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ABSTRACT

This paper presents new econometric methods for the empirical analysis
of individual labor market histories. The techniques developed here extend
previous work on continuous time models in four ways: (1) A structural
economic interpretation of these models 1is presented. (2) Time varying
explanatory variables are introduced into the analysis in a general way.

(3) Unobserved heterogenelty components are permitted to be correlated across
spells. (4) A flexible model of duration dependence is presented that
accommodates many previous models as a special case and that permits tests
among competing specifications within a unified framework.

We contrast our methods with more conventional discrete time and

regression procedures. The parameters of continuous time models are in-
variant to the sampling time unit used to record observations. Problems
plague the repgression approach to analyzing duration data which do not
plague the likelihood approach advocated in this paper. The regression
approach cannot be readily adopted to accommodate time varying explanatory
variables. The functional forms of regression functions depend on the
time paths of the explanatory variables. Ad hoc solutions to this problem
can make exogenous varilables endogenous to the model and so can induce
simultaneous equations bias.

Two sets of empirical results are presented. A major conclusion of
the first analysis is that the discrete time Markov model widely used in
labor market analysis is inconsistent with the data. The second set of
empirical results 1s a test of the hypothesis that 'unemployment"' and
"out of the labor force" are behaviorally different labor market states.
Contrary to recent claims, we find that they are separate states for our

sample of young men.
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This paper presents new econcmecric methods for the empirical analysis
of individual labor marker hiscories. Jovanovic's equilibrium moedel of worker

turnover, the MeCall-Mortensen search model, and Holt's model of labor force

dynamics can be escimated, and crucial assumptions‘tes:ed, with our tech-

niques.

Qur point of departure is the continucus ctime Markov model widely
utilized in sociology (Coleman; Singer and Spilerman; Tuma, Hannan and
Groneveld). The methodology developed here extends this work in four ways. (1)

A structural econocmic interpretation of these models is provided. It is

demonstrated that continucus time models maturally arise from optimal stopping
tules that are the essen;e of a variety of economic problems. {(See Brock et
al). (2) The methods'déveloped belew admit the introduction of time varying
explanatory variables into the analysis in a general way. Previous work
either ignores such variables or utilizes special procedures for selected
variables. e.g., Tuma, Haoman and Grcnéveld). Regression procedures

for introducing time varying variables require special assumptions that are

unlikely to be realized in empirical work with labor force dara.

We preseut a flexible empirical procedure which can be used to estimate
duration models with time varving variables and demonstrate, botd theoretically
and empirically, the importance of being careful zbout the way tize varving
variatles are introduced iato duracion zodels. (3) We a2xtend previous %Lk 3V
introducing unobserved ccmponeants ("mecarogeceit¥') that are corTelated across
stells. Zrevious work assuses tlac unchserved ccmponencs are Lndepencantly
iiscriducad aczoss spells - a scromg - 2nd 2s we Jemonscrata Selow Zor one Zata

set - a counter Zactual assumpcion. (&) We produce a Ilexidle 2conometsiz
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model with general types of "state dependence." Many models commonly
used in the analysis of continuous time data can be writtenm as a special
éase of our model. OQOur framework can be used Co test among coﬁpeting
model specifications.

We present empirical estimates of a two-state model of employment
and nonemploymentl in the youth labor market. We then proceed to test a
eritical assumption often used in labor market analysis: that "unemploy-—
ment" and "out of the labor force" are legitimately separate labor market
states. We find that this is so and that the behavioral equatioms that
generate movement into and out of these states are fundamentally different.

The structure of the paper is as follows. In Section 1 we present a
continuous time model of worker turmover. We demonstrate that this model
can be used as a framework within which it is possible to estimate
Jovanovic's model and many other models as well. The model is extended
te allow for heterogeneity, time varying variables and general types
of dependence of labor market transition rates om previous labor force
states. The likelihood funct;an for a two-state model is presented and
solutions to the problem of correct treatment of the initial conditions

of the process (sometimes called the "left censoring" problem) are offered.

1
The nonemployment state is composed of the states "unemp lovmenc"”
and "out of the labor farce." S
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Section Il presents a discussion of the advantages of continuous
time models over discrete time models. Certain limitations of continuous
time models are discussed as well.

Section ITI discusses pitfalls that arise in using regression
methods to analyze duration data. Two problems plague the regression
approach, First, standard regression estimators are ill-equipped to
deal with censored spells of events that arise_in short panels, Failure
to account for censored spells leads.to biased estimates of the parameters
of population regression functions. Second, the regression approach
cannot be readily adapted to accommodate time varying explanatory variables.

The functionmal Eorma of population regression functions depend on the

time paths of the explanatory variables. Ad hoc solutions to this problem
can make exogenous variables endogenous to the model and so caﬁ induce
simultaneous equétions biag.

Section IV presents two set® of empirical results. -The firse
set is an analysis of employment and nonemployment data using both regres-
sion and maximum likelihood procedures. The second set is a test of
the hypothesis that "unemployment" apd “out of the labﬁr force" are
behaviorally different labor market states.

Appendix A presents a genmeral multiple state multiple spell
- 1ikelihood fumction for a continuous time model. Appendix B éresen:s
the Weibull regression model used in some of our empirical work.

Appendix C presents a simple acopomic model in which non-Markovian,

long-cern dependence between labor market outcomes is generated.




I. COWTINUOUS TIME ZCONOMETRIC MODELS OF TURNOVER AND UNEMPLOVMENT

(a) Tirst Passage Time Distritutions as an Zconomic Comstruct. %e start with

thei:fluen;ialmpdel of Jovanovic. A worker and firm together constitute

2 macch. At the sctart of the wacch, both are uncertailn about tie oroductiviey
of the match buc both learnm about chis productivity through a Rayesian

learuing algorithm. Bocth worker and fira start wi:h.the same prior about the
productivity of the match. The prior does not depend on the previous labor
market history of the worker because each match is unique: che

productivity is not inherent in either the worker or the firm alome. The prior
is then updated as the two partners continue their relationship.

Jovanic demounstrates that a competitive equilibrium wage policy
of the firm which is also a socially optimal wage policy is to pay all
employees their expected marginal productivity where the expectation is computed
with respect to the updated priocr on the productivity of the worker - firm
Tatch. Workers, however, have alternatives. These altermatives include employ-
ment In other firms, particiration in social transfer programs which subsidize
unemployment, or neamarket activity.

Jovanovic dememstrates that the worker and firm continue cheir macch
untlil che time when the perceivedproductivity of the match - %(t) - falls below
tie reservation wage - Q(t) - defined as the acnetary value of the best
alternative to the current emplovment zatch. from his aQSumptian of 3 ““ilaner
wage growth procesé %(t) i3z normally distzibuted. The langth of tae
match is the first sassage time Co the avent %(:) <iJ(t), The fi=st ctlme zkat
this occurs iz Zenocad =+,

Afocher wav ro formulata this model is In terms of che index Jumction

=odel wideiy used Izm lator accnomies. Define




I(t) = W(t) - 0(t).

When I(t)fﬁ, the worker leaves the firm (for a match to exist at all the
initial value of the index function - I(0) - must be non-negative). The first
time in the match that I(t) becomes negative ~ T* - is termed the first
passage time. (See Jovanovic, page 981, for the explicit formula for T* in
his model).

Denote the distribution of T* by F(t*) with densicty t{t*). For the
moment, we ignore any dependence of this distribution on observed or unobser-
ved components. The Jovanovic model implies a special functiomal form
for this distribution. Moreover, it implies that the same distribution

characterizes all spells of a worker's employment with firms, and that the

outcomes of previous matches do not determine the distribution of the first
passage time or exit time from a current match.

At this point it 1s useful to rewrite the Jovanovic model in
a more convenlent form. To do so requires the introduction of
the hazard function, h(t*). The hazard function is a conditional density of
first passage or exit time from a spell given the length of time speat in the
spell. For expositicnal convenience assume that the distributicn function

is continuous and differentiable.

Lec g{T*{T* >t*) be the condirional denéity of the first passage time
T* given that T* is greater than or equal to t*. From the definitiom, I-F(t®)

{5 the probaoility that the first passage occurs after t*. Thus

L(t*)

Be*) = g(TH|Te2e%) = 5y




A given T implies a given h. Conversely, given 0, and our assumptions, T

Y

is uniquely defined because

+

h(ck) dex £(et) dex
sQ
. i
E(:*) = 1 - exp(- g h{u)du).
azad also ) "
() £ (c*) = h(c*) exp ( — 7T h(uw)du) .

' d *
Duration Dependence 1s said to exist Af 3%%5—1 # 0. The only

(continuous) density of exit times with no duration dependence is the exponeatia;

density. Thus if

-~ f{t*) = a exp(- at¥}, a> o

h(ex) =
and Ihe*) _ o =
> . .

If zh(z*)

_—_>0

c*

thers is pesitive duratiop dependencs. In tais case,

che lmger a workar has peen iz a2 jo=z, the zera2 likely a2 is o escage iz iz
)

"

. - - L . . . - . . ey Qh(:* [ + -

she next lata=ral'os zime (=¥, % + dt¥). IZ - < 0, there is nagafv2
ag*

. . . . PR . . . . . T iteated

duzacizo dependence, and Ihe lazger 3 woTkar aas bJeen iz 2 job the less LA2a/

-3 i3 =2 axiz iz in the nsuzr Tswmall imsarrzl’ of nime. Jositive duraiise
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dependence during unemplovment is associated with a declining reservation wage
in search theory (e.g., Lippman and McCall) . YNegative duration dependence during
employment is associated with firm specific capital in the theory of turnover.

The hazard function arises as a simple and readily interpreted represen-

tation of the structural condiﬁioual distribution of first passage times in

many models of labor market turnover. The Mortensen, Lippman aﬁd McCall search
theory generates a structural distribution of first passage times. In the
infinite horizon case with a stationary economic environment, the optimal search
strategy is stationary s0 that there is no duration dependence in unemployment
spells. A shrinking horizon (Gromau), systematic job search over different

wage distributions (Salop), or declining assets in 2 utility maximizing job
search model (with constant relative risk aversion, see Danforth, or Hall,
Lippman and McCall), all generate optimal stopping time distributions with
positive duration dependence. The precise functional form of tse hazard function
is determined by the distribution of the random shocks facing the agents.
Typically, these specific distributional assumptions are imposed as a matter

of mathema;ical convenience in formulating a theory and are not, themselves,
justified by an appeal to theory. For this reason, it is important c; develop

a flexible approach to estimation that does not require special functional forms
to secure estimates., The approach to empirical model building which is developed
below permits the analyst to explore the sensitivity of his estimates to special

assumptions about functional forms.




dolt's model of labor market dynamics, whil2 not derived from an
explicit optimizing model (but see Toikka), offars another example of
a coatinuous time labor market modei. Holt works with the probabilicy that
an individual will be in one of a ser of labor market states at a point in
time. For convenieance of exposition, we consider only a two stare =model and

we designate thosa statas bv "a" and "u" - shorthand n’tation for emplovment

and unemployment. We assume all workers participate in the labor force at

~ zach point 1in time.

The first passage time or exit time distribution from the employment

state is :e(te). The first passage time from the unemployment stata is
fu(tu). The labor market history of an individual is governed by these two
diétributions. Glven the initial state, labor market historias are generated
oy realizations of these first passage distributions. By aSSuminé no duraticn

dependerce (or constant hazard) in either labor market state, Holt specizlizes

these distributions Co
£ (c = a 2xp(- a_t
e( e) a 2( a e)

c .
N o =3 expi{- a t .
u( u) u Bl uhu)

41
=

folt does not =work with thesa duration distribucions directlrw.

Rather, he works with the prokabiliri that a serson will Te in esach stace

— .

23T & peiat ia cize, P (&) and P (&) (= L - 2 {(&)). Thsse srchabilitias zzn

e Zarivad from rche damsizias of awic times v zhe followiz

M
e
.1

B
H
n
o
b

fuppesa cthat 3 fersom is in stafs 2 ac cime =.  This sroczasiilize
i3 ?_{t}. Tha condiriomal srecanilizy of 2xicz Itsa ke stace i tima
inzarryal (¢ = £} is5 sizmply the hazari, t2_lt). Thus the prosasilise of sxis

Izom zhe emrclovmenc 572%2 0 fhe unempiovment stats is (a_.t} and 57 a zarzilsl




argument the probability of exit from the unemplovment state to the emplov-
ment state is (au.flt). The conditional probability of remaining in the
unemployment state is 1-(auAt). As At~0, the probability of remaining in the
state becomes unity - a result consistent with fixed costs of changing state.
Assuming that ae and a, a.rf. tounded positive numbers, the probablility that a

person is employed at time t + At 1s

Pe(t + At) = (1 - aeAt)Pe(:) + (auAt) Pu(t)

i.e. & person is employed at t + At either by remaining employed (with.
probability (1 - aeAt)) or becoming employed from the unemployment state
(which occurs with probability aum:). ‘

Rearranging terms

Pe(t + At) - Pe(t)
At

- - aePe(l:) + auPu(t).

Passing to the limit as At + o,

ie(t) = - ap (1) +a P (o).

By a parallel argument

P (t) =aP () -alP(t).
u e e uu
This system of equations generates a continuous time Markov process.

Given the probability of being in each initial state, these equations can be

solved to vield

. AN

u . ) ]
7 T <7 - > a - {a + a )t i
Pi8) = T2 e(o) T 5 [ °XP ( e u) and
e u e y
™~
ae ae !
+ 32 - - exp - (a_+ a )t
E'u(t)ﬂ a +a u(o) a+a | *P (e u) .
e u \ e u
N A




AS t = = , these probabilities converge to constants irrespective of initial

a
e - N . .y . ua
conditions. If the process scarts in equilibrium (so Pa(o) = ;—:—; and
2 u
aa
? {0} = ————), convergence is immediate.
2, ¢ ), e au), g |

-

The equilibrium probabilities have strong intultive appeal. The
larger the exit rate (or hazard) a, from the unemployménc state relacive to
_the exit rarte [rom the employment state, a,, tiie more Likely is the person to be
found in the amployment state at a point in time. In equilibrium, the odds
of finding somecne in the employment state are au/ae.
Burdecﬁ and Mortensen present a model of search and labor supply that
is developed in terms of state probabilities. It is Markovian conditiomal on
market wages and reservation wages. _ Knowledge of the hazard function and the
initial state of the process is sufficient information to calculate the state
probabilitias. Thus the methods p?eseuted in this paper can be used with some

modification by incorporating wages) to estimate their model.
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(b) Introducing Hecerogeneity Into the Model

Heterogeneity is defined as unmeasured and measured exogenous variables
that differ ;mong individuals and that may differ over time for the same
individual. The .tarm is usually reserved for unobservables as per-
ceived by the dacg analyst. Tnis paper considers both types of variables.
Cncorrected heterogemeity lzads to bilased estinates oﬁ duration dependence.

