.90 1.00 0.99 0.90 1 0.30
OP2 0.20 0.19 0.17 0.22 0.21 0.22 0.21 1

42



Table 5: Weighted and unweighted productivity growth averages

CRS VRS
unweighted weighted by unweighted weighted by

average aggregate input average aggregate input
OLS 0.060 0.029 0.061 0.026
IN 0.057 0.007 0.056 0.005
DEA 0.063 0.009 0.061 0.024
GMM 0.062 0.026 0.052 0.043
SF1 0.060 0.029 0.057 0.037
SF2 0.058 0.037 0.046 0.043
OP1 0.061 0.028 0.058 0.033
OP2 0.013 0.012 0.029 0.017

Table 6: Correlations between productivity growth estimates

CRS \ VRS OLS IN DEA GMM SF1 SF2 OP1 OP2
OLS 1 0.90 0.83 0.90 0.99 0.50 1.00 0.03
IN 0.90 1 0.93 0.92 0.92 0.50 0.91 0.01
DEA 0.92 0.96 1 0.95 0.88 0.51 0.87 0.01
GMM 0.99 0.94 0.96 1 0.95 0.57 0.93 0.05
SF1 1.00 0.90 0.93 0.99 1 0.54 1.00 0.04
SF2 0.53 0.51 0.51 0.53 0.53 1 0.53 0.06
OP1 1.00 0.93 0.95 1.00 1.00 0.53 1 0.03
OP2 0.08 0.17 0.17 0.13 0.09 0.09 0.12 1
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Table 7: Productivity premiums for exporters

export dummy lagged export dummy exp. dummy exp. share
CRS VRS CRS VRS CRS

OLS 0.352 0.273 0.327 0.247 0.410 -0.055
IN 0.137 0.159 0.094 0.118 0.194 -0.054
DEA 0.127 0.512 0.083 0.468 0.191 -0.061
GMM 0.273 0.989 0.239 0.978 0.332 -0.056
SF1 0.337 0.545 0.311 0.526 0.395 -0.056
SF2 0.295 1.116 0.282 1.140 0.332 -0.035
OP1 0.298 0.448 0.268 0.426 0.357 -0.056
OP2 0.080 0.206 0.093 0.229 0.084 -0.004

OLS coefficients in separate regressions of productivity levels on an export dummy and export
share with time, industry, and location dummies. All coefficients are significant at the 1% level.

44



Table 8: Productivity growth premiums for foreign exposure dummies

exporter royalties paid imported inputs foreign workers

Fraction 0.16 0.07 0.10 0.02

OLS 0.027∗∗ -0.023 0.011 -0.050
IN 0.001 -0.019 0.011 -0.039
DEA 0.008 -0.021 0.002 -0.058
GMM 0.036∗∗ -0.029∗ -0.003 -0.051
SF1 0.032∗∗ -0.025 0.006 -0.050
SF2 0.019 -0.047∗ -0.016 -0.087∗

OP1 0.030∗∗ -0.025 0.008 -0.050
OP2 0.006∗ -0.007 -0.004 0.002

OLS coefficients of productivity growth an foreign exposure dummies (separately).
**=significant at 5% level, *=at 10% level

Table 9: Productivity growth premiums related to physical or human capital investment

physical capital investments human capital intensity
average high frequent managers high skill technical

OLS 0.008 0.005 0.019∗∗ 0.020∗∗ -0.011 -0.005
IN -0.012 -0.027∗∗ 0.009 -0.006 -0.044∗∗ 0.004
DEA 0.006 -0.009 0.024∗∗ 0.001 -0.050∗∗ -0.005
GMM 0.034∗∗ 0.022∗∗ 0.044∗∗ 0.012 -0.024∗∗ -0.003
SF1 0.020∗ 0.014∗ 0.030∗∗ 0.019∗∗ -0.013 -0.005
SF2 0.049∗∗ 0.023∗ 0.035∗∗ 0.039∗∗ -0.025∗ -0.034∗∗

OP1 0.016∗ 0.010 0.026∗∗ 0.019∗∗ -0.013 -0.005
OP2 -0.004 0.000 -0.003 0.009∗∗ 0.001 -0.004

OLS coefficients of productivity growth an investment dummies (separately).
Each dummy is equal to one for 1/3 of all plants.
**=significant at 5% level, *=at 10% level
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Table 10: Productivity growth decompositions using aggregate input weights (1977-1987)

Total growth Within Between Covariance Entry - Exit
OLS 0.384 0.290 -0.016 -0.025 0.158 -0.023
DEA 0.456 0.298 0.014 -0.071 0.225 -0.008
GMM 0.419 0.296 -0.006 -0.029 0.185 -0.027
SF1 0.391 0.291 -0.015 -0.025 0.163 -0.024
SF2 0.413 0.261 -0.023 -0.015 0.185 0.004
OP1 0.408 0.294 -0.010 -0.026 0.176 -0.026
OP2 -0.118 -0.039 0.015 0.036 -0.085 -0.016
LP 0.324 0.289 -0.022 -0.046 0.116 -0.014

LP is the logarithm of labor productivity (value added over employment).

Table 11: Productivity growth decompositions using output weights (1977-1987)

Total growth Within Between Covariance Entry - Exit
OLS 0.323 0.217 -0.055 0.103 0.172 -0.115
DEA 0.387 0.175 -0.060 0.108 0.198 -0.034
GMM 0.355 0.212 -0.057 0.106 0.191 -0.096
SF1 0.329 0.216 -0.055 0.104 0.176 -0.111
SF2 0.368 0.198 -0.061 0.105 0.217 -0.090
OP1 0.345 0.214 -0.056 0.105 0.185 -0.102
OP2 -0.170 -0.027 -0.011 0.026 -0.092 -0.066
LP 0.275 0.224 -0.052 0.100 0.145 -0.141

LP is the logarithm of labor productivity (value added over employment).
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