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ABSTRACT

There are tremendous across-plant differences in measured productivity levels, even within narrowly

defined industries. Most of the literature attempting to explain this heterogeneity has focused on

technological (supply-side) factors. However, an industry’s demand structure may also influence

the shape of its plant-level productivity distribution. This paper explores the role of one important

element of demand, product substitutability. The connection between substitutability and the

productivity distribution is intuitively straightforward. When industry consumers can easily switch

between suppliers, it is more difficult for relatively inefficient (high-cost) producers to profitably

operate. Increases in product substitutability truncate the productivity distribution from below,

implying less productivity dispersion and higher average productivity levels in high-substitutability

industries. I demonstrate this mechanism in a simple industry equilibrium model, and then test it

empirically using plant-level data from U.S. manufacturing industries. I find that as predicted,

product substitutability – measured in several ways – is negatively related to within-industry

productivity dispersion and positively related to industries’ median productivity levels.
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Empirical explorations into the productivity levels of individual producers have 

consistently found large heterogeneity across plants.  Perhaps surprisingly, a great amount of 

productivity variation between plants is observed within what may seem to be narrowly defined 

(e.g., four-digit SIC) industries.  Table 1 shows statistics that demonstrate this dispersion.  Using 

plant-level data from the 1977 Census of Manufactures, I compute productivity distribution 

moments for four-digit manufacturing industries for each of four different productivity 

measures.1  As can be seen in the first numerical column, the average within-industry 

interquartile range of logged plant-level labor productivity values is roughly 0.66.  This 

corresponds to a nearly 2-to-1 ratio in value added per labor unit (employee or employee-hour) 

between the 75th and 25th-percentile plants in an industry’s productivity distribution.  Bear in 

mind that these differences are observed when restricting attention to the middle half of the 

distribution; including more of the tails amplifies intra-industry heterogeneity.  The average 90-

10 and 95-5 percentile productivity ratios within industries are over 4-to-1 and 7-to-1, 

respectively.  Factor intensity variations are not solely responsible for these large differences, 

either.  Intra-industry total factor productivity differences, while smaller, are still sizeable.  The 

values in the bottom half of Table 1 indicate average interquartile total factor productivity (TFP) 

ratios between 1.34-to-1 and 1.56-to-1, depending on the measure.  It is important to note that 

the heterogeneity observed here is a persistent phenomenon.  Empirical studies using other (but 

perhaps less comprehensive) cross sections have found similar within-industry productivity 

differences. 

A host of theoretical work has arisen in an attempt to explain the sources of this 

dispersion.  The great majority of this research focuses on supply-side/production explanations, 

such as technology shocks, management skill, R & D, or investment patterns.2  While these 

proposed explanations are undoubtedly important, I contend that demand-side (output market) 

conditions can also play an important role in explaining persistent productivity dispersion.  I 

focus in this paper on the influence of one demand characteristic—product substitutability—on 

the equilibrium plant-level productivity distribution within an industry. 

An obvious question arising from the above facts regards how such wide productivity 

                                                 
1 Details regarding the data and methods used to construct plant-level productivity values will be discussed below. 
2 Bartelsman and Doms (2000) review much of this literature. 
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dispersion can exist in equilibrium.  One might expect a long-run tendency for industry output to 

be reallocated to more productive plants.  They can produce output at lower cost than industry 

rivals and grab additional market share by undercutting their opponents’ prices without 

sacrificing profits.  If this process were to continue unabated, industry equilibrium would 

expectedly be characterized by a degenerate plant-level productivity distribution within the 

industry; all operating plants would share the same (highest possible) productivity level. 

The above evidence suggests something impedes this reallocation process, at least 

partially.  Imperfect product substitutability seems a likely candidate.  It prevents industry 

customers from costlessly (in either a budgetary or utility sense) shifting purchases between 

industry producers.  Thus more efficient (lower cost) plants cannot lure away all demand from 

their less efficient industry rivals simply with lower prices, and lower-productivity 

establishments are able to stay in business despite their cost disadvantage.  As a result, the 

equilibrium productivity (cost) dispersion in an industry should be related to the extent of 

product substitutability.  Industries with very segmented (in either geographic or product space) 

output markets can support large productivity differences, even in a long-run equilibrium.  

Conversely, high-substitutability industries should exhibit little dispersion.  Further, since the 

productivity truncation only affects the low end of the distribution, greater substitutability 

implies higher central tendency in an industry’s productivity distribution.3 

Product substitution barriers are manifold.  Transport costs prevent costless switching 

among suppliers even when industry products are otherwise identical.  In the manufactured ice 

industry (SIC 2079), for example, it is unlikely that the physical characteristics of output vary 

much from plant to plant.  However, the obvious transport barriers make manufactured ice in one 

locale an imperfect substitute for the same product in another.  High-productivity plants would 

be unable to take market share from their less efficient industry cohorts given sufficient distance 

between them, supporting a range of productivity levels in equilibrium. 

Physical product differentiation also limits substitutability.  Idiosyncratic consumer 

                                                 
3 This raises questions about why even those producers protected from competition by imperfect substitutability 
would not seek to maximize efficiency.  An implicit (and I believe reasonable) assumption underlying the intuitive 
premise of the paper is that improving productivity is not costless.  The model below, as several models used in other 
contexts do, makes this stark by assuming that this cost is infinite; a producer’s productivity draw is permanent and 
unchangeable.  The assumption is not likely to be key to the results, however.  One could introduce a costly 
productivity-improving technology and still obtain the same qualitative implications.  In many theoretical 
frameworks, producers would have greater incentive to undertake productivity-enhancing investment when high 
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preferences across attributes allow some producers to remain viable even if they are less 

physically efficient than their industry counterparts.  Plants producing niche-market specialty 

products may often have higher per-unit costs than industry competitors who focus on mass 

production.  However, niche producers can survive (and indeed thrive) if their product 

characteristics appeal to certain purchasers. 

Branding and advertising can also lead to consumers perceiving physically identical 

products as being less than perfectly interchangeable.  The classic example of name-brand bleach 

fetching a higher price than chemically identical generic alternatives is illustrative of this.  

Sufficient brand identity would allow a producer to operate even in the face an efficiency gap 

between itself and its industry competitors. 

Real or perceived differences in services bundled with products, such as delivery speed, 

documentation, and product support, can also contribute to imperfect output substitutability.  

Finally, an array of intangible factors such as specific history-laden relationships between 

producers and their customers, interpersonal customer-manager interaction, and other assets of 

goodwill make costless substitution of another manufacturer’s output impossible. 

Alone or in combination, these factors allow productivity differences to persist among 

industry producers.  Expectedly, as these substitutability factors vary across industries, certain 

moments of the productivity distribution should fluctuate in concert.  Table 1 summarizes the 

substantial across-industry variance in plant-level productivity distribution moments.  The 

between-industry standard deviation of within-industry interquartile productivity ranges (that is, 

the dispersion of productivity dispersion) is roughly one-third of the mean within-industry 

interquartile range.  Similarly, the standard deviations of the wider intra-industry productivity 

ranges are roughly one-fourth of their means.  Across-industry differences in plant productivity 

distributions are not restricted to second moments; within-industry median TFP levels have an 

across-industry coefficient of variation of 0.20. 

The objective of this paper is to test if product substitutability differences are linked with 

the observed variation in these moments.  Specifically, I test the notions forwarded above: that 

greater product substitutability should be correlated with less productivity dispersion and higher 

central tendency in industries’ plant-level productivity distributions. 

                                                                                                                                                             
product substitutability exposes them to intense competition. 
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This paper is a broadly-focused complement to Syverson (2001).  That study explores the 

effect of exogenous differences in output substitutability within an industry (ready-mixed 

concrete) on the dispersion and central tendency of productivity distributions in local concrete 

markets.  The results therein suggest that increased geographic barriers to substitution (lower 

demand and plant density in the concrete industry’s case) lead to greater productivity dispersion 

and lower average productivity levels in the market.  By exploiting substitutability variation 

within a given industry, that study holds constant many possible confounding influences on local 

productivity distributions.  Its limited scope, however, makes generalizing the link between 

substitutability and productivity distribution moments (and thus the utility of drawing 

implications for aggregate production behavior) slightly more tenuous.  The goal of the present 

paper is to test if this link holds more broadly across the economy.4 

Differences in industry plant-level productivity distributions and their causes are of 

obvious interest to those interested in competition and production within industries.  Moreover, 

as Basu and Fernald (1997) as well as others have pointed out, reallocation of production across 

industries with differing technological characteristics can be an important source of changes in 

aggregate production data.  Therefore addressing issues regarding these across-industry 

differences could yield insights about aggregate productivity movements as well. 

I show in the next section the link between the shape of the productivity distribution and 

product substitutability (as well as some technological parameters) in a simple model of entry 

and competition within an industry.  I go on to test the predictions of the model and its 

extensions by collecting measures of product substitutability within industries and comparing 

variations in these factors to moments of industries’ plant-level productivity distributions.  These 

productivity moments are computed from data from roughly 200,000 establishments from the 

U.S. Census of Manufactures.  To preview the results, I find that within-industry productivity 

dispersion (central tendency) does indeed tend to decrease (increase) when substitutability is 

high.  These results hold even after controlling for several other plausible causes of 

heterogeneity and appear robust to empirical modeling specifications.  Furthermore, proxies for 

characteristics of industry technologies (fixed operating costs and sunk entry costs specifically) 

                                                 
4 In a recent paper using data from 2300 firms in East Asia, Hallward-Driemeier, Iarossi, and Sokoloff (2002) find 
some evidence of a broad-based link between productivity dispersion and the level of market “integration,” which 
they define as consisting in part of factors such as transport costs and product differentiation. 
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are also related to industries’ plant-level productivity distribution moments in directions 

predicted by theory. 