7 1f individual exit time distributions are exponential but individuals nave
different exponential paramete;s, estimated‘hazard functions exhibit negative
duration dependence.

To see this, let the exit time density be a{exp(-at)]. ‘ihe
density of a in the population is g(a). Assuming an ideal data set in waich
all gpells ars complatad, for a large random sample of indivi&uals the astimaced

empirical distribution functionm of exit times K(t) converges to the populaticnm

distribution K(t) defined as

) = 1 - |'e-a'tg(a)c{a..

J

The empirical hazard Ifuncticn comvergas 0

ﬂ(t) = i(i)w = I= ___.-E.C__

I
[
o
h»
w
3]
m

'nﬁ ersz




by the Cauchy-Scawartz inequalicy. 1 Intuitively, high a individuals are the
first to exit the state leaving behind the low a individuals. This shaws
up as negative duration dependence in the fitred distribution.

By a theorem of Barlowrand Proschan (p. 37) if each individual
exit time distribution exnibits negative duration dependence over the entire
range of values of exit time the fitted hazard function also exhibits negative
duration dependence. The only way for the fitted hazard to exhibit positive
duration dependence is fqr some (but not necessarily all) individual exit
time distributions to have positive duration dependence over at least some
portion of the domain of the distribution of exit times.

This paper controls for heterogeneity in observed and unobserved
variables by paraqeterizing the hazard function in a general way. The strategy

adopted here is to write

ety £12-1
(1 h(t) = . exp {Z(t+1)8 + v; rvmmais k2 ven + V(e+r)}
3\‘ > k: * 0

1

a2 r .

ac 2788 Loy s T f -ab_avaa
h(e) { Ia e g(a)da-l L fa e “g(a)ds | L e g(aid |

-k

The numerator of the expression on the right hand side is nonpositive bv the
Cauchy-Schwartz inequality for integrais [Buck, p. 123). It is strictly negative
so long as g(a) is nondegenerate.
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where Z(t+r) is a 1xK vecror ol exogenous variables as of calendar time &+

1 is a gyl vector of coefficients. <t 1s the calendar time at which the spell

- t =1 , t -1
commences. Duraticn dependence is captured by the two terms L and "

This treatment of the duratiom terms is clearly analogous to the Box-Cox
transformaticn used in regression analysis. Unobserved variables V(t+r) are per-
mitted to be functions of time (t+r). By exponentiating che-Cerm in brackats,

we ensure that h(t) is positive as required since h(t) is a conditional density

function.

This forrulation of the hazard is more géneral than any we have seen.

It contains, as special cases, virtually zll of the commonly utilized hazard

functions. For example, setting all elements of B8 equal to zero except for
the intercept term Bo’ and assuming V{t+r) = 0 for all t and rt,a variety of inter—
esting special cases widely used in the literature on reliability theory cam be

generated. 1If we set A; = 0 and ¥, = 0, we obtain the Weibull hazard rate
(2 h(e) = e %0 ¢ Yi (Weibull).

Duration dependence is monotone in this model and its sign is the sane as the

sign of Y1- If we set X; = 1 and v; = 0, we obtain the Gompertz hazard

(3) h(t) = e B Y1} Mt (Gompertz),

3y specifying airar-
native values Zor A\, v,, A, and v:;, a variety of mcdals of duracion <dapendance
czn e gemerated. Ia parcicular, che sssential Jeatures of Jovanovic's turmover
docel can e captured 5y cavosirg \: =1 and %, = I, Jovanovic dredicts shat
v, > g aad vz < J so that initial posicive duration dependeance is aventuallr
followed 5v negative duration Zependance. We Zzmonstratz Selow that v, -, i

and ~- zan Se zstimacad and <¢lassical nypothesis testing procedures can de usad

T3 t2si among compering models of duracion dapendanca.
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Qur model (l) extends previous work bv permircing the exogenous variables
to vary freely within spells.l Although time varving variables are a
compurational nuisance thev are a fact of life. In the empirical work reportad
below we demonstrate that this extension makes en important diZference in our
a2stinaces of the impact of key eccnomic_veriables on turnaver prababilities and
enables u; to generate sensible purameter estimates.

Finally, our treatment of hetercgenéicy generalizes previous work by
permitting unobserved components to be correlated across spells.
Work by Tuma, Hannan and Groeneveld assumes that-unobéerved components are
uncorrelated across
spells. However, in this paper, our creatment of heterogeneity components

i3 somewhat restrictive. We assume that within each spell V(t+t) = ¥V, i.e. that

heterogeneity components are constant within spells. Heterogenelty components

are permitted to vary across spélls. There is no particular reason to assume
that unobserved components behave the way we assume they do unless unobserved
heterogeneity coumponents are immutable person-specific effects. It is likely
that uncbserved components ;hange within spells. This assumption is made
solaly to simplify the computatcional procedﬁre discussed below. Its relaxa-
tion is a major goal of our future research.

In order to simplify the exposition we have thus far confized our
ectention to the formulation of the hazaré function for 2 single spell of an-
avent. Tha procedurs outlined above can be axrendad to aultipla apisodas of
the avent. Lac i Iadex the =pisode number. The hazard for the jeh episoda

=a2Y¥ te wiitfen as

1
“Tuma, Faanan., and Sroneveld permi: one variszbls a2 set of wvariablas
T3 c¢hange within spells.,

-
“Hecxman and 3orias introduce necerdgeneisy correlsted zcross
ipells,




15

A1d . A2y
4 e, = s . Y -1 + 1, -
(4) hJ(tJ) exp {Z(tJ+ rj) Bty (t 5 ) (24 (t lz.l) + vj}
J

llj < sz

where Tj is the date of the onset of the jth spell, Sj, Agj,ylj,vzj and Azj

are coefficients for the jth spell and Vj is an unobserved heterogeneity

component for the jth spell. This general parameterization permits behavioral
coefficients todiffer depending on the serial order of the spell. Such shifts
in coefficlents has been termed "occurrence dependence” by Heckman and Borjas.

4 simple economic model of “occurrence dependence’or stigma is presented in Appen-

dix C. To simplify the computations we restrict unobserved haterogeneity across spells

to a one factor error specification where Vj=CjV and Cj is a pafameter of the model.

The extension to a two state multiepisode model is immediate. Let
"e" and "u" denote the two states. The hazard function for the jth episode of

state & (i = e, u) may be written as

llj. ijﬂ
. (e -1) Yo, (€771 +V ‘_:2-
(5 ‘hj.z.(tj'-::) exp {z(cﬂﬂ”)ejzﬂljz—lljz + Ta41 __laj?. ji

where A; Again, to simplify the calculations, we restrict

. A .
heterogeneity to a one factor specification

(6) v, =¢ _v'.
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C. TH=E LIXELIROOD FUNCTION FOR A TWO-STATE MCDEL

This section presents the likelihood function for a two state version
of our =odsl, The general likalihood function is presented in Appendix a.

Individuals are observed for a ﬁime interval of length T. At the
start of the interval, the individual is in one of two states '2"or u.” To com-
mence the analysis we adopt the simplifying assumption that the beginniﬁg of
the obsarvation interval is 8lso the initial entry date of the individual inco
the ﬁork force. This assumption permits us to pbscpoue dis;ussion of the
problem of correct treatment of initial conditions for the process until the
next section, The data analyzed below are coﬁsistent with chis assumption,

To simplify the notation, write hazard Iunction (5) with

heterogeneity specification (6) as

whnere conditioning om the exogenous Z variables and the Qate of the onset of

the spell is left implicic. Recall that £ = e or u and that j denotess the serial
order af the spell. Subscript 3e thus denotes the third spell of employment
which starts at calendar ctime Tyqe "q(V!%)" is the deasity of hetarogeneity
components in the population. "#" is a parameter vector that sharactarizes

the distribution. The V component is the same Sor each individual across spells

Suec i3z iadependently diaszributad acrass peonle,
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: X, Cie K :ju
. u
{ T h, (£, IV) ex -J h, (n|¥)dn} {0 h, (£, |¥) exp=| n, Vidns *
b L PeltyelT) exe gelntdnd {1 Ry (e [¥) exp=] by ([ Ddn;
=1 =1
- (=] o
£
Ko tp
-::e.xp-J h,. . (n[V)dn} g(V)av ,
Dy 3 Ao
T 4T
(=]
where ® t_e + e+ EK = T. Ke and Ku differ by at most one in
j=1 4% =y Ju 0 Ko

absolute value because the individual 1s always in one of the two
states.

The first term in brackets is the product of the Ke densities of exit
time from employment. Each of these densitieé 1s conditioned on V, the hetero-
genelty ccmponent. The second term in brackets is the product of K.u conditional
(on V) densities of exit times from unemployment. The third term is the

h

probabllity that the ¥ c spell of event £, lasts at least L. . This prob~
T T tKT,z

ability is alsoconditioned on V, the unobserved heterogeneity co:ponent. Inter-
grati&n with respect to V eliminates the conditioning. Integrating cut V is
formally-equivalent to integrating out nuisance parameters. An alternative
approach to estimation would be ;o treat V as a fixed effect for each individual,
Exc;pc for some very special cases, the latter approach leads to a serious incidental
rarameters problem (see, e.z., Heckman), and results in incomsistant
parzmeter estimates in short panels. Tor this reasom we adopt a "random effect”
approach in our empirical analysis. |

- Under the assumption that individual event histories are obtained from

randem samples of individuals, the appropriate log likelihood is the sum of the -log of




density {7} for each individual in the sample. Maximizing this function with

respect to the parameters g, 152 (22 Alj?. , AZji and Cj'l' for
L ='%%0r"y," and 9, the parameters generating the density q(V{3), produces
zmaximum likelinood estimators which can be shown to be both consistent
and asymptotically normally distributed as the number of event historiezs beccmes
;arge. Valid large sample test statistics for parameter vectors can be based on
the estimated information matrix. To implement the modal, it is necessary to
make some assumptipn about the functional form of'q(Vlé). In this paper, we
assume that it_is a standard normal density. Since the parameters Cje and Cju
can be freely chosen, this sPecifihation does not restrict the values of variances
of vji across spells. 1In later work, we plan to experiment with a variety
of densities for V in order to check the sensitivitj of the estimates to
alternative specifications of the density of heterogeneity components.

The likelihood finction presentad in this section generalizes przvious
work by permitting (a) introduction of time varying explanatory variables, (b)
correction for hetercgeneity components correlated across spells, (c) 2stimation
of general forms of duration dependénce. 3y permik:ing struc;hrgl coefficiants
to change across diffsrent spells of the event, we can 2stimate a model of
"stigma" or "occurrence dependence” of the sort discussed in Heckman and Borjas
and derived im Appendix C. %Laggzed values of lamgths of previous spells
can alio be introduced as a2xplanatory variables in the model o capture tie
notion of "lagged duration dependance" advanced by Heckman and 3orjas.

he lixelihood fuaction azccounts for esach uni: of time spent in the sampling

(V3]

T

inece
interval 0 - T, it naturally corracts for inccmplete or censored spells of zvents

that ara a comsequence of the sampling scheme.
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Testing for the presence of hetercgeneity raises certain delicate
statistical problems that arise in testing for values of parameters at the

boundaries of parameter spaces (Moran, 1973). A straightforward test for

the presence of serially correlated unobserved componments can be comstructed
that avoids these problems. '

The following test procedure is proposed. Under the null hypothesis
that there is no serial correlation in unobservables. Future values of
duration variables should not be gtatistically significant determinants of

current duration distributions if heterogeneity is igmored in estimating the

parameters of current duration distributious. Standard (asymptotic) gignifi-

cance tegts on the astimated coefficients of future duration variables

estimated without correcting for heterogeneity can be used to test the hypothesis

of no serial correlation in unobservables for any two spells of the event.l
This test is not informative on the presence or absence of heterogemeity

components distributed independently across spells.

It is possible to estimate both llj and l2j (subject to the restriction

that llj < XZj

information matrix one can comstruct a joint confidence interval for these coeffi-

) and the associated coefficients Ylj and sz. Using the estimated

cients and determine whether or not certain restricted models lie within the
confidence interval. If they do, the data are consistent with the restricted
models. Thus, for example, If the estimated confidence interval includes YZj = 0
and Ylj =1, a Gaﬁpettz hazard is consistent wiﬁh the data for spell ji. If

the confidence interval includes TZj = ) and Ylj = 0, the data are consistent
with a Weibull hazard. 3y examination of the confidence imterval for the general

model it may thus be possible to select a mors parsimenicus model.

17e advocate use of future values rather than lagged values in consiructing

the test because of the possibility that lagged duration variables may be presaat
in the structural model. See Heckman and Borjas (1980).
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(d) ZInitializing the Process

It is a vare data set for which the beginning of the sample observation
interval is also cthe beginming of the individual's entry into the workforce -
Che assumpcion made in che-last section. More typically, a sampla begins
with individuals caught midstream in an employment or uneamployment spell. It
is commonly the case cthat we know which state an individual occupies at the
beginning of the sample, and possibly the serial order qf the spell bug we do
not know the length of time spent in the spell békore the individual is observed.
This section pregsents methods for adjusting the likelihood function presented
in the preceding sactiorn ta account for ﬁhis problem.

In order to focus on the essential aspects of the problem, we éommeuce

the analysis uander the assumption of a strictly stationary econemic enviromment,
and under the further assumption that the process is in equilibrium.

People can be in only one of two states: employed or unemployed. The density

of exit time from employment, fe(ce), 1s the same across people and across time
for the same person. The same is true of the density of exic time from unem-
ployment, fu(cu). The procegs is assumed to have been in operatien for a long cige
for each person. Latc e and My be the mean tizme in employment and unemployment,
raspectively. Thess means are assumed to be finlite. We abstrazct from cccur-
rence and lagged duration dependenmce, but permit duratiom dependence.

Suppose that we #irsc observe the process Zor a2ach individual at ca;andar
timE‘?o. Tne probability that 2 randomly seleciad personm will be faund to Je

amployed at 7 is

u
T = 2 -
g = wz
2 u
a derivation for this expression can de Zound in Cox (7. 36). Intuizively,
2ach complefs gmplovment and unempleovment z2pisode lascs 2 =« © on avarage

2 )

)

~Siscussions wizh Marjoria MeIlrov and 3urzon Siager slariflsd our
thinking con zhe sroblems discussad ia this section.




and each complete employment spell lasts u,. Hence 7, is the proportion of

time we expect to find an individual employed over a long observation period.

