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to an infinity of solution paths, even when the models are linear in all

variables. Some writers have suggested that this non—uniqueness consti-

tutes a serious weakness for the rational expectations hypothesis. One

purpose of the present paper is to argue that the non—uniqueness in question

is not properly attributable to the rationality hypothesis but, instead,

is a general feature of dynamic models involving expectations. It is also

argued that there typically exists, in a very wide class of linear rational

expectations models, a single solution that excludes "bubbl&' or "bootstrap"

effects——ones that occur only because they are arbitrarily expected to

occur. A systematic procedure for obtaining solutions free from such ef-
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to interpret and reconsider several prominent examples with solution mul—

tiplicities, including ones developed by Fischer Black and John B. Taylor.
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I. Introduction

Numerous writers have commented, in recent years, on the multiplicity

of solution paths in linear macroeconomic models involving rational expecta-

tions. A far—from—complete listing might include Black (1974), Blanchard

(1979), Burmeister (1980a, 1980b), Brock (1975), Flood and Garber (1980a,

1980b),Gourieroux, Laffont, and Monfort (1979), Sargent and Wallace (1973),

Shiller (1978), and Taylor (1977). While some of these authors have avoided

general conclusions, others have suggested that this characteristic non—

uniqueness constitutes a serious weakness for the rational expectations

hypothesis. In fact, Gourieroux, Laffont, and Monfort have gone so far

as to suggest that, because of the infinity of solution paths, "... the use-

fulness of the R.E. hypothesis would then seem rather doubtful..." (p. 2)

and that the hypothesis ". . . clearly does not have yet the status of a

theory" (p. 3).

Quite different opinions exist, of course. In a recent survey paper,

Barro (1981, p. 54) remarks that ". . . it is interesting to note the divergent

reactions to these types of uniqueness problems. One set of opinion regards

these problems as symptomatic of the inadequacy of equilibrium analysis

and even as evidence that private markets require government intervention.

Another set regards them as empirically irrelevant intellectual curiosities,

which will eventually be disposed of by deeper theoretical arguments."-1

The first purpose of the present paper is to argue that the multiplicity

of solutions does not reflect any particular weakness of the rational expectations

hypothesis, but that "deeper theorizing" is unlikely to dispose of the

problem. Instead, the paper suggests that the non—uniqueness is simply an
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inescapable aspect of dynamic models involving expectations, one which is not

basically attributable to the rationality assumption.

But, for this line of argument to be viable, there must exist some well—

defined procedure that will single out a particular rational expectations solution

in each of the class of models at hand——in this case, complete and internally

consistent linear models. Otherwise, if a single solution were not selected in

some way, the models would not be usable. The second major purpose of the paper,

accordingly, is to describe such a procedure. The one proposed begins with the

faimilar technique of undetermined coefficients, but augments that technique with

the proviso that a minimal set of state variables be employed in agents' fore-

casting rules. That requirement has been utilized in many studies but usually

without explicit acknowledgement of its role. The adoption of this one provision

is not, as it happens, sufficient to yield a unique solution in all cases.

Consequently, a second proviso——one that requires solution formulae to be valid

for all admissable parameter values——is introduced. With these two provisos a

unique solution can be obtained, the paper argues, for each of a wide class of

linear models. The recommended procedure does not, it should be noted, rely upon

any assumption or condition concerning dynamic stability of the system.

The third major purpose of the paper is to reconsider, using the suggested

procedure, solution multiplicities featured in the well—known papers of Taylor

(1977) and Black (1974). It is shown that these multiplicities are avoided by

means of the suggested procedure and that the solutions singled out are sensible,

i.e., do not possess peculiar or abberational properties. Similar conclusions

are shown also to apply to the money/growth models of the type developed by

Tobin (1965). Finally, some properties of the procedure are investigated by means

of simple examples.
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It should be said at the outset that the models considered are "macroeconomic",

in the sense that underlying maximization problems for individual agents are not

described. This approach would not be satisfactory if solution multiplicities

never arose in cogent equilibrium models with maximizing agents. But such is not

the case. If agents have infinite planning horizons, transversality conditions

may rule out explosive paths, such as those discussed in Section II. They will not,

however, eliminate multiplicities of the type described by Taylor (1977) and

discussed in Sections III and IV; this has been demonstrated by Calvo (1979).

And if agents have finite planning horixons, multiple solutions can arise as they

do in overlapping generations models——see Wallace (1979). Thus, the need for some

approach such as that taken in this paper evidently cannot be eliminated by

restriction of attention to models consistent with competitive markets and maxi-

mizing agents.
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II. Basic Considerations

Let us begin the discussion by considering the so—called Cagan model

of inflation, which was utilized in the papers by Black (1974), Burmeister

(198Db), Flood and Garber (198Db), Shiller (1978), Sargent—Wallace (1973),

and many others.-' Thus we imagine an economy with constant output, wealth,

and real interest rate, and with the following aggregate money demand

function:

(1) m_pt=y+a(tp÷i_p)+u , a<O.