 

I. Theoretical Motivation 
 I formalize the above intuition using a theoretical framework where heterogeneous-

productivity producers compete in an industry product market with (possibly imperfect) 

substitution across producers’ outputs, which are varieties of the industry product.  The model 

allows the equilibrium plant-level cost/productivity distribution to endogenously respond to 

variations in substitutability.  Because I am concerned here with differences in productivity 

distributions across industries rather than intertemporal fluctuations within them, industry 

dynamics are not a primary concern.  The equilibrium is a two-stage entry/production decision 

meant to model long-run differences in outcomes.  For the sake of expositional clarity and to 

permit maximum transparency of the selection-driven mechanism, I assume a specific demand 

system.  It is important to note, however, that similar qualitative implications can be obtained 

from other demand systems.  While simple, the model shows in a fairly straightforward manner 

how differences in product demand and technology structures can create variation in industry 

productivity distribution moments. 

 

I.A. Model 

An industry is comprised of a continuum of producers of measure N.  Each producer 

(indexed by i, where I is the set of industry producers) makes a distinct variety of the industry 

product.  The representative industry consumer has preferences over these varieties given by 
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Utility is a quadratic function in total consumption of the industry’s output, minus a term that 
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increases in the variance of consumption levels across varieties.  This introduces an incentive to 

equate consumption levels of different products.  The parameter γ embodies substitutability 

across varieties; an increase in γ imposes a greater utility loss from consuming idiosyncratically 

large or small quantities of particular qi, therefore limiting consumer response to price 

differences across industry producers.  As γ → 0, substitutability becomes perfect: only the total 

quantity of industry varieties consumed—not its composition—affects utility.  The parameters α 

and η shift demand for the industry’s output relative to the numeraire.  This is the utility function 

specified by Melitz and Ottaviano (2003) in their theoretical study of market size effects in trade. 

 It is useful for my purposes because it embeds imperfect product substitutability in a 

parsimonious and tractable way. 

 Utility maximization by consumers implies that producers face the following demand 

function: 
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so no producer will price above this level. 

 Industry producers operate at a constant marginal cost ci that varies across producers, and 

productivity is defined to be some inverse function of this cost.  Thus productivity levels are 

idiosyncratic to industry producers.  Producers must also pay a common fixed operating cost f if 

qi > 0.  Profits are therefore given by 
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Bertrand-Nash profit maximization implies the producer’s optimal price (subject to pi ≤ 

pmax) is 
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(The individual producer is too small relative to the industry to take into account the effect of its 
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own pricing decision on the industry average.)  Not surprisingly, the optimal price is increasing 

in the overall demand level (indexed by α), the average price charged by industry competitors, 

and the producer’s cost level.  Combining (5) with (2) gives the producer’s quantity sold at the 

optimal price: 
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Then, using (5) and (6), maximized profits are 
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 These expressions imply a cost draw c* such that operations are not profitable if ci > c*.5 

 Setting (7) equal to zero and solving for c* gives this level explicitly: 
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Substituting this back into (7) yields maximized operating profits in terms of the cutoff cost level 

c* and own costs: 
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 A large pool of ex-ante identical potential entrants decide whether enter the industry as 

follows.  They first decide whether to pay a sunk entry cost s in order to receive a 

cost/productivity draw ci from a known distribution with positive support and probability density 

function g(c).  If they pay s, they observe ci and decide whether to begin production and earn the 

corresponding operating profits (9).  Clearly, only those obtaining marginal cost draws yielding 

nonnegative operating profits (i.e., ci ≤ c*) choose to produce in equilibrium.  Others produce 

nothing, earn zero operating profits, and lose their sunk cost.  Hence the expected gain from 

paying s is the expectation of (9) over g(c), conditional upon drawing ci ≤ c*.  This expected 

gain is obviously affected by the cutoff cost level c*.  Free entry pins down this value: c* must 

set the net expected value of entry into the industry Ve equal to zero.  Thus c* satisfies 

                                                 
5 Note that due to the quadratic form of the profit function, while (7) implies positive profits for some ci > c*, such 
cost levels also imply that pi > pmax and therefore qi < 0, which is impossible. 
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This expression summarizes the industry equilibrium.  It combines the conditions that all 

producers make nonnegative profits from operations (net of fixed operating costs), and that entry 

occurs until the net expected value of taking a cost draw is zero.6 

 

I.B. Comparative Statics 

The primary comparative static that I seek to test empirically, the effect of within-

industry product substitutability on the cost/productivity distribution, is presented here.  I also 

derive secondary implications of the model regarding the effects of the technology parameters f 

and s.  I control for these technological effects in some of the empirical specifications below.  

When the model’s parameters change, c* adjusts to maintain equilibrium.  Shifts in 

exogenous variables therefore affect the truncation point of the equilibrium cost/productivity 

distribution.  So while the distribution of possible cost draws g(c) is exogenous, the distribution 

among equilibrium producers—the truncation g(c)/G(c*)—is endogenous and determined by the 

cutoff cost level.  I test for this truncation using the moments of industries’ plant-level 

cost/productivity distributions.  Higher c* results in higher (lower) average cost (productivity) 

levels in an industry and lower variation among producers’ cost/productivity levels.7 

 

Product Substitutability.  From the implicit function theorem: 
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6 The equilibrium mass of producers N is determined by α, η, γ, f, c , and c*, and can be solved for by substituting 
the p  implied by  (5) into (8). 
7 The implication regarding within-industry productivity dispersion implicitly assumes some regularity conditions on 
g(c), since for some distributions (even those with some arbitrary upper-bound cost level), it is possible that further 
truncation from below would actually increase dispersion moments rather than decrease them.  However, for most 
common distributions, truncation implies a reduction in dispersion. 
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Some algebra shows: 
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which is clearly negative since the terms in the brackets are less than zero throughout the region 

of integration.  Further, 
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The first term in this expression is equal to zero.  (Intuitively, the marginal increase in Ve from 

letting in formally marginally unprofitable producer is zero.)  Simplifying gives 
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(12b) and (13b) imply dc*/dγ > 0; a decrease in subsitutability (embodied in an increase 

in γ) leads to a higher cutoff cost level.  This result is in accordance with the intuition in the 

introduction.  When substitutability is low, relatively ineffecient producers are protected from 

intense competition from their lower-cost competitors and can operate profitably in equilibrium. 

 Given the inverse relationship between costs and productivity, this implies we should expect 

greater dispersion and lower central tendency in the productivity distribution in low-

substitability industries. 

 

Fixed Operating Costs.  Taking the derivative of (10) with respect to the fixed production cost 

and simplifying the result yields 
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From above, ∂Ve/∂c* > 0, so the implict function theorem implies dc*/df < 0.  Higher fixed 

production costs lower the equilibrium cutoff cost level.  High fixed costs, as with high product 

substitutability, make it more difficult for relatively inefficient producers to be profitable.  Thus 

all else equal, high f industries should exhibit less dispersion and higher central tendency in their 

productivity distribution. 

 

Sunk Entry Costs.  The derivative of Ve with respect to the sunk entry cost s is –1.  This, 
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combined with the results above, implies dc*/ds > 0.  Thus high sunk entry costs make it easier 

for relatively inefficient producers to survive in equilibrium.  (Note that this is the opposite effect 

of high fixed operating costs.)  To see this intuitively, suppose the number of equilibrium 

producers supported by the market size were fixed at some number n, and imagine the sunk cost 

approaching zero.  With very low entry costs, it is extremely cheap for potential entrants to buy 

cost draws, so a large number end up doing so.  The n lowest order statistics of these cost draws 

(i.e., those potential entrants that will produce in equilibrium) decrease when sunk costs fall.  As 

a result, c* falls with s—the cutoff cost level and sunk entry costs move in the same direciton.8 

 

I.C. Extending the Basic Model 

Adding Transport Costs.  One of the empirical product substitutability measures I use below is a 

proxy for average transport costs in an industry.  Its purpose is to capture spatial differentiation 

differences across industries.  While transport costs are not explicitly included in the model 

above, one could interpret the derivations with respect to the substitutability parameter γ as a 

reduced-form embodiment of spatial substitutability.  This would imply that higher transport 

costs (lower spatial substitutability) increase the level of c*.  However, the same implication can 

be derived when the model is augmented to include a transport cost parameter directly.  I do so 

in the appendix for interested readers.9 

 

International Trade.  Melitz (forthcoming) examines theoretically the influence of international 

trade on the cutoff and average industry productivity levels when producers have heterogeneous 

productivity levels.  He finds that increased trade exposure—either moving from autarky to trade 

or lowering trade barriers within a regime where trade already exits—drives low productivity 

domestic plants out of business and increases market shares of high-productivity domestic 

operators.  These effects combine to raise the industry’s cutoff productivity level and average 

productivity. 

The present model could be similarly modified to allow for the possibility of trade by 

                                                 
8 The implication that fixed operating and sunk entry costs move the cutoff cost/productivity level in opposite 
directions is a common feature of setups similar to the present model (see Asplund and Nocke (2003) and Melitz 
(forthcoming), for example).  
9 It can also be shown that c* responds in the augmented model to changes in fixed operating and sunk entry costs in 
the same directions as above. 

 
 10



incorporating several markets and additional costs incurred if a producer chooses to export.  

Given the common structures of the above model and the Melitz framework, equivalent effects 

of an industry’s foreign trade exposure are implied here.  I attempt to control for trade exposure 

differences in some empirical specifications. 