Given that a person is employed at time Ty what is the distribution

of 2 completed employment spell sampled at Tt ? The completed spell

length includes the portion observed after the scart of the observation period

tat T and the unobserved portion completed prior to T The distribution of
‘exit times from the sampled spell is not the distribucion fe(te). This is so
because the completed lengths of spells sampled ;c T, are on average longer
than the typical spell. Longer spells are more likely to be sampled than
shorter spells. Amplifying an heuristie argument due to-Cox and Lewis (pp.

61-63), the density of the sampled completed spell, denoted t:,
. ) .

can be derived in the following way.

Condition on the event that the individual is employed at the time he is

sampled. The number of employment spells of length x that oeccur in J episodes
of total time speat in employment .gl(‘e)j is n(J)(x). For a random sagpling
scheme, random across time for a siigle Person or ac<ross pecple at a point in

time, the probability of sampling a spell of lemgth x is

o Dy
J
jEL(t*)j
This expression is the ratio of the total length of spells of length x to the
total leﬁgth of the employment process. On average, one will tend to oversample

longer spells by the random sampling process. Divide the numerator and dencmi-

nator by J, the aumber of spells of employment, and let J grow large, so chac
zotal time spent in imployment gets large. Then

J

L (),
lim j=1 e = .
o - = J “a

-

- 7 - s 4 -
For discussion of chis point ia the snalysis of unemplovment sgells
3ee 3alant, 2. 36. ) .




by the strong law of larze numbers and

lia n(J)(x) = £ ()
J+e J ¢Ie‘{.

Then the density of sampled employﬁent spells of length x is

lin KC(J)(K) _ x fe(-":/ .
J-= J H
- o L (), ——F
j=1 e )

The mezn of the sampled employment distribution exceeds the mean of cmployment

H, So long as the variance of to (a:) is positive. The mean of the sampled
discribution is az + g which is clearly greater than ue since the mean is
e

‘always positive. For exponential exit time distributions this mean is twice
Hos the mean value of an employment interval. By randomly sampling across
time for a single person or across people, we overestimate the population mean
length of employment (and unemployment) duration.
Collecting results, the density of the completed employment spell sampled

at time period T is
o
(8) : g (c7 ) = ——=- .
e
. ‘ . -2 . . s s P
We do 0t obsarva t: « Instead we aobserve E.s the time from the corizin of the

sample to the completion of the spell,
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For any length of completed spell t:, as a consequence of stationarity
any value of EZ is equally likely as long as 0 < E: i_t:. Thus the conditional

density of EZ given t: is

9 - k(@ %) ==
e

The joint densicy of T° and ¢ is the product of (8) and (9),

Q Q
(@, % = Lt f.(c)
ot to S o _e‘e’
c H
e e

Thus the marginal density of E: is

l-o ]
we(te) = [/ 1 £t )de,

€ He
e

(L
-Q
- 1-Fe(ce)

e

Recall that these derivations depend on the assumption that the sampled spell

iz an employment spell. The probability that the sampled spell is an employ-
ment spell is 7 = e ., Thus the
e ————
u Fu

e u
unconditional densicy of an observed first spell of employment is

=0
L 1L (ED)
u

hx ° =g =0
PEGED) =y (Em

lThis density is also the density for time in the spell prior

o 0 -0 =0
to To, Ae. See Cox, p. 61. Replacing Ae for te in ﬁe(te) produces the

3
density for ﬁ;.
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3v an entirely parallel argument the unconditional density of an obsarved first
spell of unemployment is |
- =0
W: (Eu) = Y, (EZ) B : ; ::(tu)
a2 u
where the new symbols used in this expression are defined in the obvious way
- replacing "e'" with "u." . -

It is straightforward to modify the analysis by adding exogenous hetero-
geneity compoments providgd that these components are idéntical across spells.
They may differ across people. Thus, in place of fl(:l) (& = e,u) we may write
fl(tl | Z,¥) and the derivation may be repeated as before with w: (Ez | 2,9,

2 = e,u, written in place of $: (Egg. °

With this modification, the density function for the exit times E;

{where the subscript denotes the state at sampling time periocd "o") and tj£°
" for an individual who has X, completed soells of smployment and X, completed
spells of unemployment and who at the end of interval T is in an iacomplate

spell of event lT of length CKTir (where KTIS aither Ke + 1 or Ku + 1 and

% 1% either & or u) is

T
% e g
L% | : [ I 3 VY
214 " : S R . <p- [ W)det § T T (VY .
{19 Loy (e 1z, Wt I he(tjelf) axp-| h (nlv)de} O 3 qu(:ju,
4 ] 2 3=l j=1
0
c €.
“iu TrhT
4 ’ .
axp=: 3 (2iM)dni . fsxp- . 7, (=, 7)dn; gi¥dv .
o} 2 )

ader tha assuzprion zhat Iadividual svent nistcriss zrae otcained Irom

-

rancom samzias of iadividuals, the approsriace log likelihood Zor this samplizz




scheme is che sum of the log of demsity (10) for each jndividual in the samplsa.
Maximizing this functiom with respect to the parameters of the model produces
consiscent and asymptotically normally distributed estimators as the number

of event histories becomes large.

This procedure produces an exact solution to the problem of imitializing
Ehe likelihood in a stationary environment if the process is in staticnary equili-
brium. It is not a general solution. In many cases the‘twd kay assumptions -~
equilibrium and a Qta:iouary environment - are unlikely to be even approximately
correct. .In this case the procedure just present;d is not valid.

We postpone a general discussion of this problem to a later occcasion.
Here we sketch two solutions, both of which are patterned after a discussion
by one of us in a previous paper (Heckman). In a general nonstationary
enviromient, in order to correctly initialize the procea;, we require thg.probé
abilicy distribution of the first spell in our sample. Its derivation depends
on the rule uged to select the sample being analyzed, the probability that the
individual is in a given statz at the time he is sampled, and the distribution
of the length of time spent in the first spell in the observed sample period

given the state that the individual is in when the sampling begins. The density

. . -0 .
of the first spell duration & may be written as
Q -Q
T,
-0 “e
i 1
AMe, Yy 2(mil. ) 2 =e,u .
e t Q
c
This density does not, in gemeral, nave the same Iunctional fora as f or I,

2 u

I depends on presample values of the exogenous variaples as well as within

smpla values. Ia general, we do not ‘@ow Lts 2xact funccional fomma. However,
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w2 can approximate it using the flexible functional forms for the hazards gziven
in equations (5) and (6). One stratsgy for empirical work is to paramecerize

the first spell in the sample differently from that of subsequent spells and

*

2

(]
A practical difficulty with this solution to the proolem of initl

utilize density A in place of ¥ in equation (10).
conditions 1s that presample values of the exogenous variables are raquired

to form the density of the axit time Erom the first svell in the sample,

While such data may be available for some samples, this is unlikely in

most cases.

There are two approaches to this problem. Denote the demnsity function
for the exogen~us variables by k(Z:x) where i is a vector of parameters ;f the
density generating the data. The first approach estimates this density {rom
data. The exogenous variables wichin the sample period mighc be used to
astimate the density or 2lse auxiliary data sources might be atilized. Given

consistent 2stimates of the density function of the missing data, demoted

-~ %
k(Zix), one can form A, defined as

c
=Q
k)
{11) * -0 . o -
e A, = ]r AL 0 M kEind.
o (=] a

Tasarting A" in slace of i, in demsity (10) is equivalent to integrating out the
Sl ? gracing
)

aissing dzza, and Zormimg an estimatad iikelihood Function. From che exogensizy

: 7. zné the assumed comverseace of k{Z!x) zo k(I.yx) the estimated likelinocd

~
- -y




coaverges to the true likelinood and maximum Iikelihood estimators based on che
estimated likelinhood converge to the true maximum likelihood es:imétcrs.

The second approach is to jointly estimate the data density and structural
parameters of the model. Given the exogeneity of Z, no advantage accraes to

this computationally more demanding approach.

A second solution to the problem of initial conditions proceeds conditionally

on V. Substituting A  for y* in density (10) and given V = v, the probability

density for the sample exit times is

(12) Me, | v, f2(015 0 )
)
t. C
e
{- B, (t lv) exp - fJ R, (n|w da}{ 1'[ L (t |v) exp -I hu(nlv)dn}-
o j=1 o

(nf) dan } .

{ exp -J;H(T'lr hpT

4" is a parameter for each individual. One may further condition on Eg to

o]
write the density of the sample exit times given ¥ and Eg . This condicional
density is
P C.
|8 Eje .
(13) {Th (e, ) exp - j (nle) daj{ 1° H(- [v)@@ .f h (njwidnlt-
j=1 % J° o a i=1 o =
F-K‘F,L 3
[ exp -] h, (aFg)dnl} .
o °T

lDue o the nonlimearity of the moqel, iantegrating out “he missing daca
with respect to its distribucion is a not, in general, =qulva;ent to renlacing
the nmissing values with estimatad mean values as 1s cuscomary in standard

linear regrassion =models.




and does not depend on the parameters of the initial exit time distribution.
Maximizing.:he conditional likelihood functiom with respect to the parameters
of the model (including a value of v for each person in the sample) generates
consistent parameter estimatas as number of spells per person becowes large
(Ke + Ku + @), However, in the case of short panels, it is in gemeral not
possible to consistently estimate v, and due to the nonlinearity of the model
estimated parameters will not be consistent because the maximum likelihood
estimator will involve joint estimation of v and the structural parameters.
The incousistency in the estimator of v will be transmitted to the estimator

of the structural parameters (Heckman).
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IT CONTINUOUS TIME vs. DISCRETE TIME MODELS
The principal advantage of continuous time models for discrete panel
data over more conventional discrete time models for discrete panel data
is that Ehe parameters gene;ating the continuous time model are invariant
to the time unit used in empirical work. Commonly utilized discrete time
models such as logit and probit lack this invariance property. A probit

model for the occurrence of an eveat in a time interval of a specified

length does not imply a probit model for the probability of events in time
intervals of differentAlength. Dependence of ﬁhe parameters and functional
form of the model on the data.used to estimate it is an undesirable feature
of discrete time time models that is avoided by use of the continuous time
approach. Put differently, a continuous time model can always be used to
generate a discrete time model while a discrete time model is critically
dependent for itsparameterization and interpretation on the particular time
interval on which it 1= estimated.

To demoustrate this point, we consider the first passage time asso-
clated with a single spell of an event., We do not observe the process
continuously but we know in which of a series of discrete, equispaced
intervals the first passage oceurs. To simplify the exposition, we ignore
heterogeneity in unobserved compoments and initially assume that measured
variables stay constant within each spell. The stochastic process starts
at é;me "0", We observe the occurrence of the event only ir equispaced
tire interwvals of length A.

For a continuous time model with hazard functionm h(u)}!, the probability

that a first passage occurs in the ith interval is

lror simplicity we do not explicitly note the dependence of the
hazard function on exogenous variables.
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(i=L)& ja
(14) exp=( [ h(uwdu)- exp-{ h(u)du),
o )

This is simply the probability that the first passage occurs sometime
between (3-1)6 and jA.- (= F(J4)=-F({-1)4)). ¥No matter how wide or.szall
the intervals are defined and irrespective of whether or not successive
intervals are of equal length, the first passage time probability is
generated by the same structural hazard function h(u). Thus if Az is the
width of the Zth interval, the probability of a first passage in the jth

interval is simply

j=1 |
v
L& % 4
=1 t 2=1 x
exp- (f h(u)dw - exp- (f h(u)du).
[»} o]

The convaaticnal discrefe time model (=2.z., Kiafar and Neumann
or Heckman and Willis: assumes that there is a "true" time interval of
lengch A. P& is the probability that an event does not occur in the incerval.

For example, if the probit model is adopted it is assumed that

where % is the cumulative distrisution func:tion of zhe normal discribution,
and 7 i3 a vector of explamatory variables with asscciatad coeflicient vestar

2, Ter this mocel, the prebatilicy of a first passage in the 3ch lztarval Is

F 2 )
25TR e Y = (PETTTROSZTY) .
70 o=
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Suppose that In another data set the interval widths are longer
e.g., quarters and not months). For the continuous time model this enlarge~
ment of the interval creates no problem and the probability of first passage
can be expressed as a function of the underlying h(u) funetion by a straight-
forward modification of eﬁpreésion (14).

For the discrete time model to be defined at all on the new time scale,
that scale must be a positive integer multiple of the original scale, For the
discrete time wodel, unliks the continuous time medel, fractiomal Intervals
have no meaning because the discrete time model is silént on the behaéior of
the process witﬁin any interval. If in fact the new time scale is m times the
ol& scale (with m a positive integer), the probabllity of a first passage in

the jth new interval is

_ o
(15) @92

EY) m-L.. o % L
; 1fz @)™ 120

(:\-—:‘—r-
(2,0 50 (o

The second term in the expression on the left hand side is the probability thar
zt least one event accurs in the jth time interval measured on the new
scala. Neither the probability of occurrence of at least one avent in the
cew interwval (1-(?,)3) ner the probability of occurrence of exactly one

- ol

. , T) o=l e = - P

svent in the gew interval (1-( (?A) (l-?A)) arz probis Zuactions if the
srebabilics of occurrenca of the avent ia the <ld interval is srobit. OF
course, ia this simple exarmple, it is possitle t3o write these probabilitias

ia teras of the underlying probit sedel for the old iatarvals. 3uc aote

thar it will be secessary =o modify a likelihood Zunction usec to compuls




paramecer asstimatas to account for the =odificaticn of the interval width.
And, as noted zbove, there is no iegitimata procedure availatle ro modily
the discrets time model to accoun:t for non-integer expansion or shrizkage
of the original interval length. It is necessary Lo postulste a new
aodel--which might be assumed to be prohit in the new iarervals--with new
parametars that cannot be derived from the crigiral paramecers of the model
defined on the original interval.
Continuous time modéls can be used to generate discrete time models.
Indeed, in light of the discussion in this section, the models coasisting of aquations

(53, (6) and (7) can be interpreted as providing a gemeral algorithm

for producing a class of discrete time models for the analysis of discrete

panel data. In contrast with conventioral approaches in eccnometrics,
the approach offered in.this paper provides a parameterizatiom of discrete
tize models that is independent of the time scale in which the gccurrence
of diserets avaents i{s mezsurad,

We do not want to overstata the zase Sor coriinucue time models.
As noted by Singer and Spilerman, Phillips and others, aggre-
gaticn of sontinucus time'Zata into interval dacta -2 the seort descrided
in this section may lead to nomidentificarion of the hazard function a(u).
This is cleérly the case if the hazard is arbit:ariiy specified., TIf suf-
Zicient smoothness is i:posed on tihe hazard, as i3 done for :the hazards
ucilized ia this paper {(sna aqua;ions 1), (4) and (5)), zhais idenri-
Iization oroblam doas aot arise. Yonmstheless, it ig i:gof:an: o nozrs
that witiou:t impesizng iafcor=ation of some sorz, time agé:aga:ad data =ar
norz zlways Te used o Tacover rhe undarlviag hazard. in “nfialsy 2% hazazd
Tinctions defined over :zize intarvals within obsazved szzpiinr zerizds zaa
Freduca the sace tige aggragats< data. Yaless 2 smoothness assumption

is izpesed, it Is nct dossible o uzilize the tize zzzregacad Jdaca to -a13var
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the upnderlying hazard h{u). Without such an assumption, thera is no neceésary
advantage in using continuous time models in place of a conventional discreta
time approacn. Put differently, in the absence of such identifying assumpticns,
and in the presence of time aggregated data, the relative merits of the
continuous time approach.fade, and the models advanced in this paper must
be interprated as just one of a variety of discrete time models that might
be used to analyze discrete panel data.
IIT PIIFALLS IN USING REGRESSION METHODS TO
ANALYZE DURATION DATA
Appendix B presents a derivation of the propecties of a Weibull
regression model that can be used to analyze duratiom data and estimate
duration dependence paramaters. This section considers two important
problems that arise in using standard regression analysis to analyze duration
data. The first problem is one of ;ample selection bi.as.l The second |
problem is the difficulty that arises from introducing time varying explanatory
variables into regression models. The first problem arises because most
panel samples are short. In the course ofra panel, some ipdividuals never
complete a single spell of an event while others will have multiple spells
and even those individuals will usually have one unfinishad spell in the
course of the panel. QCommonly used procedures, such as utilizing omly
complated spellg'of evants for regression analysis, impose a sample selecticn

criterion on tle sample used to executa the empirical work. Failure to

l!his problam is discussed in Tuma and Zannan.,
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account for such conditioning results ia biased parameter estimates. The
tesulting bias depends on the particular rule chosen and on the length
of the panel. Tae dependence of the bias on the length of the panel makes
regression estimates from panel samplas of diffarent lengths noncompa=-able
aven wﬂen'the same selection rule is employed for gemerating data to estimate
medels.