Here m and Pt are logs of the money stock and the price level, while

is the value of expected as of period t. The stochastic

disturbance term u is generated by a white noise process; u is indepen-

dent of past values of all variables. The money creation process is for the

moment taken to be exogenous and autoregressive, viz.,

(2) m p0 + P1m1 + e —l < < 1.

The driving shock, e, is generated by a white noise process that is

independent of the u process.

Now we examine the behavior of Pt lfl this economy under the assumption

that expectations are rational, i.e., that t+l = EtPt+l , where

Etpt+l E(p+iIt) with
=

'Pt,
.}. The equations

of the model are of course used in computing the conditional mathematical

expectations. To obtain a solution to the model (1), (2), we begin by

writing Pt as a linear function of the predetermined "state variables"

u, and the constant 1:
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C Pt o +
7rlm

+
'Ir2U

For appropriate real values of the coefficients
ir,, ,, 2' the expectational

variable Etpt÷l will then be given by

(4) EtPt÷l = ÷ iEm+i + (p +

To evaluate the Trts, substitute (3) and (4) into (1) and obtain

(5) m = y + (l—a)tir0 + im + 7r2u} + a[ir0 + + p1m)J +

But this of course implies identities in 1, and u as follows:

(6) 0 = y +
(1—a)ir0 + a(ir0 + ir1p0)

1 = (l—a)r, + lhhl

0 =
(l—cz)'ir2

+ 1

And these are easily solved for

a
(7) = -

l—a(l—)
1—

l—a(l—iii)

—l
iT
2 l—a

Thus, with ii0, iT1, and iT2 given by (7), expression (3) provides a solution

for Pt in terms of the predetermined variables and disturbances that appear

in the model.

That this solution is not unique may be shown as follows. Suppose that

expectations are given, not by (4), but by

e t+1
(4 = m + 'if1(p,Q + iiin1) + ir3
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where 113 and p are constants. Then it can be verified that Pt will obey

= Th + Tilm + 112Ut + 113

with TI0, T' and still given by (7), provided that'

(8) i = (a—l)/ct

But that implies that tt+l EtPt+l for any value of 113• Thus (3')

and (7) provide an infinity of rational expectations solutions, the "natural"

solution (3) being a special case in which 113 = 0.

Now the multiplicity of solutions just obtained is indeed unfortunate.

But does it arise because of some peculiar deficiency of the rational

expectations hypothesis? To answer that question, and place the non—

un.queness problem in perspective, one must necessarily consider other

hypotheses concerning expectation formation. Historically, of course,

single—variable distributed lag representations for tt+l in terms of

—l' were routinely used before rational expectations came on tile

scene. Thus it was typically assumed, in both theoretical and applied

analysis, that

= + w1P_1 + w2Pt_2 +

with restrictions such as w. > 0 and w = 1 often added. The
J =

j=0
0

most popular special case of (9) was, of course, the adaptive expectations

scheme for the inflation rate,

(l—)(l—L)p
(10) tPt+l — Pt (l-)E(p. — t—j-l 1-13L

where 0 << 1 and L is the lag operator, LXt = x for n = 0,±1,±2

Let us then consider the behavior of Pt under this alternative expectational
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hypothesis. From (10) and (1) it is straightforward to find that

(11) Pt = 1 + l+aa - m.1 — +

where 0 (+a—ct)/(1+cz—a), 0 < 8 < 1, which is one way to write the

solution to the system (1), (10).

t+lSuppose now that we add the term to the adaptive expectations

representation of , just as we did in the case with rational

expectations. Thus the system becomes (1) and

(10') t+l - Pt
= 1-• - Pi)8 +

The solution then turns out to be the same as (11) but with an additional

term, namely,

(12)
l+a-ct (0/)J

J=O

which will be finite provided that 0/ < 1. So again there is an infinity

of solutions. In fact, there are "more" solutions than in the rational

expectations case, in the sense that is only required to satisfy

< 1 , rather than the more stringent condition (8).

Of course one does not actually have to go through these last manipula-

tions to show that extraneous terms can be added to adaptive or other

distributed—1agexpectatjol representations, as well as to RE representa—

tions. Indeed, many sorts of terms can be added to expectational representa-

tions that are not constrained to make expectations stochastically consistent

with actual behavior. Evidently, therefore, rational expectations representa—

tions, which are thus constrained, will accommodate fewer types of extraneous

terms than distributed—lag representations. So the fact that RE solutions are

not unique can hardly be considered a weakness for the RE hypothesis when each
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specific competing hypothesis——and therefore the general competing hypothesis of

nonrationality——suffers from non—uniqueness to a greater degree. Instead, the

appropriate conclusion seems to be that dynamic system with expectational

variables will have multiple solutions if extraneous terms are permitted to

influence expectations.