 

Entry and Exit.  The two-stage game of entry and production above abstracts from continuous 

producer turnover in a dynamic setting.  However, dynamics could be added to the model using a 

framework of the sort found in Hopenhayn (1992), Asplund and Nocke (2003), and Melitz 

(forthcoming).  These models share the common characteristic of allowing producer-level 

uncertainty while preserving deterministic industry aggregates, including the productivity 

distribution. 

Both Asplund and Nocke (2003) and Melitz (forthcoming) specify a productivity 

evolution process that induces a segment of industry producers to exit each period upon receipt 

of a sufficiently bad productivity innovation.  Both papers assume that a fraction of producers ρ 

retain the same cost/productivity level from one period to the next.10  Since industry aggregates 

are constant, this share of producers remains in the industry.  Melitz supposes the remaining 

fraction of producers receive a “killer” shock which forces exit.  In Asplund and Nocke, the 1-ρ 

share of producers receive new productivity draws from a common ex-ante distribution (the 

same one from which entrants receive their draws).  Thus, some producers receive new draws 

poor enough to require closure and liquidation, while others are able to remain in the industry—

and may even be more productive than they were previously. 

Both papers have the same implication regarding the effect of idiosyncratic productivity 

dynamics on the industry productivity distribution.  As the persistence of the productivity 

process increases (i.e., ρ gets bigger), the cutoff productivity level also climbs, decreasing 

productivity dispersion and increasing the average productivity level.  Intuitively, greater 

persistence implies a larger stream of discounted expected future profits for successful entrants 

because of the lower probability of receiving a negative productivity shock.  Free entry requires 

that this be balanced by a lower probability of successful entry; i.e., a higher productivity cutoff 

value.  I include a proxy for productivity persistence in one of the empirical tests below. 

                                                 
10 To facilitate discussion, I have changed the notation from the original papers. 
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II. Empirical Method and Data 

Testing the product substitutability–productivity distribution link implies a general 

empirical specification of the form 

IccIssII BXBXy εβ +++= 0 . 

Here, the plant-level productivity distribution moment yI (a dispersion or central tendency 

measure) for industry I is a function of a constant, a vector of substitutability measures XsI, a 

vector XcI of other influences on the moments, and an industry-specific error term.  I discuss the 

components of these vectors below. 

The productivity distribution moments in this study are computed for 443 four-digit 

industries using plant-level data from the 1977 Census of Manufactures (CM).11  The CM 

contains production data for every manufacturing establishment in the U.S., totaling roughly 

300,000 plants.  To lighten reporting burdens, particularly small plants (typically those with less 

than five employees—about one-third of plants), are classified as Administrative Record (AR) 

cases.  Since all input data for these plants except the number of employees and total payroll is 

imputed, my sample includes only the roughly 200,000 non-AR plants in order to minimize 

productivity mismeasurement. 

I compute industry productivity moments with four different productivity measures, 

estimating the model with moments from each of the corresponding distributions as a robustness 

check.  Two are labor productivity measures: value added per employee, and value added per 

employee-hour.  Value added is calculated as the difference between a plant’s reported value of 

shipments and its expenditures on materials, parts, and energy.  I use value added as an output 

measure because interplant differences in intermediate input intensity (primarily in materials 

expenditures) cause gross-output productivity measures to be quite noisy for some industries.  

Plant employee-hours are computed as reported production-worker hours plus nonproduction 

worker hours imputed according to the method of Davis and Haltiwanger (1991).12 

                                                 
11 I am restricted to the 1977 cross section because the highly detailed Commodity Transportation Survey data used 
to measure geographic substitutability across industries is not available for later years.  The CTS is, in effect, the 
binding data constraint in this study. 

12 The plant’s number of nonproduction workers is multiplied by the average annual hours for nonproduction 
workers in the corresponding two-digit industry (calculated from Current Population Survey data). 
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In addition to these labor productivity measures, two total factor productivity (TFP) 

values are computed for each establishment.  Both follow the typical form 

ieimikilii emklytfp αααα −−−−= , 

where the lower-case letters indicate logarithms of establishment-level TFP, gross output, labor 

hours, capital stock, materials, and energy inputs.  The two TFP measures differ by the manner 

in which the factor elasticities αj, j = {l,k,m,e} are computed.  TFP1 uses input cost shares of the 

individual plants, while TFP2 uses the average cost shares across all industry plants for each 

plant in the corresponding four-digit industry.  The plant-specific elasticities in TFP1 better 

account for within-industry technology differences manifested in input intensity differences, but 

are potentially vulnerable to measurement error because of the noisy nature of establishment-

level data.  Using the average input elasticities for all industry plants in TFP2 trades flexibility 

with regard to intraindustry technology differences for a reduction in spurious productivity 

dispersion due to measurement error.  Reported wage bills, materials costs, and energy 

expenditures from the CM are used to compute input cost shares.  Capital expenditures are 

computed by multiplying reported plant equipment and building stocks by their respective 

capital rental rates for each plant’s corresponding two-digit industry.13 

I measure industry productivity dispersion as the interquartile productivity difference 

divided by the industry’s median productivity level.14  The dispersion measure is standardized to 

prevent pure scale differences between industries—primarily a factor for labor productivity 

measures due to capital intensity variations—from causing productivity variation neither within 

the confines of the model nor very relevant to the paper’s hypothesis.  Ordinal moments are used 

rather than the coefficient of variation because moments from plant-level data are especially 

vulnerable to influence of outliers. 

For regressions with a central tendency measure as the dependent variable, I use median 

total factor productivity in the industry (both TFP1 and TFP2).  Labor productivity levels are not 

included in the central tendency regressions because wide capital intensity variation yields 

average labor productivity differences between industries that are outside of the theoretical 

                                                 
13 Capital rental rates are from unpublished data constructed and used by the Bureau of Labor Statistics for use in 
computing their Multifactor Productivity series.  Formulas, related methodology, and data sources are described in 
U.S. Bureau of Labor Statistics (1983) and Harper, Berndt, and Wood (1989). 
14 I check the results for robustness to other interquantile differences below. 
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framework.  (It is obviously not possible to remove scale effects in central tendency moments.)  

TFP is much less susceptible to such scale problems.  Median TFP levels are used rather than the 

averages to counteract outlier effects. 

 

II.A. Product Substitutability Factors 

Ideally, one would regress these productivity moments on an average substitutability 

parameter implied by the industry’s demand system.  It is unfortunately impossible to estimate 

each of these values given the number of industries and products.  My strategy is to instead use a 

vector XsI of measurable proxies for substitution elasticities among the outputs of industry 

producers.  To motivate my choices for variables included in XsI, I return to the earlier discussion 

on sources of substitutability barriers. 

Geographic barriers to substitution arise when transport costs hinder producers from 

practicably selling their output beyond certain shipment distances.  These distances, of course, 

depend on the magnitude of the transport costs.  I compute two measures of transport costs for an 

industry; both use data from the 1977 Commodity Transport Survey (CTS).  This CTS contains 

an enormous amount of information on manufacturers’ shipments at a detailed product level 

(most by five-digit product class).  Included in this unusually rich survey are, for each product 

class, the average dollar value per pound of shipments and a decomposition of total tons shipped 

by distance category.  This information is used to construct the two transport cost measures. 

The first metric, VALUELB, is the natural logarithm of the weighted sum of the dollar-

value-to-weight ratios of all product classes in a given four-digit industry.  The weights are the 

product classes’ shares of total industry product tonnage shipped.15  There is an obvious 

relationship between the value of shipments per pound and product transportability.  Goods 

valuable in relation to their weight are more economical to ship.  Industries with high values of 

VALUELB expectedly have less geographically segmented output markets and greater product 

substitutability. 

The second measure of geographic substitutability utilizes CTS product-class data on the 

                                                 
15 While there is close correlation between the CTS product categories and the corresponding four-digit SIC 
industries that contain them, they do not perfectly match.  Using published descriptions of industry product types 
(from U.S. Office of Management and Budget, 1972), I was able to aggregate products into their corresponding 
industry for nearly every four-digit SIC.  Shipment data for the ordnance industries (SICs 3282-4,9) were not 
available; these industries are not included in my sample.  A concordance is available from the author upon request. 
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tonnage shipped within each of seven distance-from-production-site categories.  The measure, 

LOCAL, is a metric of the typical geographic size of industry producers’ output markets.  It is a 

weighted sum of the fraction of output (by ton) shipped within each distance category.16  

Industries with plants that ship a large fraction of their output to nearby areas have high values of 

LOCAL and expectedly have less spatial product substitutability.17 

Differences in the physical configuration of industry goods also create product 

substitutability barriers.  Producers within textiles industries, for example, can have considerable 

variation in their product attributes.  I measure this variation using the product differentiation 

index of Gollop and Monahan (1991).  Their generalized Herfindahl-type product diversification 

index, DIVINDX, takes into account not only the number of industry products (as defined by the 

SIC product classification system), but also how (un)equal the production shares of product lines 

are within the industry, as well as the dissimilarity of products as measured by the input shares of 

various intermediate products used to make them. 