The second precblem--introducing time varying exogenous variables inte
a regression analysis for duraticn data--arises because the appropriate

functional form of the regression equation depends on the time profile of the

exogenous variables. Conditioning duration regfassidns on "exogenous'
variables measured after a spell begins may induce simultaneous equations
biasAin the regression estimators. Ad hoc solutions to these problems
convert truly exogenous variables into endogenous variables and hence rasult
in biased estimates. This section considers both of these problems starting
with the first one.

To focus on essential ideas, consider a regression analysis of duraction
datz for a particular type of event—e.g., the lengths of time spent in
consecutive jobs. To simplify che analysis we assume that no time elapses
between consacutive jobs. The deasity of duration in a given job for an

individual with fixed characteristics 2 is

Unobserved hetarogeneily ccmpoments arz assumed to be absent Ircm the model.

The excected langrh 2% £ given 2 Is
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From a regression analysis we seek to estimate the parameters of g(Z).

For example, if #(t|2Z) = 8(2) exp=(8(Z)t), 8(Z) >0,
(18) S KD - Fclf)' .
Defining 8(Z) = (BZ)-I,

(19) E(t|2)|' RZ.

Tnder ideal conditions, a regressiom of t on Z will estimate B. We now
specify those conditions,.

Suppose that the data at our disposal come from a panmel data set of
length T. To avoid inessential detail suppose that at the origin of the
sample — "0'" — everyone begins a spell of the event. This assumption
enables us to ignore problems with initial conditions.

We would like to use this data to estimate E(t|Z). But in our panel
sample the expected value of the lemgth of the first spell is mot E(t|Z)

but is rather

T - -]
(20) _ E(e]z,T) = f1:f(c!2)d:+1:ff(:|2)dt < E(t!2).
o T

Thus, in the exponential example

(21) E(elz, Ty = 3Z [1 - R } .
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Clearly, a least squares regression of t on Z will not estimate 2. As T+=,
the bias disappears. In the exponential example, as T becomes big relative
to the mean duration, l/B(Z), the bias becomes small.

One widely used method utilizes only completed first spells. This

results in another type of selection bias. The expected value of t given

that £t < T is

T
fe£(e[2)de
(22) E(t|Z, T, t<T) = ¢ .

'r .
[E(e]|2)de
Q

In cur exponential example

~(T/82) )
(23) E(t|2Z, T, £<T) = 3z(l'e (T/BZ+1)

(l-e-T/e%)

gz (1 .
(l—e-T/ Bz)

Again, a least squares regression of t on Z does not estimate £ for this
gample. As Tw=, the bilas disappears.

Clearly there is alsb selection bias when we znalyze the expected
duration of a completed second spell of the event. Denote the length of

spell 1 by ti' The expected length of the second spell is

taf (£2 |2)E (£1]2)dty de2
(26) E(tz{Z, T, t1 + t2<7) =

2 (eI (£1]2)dep des

03O —r
o‘-wTiO‘htd
(s
~
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Secause t; and t, are independent, and hence the subscripts ";" and "' can be
interchanged without affecting the validity of the axpression, thils is alsoc the
conditional expection of the length of the first spell.l For a sample of indivi-

duals with at least two completed spells of the event

1-&‘”52(14-1:/52)-(3—22-) -1/82
1782 /82

(25) E(tz2|2, T, t1+t2<T) = 82

- (T/B2)e

Clearly, E(t;{2, T, t1 +e2<T) ¢ E(ty]2Z, T, t1<T)..

The key point to extract from this discuasion is that for short panels
in which T is "small", regression estimators do not estimate the parameters
of regression functiom (18). Least squares estimators are criticzlly
dependent on both the sample selection rule and the length of the panel.

Two séudies that utilize the same sample selection rule for genmerating
"usable" observations will produce different regressiom coefficients if the
studies are based on panels of different length.

It 1s possible to estimate the true sﬁructural parametsrs of the model.
The maximum likelihood estimator discussed in sectiom (I) asutomatically
corrects for the panel length bias. Moreover, it is obviocus from our
exponential examples that by use of non-linear regression it is possible to
retrieve the structural parameters.of interest.

The same main conclusions can be obtained if we relzx the simplying
assumption that the process starts up at the origin date of the panel. In

addition to sample selection bias and panel length bias, in models with

" lrhus in testing for "auean occurrence dependence" (i.e., different
regression fumctions -for. consecutive spells), the sample selecticn bias
discussed in the text does not bias the test based on regression methods.
This result is critically dependent on the assumptionm that the Z variables
remain constant both within and across spells, and of course, that the same
tule is used to gemerate first and second spells.
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duration dependence regression estimatars that do not correctly account fof
the length of time spent in a spell prior to the time the panel begins are
subject to a further source ofrbias. Except for expomential duration
distributions, the distributlon of a left cemsored first spell is not the
same as the distribution-of an. uncensored spell. (See equation (11):.
The conditional expectation of a left censored distribution is not the
same as the conditional expectatioﬁ of the uyncensored distribution. As
noted in section (I.d), the maximym likelihood estimator can be used to
correct for this source of bias as well.

Regressiﬁn methods for the amalysis of duration data also break dowm
in the presence of time varying explamatory variables. The functiomal
forms of the regression equations depend on the time paths of the explanatory
variables. Even if the lengths of comsecutive spells of an event are
generated by hazard functions of identicsl functianai form, the regressiozn
functions fof durations of consecutive events will have different functional
forms. In the presence of ummeasured heterogeneity components, regression
equations fitconditional on the "exogenous variables" me#sured starting at
the onset of & spell nmay generate biased coefficients., This is so because
the particular values assumed by the explanatory variables selected in this
fashion may depend on the lengths of the preceding spells. This is certainly
the case for time trended explanatory variables like ége, and in the
empirical work we report below, it is also the case for our national
u;employment rate variable., JAssuming that unmeasured heterogeneity components
are correlated across spells, the initial values of timé trended variables
in a spell will be correlated with the regression error tarm, and will become
andogenous variables. TFor the usual reasons, least séuares estimators will

be blased.
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To focus on the essential aspects of the problem, suppose that we have
access to a very long panmel data set (T+=) so that we can safely ignore the
iength of panel bias previously considered. As before, there is only one
type of event and we assume that the stochastic process begins at the
beginning of our sample.- The duration time distribution depends on time
varying variables Z(t) where T denotes calendar time measured from the

origin of our sample.

A common functional form for the hazard functiom, h(.), is assumed for
all spells. "V" {3 a heterogeneity component common across all spells.

The demsity of duration time in the first spell, t;, is

t:
First spell: h(t;, 2(t;)}, V) exp~ [ h(u, Z(u), V)du.
)

The density for the duration time in the second spell t; given that the

first gpell ends at calendar time L is

tz
Conditional Second Spell: h(tz, Z(tz + t1), V)exp- f h(u, Z(u +t1), V) du.
0

The marginal second spell density is obtained by integrating out t1. Thus

f*(tZ, Z, V) =

® ta .
fIrCe2, Z(tz + £1), V) exp~ [ bu, ZCu +t1), V)du]-
o o

ty
[h(ty, 2(t1), V) exp- [ h(u, Z(u), V)dulde:.
Q

In the case in which the distribution of Z(t) does not depend on time (i.e.,

tice stationzrity in the exogenous variasbles),
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tz
£4(ty, Z, V) = h(tz, Z(z2 + &), V) exp- [ Alu, Z(s +€1), V) du.
Q

Otherwise the marginal second spell density will te of a different fumctiomal
form than the marginal first Spell deusity; and the regression funection for
the second spell will have a functional form different from that of the first
spell regressicn funectionm.

A simple example may serve to clarify the main points. We first
demonstrate that the functional form of the regression'will depend on the
time path of the exogenous variables that drive the model. <Consider the
following exponéntial model for the first spell of an event:

MY g <m

£Ct1|Z, V) = €(Z,V)e
where ¥Z,V) = Efgt—F , and Z remains comstant over the entire spell. The
regression function for duration im the first spell is

26) E(t1]Z, 7) = = 3Z + V.,

1
ez,

Suppose we consider anmother individual who is subject to a different
value of Z before and after calendar time T:. The density of £; fer this
serson is derived most sizply Ircm the comditional densicty befora and affar

£y, Ll.e.

_ { i 3(2;, T) = J<e <
(62, 7, 1<) = — =7 e,
(1- &~
and
-2 (22, V)t
2 e > -o) = 1022, T) 2 (Z2, ) !
{=1ra 1 vl == - -
wl [y Vg a-:(uz, "I).! t[?;l

The zondicional sxpectzcion oI duracion in Iha
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1 , -a(zl, V)Tl i - .
(27) E e ( 8(Z,, V) 3(2,, V) )

(1120 220 T D T gy

The functional form of the regression equation (27 ) differs dramatically
from that of (26 ), and the problems of infarence and parametar estimation
differ greatly between the two equations. In general, different time paths
for the exogenous variables will result in different functional forms for
the regression Equations.‘

4 commonly used regression procedure for the amalysis of duration
data computes regression equations conditiomal on the values of exogenous
variables that occur at or after the start date of a spell. The intuition
that underlies this procedure is that it is onlj the variabl;s that occur
during a spell that can explain the duration of a spell. In thg presence
of unobserved heterogeneity components correlated across spells this
procedure is ipherently dangerous. In the presence of heterogemeity,
selection of explanatory variables in this fashion converts exogenous
variasbles into endogenous ones, and guarantees simultaneous equations bias
in least squares estimators.

To show thig, assume the same functional form for the hazard funmction
in all spells of the event. The conditional expectation of duration in the

second spell given values of the exogencus variables that confront the

individual after the end of the first soell is, for a case of no time varying

variables

(1}

(223 T(£z2]2, T) = 1/8(2, V).

L

Tor the case of time varying variables, the condivional expeczation depends

cn whether or nmot t: > T;. If t:; € 71, the conditional expectarion is

.~ - 4 - . - -
32 I(t2!2y, Z2, =1, T, 21 € TL) = ETEINED,
< N=11
" n-é(Z; Y VI (o=t - - 1 e, <=
- (22,7 FEL,T)y )T =TT
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"y

€I t; > T, the conditicnal expecraticn is

(30) E tZ{ZL) zzl L1, ‘?l t; > TI) =

Although equations (29 ) and (27 ) are of the same Zunctionzl form,
there is one iaportant difference: in equaticn (29 ) t; is an explanatory
variapie., Since unobserved hetarogeneity coﬁponent V is correlated across
spells, t; is an endogenous variable in a regression model that treats V as
a component of the error term of the model (i.e., a model that is not
computed conditional on V). Partitioning the Aata on the basis of t; < 13
raises further problems, By Bayes theorem, the conditionzal mean of V in
equations (29 ) and (30 ) depends on t: and the explanatory variables so
that the error term (inclusive of V) associated with regrassion specifications
for equations (29) or (20) does not im general have a zero mean. A scandard
least squares assumption is violated and least squares estimators of duration
2quations will be biased and inconsistent.

The main point ig quiL.'e general:; wherever there are time trended
or onorstationary explanmatory varizbles in the model, conditioning the
durations of subsequent spells om explanmatory variables measured from the
ouset of those spells induces cocrrelaticn between the explanatery variables
and tha heterogeneity component in the model.1

One solution to these problems is to use the marzinal second scell
densiiy znd ccmpute the conditiomali expectation of t: with respect fo ii.
for =he case of no time varryiag variablas, and iz :the nera gemerzl case cof

Tize staticnary exogencus varizblas, tZez zarzizal and condicienal demsicizs

coizciie 50 that the right aand side of squacien (I7) is the zonditicnal ax-

N

sexzacism o:‘:2 wifh Tasvect T3 the narzizal sacond spell Zdemsizny. I3 zzs

(¥)
"
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h
v
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n-scationary axplanatary rariables thae swo discwibucions 4 aw

.- - -

Gary Chamberlain (1981) has also discussed this problem.
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12 our exampla, the cenditionzl expecration ¢

- -2 (7 -
(31) E(czizy, Z2, T1, V) = 5?2%—§T + a (21,
(1L
8(z3.V) - 8(z;, VY[ _ 1 c
§(Z;,V) - 9(Z1,V) v

In long panels, estimagion of this equatian avcids th: endogenei:zy protlea
induced by selacting explanatory variables on the basis of past realizations
of the process. JYote however from inspection of equations (27 ) and (31 ),

that successive conditional expectations of duration times taken with

respect to the successive marginal distribucions have different funccicnal

forms. ' This is so even thcough the functional form of the hazard function

is ipvariant across spells. This means that in che presance of time varying
variables it Is not pessible to simply'pool daca across successive spells

of the evant o estimate the common parameters of 2 regrassion function.

-

Yoreover, due %o the nomstationarity of the exogenous variaztlas, simple
H

regression tasts of "cecurrence dependence’” will tend mot to reject chat

avpothesis (comparing ciffarences in regression coeaiiicisncs across zonseculbive
‘ spells of an avent).
Twe ad hoc proceduras for coping with time trended or general nen-

stacionary varizhles in a regression format are readily discussed and

disposed of. The first usas average values of the Tegrassion varizbleas

~hls expeciation is 2cmputad frem the joiaz damsizv of =

- L34 4 - — -
= .y 7"2- I |- - - — -3 (7 —y
CENCPRRED ¥ - - 2(Z,,"N)=2 z

- -y -

~ . 4 o .
P A T b T A = )5 27
o.Vie 2 = Z.7%a : z
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-
JEIL T,
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within a spell in a standard linear regression format.! This procedure

ignores the change in functional form that results from differemnt paths for
regressors. It fails to capture the essential dependence of first passage
time densities on the entire sequence of exogenous variables, not just thosé

realized in a spell. Exogeuéus variables that are selected in this fashion
become endogenous variables. To deﬁonstrate this final point by way of an example
consider astrictly positively trended explanatory varizble, The average

value of the variable w@thin a spell is simply the multiple of the lengch of

the spell, and is clearly endogenous.

A second'gg_hoc procedure for introducing time varying variables into

a regression format is to use exogenous varilables measured at a start of a
spell. Again, this procedure results in a misspecification of the true
conditional expectation function and for nonstationary explanatory varisbles
manufactures simultaneous equations biaa for models with heterogeneity
components by selecting "explanatory" variables on the basis of prior
realizations of the process.

The standard regressiOn approach to the analysis of duration data is
thus seen to be a rather fragile empirical procedure. Only in the case of
long panels in stationary economic enviromments does it produce valid
parameter estimates. These conditions are unlikely to be realized in the
analysis of microeconomic labor market data. The likelihood approach corrects
for length of panel bias and suitably modified corrects for other sampling rules.
Time varying explana;ory‘variables can readily be accommodated in the
likelihood approach. Tor both reasons, we strongly prefer the likelihood
approach to the regression approach 1o the analysis of labor market duration

data.

lox and Lewis suggest this approach but only for explanatory
-rariables that are not strongly time tranded.
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EMPIRICAL ANALYSIS

This section reports the results of two empirical analyses. Sub-
section A compares empirical results obtained frem regression and maximum
likelihoo& procedures used to analyze spells of emplovment and noﬁemployment
for a sample of young mén. Our results from this analysis are of considerable
aubstantive interest, and also serve to {llustrate the biases inherent in
using fegression techniques to analyze duration data. Subsection B presents
tests of the proposition that it is legitimate to aggregate the "unemployment"
and "out of labor force" states into ome state called nonemployment. This
proposition is of intérest given recent claims that the distinction between
the two nonemployment states is artificial (see, e.g., Clark and Summers).

We find that the states are empirically distinct.

The sample used to perform all the empirical work reported here is
selected from the National Longitudimal Survey of Young Men, and is the same
as that previously employed by Heckman and Borjas. Werfollow 122 young men -
for thiry comsecutive months, from the time they graduate frcm high-school.
The small size of our sample is due to the stringent selection criteria

imposed. To be iacluded ia the sample an individual must (1) be

45
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white; (2) have received a high school diploma in the spring or early summer
of 1969; and (3) not have returned to school in the period begimning in the
fall of 196% and ending in December of 1971.

The sample was selected in this manner in an attempt to minimize the
inicial conditions problem discussed in'part d of Section I, By using indi-

viduals who have recently completed schooling, we have selected individuals

"with little dr nc previous labor force experience. The vast majority of

individuals in our sample have not worked in full time jobs during high school.
We can safely ignore the initial conditions problem in deriving the maximum

likelihood estimates presented here.

A. Comparison of Regression and Maximum Likelihood
Estimates of Employment and Nonemployment
Spell Duration

The regress;ion spécifica.l:ion employed here is similar to the Weibull
model uséd By Beékman and Borjas. A more complete discussiom of the
Weibull regression model and its statistical properties is presented in
Appendix B. We assume that duration times conditional on heterogeneity com-
ponents are Weibull distributed, and consider the first two com#leted spells
of employment énd nonemployment. In terms of hazard (5), the specification

estimated is obtained by setting A, . =0 =0, and Z(u + 1, )} = zil for

' Yo 12

0<u < Eyps j =1, 2, where L = employment "e" and 2 = nonemployment "a.”
(Recall chat sz is the date in calendar time at which the jth spell of event

kA begiﬂs) The last condiﬁion imposes the requirement that the values of the
exogenous variables are fixed over the duration of a Spell; In ouyr empirical
analysis the valuyes of the axogenous variables are fixed in two diiferent ways.

Ia the first way, we fix the exogenous variables at their beginning of spell

values, so that
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L ..
Zjl Z('j"x.)

The second way uses within spell averazes of .the Z,

t'jz
[zt + 1) dk
(2) o I
23" t

to approximats the "true' wvalue of ij within the jth spell of event 1.

We adopt the following one factor Weibull regression model specifica-

tion:
fne, =2z, K. +V  +u,
3% iz Tik j& jx
ST
where Sjl - T, (equation B-5)
. G
_ v -t .-.1—
it vy
CZ is a facto} loading for event % on heterogeneity component ¢, and
! )
v, - = T
(W) = 0, E(¥) = 0, E(Vy,N,,) = 0,
2
and sz is iid across spells and people. The variance of Wji is E—J(sz +-1)2 , &

result derived in Appendix 3.

Differencing successive completed log duraticns in state 1 elimizates
v

3t from the regression. Focusing on the first and second complered spells

of event 1, we may write

I - - = - g ’ "‘JJ
e, - laey, = (2, - 208, v 2

s R ,
T Ryy) Tyt
The residual variance for this equation

has mez2n zer® and variance -

3(r, 1)+
L

Tram the astimacad rasidual variance ir i3 thus possible Co ecnsistantly 2sc-
{—a

-z the duracisa dependence sarzmerar As nocad a appendix 3 chis 2stinpacs
is derived under £z zssumpcicn

shzz chare is ac er-or ia ceasuring ssaplated

the ascizmated duraticn dapendanca parametar is downwazd hiasad.
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As noted in Section III, restricting attention in the empiricail
analysis to completed spells of events generates sample selecticn bias. Inm
our empiri;al work, we lose approximately two-thirds of our sample by imposing
this sample selection requiremeﬁt.

We include only two regressors in the empirical results presented
here; the first is a dummy wvariable set to one if the individual is married
- with spouse present (MSP) and zerc otherwise and the second is the natiomal
unemployment rate for prime age white males. The second variable is a proxy
for aggregate demand. In'addition to the firgst-differenced specification
described above, we also present estimates of a two equation system of first
and second spell completed log duration times using generalized least squares.

A topic of considerable interest in estimating the regression equations
is the Jetermination of the sensitivity of parameter estimates to the
method used to salect spell comstant values for the time varying exogenous
variables. For the regressors used here, the national unemployment rate varies
by month, while marital status is observed yearly. In our sample period
{1969=1971) che within spell variation of the unemployment variable is likely
to be far greater than that of marital status. We thus expect to find that
the parameters associated with unemployment will show more semsitivity to
the method of selecting spell constant exogenous variables.

_ Since the regression approach has been shown to yield biased parameter
estimateé (see Section III) it is difficult to isolate the effect of fixing
the exogenous variables over spells using the two regression methods examined
here. To provide a benchmark we present maximum likelihood estimates of the
Weibuli duration model using both methods of fixing the exogemous variables.
We.then incorporate time varying variables. Differences among the estimates

are considerable.
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Regression results for log employment durations are presented in
Table 1. The top panel contains the estimates of the two spell GLS model,
while the lower panel contains estimates from the first difference specifi-

cation. On the left side of the table the values of the regressors is the

@
3

those observed in the first month of the spell (zju's. As discussed in Section

average value over the spell (Z )) and on the right side of the values are
"III the second method of fixing the regressors may also produce bilased co-
efficients because the values of the '"exogenous va_riables“ at the start of
the second spell of an eveﬁt will depend on the lengths of previous spells
of events if the true exogenous variables are time trended. In our sample of
thirty months the unemployment measure has -an extreme positive time trend.
The two methods for fixing the regressors produce lérge differences
.in parameter estimates. Although most parameters are not significantly dif-
ferent from zero by conventional standards, the coefficient of the unemploy-

ment rate in the first spell GLS equations using Zgze) is three times as large

@
je
efficient unemployment rate differs depending on the method used to fix time

as the coefficient based on Z . The sign of estimated second spell co-
varying variables. The coefficients associated with marital status are
statistically insignificant and are much less sensitive to the method of
selecting explanatory variables.

The two regression specificatioms yield very different parameter esti-
mates. For the model using éfl the estimate of the coefficient of unemploy-
ment for second spell duration is .531 in the GLS system as opposed to .858
from the first difference specification. The coefficients oi the unemploy-
ment raﬁe on first spell employment duration are 9.31 in the first difference

specification and-6.523 in the GLS system. These disparities and the generally

poor fits demonstrate the difficulties inherent in the regression approach.
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TABLE l1.—Ln Employment Durations (Based om Iwo Completed Spells)l

Within Spell Averages of Start of Spell
Exogenous Variables Exogenous Variables
Spell , Spell o Spell Spell
One t Two t One t Two Tt
Intercept 1.232 ¢ 2.18) ~1.052 (1l.25) 7.094 (2.1) =2.048 (3.2)

Marital Status
(1=if married) .626 (L.43) =.449 (.72) =.409 (.81) -.490 (.75)

National Unem~- ’
ployment -2.020 (5.40) =.975 (.21) -6.523 (2.5) 531 (1.88)

Difference Specificatioms

Intercept - 2502 (-1.95) 12.423(2.5)
Marital Status -.138 (.17) 0.112 (.0Ll)
Unemployment .185 (.56) .858 (.337)

Marieal Status
{First Spell) =.570 (.49) -,496 (1.1l1)

Naticral Unemployment '

(First Spell) 1.946 (2.41) 8,951 (2.43)
Yo l.08 T o= .85

l¢ staristics are reported in parentheses.

The estimate of the Weibull parameter T, ie substantially greater
than zero, using either of the two methods for computiag ij. A value of Ye
greatar thanzero indicates positive duration dependence, i.2., the longer as
indiv;dual is in a stats the more likely he is to leave iz, The same resulrs
usizg a differemt list of variables were also found by Heckman and 3orjas.

egression results for the aocemploymen:t squations aTe prasanced In

- a2
Table 2. Once agzin estimates based cn Zéi)and Zf;)are very diffaranc. ‘Wnan

’
withia spell averages are used (Zf;i, the upnemployment measur2 oas & nagacive

-
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1
TABLE 2.--La Nonemployment Durations (Based on Two Completed Spells)™

Within Spell Averages of Start of Spell
Exogenous Variables Exogenous Variables
Spell Spell Spell Spell
One t - Two t One t Two o
Intercept -.398  (.97) J46  ( .65) =1.051 (2.28) -1.011 (1l.61)

-Marital Startus
(=1 if married
spouse prasent) —-.l117 (.24) .16 ( .44) =-.375 (.764) -.093 (.25)

National Unem- ) )
ployment ~.335 (1.46) =.53 (1.74) 057  (.21) .151 (.51)

Difference Sveciiications

Intercept ~.0746 (.084) .950 (1.1)
4 Marital Status ~.342 (.645) -.656 (1.31)
A Unemployment -.402  (.85) .544  (1.32)
Marital Status

{In First Spell) L0911 (~-.13) .280 (.52)
Unemployment

(In First Spell) -.252  (.60) -.653 (1.42)

10.-1.23 .- .74

lt statistics are reportad in parencheses.

estimated effect on employment duratiom. Since the prime age wale unemployment

tate is time trended in our sample, using the average value of the employment

rate as a regressor causes longer duration times to be associatad with aigher

withia spell unemployment ratas for purely mechamlcsl reascms. A strong

ampirical relationship is found oot because of any causal -link, but only

secause thas ulemployment measure is a transformaticn of the dependenc rarizble.
Wea agala “iad avidence of pesitive duration dependences In the unem-

cloyment squacions. "Yn" 15 approximataly equal coone. The coefficients asso-
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ciated with the unemployment measures switch signs in both the top and bottom

panels according to whether Z(u or Z @)

jo Ja
We now discuss estimates obtained from maximum likelihood estimation

is used.

of the parameters of the hazard function (5). In order to compare these

estimates to those from the regreSSious-, we initially adopt a Weibull speci- e
fication. The coefficient associated with the log of the duration in the

" state is Ype Later on in this section we present results from a more genmeral
parameterization of dura:i_on dependence and compare resui:s from this model

with those from the Weibull.

The maximum likelihood parameter estimates for the employment~nonemploy-
ment model are presented in- Table 3, Papel A con;:a.'l.ns estimates from the
-model using Zj(?, in panel B are the estimates using regressors Z?e, and in
panel C are the parameter estimates for the case when the regressors are allowed to vafy
within the spells. On the left side of the page are the coefficients asso-
ciated with the employment to nonemployment transitiom, and on the right side
are the coefficients associated with the nonemployment to employment transi-
tion. First note that, in contrast to the regression results, the estimates
of Yy, indicate negative duration dependence in all states and for all methods
of fixing regressors. The duration dependence parameter is highly signifigant
in virtually all transitions. However, spurious negative duration dependence
can be generatad by not properly accounting for population heterogeneity.
In fact, when heterogeneity is introduced in the wodel there is no evidence of
duration dependence in the employment to nonemployment transition (see Table 4).
The coefficient of MSP is significant in all three panels in explainirg

smployment duracion, though there are large differecces in the atsolute values

of the eatimacas, Allowing the MSP variable to change over the course of the




TABLE 3. =~ Maximum Likelihood Estimates —— Weibull .‘Iodell

Panel A:

Regressors Fixed at Average Value Over Spell

Employment to Nonemployment

Nonemployment to EZmployment

Intercept .971 -.093
(1.535) (.221)
Lu Duratiom (Y) -.137 -.287
(1.571) (2.976)
MSP -1,093 . 347
(2.679) (1.134)
Unemployment -1.800 -.577
(6.286) (3.119)
£2 = -711.457
Panel B: Regressors Fixed at Value for First Month of Spell
Intercept -3.743 -1.054
(12.074) (3.464)
fn Duration (v) -.230 -.363
(2.888) (4.049)
MSP -.921 .297
(2.310) (.902)
Unenployment .569 -.130
(3.951) (.900)
L= -740.998
Panel C: Regressors Free to Vary Over the Spell
Intercept =3.078 -.899
(8.670) (2.742)
Za Duration (V) -.341 -.316
‘ (3.941) (3.279)
MSP -.610 .362
(1.971) (1.131)
Unemployment 209 . =.204
(1.194) (1.321)

L= -746.315

b

~Absolute value of asymptotic mormal statistics in parentheses.