As a robustness check, I estimate specifications using a less sophisticated but more 

interpretable physical differentiation measure: the average primary product specialization ratio 

(PPSR) across industry establishments.  PPSR is the fraction of plant output accounted for by the 

plant’s primary seven-digit SIC product.  Industries with a lot of physical product variety are 

likely to be comprised of plants that produce a number of product types and therefore low PPSR 

values.  Conversely, an industry that completely specializes in a single product will have an 

average PPSR equal to one.18,19 

                                                 
16 The categories are less than 100 miles, 100-199, 200-299, 300-499, 500-999, 1000-1499, and over 1500 miles.  
The weights are constructed as follows.  The average shipment distance within each distance category is computed 
assuming uniformly distributed shipments within the category.  (I use 1750 miles for shipments reported as over 
1500 miles.)  The sum of these seven distances is divided by each category’s average distance, and these ratios are 
normalized so the weight of the under 100 miles category equals one.  The resulting weights are: under 100 miles, 1; 
100-199 miles, 0.333; 200-299, 0.2; 300-499, 0.133; 500-999, 0.067; 1000-1499, 0.04; and over 1500 miles, 0.029. 
17 Use of LOCAL as a transport costs measure requires a caveat.  If an industry’s customers are geographically 
concentrated and industry plants choose to operate near their customers, it is possible that an industry could have 
high output substitutability despite a small average shipment radius.  This is not a major issue for consumer goods 
industries, whose buyers are distributed throughout the country, but it may be for some industries which serve as 
suppliers of intermediate goods to specialized downstream buyers.  I attempted to control for this possibility in 
specifications using LOCAL by including the measure of industry geographic concentration created by Ellison and 
Glaeser (1997).  (Thanks to Glenn Ellison for providing the data at the four-digit SIC level.)  Inclusion of this 
control did not noticeably change the coefficient on LOCAL. 
18 It is possible that some industries with large product variety divide their output among a greater number of 
specialized establishments rather than producing several products at one plant.  However, a low PPSR value is 
certainly a sufficient condition for physical product differentiation, if not a necessary one.  The across-industry 
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Product substitutability can also be shaped by advertising/branding effects.  I account for 

such influences by using industry advertising expenditures data from the 1977 Benchmark 

Input/Output Tables.  A measure of industry advertising intensity, ADV, is constructed as the 

ratio of advertising expenditures to total shipments.20 

The industrial organization literature is divided on the question of the nature of the 

relationship between ADV and output substitutability.21  One strand of research argues that 

advertising serves to create artificial product differentiation, largely along the lines of the 

branding motive discussed in the introduction.  This view holds that industries with higher 

advertising intensities should exhibit more product differentiation.  An opposing strand contends 

that advertising is informative and serves to educate consumers about superior products.  

Advertising expenditures under this view allow more productive firms to take market share away 

from less efficient competitors (by reducing search costs, say), increasing substitutability across 

industry producers.  Of course, it is also possible that both effects act simultaneously; if their 

impacts have roughly equal magnitudes, estimates would show no overall influence of ADV on 

moments of industry productivity distributions. 

The model above indicates that higher substitutability will be correlated with greater 

truncation of the plant-level productivity distribution, and therefore less dispersion and higher 

average productivity levels.  Expressed in terms of the product substitutability measures used 

here, lower geographic segmentation (higher VALUELB or lower LOCAL) and less physical 

                                                                                                                                                             
correlation between the two product differentiation measures is –0.813, indicating a close (but naturally oppositely 
signed) correspondence. 
19 Both of these measures of physical product differentiation are limited by the SIC product classification system, of 
course.  This leads to two vulnerabilities of DIVINDX and PPSR as accurate gauges of product substitutability.  
Even the highly detailed seven-digit SIC product classification is only a blunt instrument for characterizing the 
enormous variety of manufactured products.  A single SIC “product” may in truth encompass dozens, or even 
hundreds, of physically distinct products.  The coarseness of the taxonomy will not cause empirical problems as long 
as product variety is undercounted at the same rate across industries, but this condition is unfortunately not testable.  
Second, product codes are somewhat inflexible over time, so new products that do not obviously fit into any of the 
categories in the existing system may be misclassified.  As more new products are introduced, the original 
classification system matches the existing product space less completely.  This drift should be minimized in this 
paper, because the SIC classification system underwent a major overhaul in 1972, not too long before my sample 
was taken.  While neither vulnerability is a fatal flaw, one should keep them in mind when interpreting the results. 
20 While the detailed BEA industry categorization used in the input-output tables roughly corresponds to the SIC 
four-digit system, data had to be pooled across some SIC industries to match more broadly defined BEA groups.  
Thus a few four-digit industries have a common measured advertising-to-sales ratio. 
21 See, for example, the discussion in Tirole (1988) for a partial review of this literature. 
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product differentiation (lower DIVINDX or higher PPSR) correspond to greater product 

substitutability.  The effect of higher advertising intensity (higher ADV) on substitutability is 

theoretically ambiguous. 

 

II.B. Other Influences on the Productivity Distribution 

The model and its extensions indicate factors besides product substitutability can shape 

industry productivity distributions.  I include in XcI controls for these other influences using 

variables constructed from several sources.  It is not apparent beforehand whether excluding 

these other factors from the regressions would bias the substitutability coefficients, as the other 

factors may not be correlated with product substitutability.  However, adding proxies for these 

other effects also allows further testing of the model’s implications independent of any product 

substitutability effects, which is interesting in its own right. 

As shown above, both sunk entry costs and fixed operating costs affect the critical 

productivity cutoff level, and therefore the moments of an industry productivity distribution.  

Controlling for these influences can be empirically difficult.  It is not clear which fixed costs 

producers face are tied to entry and which are tied to operations.  In the model, plants incur the 

sunk entry cost s before they learn their productivity level.  If in reality plants must actually 

produce some output to learn their productivity levels, then any production-related overhead 

could be classified as either a fixed operating cost (f in the model) or an entry cost, at least in the 

first year of production.  This scenario implies difficulties in separately measuring the influences 

of the two cost types, as they move the truncation point of the productivity distribution in 

opposite directions.  Using observables that could be linked to either cost structure could yield 

inconclusive results.  If, on the other hand, producers learn their productivity levels before 

starting operations, it is not immediately clear how to measure entry costs given that most data is 

collected after production is underway.  I attempt to reconcile these confounding factors by 

assuming that sunk entry costs are related to post-production observables while using a fixed 

operating production cost measure that conceivably moves independently of entry costs. 

I follow the method employed by Sutton (1991) to obtain a measure of sunk entry costs.  

This value, SUNKCOST, is the market share of an industry’s median-sized plant multiplied by 

the capital-output ratio for the industry.  The former element of this product is sometimes used as 

a measure of minimum efficient plant scale.  Thus SUNKCOST is a proxy for the amount of 
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capital (relative to the industry’s total market size) required to build such a plant.22 

Fixed operating costs are measured by the average ratio across industry establishments of 

non-production workers to total employment.  This value, FIXEDCOST, proxies for the amount 

of overhead labor required by the industry technology.  Because overhead labor is a fixed cost 

explicitly tied to production rather than entry, comovement between FIXEDCOST and entry 

costs should be related only through any inherent correlation between f and s in industry 

technologies, and not through erroneous measurement of entry costs.  Both FIXEDCOST and 

SUNKCOST are constructed as proportions to remove scale effects across industries. 

Some specifications include controls for international trade exposure.  I use both import- 

and export-based metrics computed from the trade data discussed in Feenstra (1997).  Industry 

import penetration, IMPPEN, is the ratio of industry product imports to the sum of these imports 

plus the value of domestic production in the industry.  Export intensity EXPINT is the share of 

exports in total domestic output for the sector.  Larger values of either variable should coincide 

with greater trade exposure.  As mentioned above, Melitz (forthcoming) shows that if these 

variables proxy for the extent of trade barriers in an industry (and therefore the extent of trade-

driven truncation of the productivity distribution), they should expectedly have negative 

correlations with industry productivity dispersion and positive correspondence with the central 

tendency of industry productivity. 

Differences in the ex-ante cost/productivity distribution g(c) may also induce variation in 

industries’ productivity distributions.  To the extent that these are reflected in output scale 

differences, normalizing dispersion moments to the median productivity level in the industry 

accounts for this influence.  I also test for robustness of the dispersion results to the use of other 

interquantile differences, which allow determination of the effects across different subsets of the 

productivity distribution.  While clearly not a flawless solution, these steps should remove a 

substantial amount of the influence of different ex-ante distributions across industries. 

 
III. Results 

I first regress industry productivity distribution moments on each of the product 

substitutability measures.  The results are presented in Table 3.  Panel A shows the coefficients 

                                                 
22 See Sutton (1991) for a thorough discussion of the advantages and limitations of this measure. 
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obtained by regressing each of the four productivity dispersion measures on the respective 

measures separately.23 

The results are consistent with the discussion above and the predictions of the model.  

Factors that plausibly increase industry product substitutability are negatively correlated with 

within-industry productivity dispersion.  Regarding spatial substitutability, increases in 

VALUELB (the average value per pound of an industry’s output) and decreases in LOCAL (an 

inverse measure of average shipment distance)—both of which correspond to greater 

substitutability—coincide with declines in productivity dispersion.  Physical differentiation 

factors play a similar role.  Decreases in DIVINDX (the Gollop-Monahan index) and increases 

in PPSR (the average fraction of plant output made up of plants’ primary products), which 

indicate higher substitutability, are also negatively correlated with productivity dispersion.  The 

coefficient on ADV (the industry ratio of advertising to sales) is positive in all regressions; 

industries with higher advertising intensities exhibit more measured productivity dispersion. 

These findings are consistent across dispersion moments of all four productivity 

measures.  For those substitutability measures with predicted directions of correlation with 

productivity dispersion, none of the estimates’ signs contradict the implications of the model.  

Further, 12 of these 16 are significant at the 5% level, and another one nearly so.  These single-

factor regressions indicate that productivity dispersion and product substitutability are 

undoubtedly correlated, and in directions consistent with theory. 

 Univariate regressions with median industry TFP as the dependent variable are also 

largely consistent with expectations.  As seen in Panel B of Table 3, industries with higher value-

to-weight ratios and longer average shipment distances have higher median productivity levels 

on average.  Greater physical product differentiation—a higher value of DIVINDX or a lower 

PPSR—corresponds to a lower industry median TFP level.  The corresponding coefficient 

estimates are consistently signed with the productions of the model and are significant at the 5% 

level in five of eight cases.  The results from the univariate regressions using ADV are more 

ambiguous: the coefficients are virtually zero, statistically speaking, and are oppositely signed. 

I have two measures of both spatial substitutability (VALUELB and LOCAL) and 

physical product differentiation (DIVINDX and PPSR).  For the sake of brevity, and because the 

                                                 
23 Although the coefficients are listed in columns under the dispersion measures, the factor coefficients in this table 
are for single-variable (and a constant term) regressions. 
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results in Table 3 suggest that all of these measures yield qualitatively similar results, from this 

point on I only report results for specifications using the measure of each that is less susceptible 

to measurement problems: VALUELB and DIVINDX.24  Estimates from regressions using the 

alternative measures, available from the author, largely match the findings presented below. 

I next regress the moments on all output substitutability measures simultaneously.  The 

outcomes are presented in Table 4.  Again the consistency of the results is notable.  In the 

productivity dispersion regressions (the first four columns), all estimates for VALUELB and 

DIVINDX have the expected sign, and most are statistically significant at the 5% level (all are at 

10%).  As with the single-variable regressions, there is a positive and usually statistically 

significant correlation between advertising intensity and productivity dispersion.  The estimated 

magnitudes of the responses to differences in the substitutability measures are nontrivial.  A 

quadrupling of value density (which ranges from $0.01 to $150 per pound in my sample) 

corresponds to a decline in the labor productivity dispersion measures of roughly one-sixth of 

their standard deviation, and one-fifth of a standard deviation of the TFP dispersion measures.  A 

one-standard-deviation increase in DIVINDX coincides with a quarter-standard-deviation drop 

in labor productivity variability and one-eighth-standard-deviation decrease in TFP dispersion.  

An increase of one percentage point in advertising-to-sales ratio corresponds with labor 

productivity and TFP dispersion increases of roughly one-ninth to one-tenth of their respective 

standard deviations. 

The product substitutability measures jointly explain seven to 12% of across-industry 

differences in productivity dispersion.  Thus substantial productivity heterogeneity remains to be 

explained.  This is not surprising given all of the across-industry variation in 

technological/supply-side influences that shape productivity distributions.  Product 

substitutability is surely an economically relevant part of the story, however.25  Furthermore, as 

argued in the introduction, there are also non-measurable product differentiation influences 

whose impacts obviously cannot be captured here.  The present results do hint that these non-

                                                 
24 Recall that LOCAL may confuse geographic clustering of an industry’s customer base with low spatial 
differentiation, and PPSR may indicate spuriously low product differentiation if industries spread many product 
types across a number of highly specialized plants. 
25 Measurement error in plant productivity levels, doubtlessly present in establishment-level data sets, will create 
spurious productivity dispersion.  Thus, the variation in true productivity dispersion moments explained by 
measurable product substitutability factors may be greater than the amount measured here. 
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measurable factors affect industries’ plant-level productivity distributions in the same manner as 

their measurable counterparts.  It is possible that the combined effect of measurable and non-

measurable substitutability differences is considerable. 

 The two rightmost columns of Table 4 show estimates from the median TFP regressions. 

 Jointly estimating coefficients for all substitutability factors largely preserves the findings of the 

univariate specification.  VALUELB is positive and highly significant in both of its regressions.  

A quadrupling of value density across industries corresponds with an increase of about 10% in 

the median productivity level.  DIVINDX is negatively related to median productivity levels.  

The (insignificantly) estimated coefficients imply each standard deviation increase in the index 

corresponds to a drop in the median productivity level of 2 to 3%.  Given the negative partial 

correlation seen between advertising intensity with productivity dispersion, the estimates of 

ADV from the central-tendency regressions are slightly puzzling.  While the direction of the 

linkage between advertising intensity and substitutability cannot be pinned down theoretically, 

we should expect empirically that ADV has oppositely signed correlations with industry 

productivity dispersion and median productivity levels.  These ADV estimates are much less 

precisely estimated than those in the dispersion regressions, however, so the positive coefficients 

here may be spurious.  The product substitutability measures jointly explain roughly 13-14% of 

the variance in median productivity levels. 

 The empirical model is further enriched by adding SUNKCOST and FIXEDCOST as 

controls.  The results are presented in Table 5.  Apparently the correlations found above are not 

due to correlations between the substitutability factors and features of the cost structure of 

industry technologies.  In the productivity dispersion regressions, VALUELB and DIVINDX 

retain their expected signs and are significantly estimated in every case.  ADV still has a 

significant positive coefficient in the dispersion regressions, excepting a negative and 

insignificant coefficient in the model using the plant-specific input elasticities TFP measure.  

The magnitudes of the substitutability coefficients are similar to those obtained without 

controlling for fixed costs. 

 Furthermore, the across-industry comovement between the sunk entry cost measure and 

productivity dispersion is as predicted by the model.  The coefficient on SUNKCOST is positive 

and statistically distinguishable from zero in every specification.  The implications of the 

FIXEDCOST coefficients are more ambiguous.  With regard to labor productivity dispersion, 
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fixed production costs are found to have their expected negative correspondence.  However, the 

TFP dispersion results are not in tune with the model’s predictions: both FIXEDCOST 

coefficients are positively signed, and one of these is precisely estimated.  Adding these two 

controls for sunk entry and fixed production costs improve the model’s explanatory power 

slightly, with a typical increase in R2 of about 0.03. 

 The results of the median industry productivity level regressions with SUNKCOST and 

FIXEDCOST echo the findings of the dispersion regressions.  Value-to-weight ratios and the 

product diversity index have nonzero coefficients with the expected signs.  Unlike in the 

productivity level regressions without fixed cost controls, the ADV coefficients in this 

specification are negatively signed (albeit insignificantly estimated).  This is consistent with the 

estimated positive correlation between ADV and productivity dispersion.  All SUNKCOST and 

FIXEDCOST estimated coefficients have the expected signs.  In a turnabout from the dispersion 

regressions, here it is the FIXEDCOST estimates that are statistically significant while the 

SUNKCOST coefficients are less precise.  The explanatory power of the model for across-

industry differences in median productivity levels ranges from 15 to 18%.26 

 These findings largely agree both with intuitive priors and the model presented above.  

Measurable product substitutability factors have expected correlations with moments of 

industries’ plant-level productivity distributions.  More spatially localized industries have plant-

level productivity distributions with greater dispersion and lower central tendencies.  Industries 

with greater physical product differentiation have higher dispersion and lower median 

productivity levels.  Advertising intensity is positively correlated with productivity dispersion, 

and at least in when technology controls are added, is weakly associated with declines in median 

productivity levels.  Moreover, these results are found in a number of empirical specifications.  

Substitutability factors are correctly signed and significantly estimated in models ranging from 

                                                 
26 SUNKCOST combines measures of the median establishment-level market share and the capital-to-output ratio in 
an industry.  Arguably, either of these could be related to industries’ cost structures separately through other 
channels.  While its interpretation is not critical to the key results here on product substitutability, the results indicate 
that the measure may be related to the shape of within-industry productivity distributions in directions predicted by 
theory.  To see if the two components of SUNKCOST have separable effects, I ran a specification where the 
components entered separately.  Median market share was significantly and positively correlated with productivity 
dispersion and negatively correlated with the median productivity level in the industry.  These correlations are the 
same as those implied for SUNKCOST.  On the other hand, increases in the industry capital-to-output ratio were 
associated (statistically significantly) with less productivity dispersion and higher median productivity levels.  
Entering the components separately had no substantive effect on the product substitutability measure coefficients.  
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simple bivariate correlations to those including other substitutability measures and controls for 

sunk entry and fixed operating costs.  The results also hold across several productivity measures. 

 The estimated effects of sunk and fixed costs, while somewhat weaker than those for the product 

substitutability measures because of the difficulty finding measurable proxies, are also on 

balance consistent with the theory. 

 

III.A. Robustness Checks 

 To see if the results discussed above hold in more generalized frameworks, I have 

conducted several robustness checks.  These are described here. 

 

Foreign Trade.  I estimate a specification that includes in XcI industry-level measures of import 

penetration and export intensity (IMPPEN and EXPINT) to see if international trade affects the 

measured relationship between product substitutability and productivity distribution moments.  

The results are presented in Table 6.  Importantly, the qualitative and quantitative features of the 

substitutability factor and sunk and fixed costs estimates are unaffected when the extra controls 

are included.  It does not appear that the results obtained above arise due to omitted variable bias 

regarding this other influence. 

 As for the coefficients on the additional controls, the weight of the evidence suggests 

(although a greater proportion of their coefficients are statistically insignificant) that industries 

with greater exposure to international trade (higher IMPPEN and EXPINT) have more 

productivity variability.  This correspondence is counter to the implications of Melitz 

(forthcoming).  The benefits of exposure to foreign markets enjoyed by the more productive 

domestic firms should drive the least efficient domestic producers out of business, thereby 

decreasing productivity dispersion.  Perhaps the positive comovement seen here is explained in 

part by reverse causation, if foreign producers deliberately target industries with wide 

productivity distributions to better their relative competitive position.  It could also be that 

foreign trade serves to increase product differentiation in an industry, counteracting the 

competitive effect of trade productivity dispersion. 

 The regressions using median industry productivity as the dependent variable are also 

largely unaffected by the inclusion of the additional controls.  Product substitutability factors are 

still correlated with productivity distributions’ central tendencies in the predicted manner.  
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Advertising intensity again has a negative but weak comovement with the median.  Three of the 

four sunk and fixed cost coefficients have the expected sign, but only the FIXEDCOST 

coefficients are statistically significant.  The coefficients for the trade exposure controls yield 

results that, because they have oppositely signed correlations with the median productivity, are 

consistent with their measured correlations with productivity dispersion.  All are insignificant, 

however. 