2 & denotes the value of the log likelihood fumctiom.

spell resulis in a parameter estimate almost one half as large in absolute

value as -he coefificient value that results ‘rom using the average spell
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value in the employment to nonemployment transition. In the nonemploymenr~

amplovment equations the method of introducing sxcgenous variables has licsie

afZ2ct on the value of the MSP parzmecer, though in all cases the coefficiant
is approximately equal to its standard error. Ia all three panels the incer-
pre:atign of the eifact of marital status oa exit Cimes is the same: indi-
viduals married with spouse present have lower rates of tramsitiom out of
employment and higher rates of transiction from nomemployment than others.

The differences in parameter estimates are much more extreme for the
coefficients of the prime age male unemployment variable. Recall that this
variable is strongly time ﬁrended. The coefficiencs of the uﬁemploymen:
variable in both panels A and B are highly significanc for the employment-
nonemployment transition, but ars of opposite sign. Allowing the variables
to change over the spell results in an estimate which is positive but net
statistically significanc. Use of Spell'coﬁs:an: regressors leads to dra-
matically different interpretations depending on the technique employed to
arrive at a spell constant value. This same remark is true with regard to the
wmemployment rate coefficients in the nonemployment-employment transition.
Taken as a whole, these results demonstrate the seriousness of the biases intcro-
duced inte the parameter estimates by restricting the varizbility of exogenous
variables. These findings cast considerable doubt on the value of regression
nethods for estimating duration models.

Wé next =urnm Lo an investigatiom of the effects of not contrelling
Zor hecarogeneity on estimates of duration dependence. The specificaticn of
the one factor scheme we adopt is given in equatiom (6] 1o Secticn I. The same
sac Of regressors i3 used as was used in the estimatiom of the nodel in Table
3, Panel C, so zhat all variables are allowed to vary within spells. Table 4

Ira2sents the estinacas.
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TABLE 4. -- Maximum Likelihood Estimates with Time Varying Variables and
Heterogeneity
Employment to Nonemployment Nonemployment tco Employment

Intercept -3.600 -.879
{8.395) (2.525)
2n Duration 015 7 -.312
(.121) (3.170)
MSP - -,498 320
(1.384) (.961)
- Unemployment -.017 -.172
{.101) (1.056)
Ci‘ 1.196 . : -,133
] (4.651) (.756)

£ = - 740,126

lAbsolute value of asymgtotic normal statistics in parentheses.

It is ipteresting to note that unobservable heterogeneity is an impor-
tant &eterminant of the rate of transition out of the emfloyment stata, but has
little effect on the rate of leaving nonemployment. There has been much ;:tentiou
given to separating the effect of heterogeneity and state dependemce in the
langth of nonemployment spells, but our estimates suggest that for young men
estimatres of duration dependence are not affected by the inclusion of hetero-
geneity into the model. However, the duraticn dependence effect vanishes with
the introduction of heterogeneity in the asmplovment-uonemployment transition.
The intzroduction of hetercogeneity reduces the magnitude of all the parameters
(with the excepticn of tha constant) ia the employment equation, while the
coefficients in the nonemplovment equation are barely aff?c:ad.

Thesa findings iadicate that employment-nonempleyment transition
orchabiliciss ara non¥arkovian and call into guestion the standard discrata

time Markov assumption widely used in labor zarket analysis (see, e.32.,
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Marston, 1976). The source of departure from the Markov model differs be-
tween the employment to nonemployment transition and the nonemployment to
amployment transition. The former tramsition is non-Markovian because of un-
controlled heterogeneity which gives rise to the classical mover-stayer
problem. The latter transition is non-Markovian because of structural dura-
tion dependence, -
All the estimation done up to this point has been predicated on the
.assumption that the exit time distributions are Weibull. We now relax this

assumption. We estimate a model which allows for general forms of duration

dependence. This specification is obtained by lecting A = 1 and A

138 238 = 2

for all values of j and % (see equation 5). Empirical results are presented

in Table 5 for models estimated with and without heterogeneity corrections. The
models estimated without heterogeneity show some evidence of linear duration
dependence in the E to N transition, while the hazard associated with the N to E
transition appears to be nommonotonic in duration.- Except for the unemplovment
rate coefficient in the E to N transition, the estimates of the coefficients of
the explanatory variables do not differ much from the estimates obtained in the
Weibull model. When the heterogeneity correction is added, there is no evidence
of duration dependence in the rate of leaving employment. Recall that a similar
result was found in the Weibull case. For the nonemployment to employment transi-
tion, the exit rate to employment also appears to be a linear function of durationm.
In our data we do not reject the null hypothesis that the squared duration term is
insignificant in each of the transition densitiaes. Asgssuming that this is so, it

then become possible to test between the Weitull (llji = 1) and Compercz (ll = 1)

3%
specifications. The difference in log likeiihoods between the two models

is negligible (-739.2 ws -740.6). The evidence suggests a slight preference
for the Weibull specification. The astimates of the coefficients of the explana-

tory variables do not change zTuch between those specifizations, and for the sake

of brevicy we do aot repor: the detailied empirical resuits from this model.
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TABLE 5. -~ Maximum Likelihood Estimates with Time Varylng Variables, Heterc-
geneity, and General Duration Denendence*

Without Heterogeneity With Heterogeneity
E-+ N N+ E E-~NXN N-=-E
Const. -3.271 ‘ -.762 -3.565 -.748
(8.901) (2.425) (8.537) (2.247}
Tenure/10 -. 806 -1.714 .045 -1,704
: (1.858) (2.731) {.085) {2.683)
IenurezflOO .028 .602 -.120 .603
(.145) {1.673) {.607) {1.666)
MSP -.568 .349 ~.490 .313
{1.731) (1.098) , (1.333) {.956)
Unemployment , .329 -.192 .075 ~.164
(1.865) (1.271) (.392) {1.042)
Cij 1.008 -.118
(3.572) (.650)

£ -742.334 =739.177

lAbsolute value of asymptotic normal statistics in parentheses.

B. Tests of a Three State vs. a2 Two State Model and Tests of Whether or net
Unemployment and Qut of the Labor Force are Behaviorally Different States

1

The preceding empirical work lumps the "uﬁemployed" and those "out of
the labor force" into a common "nonemployed" category. There-is considerable
controversy in the literature over the issye of whether or not the categories
"unemployed'" and "out of the labor force' are behaviorally distinct labor
force states {(Lucas). This issue is particularly relevant in the study of the
labor market dynamics of youth. Given the range of nommarket options available
to many youths, and given practices of many state unemployment compensation
agencies which effactively limit the eligibility for unemployment comﬁensation
of many youths, it seems especially likely thaﬁ there is no distinction between

"unemplovment” and "out of the labor force" status for voung people. Recent

IComments by Gary Chamberlain have greatly improfed this section of the paper,
and eliminated several errors that appeared iIn previous drarfts.
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papers by Clark and Summers and Ellwood have made this claim. In this section
of the paper we presemt a test of this proposition and reject it. We find
that distinct behavioral equations govern transitions from out of the labor force
to amployment and from unemployment to employment.

Recent theory suggests fhat being "unemployed" and "out of the labor force"
describes different behavior. For example, in search theory (e.g., Burdett and
Mortensen) a key difference between unemployed individuals and those out of the
labor force is that the former are at an intetrior point with respect to the
optimal amount of time they devote to search while the iatter are ar a corner and

spend no time searching. Separate behavioral equations generate observatioms in

these two states.
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Even though these theoretical distinctions are widely accepted, many

economists claim that the empiricalwdistinction between reported "unemployment"
and reported "out of the labor forceh is so arbitrary that it is of little
or no-analytical value. This point would seem to have some merit after examining
the official current population'survey definition of unemployment, which defines
those individuals as unemployed "who had no employment during the survey week,
were available for work, and (1) had engaged In any specific job seeking activity
- within the past four weeks, (2) were waiting to be called back to a job from which
they had been laid off, or (3) were waiting to report to a new wage or salary
job scheduled to start wifhin the following 30 days." Because there is no
stipulation as to the quality or quantity of searches made within the month,
the unemployment-out of the labor force distinction may be of little value in
predicting employment probabilities for the nonemployed.

| In this section we present a test to determine whether or not the ciaési—
. fications "u" (unemployed) and "o" (out of the labor foree) are behaviorally
peaningless distinctions. The idea underlying the test is as follows: controlling
for heterogeneity if the hazard rate for exit to employment from unemployment
(hue) is the same as the hazard rate for exit to employment out of the labor force
(hoe)' the origin state ("o" or "u") is irrelevant in determining the rate at
which individuals leave nonemployment to go t¢ employment. In a simple 3 state
Markov model, this test is equivalent to testiné the proposition that the two
nonemployment states can be aggregated into a single state and a properly specified
two state Markov model can be defined for emblofment and nonemployment. To simplify
the axposition we assume that there is no heterogeneity in observed or unobserved
characteristics. This assumption is not essential and is not used in performing
the emﬁirical work reported below.

To motivate the test, we consider two cases. The {irst case assumes that
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individuals exit employment at a rate governed by density fe(te). The
probability that a person terminating emplovment classifies himself as a
"u" or "o" 1s determined by tossing a coin that comes up "u" fraction T
of the time and "o' fraction 1- 7 of the time. Once acquired the person
keeps these labels as long as‘heris nonemployed s¢ there 1s neo switching
between "o and "u" states (a patently counterfactual case). The density
of duration in the nonemployment state is governed by density fn(tn).
' The assoclated hazard hn is
f (t
By - 37:%;_%5_7 ’
n o
The joint probability density that an individual ié classified as unemployed

and leaves nonemployment at tn is

an(tn)
with assoclated hazard
hue = hn .
The joint probability that an individual is classified as out of the

labor force and leaves nonemployment at £, is

(1-ME_(r)

with associated hazard
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The hazard rate for entry to emplovment will be the same whether or not the
nonemploved individual is classified as an "o" or an "u".l
In the second case considered here, individuals are allowed to switch

their reported nonemployment status "raridomly". By this we mean that initial
nonewmplovment classification is random {(governed as before by a toss of the

coin) and that individuals switch randomly between "o" and "u". The continuous time
analogue of discrete time independent Bernoulli trials is an exponential waiting time
model (Cox;1962). Write the hazard for durations from "o" to "u" as hou and the

hazard from "u" to "o" as huo’ the density of time spent going from o to e (toe) is

hoe sxp = {(hoe * hou)toe }

while the density of time spent going from u to e (tue) is

- !
hue &xp {(hue + huo)tue [
Individuals may change among reported nonemployment states for whatever reason. All

that 1s required for the origin state (o or u) to be irrelevant for characterizing
1
transitions from nonemployment to employment is for h0e= hue'

lThe proof i1s trivial. Assume fn(tn) 1s not defective so that
£fn(t1)dth = 1. The hazard rate for exit from unemployment to employment is
. ) T fn(tn) -
ue T -7 7 () n
n n

The term in the demominator is the probability that the exit occurs from u
to e after time tn. A parallel argument demonstrates that hoe = hn

-
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The condition hae. hue is also the rsquirement that must be sacisiiad
in a Markov model to aggregate “o' and "u'" into a single stata 1, and for the
resulting two state model for e and n to be a properly defined Mgrkov model.

To demonstr#te this it is most convenient to work with the state nrobabilicy
representacion of the three stata Markov model. Define Pj(t) as the probability
that staie 3 is occupled at time ¢ and ﬁj(t) as the instantanecus rate of change

.0f this probability. The three stace generalization of the two stace model

presented In Section I.b is

N i Tr |
P () “lh, TRy Roe Bie B ()
P(e) = eo “hg T ho) by Po(t)

|

P (8)] h h E

LY . eu ou “lhye * huo{ LPu(t”

or

P ey = 22 ey

using matrix notatiom. Note that the rank.of A is at most Z.
In order to aggregata "o" and "u" into a two state wodel defized in

terms of n, we require that we be able to collapse the three stata systam iaco

| ) = 3
12 (& -1 ! i P2 (e)
; B! . “en ne | 128
: vz ; ! -
!;( | ! 5,,();
- i . - i i b=

P Ta 2 i Yan ge RES
. - - 4 .

) (2. )]
wners ?3(:) = ?0(:) - ?u(t). In maczix motation 2 (e} =37 {(g)., Tue

- T

“znic ¢f 3 i5 1, For this 0 Je an equivaizant rapresentation of the Ik

H

ag stairts
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model, a necessary conditicn is chat ramk (A} = rank (B) = 1. A necessary and
sufficient condiricn is that hoe = hue = hne' Sufficiency =ay de checked by |
direct substicution inte A.

This interpretation of the test is also informative in that It makas
precise the sease in which o and u are "{yrrelevant'. Aggregating o and
u ioto a single state Eqr the purpose pf statistical amalysis does not alcer
the Markov property of the model. The race at which individuals leave nonem=
plovment to enter employment does not depend on which nonemployment state in-~
dividuals are in.

It is tempting to extend this type of reasoning.ca consider transitions

from employment to the two nonemployment states. Thus it might be argued that

1f u and o are "irrelevant” distinctioms, the rate of transition from e

te u (heu) whould be the same as the rate of tramsition frém e to © (heo)'
This aigument is correct only 1if =« = 1l-7 = 1/2, 1If Ee(ce) is the demsirty
of employment length duratioms with hazard rate he(:e) the hazard rate for

transicions from e teoe u 1is

while the hazard rate for transicions from e to o 1is

= 1] -
heo (L= )he .

Obviously he - heo = he, as is raquired By She law of conditional probabilicy.
3 u :
3ur unless T = 1-= = 1/2, heu = heo' Ve hzave no theory of 7T . ZIven

raporcing oneseif as upemploved is sg-ictly a nacter of tossinz a coin, nothing
Taquires 7= 1/2.

Table 5 presents estimates of :the three stata Zodel estimated wizh
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heterogeneilty. The fact that the standard errors are so large relative to the
magnitude of the parameters is to be expected given that we are attempting to
estimate twenty paramecers with so few degrees of freedom. The parameter signs
are generally consistent with our earlier results from the smployment-nonesmploy-
ment mode-l. Only the constant t.e.rms an;:l the factor loading of the employment

to unemplovment transition are greater than twice their standard errors.