 

Productivity Dispersion Measure.  I check if the results are sensitive to the productivity 

dispersion measure (the interquartile range divided by the median) by performing the industry 

productivity dispersion regressions using the difference between the 90th and 10th productivity 

percentiles divided by the median as the dispersion measure.  These results are shown in Table 

6a.  The results are qualitatively consistent with those presented earlier.  The FIXEDCOST 

coefficients gain statistical significance in the labor productivity regressions, while DIVINDX 

and SUNKCOST lose significance in the TFP dispersion regressions.  Excepting these 

differences, the choice of a narrower range to gauge productivity dispersion does not seem to 

greatly influence the results.27 

 

Dynamics.  The theoretical framework abstracts from dynamic evolution of producers’ 

productivity levels.  Asplund and Nocke (2003) and Melitz (forthcoming) show that changes in 

the persistence of the (exogenous) productivity process affect the cutoff productivity level; more 

persistence implies a higher cutoff.  To control for the possible influence of across-industry 

difference in producer-level productivity persistence, I estimate a specification that includes in 

XcI the fraction of industry plants in the 1972 Census of Manufactures—the census that most 

immediately precedes my data—that still operate (in the same industry) in the 1977 CM.28  This 

measure, SURVRT, is meant to proxy for the persistence of the industry’s plant-level 

productivity evolution.  A higher SURVRT value, all else being equal, implies a higher 

probability that operating plants receive updated productivity draws above the threshold (i.e., a 

                                                 
27 The magnitudes of the coefficients are changed because the dependent variable is now scaled differently.  I also 
estimated the model using the 95th-5th percentile range and obtained similar results. 
28 I do include Administrative Record plants when computing survival rates, because here I only need to know of 
their existence, not their production specifics. 
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higher ρ).  Increases in SURVRT should expectedly be correlated with lower productivity 

dispersion and higher median TFP levels.29 

The results of this exercise are shown in Table 7.  The results for both the productivity 

dispersion and the central tendency regressions closely match those in Table 6.  Furthermore, the 

coefficients on SURVRT have the predicted signs.  While the sensitivity of survival rates to 

changes in industry equilibria means that SURVRT may capture more than exogenous influences 

on the evolution of plant productivity levels, it does suggest that any mismeasurement in this 

regard is not correlated with the other regressors in a way that would affect the benchmark 

results. 

 

Capital Measurement.  As discussed above, I have excluded Administrative Record plants from 

my sample because much of their production data is imputed.  The remaining establishments 

report virtually all production data directly.  The exceptions to this are establishments not in the 

current Annual Survey of Manufactures (ASM) panel.  (Roughly 35% of the 198,000 

establishments in my sample are in the ASM panel.)  These plants have imputed capital stocks, 

and these imputations can then in turn lead to TFP mismeasurement.  To ensure that productivity 

mismeasurement arising from capital stock imputation is not driving the results, I re-estimate the 

TFP specifications using only ASM plants to compute within-industry productivity moments. 

 Another form of capital mismeasurement arises when plants vary their capital services 

inputs by changing the intensity with which they utilize their capital stock.  When this is the 

case, the value of a plant’s capital stock does not accurately reflect capital’s contribution to 

production.  Systematic differences in capital utilization patterns across industries could 

potentially affect the above findings for those specifications using TFP measures. 

 To check for the influence of variable capital utilization, I estimate a specification where 

I compute plant TFP levels according to the suggestion of Basu and Kimball (1997).  They show 

that under the assumptions of cost minimization by plants and a production function that is 

                                                 
29 Controlling for differences in industries’ productivity evolution processes with survival rates is at best an 
imperfect solution.  Measured survival rates are likely to confound any underlying dynamics in the producer-level 
productivity process with the industry equilibrium effects of changes in product market and technological parameters 
that also affect exit rates.  (Indeed, exploring these effects is an interesting avenue for future research.)  Hence I only 
report results including SURVRT as a robustness check rather than incorporating this control into the main 
specification. 
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Leontief in capital services and materials (i.e., one cannot substitute extra materials for capital in 

production) that TFP can be defined as 

( ) ilieimkili hemlytfp δααααα −−+−−= , 

where variables are defined as in the standard TFP measure above, hi is the log of hours per 

employee, and δ is a parameter which Basu and Kimball estimate as having a value of 1.06.  

Intuitively, including the product of labor’s cost share and logged hours per worker and adding 

capital’s cost share to material’s cost share in the TFP measure controls for increases in capital 

utilization intensity because materials use is proportional to capital services flows.  Including 

hours per worker captures variations in the intensity of labor utilization. 

The results of these exercises can be found in Table 8.30  It does not appear that capital—

and therefore TFP—mismeasurement due to either through capital stock imputation or variable 

utilization is driving the results obtained above.  While some precision is lost in the ASM-plant-

only results, the product substitutability estimates, both in the productivity dispersion and central 

tendency regressions, are qualitatively (and to a lesser extent, quantitatively) comparable to 

those discussed above.  The notable difference is that the (still imprecisely estimated) 

coefficients on ADV in the central tendency regressions are now positive. 

  

IV. Caveats 
The key results linking output substitutability and the moments of the industry 

productivity distribution seem to be robust across a number of empirical specifications, with the 

possible exception of a weak connection between industry advertising intensity and the central 

tendency of the productivity distribution.  As with nearly any study, however, the findings come 

with some caveats.  Several potential concerns are discussed below, along with mitigating 

factors that may minimize their influence on the key results. 

It is important to note that the empirical tests above were performed using moments of 

measured productivity distributions.  The introductory discussion and the model make the 

common conceptualization that productivity is the efficiency of input use with respect to 

production of output, and as such is related to production costs.  Empirical productivity 

measures, however, are not so cleanly obtained.  One particular difficulty is that producer output 

                                                 
30 For the specification adjusting for variable utilization, I again use the full sample of plants, including those not in 
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is measured in terms of revenue rather than more appropriate units, due to a lack of 

comprehensive physical output data or plant-specific deflators.  Plant-level price variation enters 

into output measures and can create measured productivity variation independent of efficiency 

differences. 

Melitz (2000) points out one effect of this is an under-measurement bias in between-plant 

productivity differences, where the size of this bias is larger when the elasticity of output 

substitution is low.  Notice, however, that this effect works against my empirical results.  Intra-

industry productivity dispersion should be most underestimated when substitutability is lowest.  

The results above, despite this possible influence, show that productivity dispersion in an 

industry grows with the amount of product substitution.  The true dispersion might be even 

greater than measured in low-substitutability industries, and the true correlation with 

substitutability greater. 

A similar byproduct of revenue-based output measures is that any across-industry 

differences markups would create variation in median revenue-based TFP through price effects.  

If high fixed operating costs in an industry support higher average markups, for instance, this 

would appear as a higher median TFP.  It is possible that this is in part driving the related results 

in the central tendency regressions.  However, the influence of markups on median TFP 

differences may also tend to work against some of the results above rather than spuriously create 

them.  If higher markups are sustainable in low substitutability industries, this would induce a 

negative correlation between measured TFP and substitutability: revenue-based TFP would tend 

to overstate (understate) true productivity in low- (high-) substitutability industries.  The 

empirical results indicate that despite this possibility, average TFP levels tend to instead be 

positively correlated with substitutability. 

The measurement problems inherent to quantifying sunk and fixed costs are additional 

empirical hurdles.  While I took care in finding proxies for these influences on productivity 

distributions, the resulting controls are at best approximate.  However, this concern is balanced 

by the facts that the product substitutability results are qualitatively invariant to inclusion of 

technological controls, and that the sunk entry and fixed operating cost proxies are usually 

observed to be correlated with productivity moments in the expected directions.  Additionally, 

                                                                                                                                                             
the ASM. 
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even if these proxies were not able to separately identify the influence of sunk and fixed costs, 

their inclusion still can remove their joint influence on industry productivity distributions. 

The model also assumes that product substitutability varies exogenously across 

industries.  This is not necessarily true in reality.  While across-industry differences in spatial 

substitutability (caused by the inherent physical characteristics of products) might be presumed 

to be out of the hands of producers, advertising intensity certainly is not, and perhaps a great deal 

of physical differentiation is endogenous as well.  Productivity dispersion itself may cause 

producers to increase differentiation by physically altering their product or through their 

advertising behavior.  Less efficient plants might have the incentive to put greater distance in 

product space between themselves and their more efficient competitors.  This would reverse the 

direction of causation implied by the present theory.  While an exploration of such producer 

efforts is a worthy research topic, it is beyond the scope of this paper.  My focus here is 

determining whether there is indeed a systematic relationship between product substitutability 

and moments of the productivity distribution, not characterizing the causal connection.  Since 

endogenous substitutability would preserve the direction of the correlations implied by the 

model, the correspondences found here are consistent with the presence of both exogenous and 

endogenous substitutability differences. 

Finally, exploiting across-industry differences to empirically test the implications of the 

model raises issues of inter-industry heterogeneity affecting the results.  Unfortunately, data 

limitations prevent the use of within-industry substitutability changes from being measured at a 

disaggregate level.  However, I reference the aforementioned within-industry case study of 

similar concept in Syverson (2001).  The results there within an industry are consistent with 

those found here across industries, suggesting that the links between substitutability and 

productivity moments found above are legitimate. 

 
V. Conclusion 

The evidence presented in the paper suggests that product substitutability—a 

characteristic of industry demand—is systematically related to the shape of the industry’s 

equilibrium plant-level productivity distribution.  Measurable factors likely correlated with high 

substitutability, such as low transport costs and less physical product differentiation, are shown 

to be negatively related with productivity dispersion and positively with median productivity in 
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an industry.  These findings are robust; they are found both in simple bivariate correlations as 

well as when controls for other influences on industries’ productivity distributions are included 

in empirical specifications.  Additionally, the empirical results suggest that across-industry 

differences in these other influences on the productivity distribution, such as the size of sunk 

entry and fixed operating costs, are correlated with variability in productivity distribution 

moments in the expected direction.  The exception to this is an industry’s trade exposure, which 

seems to correspond with productivity moments in directions opposite that predicted in Melitz 

(forthcoming). 

These results suggest that, while the technological/supply-side factors that have been the 

focus of the related literature doubtlessly play a role in creating productivity dispersion, demand-

side influences are also important.  Measurable substitutability factors explain a nontrivial 

fraction of the total interindustry variation in productivity moments.  Further, additional 

unmeasured (or unmeasurable) types of substitutability barriers may explain some of the 

remaining variation.  Exploring the specific output market mechanisms driving these results may 

be a fruitful path for further research. 

 The findings offer help in understanding why productivity differences exist within 

industries and what factors affect their magnitude, a puzzle discussed in the introduction.  On a 

broader scale, they also lend insight into how aggregate productivity dynamics might be 

affected, either by shifts in output shares across industries with different shapes of their 

productivity distribution, or by shifts over time of the product substitutability factors within 

industries. 
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Appendix: Incorporating Transport Costs into the Model 
 
Assume industries operate in two markets, each identical to the one in the base model.  I assume, as in 

Melitz and Ottaviano  (2003), that producers can produce not only for their home market (as above), but for the 

outside market if they so choose.  Selling to the outside market, however, involves paying transport costs to ship 

output.  I assume these are of the standard “iceberg” variety, where τ > 1 units must be shipped for one unit to arrive. 

 Thus the marginal cost of producing for the outside market is τci,, while still only ci for the home market.  A large 

set of potential entrants in each market considers the entry decision specified above. 

Producers can charge different prices in each market.  Therefore the optimal price in the home market is 

still that given by (5) above, but now the optimal price and resulting demand in the outside market are given by: 
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Variable profits from the outside market are then: 
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Note that because of the symmetric markets assumption, the average price p  (which includes prices of both home 

and exporting outside market producers) is the same in both markets. 

 From inspection of (6) and (A.2), it is clear that there will be a range of productivity levels for which home-

market sales are positive but will be zero for the outside market.  Define co* and ch* as the cost levels where qi,outside 

= 0 and qi,home = 0, respectively.  From (6) and (A.2), these levels are 
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Clearly, any potential entrants drawing ci > ch* will choose not to operate, since they would have zero sales in both 

markets.  However, because of the fixed operating costs, there will also be a set of producers with ci < ch* that will 

find production unprofitable.  If fixed costs are not too large, there will be a cost level c* ∈ [co*, ch*] where a 

producer with ci = c* will not sell to the outside market and will be just indifferent to operating in the home market, 

since the variable profits from doing so are just enough to cover the fixed operating costs.31  This level is given by 

                                                 
31 The fixed cost must satisfy c* ≥ co* in equilibrium; i.e., 
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If fixed operating costs are larger than this, but not so large as to make any entry unprofitable, only those producers 
who can sell in both markets will choose to operate, since the extra sales are necessary to recoup the high fixed 
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(8), and the relationship between co* and c* is 

( fcco γ
τ

2*1* += ).     (A.5) 

Expression (A.4) can be substituted into (A.3) to obtain 
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and the value of entry is now 
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I have explicitly noted in the above expression that co* is a function of c*, with ∂co*/∂c* > 0.  The comparative static 

of interest is dc*/dτ.  The relevant components of the implicit function theorem are as follows (note that co* is also a 

function of τ): 
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Using the fact that ∂co*/∂τ = –co*/τ, this simplifies to 
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which is negative since the integral is over c ≤ co*.  Further using the fact that ∂co*/∂c* = 1/τ, 
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Therefore dc*/dτ > 0; higher transport costs are akin to lower product substitutability.  They support efficiency gaps 

between industry competitors because they act as a barrier keeping certain consumers from shifting purchases to 

more productive producers.

                                                                                                                                                             
costs.  Here, I consider the case where there are both home-only and home-and-outside market producers.  Melitz 
and Ottaviano  (2003) obtain similar qualitative implications in the exporters-only case with no fixed operating costs. 
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Table 1: Dispersion Across Industries of Within-Industry Productivity Distribution 
Moments 
 
 
Productivity Measure Within-Industry 

Productivity Moment 
Mean Std Dev. IQ Range 

Median* 3.174 0.407 0.449 
IQ Range 0.662 0.208 0.213 

90-10 Percentile Range 1.417 0.388 0.407 

Labor Productivity 
log(Value Added / 

Employees) 
95-5 Percentile Range 2.014 0.568 0.565 

     
Median* 2.521 0.376 0.428 
IQ Range 0.653 0.216 0.242 

90-10 Percentile Range 1.391 0.389 0.391 

Labor 
log(Value Added / 

Hours) 
95-5 Percentile Range 1.969 0.553 0.570 

     
Median* 1.642 0.370 0.474 
IQ Range 0.447 0.146 0.153 

90-10 Percentile Range 0.986 0.238 0.276 

Total Factor Prod. 1 
(Plant-Specific 

Input Elasticities) 
95-5 Percentile Range 1.356 0.291 0.329 

     
Median* 1.790 0.342 0.430 
IQ Range 0.290 0.087 0.102 

90-10 Percentile Range 0.651 0.173 0.196 

Total Factor Prod. 2 
(Industry Average 
Input Elasticities) 

95-5 Percentile Range 0.935 0.233 0.296 
 
N=443 
* Due to data disclosure restrictions, the reported median is actually the average of 49th and 51st 
percentile values 
 
 

 
 



Table 2: Summary Statistics of Regression Variables 
 
 

Variable Mean Std. Dev. 
Value Added per Employee Dispersion 0.209 0.058 

Value Added per Employee-Hour Dispersion 0.259 0.073 
TFP1 Dispersion 0.293 0.145 
TFP2 Dispersion 0.165 0.047 

VALUELB 0.352 1.641 
LOCAL 0.412 0.163 

DIVINDX 0.151 0.096 
PPSR 0.896 0.068 
ADV 0.010 0.019 

FIXEDCOST 0.232 0.093 
SUNKCOST 2.66E-3 0.012 

IMPPEN 0.076 0.104 
EXPINT 0.059 0.069 

 
 
 

 
 



Table 3: Regression Results—Univariates on Product Substitutability Factors 
 
A. Dispersion Regressions (Interquartile Range ÷ Median Productivity as Dependent Variable) 

 
 Productivity Measure 

Factor Labor 
(Output/Employee)

Labor 
(Output/Hour) 

TFP1 TFP2 

VALUELB -6.29E-3* 
(1.69E-3) 

-7.21E-3* 
(2.12E-3) 

-0.022* 
(0.004) 

-6.01E-3* 
(1.52E-3) 

LOCAL 0.048* 
(0.170) 

0.045* 
(0.021) 

0.082* 
(0.041) 

0.023 
(0.014) 

DIVINDX 0.062* 
(0.301) 

0.076 
(0.039) 

0.293* 
(0.088) 

0.089* 
(0.030) 

PPSR -0.064 
(0.041) 

-0.084 
(0.055) 

-0.553* 
(0.127) 

-0.126* 
(0.043) 

ADV 0.703* 
(0.151) 

0.784* 
(0.170) 

0.238 
(0.244) 

0.543* 
(0.098) 

 
 
B. Central Tendency Regressions (Median Productivity as Dependent Variable) 
 

 Productivity Measure 
Factor TFP1 TFP2 

VALUELB 0.079* 
(0.012) 

0.079* 
(0.011) 

LOCAL -0.286* 
(0.115) 

-0.126 
(0.103) 

DIVINDX -0.151 
(0.240) 

-0.239 
(0.226) 

PPSR 0.695* 
(0.345) 

0.848* 
(0.321) 

ADV 0.031 
(0.727) 

-0.250 
(0.714) 

 
 
TFP1 is computed using plant-specific input elasticities; TFP2 uses industry average elasticities. 
All regressions include a constant term. 
Heteroskedasticity-robust standard errors are in parentheses. 
* Indicates significance at the 5% level. 

 
 



Table 4: Regression Results—All Substitutability Factors 
 

 Productivity Dispersion Regressions  Central Tendency 
Regressions 

 
Factor 

Labor 
(emp) 

Labor 
(hours) 

TFP1 TFP2  TFP1 TFP2 

VALUELB -6.23E-3* 
(1.66E-3) 

-7.15E-3*
(2.09E-3) 

-0.023* 
(0.004) 

-6.07E-3*
(1.49E-3)

 0.079* 
(0.012) 

0.079* 
(0.011) 

DIVINDX 0.052 
(0.029) 

0.065 
(0.038) 

0.308* 
(0.084) 

0.083* 
(0.028)  

-0.212 
(0.217) 

-0.295 
(0.201) 

ADV 0.663* 
(0.143) 

0.735* 
(0.163) 

0.028 
(0.256) 

0.487* 
(0.088)  

0.303 
(0.597) 

0.067 
(0.611) 

R2 0.094 0.074 0.106 0.118  0.125 0.149 
 
 
 
Table 5: Regression Results—Model with Sunk and Fixed Costs 
 

 Productivity Dispersion Regressions  Central Tendency 
Regressions 

 Labor 
(emp) 

Labor 
(hours) 

TFP1 TFP2  TFP1 TFP2 

VALUELB -5.56E-3* 
(1.70E-3) 

-5.94E-3*
(2.13E-3)

-0.022* 
(0.004) 

-5.41E-3*
(1.50E-3)

 0.077* 
(0.012) 

0.076* 
(0.011) 

DIVINDX 0.067* 
(0.031) 

0.081* 
(0.039) 

0.254* 
(0.089) 

0.068* 
(0.030)  

-0.416 
(0.216) 

-0.482* 
(0.200) 

ADV 0.705* 
(0.156) 

0.796* 
(0.178) 

-0.017 
(0.259) 

0.483* 
(0.088)  

-0.098 
(0.641) 

-0.330 
(0.621) 

SUNKCOST 0.418* 
(0.143) 

0.850* 
(0.182) 

1.726* 
(0.578) 

0.679* 
(0.123)  

-0.008 
(0.624) 

-0.849 
(0.502) 

FIXEDCOST -0.059 
(0.031) 

-0.075* 
(0.037) 

0.156* 
(0.072) 

0.038 
(0.027)  

0.726* 
(0.163) 

0.683* 
(0.167) 

R2 0.110 0.104 0.136 0.153  0.155 0.181 
 
TFP1 is computed using plant-specific input elasticities; TFP2 uses industry average elasticities. 
All regressions include a constant term. 
Heteroskedasticity-robust standard errors are in parentheses. 
*Denotes significance at the 5% level. 
 