~ TABLE 6 == Parameter Estimates from the Three State Unrestricted Model

From Employment to: ’ To Employment from:

Unemployment OLT Unemployment OLF

Constant -3.822 1 -7.193 . ~-.698 =2.384
. (3.778) (2.768) (3.782) (2,078)

Tenure/10 482 . 700 -1.253 1.441
(.846) (.379) (1.530) (.365)
Tenure?/100 -.240 -.019 481 .208
(1.004) (.030) (.547) (.084)

MSP -.355 .086 ~.065 1.154
(.837) (.068) {.193) (.400)

Ci 1. 396 2.788 -, 342 -1.866
3 (3.336) (1.025) (1.633) (1.081)

£ = =784.33

1Absolute value of agymptotic normal statistics in parentheses.

-

The estimates from the restricted three state model are given in Table 7.
. = (3 . : i 3 5 which
Let eij‘ (2 c..) The restrictions impesed are oe = Jue
forces all parameters in the "unemployment" to employment and "out of the
labor force" to employment tramsitioms to equality. There are a total of five
restrictions. Performing the likelihood ration test on the resctricted versus

the unrescricted model, the value of the test statistic is 23.72 which is

'J i - Pl - - 1]
distributad (7(3). The critical value for a 3 percent significance level is
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11.07. We are able to reject the null hypothesis orf the equality of the
parameters governing the two nonemployment states. These empirical results
suggest that "out of the labor force" and 'unemployment' are not artificial

distinctions for this sample of young men.

TABLE 7 -— Parameter Estimates from the Three State Restricted Model
1

" From Employment to: Nonemployment

Unemployment OLF to Employment
Constant : -3.735 , -7.718 -.857
{9.934) (2.596) {4.756)
Tenure/10 400 .782 -1.460
(.706) (.528) (1.790)
Tenure?/100 -.220 -.004 .683
(.940): (.007) (1.116)
MSP ) ‘ -.397 .160 . 202
{.966) (.148) {(.577)
Ci. 1.327 3.102 -. 421
J (4.195) (1.078) (1.894)

£ = -798.69

lAbsolute value of asymptotic normal statistics in parentheses.




SUMMARY AND CONCLUSIONS

This paper presents new econometric methods for the empirical analysis
of individual labor market histories. The techniques developed here extend
previous work on continuous time models in four ways: (1) A structural
economic interpretation of these models is presented. (2) Time varying
explanatory variables are introduced into the analysis in a general way.

{3) Unobserved heﬁerogeneity components are permitted to-be correlated across
spells. (4) A flexible model of duration dependence is presented that accom=-
modates many previous models as a special case and that permitrs tests among
competing specifications within a unified framework. In addition, longer
range types of state dependence can be introduced into the model and their
empirical importance tested with ou?uwdel.

We contrast our methods with mre conventional discrete time and
regression procedures. The parameters of continuous time models are invariant
to the sampling time unit used to record observations. Parameters of disgrete
time models defined for omne tiﬁe unit are not in general comparable to para-
meters of discrete time models defined for other time units. Two problems
plague the regression approach to analyzing duration data which do not plague
the likelihood approach a&vucated irn this paper. The first problem is that
standard regression estimators are ill equipped to deal with censored speils
of avents that arise in short panels. The second problem'is that the regres-
sion approach canmot be readily adopted to accommodate cime varying explana-

tory variables. The functional forms of regression functioms depend on the

66
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time paths of the explanatory variables. ad hoc solutions to this problam
can make exogenous variablas endogemous to the model and so can induce simul-
taneous equations bias., The likelihood approach advocated in this paper can
readily accommodate time varying explamatory variables.

Two sets of empirical results are presented. The firsc seg is an
‘analysis of employment and nonemployment data using both regression and
-paximum likelihood proceduras. Standard regression methods are shown to
perform rather poorly, and to produce estimates wildly at variance with the
estimates from our_maximum‘likelihood procedure. ‘The maximum likelihood
estimates are more inm accord with a priori theoratical notions. A major con-
clusion of this analysis is that the discrete time Markov model widely used
in labor market analysis is incomsistenc with the data.

| The seéﬁnd set of empirical results is a test of the hypothesis that
“"unemployment"” and "out of the labor force" are behaviorally different labor
warket states. -Contrary to recent claims, we find that they are separate

states for osur sample of young men.
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APPENDIX A
The Likelihood Function for a Multistate-Multierzisode model.

In this appendix we discuss general issues in the estimationm of con-
tinuous time probability models and the particular features of the likelihood
function we employ in the empizical work presented in the text. Since our
data start at the beginning of the labor market history of individuals, we
can safely ignore the initial conditions problem discussed in the taxt. We
defer a general discussion of this problem to a later paper.

Let there be N states the individual can occupy at any moment of
time.v If the individual begins "life" in state i there are N-l1 "latent times"

with densities

ot

1y - . - - 13 Ny
(D) (e =y (g e = (] gy %
Q

{3 =1,...,8,3 # 1}

where fi {.) 1s the densitj function of exit times frem state i into state J,

3

and hi (.) 1s the associated hazard function. The jecint density of the N-1

3
latent exit times is given by

o tij
(A-2) : jEl hij(tij) exp - {[ hij (u)dul
$¥i °

-}

. . ,.th . . .
An individual exits from state { to stace j~ if the ;°° first passage time is

the smallest of the N-1 potantial first passage times i.s. 1f

Bige € By s LN #8030 A 8

Let the prcbability that the individual lszaves state I and 2acers state 37 e

denoted o, ,.. Thenm

-
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I -
= f J . f { g n, (t,.) exp = {'tij n . (u)du} dt.,
(a-3) "17 ) | b 1]
- 1
o tij‘ tlj 1 g#j‘ J
13- .
% (hij,(tij,) exp - {JIr hij‘ {(u)du}) dtij‘
o]
- €5/ T
= [ hij. (tij,) exp - { [ {kil h (@) ) du} dey e -
° ° kL

The conditional density

of exit times from state i into state j  given

that tij‘ <ty (¥4; :ii‘j_‘; :if:i"" i) is

(A=4) gty go] tygecme, JOSIFET 51,37 400 =

tij' + N
hij‘(tij‘) expf- {[ { kgl hik(u) dul
o :k%i
Pij‘

Iz Zollows that che demsity of axit times from state 1 iaco any other stats can

e written

(a=3) = (= Y= § P, gCt, . it .t {5343
. 1. ij -




73

N (ci N
a T h. (t, ) exp ~ { ‘ I oh_ (w) du} -
k=1 ik L. ] k=1 ik
L#i o k¥i

The probability that the spell is uncompleted by time T is simply

(A-6) Prob (ci_ >T) = { fi(t) dt
T
T
_ N
= exp - { kzl hik (LI.) du}
° \ kéi

This term entars the likelihood function for spells uncompleted as of the end
of sample period T. In this manner all spells, not only completed ones, are
used in the estimation of the parameters of the hazard function. This is not

the case in reg;éssion analyses of durations in a state (or some transforma-

tion of duration) on exogenous variables, where only completed spells can be

used in a straightforward fashion.
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We now describe in some detail the specific form of the likelihood

function used in the analysislpérformgd here. Let Z {(u+ 71T )Y be ak
rm rm

vector of explanatory variables of :he‘rth individual in his mCh

x1

spell at time .
(u + Trm), where u is the duration of time spent in the current spell, and

T is the date in calendar time at which the individual began his mth spell.

Included among the explanmatory varlables are fun@tions_of the spell duration

variables. In particular, the form of Z' (u+T1_) 1is
. m ™

Loz, (u+r ).

1 Z(K-Z)rm (u + tm) Vr]

The last element of Z is an ﬁnobserved heterogeneity term, imvariant over

time for the individual, which is assumed to have a standard normal

‘digtribution, i.e.

Vr ~ N(0, 1) ¥r .

Parameter vectors are indexed by tramsitiom. "B;. is K x 1 vector
J

of coefficients of explanatory variables inm the hazard functiom.

To be specific

2., =

"
15 = Borg Brag oo Bg-myeg Cug)

is discussed in the text (eq. 6), we impose a ome factor specification, 30 :

chat Cij is the factor loading associated with the i to ] transition.

) . b . _th NP
Jow we writa the nazard function for the :utLl spell and r = individual

as
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hi j (tr_.) = exp (Z c (tr ot ) 81 j..)
u i m m m m oo
£, . (&£ )
‘nin Tm
(A-8) =
1l - Fi ] (tr )
m“m m

Then the cumulative density for 1 to j exict times is

t

} L ’
(A-9) Fi j (tr ) =1 -exp { - I ﬁi i ()| dx}
mm m mm

o]

and the probability density is

o
rm
(A-10) fimém(tr ) = hi i (tr ) exp ( = J [%i j (x)] dx) .

m mm m .m_m

Now consider one individual's contribution to the likelihood fumction

(we henceforth suppress the individual subscript in the density and distribution
function)

M-1 'I N N
1D L = T £, gy || T - Fink(tﬁ))

m=l "mm k=1
k
#iM |
where 5y is the time spent in the Mth spell, which is censored. Because
heterogeneity is modeled as a random effect, it is necessary to obtain the

expected value of Lr with respect to the assumed distribution of V. Denote

the conditional likelihood by ir (3), where
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(A=12) -
r _
L_(8) = | LW e (- v?/2) v .
- Vax
Now defipe

(8 = 2= @ (8) .

In taking first partials note that

3£ (3) 3L_(B)
(4-13) e =
*Felj Lr(B) gij
1 J"’ 3L_(8,9) —v2/2 av
= —_— e J
i f_.-r('n’) I aBgij pl ]

where g denotes an element of the parameter vector.

for notationsl convenience definé the set

Sij={m[im-i,jn-j}

wnich comsists  of all spells that tegin “n state i and 2nd In scats j or the

individual. Then

. i 3E, !

3L _{2,7) | i, |
[A=l5 = = { T ! 22 = : I .
oL - ~a . - i 32 - i “ 2, \.:.D)

EE- S ! 2 . o i,

i3 =£Sij : gij i o=m 59y
1 S
< M : o<




\
i ((1 - Fi N (cu)\

h**I\ lm | /

h=l
l— M-1 3F
+ 3
T £ ) - iy T (L-F, ()
i o - X h tM
=l ‘mm "B 1 s héi_, ] Ty
tM h=1

Now we evaluate the partial derivative of the density with respect to the

parameters,
tm —
I _ 3y (e My (a)
(A-15) asmm ) e -y (cp) asmm du
gif |t Baij oo ® g1
[#]
t
m
exp - himjm (u) du
Vo)
Q
But note that
Bhimjm(u)
= = Z (u+t)h (u)
oBgij g ™ 1mjm

After making the appropriate substitucions, we have

t
o

o ‘!

(a-16) —2 32 ‘ -IZ(t +—.)-f Z (wbt ) h, . () du | £ , (£
c g 2 m g m i a
| = ° J
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and
(A-17)
5F | t : t
i M #h . (u) M
aBiM = [ Ei-]—du_. exp{-J hij (u) du } fori-im
g1 |t g1
) 0
tH .
-= Zg (u-H'M) hij (u) du (1 - Fij (t.H)) for 1 = :Lm.
.0
Upon making a last round of substitutions, we get that
(A-18)
3L_(8,V) . C ) :
—_— a z Z (e 4+t ) - Z (utt ) h {u) du
asgij mgsij g m m 2 m imqm
a<M °
tﬂ
. Lr(B,V) - J Zg(u-l-tm) hij(u) du Lr(B,V)
o
t:m ]
= L (38,V) b . '
r"? Z(t-l-t)-[ Z(ukt ) h (u) du
meSij m m j g LI S T
o<M ] |
Cym

- J Zg(u-l-tm) himj (u) duj
o

= A . L (3W
ga) T
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where Agij is defined to be the expression in braces in the second to last
line above.
32 £ (B) 3L_(B) aL_(®)
(a-19) £ - - 2 — S S
d B L. L @8 . 38 L s
&%y (L (8] “Fatj Bg 1]
2=
1 3 Lr(B)
* oL  ae, .08
r gii "g°i°J”
(4-20)
32L_(8) 22L_(8,V) 72 av.
T - t e
af a8 . a8 38 E
gii g°1°3° - giy "g"i" 1"
If 1 #1i"or § # §° then this last term is
o —v2/2
(A-21) J A _....A L (B,V) e dav
g’i"j"gii T —
I V=

and if i = 1i"and § = }* then it is

a

L.

I g°1° 317 gi]

(t
j
Q

Py

4
L

= |
- £ Z (utr )2 {utr Yh . (u) du ‘
S J g © 8 ® ta'm ?
ne ij 0 | .
o< _
: § r ] 3,V
Zg(u—!—‘:M)Zg,(UﬂM) ni}ljiu) du J Lr(S, )




g0

where the last term in the braces snrers only 1f Iy=4i-= it
, >

To derive the sample likelihood, simply sum che individual contribu-~

tions, i.e.,

: R
£(8) = L ¢ _(B)
r
r=1
where R is the number of individuals in the sample. First and second par-
tials are similarly computed for the sample by the summation of each indi-
vidual's contribution. In computing the matrix of second partials we can employ

the well kmown approximation based on the summed outer produce of the vector

of first partials for each cobservation based on a suggestion of T. W.

Anderson (1959) or the exact second partials presentced above.




APPENDIX B

The Weibull Regression Model




82

This appendix presents a brief derivation and discussion of the
Weibull regression model utilized by Heckman and Borjas and employed
in this paper as well. We derive the conditiomal regression function of
the log of duration in the jth Qpell of state 2, In tj? discuss the distri=-
bution of the regression errors and deﬁonstrate how it i3 possible to estimate
duration dependencé parameters using regression analysis. The efficiency
of least squares estimators relative to mazimum likelihood is derived for
a special case.
The regression model derived here is the conditional regression
function computed with respect to the density generated by hazard function
(5) in the text with exogenous variables assumed to be fixed within each
spell at value zji and with llji = 0 and Y250 = 0. To simplify notation we define
in in place of Yljl in the more general model. The hazard function that

generates the density of duration times is

(B=1) hj (t. ) = exp {Z.

. [ <4 -+ .
2552 TIPS LIV PTRLlTY

jL 4

Define Mji a axp {zjmsji + vji}' The expectation of intjzrgzven

Zj1 and ij and assuming a long panel (so there is no panel length bias as

discussed in the text) is

: -] i M, - ' +]
E(!.ntjzlzjz,vjz) J;(!.n ;%'QMjL(tji) exp = (- ) t. de, .