 
 



Table 6: Regression Results—Model with Trade Exposure Measures 
 
 

 Productivity Dispersion Regressions  Central Tendency 
Regressions 

 Labor 
(emp) 

Labor 
(hours) 

TFP1 TFP2  TFP1 TFP2 

VALUELB -6.60E-3* 
(1.87E-3) 

-7.93E-3*
(2.44E-3)

-0.023* 
0.004 

-7.20E-3*
(1.70E-3)

 0.080* 
(0.012) 

0.080* 
(0.011) 

DIVINDX 0.071* 
(0.031) 

0.087* 
(0.040) 

0.249* 
(0.089) 

0.068* 
(0.029)  

-0.422* 
(0.215) 

-0.481* 
(0.199) 

ADV 0.689* 
(0.158) 

0.780* 
(0.179) 

0.025 
(0.262) 

0.496* 
(0.086)  

-0.088 
(0.645) 

-0.365 
(0.625) 

SUNKCOST 0.284 
(0.162) 

0.625* 
(0.212) 

1.668* 
(0.591) 

0.538* 
(0.141)  

0.341 
(0.707) 

-0.596 
(0.578) 

FIXEDCOST -0.044 
(0.031) 

-0.056 
(0.037) 

0.139 
(0.081) 

0.038 
(0.028)  

0.703* 
(0.190) 

0.687* 
(0.192) 

IMPPEN 0.074* 
(0.027) 

0.122* 
(0.033) 

0.024 
(0.080) 

0.072 
(0.024)  

-0.187 
(0.170) 

-0.129 
(0.134) 

EXPINT -0.002 
(0.055) 

0.025 
(0.072) 

0.122 
(0.135) 

0.075 
(0.056)  

-0.077 
(0.288) 

-0.159 
(0.245) 

R2 0.126 0.131 0.139 0.188  0.158 0.183 
 
 
TFP1 is computed using plant-specific input elasticities; TFP2 uses industry average elasticities. 
All regressions include a constant term. 
Heteroskedasticity-robust standard errors are in parentheses. 
*Denotes significance at the 5% level. 

 
 



Table 6a: Regression Results—Alternative Dispersion Measure 
 
Dependent Variable is Industry 90–10 Percentile Productivity Range ÷ Median 
 

 Productivity Dispersion Regressions 
 Labor 

(emp) 
Labor 
(hours) 

TFP1 TFP2 

VALUELB -9.37E-3*
(3.68E-3) 

-0.011* 
(0.005) 

-0.050* 
0.010 

-0.013* 
(0.003) 

DIVINDX 0.063* 
(0.061) 

0.089* 
(0.080) 

0.424 
(0.217) 

0.087 
(0.066) 

ADV 0.963* 
(0.243) 

1.037* 
(0.302) 

0.075 
(0.472) 

0.897* 
(0.319) 

SUNKCOST 0.746 
(0.755) 

0.948* 
(0.949) 

0.420 
(1.136) 

0.267 
(0.334) 

FIXEDCOST -0.127* 
(0.061) 

-0.194* 
(0.075) 

0.169 
(0.145) 

-0.027 
(0.059) 

IMPPEN 0.177* 
(0.059) 

0.249* 
(0.073) 

-0.005 
(0.149) 

0.107 
(0.061) 

EXPINT -0.030 
(0.107) 

-0.003 
(0.129) 

0.335 
(0.238) 

0.122 
(0.103) 

R2 0.098 0.099 0.104 0.081 
 
 
TFP1 is computed using plant-specific input elasticities; TFP2 uses industry average elasticities. 
All regressions include a constant term. 
Heteroskedasticity-robust standard errors are in parentheses. 
*Denotes significance at the 5% level. 
 
 

 
 



Table 7: Regression Results—Model Controlling for Survival Rate 
 
 

 Productivity Dispersion Regressions  Central Tendency 
Regressions 

 Labor 
(emp) 

Labor 
(hours) 

TFP1 TFP2  TFP1 TFP2 

VALUELB -7.96E-3* 
(1.80E-3) 

-9.26E-3*
(2.39E-3)

-0.022* 
0.004 

-7.60E-3*
(1.71E-3)

 0.084* 
(0.013) 

0.079* 
(0.012) 

DIVINDX 0.097* 
(0.033) 

0.112* 
(0.042) 

0.235* 
(0.090) 

0.076* 
(0.031)  

-0.486* 
(0.221) 

-0.477* 
(0.205) 

ADV 0.650* 
(0.154) 

0.743* 
(0.176) 

0.046 
(0.261) 

0.485* 
(0.085)  

0.007 
(0.635) 

-0.370 
(0.633) 

SUNKCOST 0.345* 
(0.133) 

0.684* 
(0.173) 

1.635* 
(0.580) 

0.555* 
(0.134)  

0.189 
(0.712) 

-0.587 
(0.564) 

FIXEDCOST -0.046 
(0.030) 

-0.057 
(0.036) 

0.139 
(0.080) 

0.038 
(0.028)  

0.706* 
(0.191) 

0.687* 
(0.192) 

IMPPEN 0.062* 
(0.027) 

0.110* 
(0.034) 

0.030 
(0.080) 

0.069* 
(0.024)  

-0.156 
(0.170) 

-0.131 
(0.136) 

EXPINT 0.011 
(0.055) 

0.037 
(0.072) 

0.115 
(0.134) 

0.078 
(0.056)  

-0.108 
(0.289) 

-0.157 
(0.244) 

SURVRT -0.094* 
(0.026) 

-0.093* 
(0.034) 

0.051 
(0.058) 

-0.027 
(0.021)  

0.232 
(0.167) 

-0.014 
(0.156) 

R2 0.154 0.147 0.140 0.192  0.162 0.183 
 
 
TFP1 is computed using plant-specific input elasticities; TFP2 uses industry average elasticities. 
All regressions include a constant term. 
Heteroskedasticity-robust standard errors are in parentheses. 
*Denotes significance at the 5% level. 

 
 



Table 8: Regression Results—Capital Measurement Robustness Checks 
 
 

 Productivity Dispersion Regressions  Central Tendency Regressions 
 ASM Plants Only 

 
Variable Utilization

 
 ASM Plants Only 

 
Variable Utilization

       
    

TFP1 TFP2 TFP1 TFP2 TFP1 TFP2 TFP1 TFP2
VALUELB -0.021*

0.005 
-7.87E-3*
(2.05E-3)

-0.020* 
(0.004) 

-4.63E-3*
(2.13E-3)

0.084*
(0.012) 

0.088* 
(0.012) 

0.047* 
(0.011) 

0.049* 
(0.010) 

DIVINDX  
  

  
  

  
  

  

  
  

  
  

          

0.140
(0.098) 

0.059 
(0.037) 

0.188* 
(0.090) 

0.047 
(0.037)

-0.490* 
(0.216) 

-0.527* 
(0.209) 

-0.297 
(0.191) 

-0.354* 
(0.179) 

ADV 0.143
(0.244) 

0.595* 
(0.142) 

0.063 
(0.235) 

0.486* 
(0.120)

-0.038 
(0.650) 

-0.639 
(0.625) 

0.251 
(0.522) 

0.003 
(0.524) 

SUNKCOST 1.133
(0.663) 

0.291 
(0.201) 

1.628* 
(0.610) 

0.338 
(0.205)

0.540 
(0.709) 

-0.257 
(0.620) 

0.662 
(0.704) 

0.058 
(0.649) 

FIXEDCOST 0.112
(0.081) 

0.008 
(0.035) 

0.109 
(0.079) 

0.013 
(0.036)  

0.798* 
(0.194) 

0.749* 
(0.199) 

0.718* 
(0.163) 

0.701* 
(0.172) 

IMPPEN 0.059
(0.090) 

0.104* 
(0.030) 

0.034 
(0.075) 

0.086* 
(0.026)

-0.269 
(0.177) 

-0.134 
(0.147) 

-0.108 
(0.132) 

-0.043 
(0.108) 

EXPINT 0.201
(0.163) 

0.065 
(0.066) 

0.115 
(0.151) 

0.057 
(0.066)

-0.043 
(0.286) 

-0.076 
(0.272) 

0.011 
(0.244) 

-0.094 
(0.207) 

R2 0.081 0.127 0.107 0.089 0.176 0.199 0.113 0.128
 
TFP1 is computed using plant-specific input elasticities; TFP2 uses industry average elasticities.  All regressions include a constant term. 
Heteroskedasticity-robust standard errors are in parentheses. 
*Denotes significance at the 5% level 
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