Yj2.+l Ji b
M.z sz'l-‘l Tj?
Defi .= - el dd, M., de.0 de, . Substituti
efine ¢Jz (;;izf) £ Then ¢Jl = ( Jl)tjz I ubstituting
¢j£ for :jL and using standard LaPlace transforms
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® M,
- = - ......JE’.._. 1
(B=2) E(2a %a'zjz"’jz) {(E.ucbji ?‘“(*rj z*l))*fja*l

{exp=+..,)d¢.,
J* J~

= (L )[f-(1)+9,n( s -2, 8. -V, ]
it Tia jePi2 sz'

where [*(1) is the derivative of the gamma functicn evaluated at one (=-.5772),

The full regression model may be writtea as

fa t‘31= E(Lln rjzzjﬂ,vjz) + wjﬂ,
where
(B-3) E(W,,) =0 | E(wj?z) = (Y.B—ﬂ)z
Ji
where B = M.:TT(G) evaluated ac & = 1 (B-'nzlﬁ).

Note that the variance of error term ngl does not depend on Sjl'
To prove these results most directly it is helpful to derive the

characteristic Vfunr.:tian of wji' Let E(&n %2) = uji. sa wjl a2 %n t, -u

SET P
Then
(3-4) E(exp(xﬂwjl)) = E(exp{if(Ln tjﬂ.-“jz)))
@ T M. T.. .+l
= ; ig _"i12 _ ! ji
exp-(:.euji) £szt t exp T{T:].m t dtjz'
i 18
= (i6u. ) (M ;:f‘ﬂ*l) M8 v 1) (v, +D) gL
exp={ifu; )My, 0 32 T 52

I'(l)-2a M4l i!-!!.n('fj 1+1)

- H
3 :2.+1

Since i, =
it

r'( 18

E(exp(icW. )) T
1% 2 i»




84

Thus the characteriscic function does not depend on sz as asserted and
the moments of le are not functions of Zjl’ sz, or le. Differentiating
the charactaristic function produces the momeants stated above.

The density of le can be obtained by a direct application of the

inversion theorem or by direct substitution. In our motation the density

of le 15
"(B=-5) R(W. ) =M, expl(y, +1)(W,, +u Y}e f_\‘&_e {1 Y, +W )}-1
- ju) = Mypempllrg ) (W g sy Hexpri T SR 12 0 T g j

: (I+y,,)
. , L . . cpa
1f there is no duration ‘dependence (le = (0), the density simplifies to

k(wjz) = Mjlexp{wj£+uj£}exp-njz{exp{le+uj£}}.

Because of the conditional independence of the tjt’ j®mlyeeeyd, 4=1,...,L

(given zjl and le), the wji terms are independently distributed, and
E(wjﬁwj'l') a( for j# j' or £ # L&' or both.
Collecting results and redefining the infercept term in le to include

reqL) «+ ln(le+1), the new coefficients may be defined as Ejz‘ Collecting

the unobservables into a composite error term —t— V. + W. , We may write
lednl A3 JL
the conditional expectation of &n 32 given ij as
-1
(B~6) E(Za §,/25,) Tl 2,85,

with associated disturbance term Uji defined by

(8-7) =~ U, ===,
b ?j£+1 jz

+ le

, ' . 1
with zero mean and variance (——

iz

7
where E(VEL) = céi. Heterogeneilty components are independent of the wji
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(see equation B-4) but are freely correlated across states and spells.

Thus E(V

jzvj'i') = UjL,j'L' # 0 in general for j # j' and/or % L',

Estimation and Identification in the Weibull Model

8

' Under standard assumptions, least squares estimators of T:%%— derived
from samples of durations of the jth spell of event L are unbiased,Jicnsistent
but not efficient. GConsistency is achieved in the usual cross—sectional
sense: by letting the number of individuals ia the sample become large.

The lack of efficiency is due to the highly nonﬁormal skewed distributien

of Wja and is proved in the next section for amn instructive special case.
Provided that the intercept term in BjL is zero, it is possible

under certain conditions to eztimate 1+7jz. The intercept term in the re-

parameterized model is

r'(L) + zn(Yj£+1)
le+l

If the estimated intercept is negative, it is possible to solve for ?ji
uniquely from the estimated intercept in the reparameterized model. If

the estimated intercept is positive, and less than or equal to exp{r'(l)-l},
a solution exists but is not unique unless it equals exp{F'(l)—l}.

In the general case, it is not possible to consistently éstipate
Bji.or‘in from the estimated regression coefficients. Provided that further
structure is imposed on the distribution of the heterogeneitf components
ij, it is possiblé to consistently estimate Sjl and in.provided that we

have access to panel data in which more than one spell of an event is observed.

Consider the following one-factor structure
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(3-8) Vi, =
i
where E(¢) = 0, E(¢2) = U;’ and the Cz are parameters isl,...,L. As is customary

: : . . . 2
in factor analysis, we normalize C, = 1. E(levj.z.) C,Cp 0%

Provided that there are data on two or more spells, we can consistently

estimate ng, Bji’ and C;. To see how, note that the residual variance

of the regression equation for log duration of the jth spell of event 1

is
2 2 :
C, O
(3-9) L9 5+ _B 7
(szfl) (Yj£+1)

The covariance between the residual in the jth duration equation and that

in the j'th duration equation for event 2 1s

2 2
C, Ty

(3-10) (?}2+1j(§j.2+l)

From the two residual variances (for spells j and j') and the covariance,
it is possible to solve for Tjﬁ and Tj'l' Replacing population moments
by estimated sample moments, we derive unique consistent estimators for
these parameters.

Define sjj as the estimated residual variance from the jth duration

interval. sj'j' is defined in a similar fashion. Sjj' is the estimated

]
From these sample moments, which are consistently estimated, it is possible

22
to estimate Clca, Yj'i’ and.le. Let """ denote estimata. Then

interspell residual covariance. The interapell residual correlation is rj
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(B~11) ¢

. ] . . 1/2
: Yo, @ T G -1
2 Sy gy

where positive wvalues of square roots are used to evaluate these expressions.
From comsistency of the sample moments we have_consisténcy of the estimators.
Note that a negatiwve rjj' is evidence against the one-factor structure.
Given consistent estimators of these parameters, it 1s clearly possible to
estimate le and Bj'z'

These estimators of the duration dependence parameters are sensi;ive
to measurement error in the dependent variable that is independently dis-
tributed across spells. Such measurement error generates downwa?d biased
estimators of duration dependence parameters. Permanent measurement erfor
components are absorbed in ¢ leading to an upward bias in the estimate of
C%ﬁi but mo bias in the other coefficients.

Other covariance restrictions could be imposed to secure estimates

of model parameters but we do mot pursue the matter further here. For addi-

tional discussion of the regression approach, see Heckman and Borjas (1980).

The Relative Inefficiepcy of the Least Squares Estimatorl

We consider only a single episode of an eveat. Further assume that

the heterogeneity component is zZero for everyome in our sample, ij = Q.

To simplify the notation, we SUppress all subscripts for avents and spells.

lTakeshi Amemiva suggested the line of proof used in chis section.
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The panel is assumed to be of sufficient length that there is no censoring.
We further assume that ¥ Ls komown, 1in order to simplify the analysis.

The regression model may be written for individual 1 as
= —l-- ' - =
1, = I+ a0+ - 2,8) + Wy, d=l, T
o sy = (a2/6) ts?
EW,) = 0, B = (r2/6) (5 -

Given v, the least squares estimators of 8,3 has the sampling variance

2
(B-12) VAR(B) = —— (£2;2 )

The likelihood for the sample is

I
+
£ = I t exp(z B) exp =[{exp (Z B)};;I I l].
i=1
The log likelihood is
I I I
gaf = y [ ot + I zis -—+1-I Z[e. (z S)]tTH'
i=1 & 1=l

Given v, the maximum likelihood estimator of 8 is obtained by solving

dinf } I £Y+l

=Tl i:lzi - izfexp(z s)]y+l i = (.
Note further that

2 xE ‘=1+1

TR A i U
2 Ezlu E

E(-ggv;g = i:l?'z .

Therefore che asymptotic variancge-covariance datrix of the zaximem likeli-
hood estimzator 1is

(3-13) , (zz
Thus the asymptotic relative afficlency of the zaximum likelihood es.:_ma.l:or

,
comparad to the laast squares astimator 1s T /8.




APPENDIX C

A Model of "Stigma" or "Occurrence ‘Dependence"
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Workers differ in turnover propensities and productivity characteristics.
These attriSutes cannot be direécly observed. Because of fixed costs of hiring,
firm specific capital investments or césts of monitoring worker output, some
{nformation - albeit imperfect - about unobserved attributes may be valued bY
" fimms in making waée offers to potential employees.

- One source of infqrmation about a worker is his employment record. In=-
formation about the number of previous jobs held, their duratiom, circuﬁstances
under which these jobs were terminated and what the worker did after his termina-
eion 15 useful in estimating the productivity of a potential match. ‘It is not
obvious that this information is of any market value. This is so because (1)
workers have an incentive to misrepresent their work history or, more generally,
accurate work histories are hard to come 0Y. (2) Contingent contracts (c.£.
Becker and Stigler, and Salop and Salop) might be written that select workers out
by their productivity characteristics and turnover propensities, so che past
record of an emplovee is irrelevant. B

Yere we sketch an idealized model of "stigma" and focus only on one
ciece of informaciom: :ﬁe number of jobs held by a worker of a given age. We
assuge that each iob terminates with a spell of unemplovment and t?at there is
no recail. (Zecker, 1980, considers a a0del of stigma in the marriage market).
jobs teraiznate for man? raasons. we assume that tarainaticT ;fcbabiiizies -
sre detarmined in part ov workar "quit' or "aismactah” charactaristizs as well as
Sr micro demand shecks exserienced »v Iirms. To capture chis motion most simply
we suppose shat 1-? i3 the per period srobabilicy of rerminaticn of a matea.

~—

This probadbilizy
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is exogenously determiqed. P varies across workers but we assume it s,tasré
constant across unemployment spells for the w_rorker. In a more general model P
would be influenced by firm wage policy.

Firms know the number of jobs held by workers. They adjust to this
information by offering them wages éontingent on their age and on tﬁe.ir job
history. For the moment, abstract further and suppose that the wage cffer
distributions are indexed only by the number of employment spells. Suppoée
tiiat after n jobs, the worker falls into a termimal state and is "marked" as

a loser for life. We assume n is finite but this assumption is inessential.

Let F(j)(x) denote the wage offer distribution available to a worker with
a history of | jobs. FUJ) is stochastically dominated by pU™D ung dominates FUHD),
For a risk meutral worker with n jobs, the optimal job search strategy for an
unemployed worker is trivial to establish. Let Wn(X) be the value function
for a worker who receives a wage offer of X from distribution F(n). Thé job
terminates with probability 1-P and the discount factor is &. wu is defined as
"the expected value of wn(x) with respect to F(n). There 1is -a fixed cost of
search C with one offer per "pericd".l

Thus

W (X) = Max {T%?B' + 6&_1,;?) W i w_}
and

- 4 (1-2)6 ] '
Ya -+ 8 ;““ e =l Wt

The reservation wage, ¢ . is (1-3) Wu .

lOur analysis of the terminal state is similar to that of Lippman and "
McCall (1979). They do not, however, discuss “seigma" or “occurrence dependence.




It is obvious that the greater the values of 3 and P, the greater the reserva-
tion wage and the longer the expected length of search. It is also well
known (see e.g. Kiefer and Neumann, 1979) that if the mean of the wage oifer
distribution increases (a pure translation of the disctribution), the reserva-
tion wage increases oy le;s than the increase in the mean so that the expected
length of time in search decreases with increases in the ﬁean of the discri-

- bution. Defining Bn as a translation paraméter,

' 2 - (= i ==
3, 18P (1-F(e )) < 1. (=1 if P=g=1).

30 3 )

e next consider a worker who has n-1 sbal;s of employment. The value
l ' . (n-1
of a wage offer of X obtained from distribution F ) is

X {(1-B)8w_ .
W ) =max {3555~ +77pe 83 ¥l

The first term im the braces is the expectaed value of accepting a wage offer
of X. It is the scm of two terms: the discounted value of the wage offer

(inclusive of the terminatiom probability) and the discounted expectad value

(n)

of search from distributiom F . The second term in braces is the discounted
. - ~(n=1)
expected value of search from distribution T .
¢ is otvious that Wy < Wgop- further, it is 2asy to see that the

-asarvation wage for the worker is

s o= (1P, - (i-P)W

n=i a-i : a -t

g - o= (1-37) (gl . o= u. )
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so that the reservation wage for a worker with o-1 spells of emplovment exceeds
that for a worker with n spellé. This does not necessarily imply that workers

with n-1 jobs search longer on an average than workers with n jobs. ' Although

(n-1)

the mean of distribution F necessarily exceeds the mean of distribution

o ' . ) . Lin=
F( ) bv the assumed stochastic dominance relations, the variance of z( 19 ma

¥
or may not be smaller hence the expected search time in spell n-1 may be shnorter

or longer than for spell n. Eowever, if it is assumed that the distributions

differ only in the mean, then workers with n-1 jobs necessarily search less on

the average than workers with n or more jobs.

To show this in a direct way note that the equation for Wn—l may b~ wricc:. as

(n-1
W,y (A-F8)(1-8) = —(1-r8) + 8 J(x-en_l)dr " )(x-en_l)
€

n-1
: 4 .- = 3 =
where e(n_l) is a translation parameter for distribution n-l. If € _, S a,
=(n) (n-1) ., - o
- = & . o} [
3 T s Ju - Wn-l‘ and e €4-1 Note that € h-1 - (1-8P) -1
3d 28
a-1 n~-1

3 = 3 a
In a neighborhood of 5(n-l) ()

<1 . (slfors =1 .

Thus, for the casa of a negative translacion In wage distribucisns 2cICoss
successive spells, on average individeals with a-1 spells of swployment will
scend lass time in sesarch than {ndividuals with 7 spells of emplovmesnC. 3v

recursion, this argument can be axtenced o demonstrate thar gzeometrTic 2xic
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time distribucionshave successiygly greater means for tndividuals who have
held more jobs. Thus the exit time discribution for the jth spell of unemploy-
ment is stochastically dominated by the exit time distributiom for spell j+l
and stochastically dominatesthe -exic time dis:ribu:.ion for spell j-1.
This gemerates structural occurrence d;peudence.

This model can be extended to account for age although it is not
.especially i1luminating to do so. However, it is obvious that employers
would utilize age to estimate mismatch and turmover pfop?nsicies. Holding
P fixed, older wofkers will hold more jobs than younger workers. Morecover,
it is also clear that the length of previous empioymenc spells may also

provide information about expected worker produccivity. This gives rise to

lagged duration dependence as defined by Heckman and Borjas (1980).