At this point some readers may wish to ask precisely what is "extraneous"

about the term t+l in the RE equation (4'). The answer is that it is extraneous

in the well—defined and non—trivial sense that 1, m, and u constitute a complete

set of state variables——i.e., a set that provides a solution for all admissible

parameter values. The additional state variable pt can be included, but it is

unnecessary and is not suggested by the model.—-" In particular, it appears in

none of the non—expectational structural equations. Thus, the component

enters the solution solely because it is (arbitrarily) expected to do so——only

because it affects agents' expectations of t+l This component is not formally

inconsistent with rational expectations, but it seems just as arbitrary to include

it under that assumption as it would be under the adaptive (or any other) expecta—

tional hypothesis.-1

The foregoing does not imply, it should be added, that it is never appropriate

to introduce extraneous state variables, for some interesting questions may be

directly concerned with such variables. The notion of speculative bubbles can be

formalized in such terms, for example, and it may be of interest to consider

whether such bubbles have existed during particular historical episodes.-7' But

the possibility of doing so does not serve to discredit the rational expectations

hypothesis. Nor does it render that hypothesis unusable for ordinary applications,

in which the investigator wishes to rule out bubble or "bootstrap" effects——ones

that occur only because they are expected to occur.
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To this point, however, we have not shown that it is generally true that

only one solution exists when extraneous terms are eliminated from the expecta—

tional representation. Certainly it is not true that all examples of solution

multiplicity involve trend—like terms such as In the next section,

accordingly, we turn to examples of a different type and to more general cases.
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III. Solution Procedure

Implicit in the foregoing argument, that the existence of multiple solutions

should not be regarded as particularly awkward for the rational expectations

hypothesis, is a presumption that it is possible in all cases to single out a

certain unique solution that does not include components that enter only because

they are expected to enter. More specifically, it is presumed that there is a

solution procedure which singles out these special "bubble—free" solutions. The

procedure in question begins, of course, with the method of undetermined coefficients,

which was introduced into the RE literature by Lucas (1972). But this method itself

will not, as we have seen, eliminate all multiplicities. Also necessary is the

proviso or requirement that a minimal set of state variables——one without

extraneous variables——be employed. To make this requirement precise, let us now

define a minimal set of state variables as one from which it is impossible to delete

(i.e., attach a u—coefficient of value zero to) any single variable, or group of

variables, while continuing to obtain a solution valid for all admissible parameter

values. In the model (1) (2), for example, a minimal set is 1, m, u: none of these

can be deleted from the solution equation (3) ." Adding the extraneous variable

[(a_l)/a]t results by contrast in a non—minimal set; the coefficient on this variable

can be set equal to zero in (4') and a solution obtained nevertheless.

But even with a minimal set of state variables there is an apparent difficulty:

in many applications the identities, such as (6), which relate solution coefficients

[i.e., the ut's in (3)] to basic structural parameters, will be nonlinear. Thus,

there may be two or more values indicated by the method for the coefficients. It

is possible, neverthless, to choose between (or among) these u—values by an extension

of the minimal state variable strategy.21
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To illustrate this possibility, let us consider an example that again

uses the Cagan demand function (1), but which relates money creation to past

values of the price level as follows:

(13) m = p0
+ + e , Jp1 < 1.

Then m is not exogenous and the minimal set of state variables is 1,

t—l' u, and e. Consequently, the solution equation for Pt will be of

the form

(14) Pt = + lt—l + 2U + 3e

The representation of the expectational variable is, accordingly,

(15) Ep+l = + Pt = + + lt—l + 2u + 3e)

Combining (1), (13), and (15) yields

(16) p0 + ltl + e + + + lt-l + irlir2u + i3e1

+ (1—a) (ito + ire) + u

so the implied identities are

(17) p0 = y + +
0

p1 = +
(l—a)ir1

= l3 +
(1-a)it3

+
(l-a)it

+ 1

Now the second of these identities yields
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_l _l) +
(18) =

2n

so there are two possibilities for
'ill•

To choose between them, however, let

us consider the special case in which p1 0. Then would not appear

in the system and so would not be included in the minimal set of state variables.

In that case, then, the value of l would be zero. But examination of (18)

shows that the zero root would be obtained if the positive square root were used

in the quadratic formula (since c—l < 0). This indicates that the positive

square root is generally appropriate, i.e., for non—zero values of p1, which

conclusion provides a unique solution for The remaining equations (17) can

then be solved for unique values for 2' and

At this point it might be asked: is there any methodological principle

that justifies the foregoing conclusion that the positive square root is

appropriate for p1+0 in (18)? As it happens, it appears that an intelligible

principle is in fact available. In particular, the inappropriate solution can

be eliminated by adopting the requirement that the expression defining

(or any such solution coefficient) must be valid for all admissible values of

the structural parameters. Then the negative square root would be ruled out

provided that the admissible parameter values for p1 include zero——as they are

specified to do in (13).

The type of reasoning employed in the previous paragraph can, I believe,

be used quite generally to eliminate apparent multiplicities that result from

non—linear identities analogous to (17) The point is that the identities

are nonlinear in precisely those cases in which the minimal set of state variables

includes lagged values of (some of) the model's endogenous variables. Thus there

always exists the possibility of considering hypothetical special cases in which

the lagged endogenous variables do not appear and using these case to infer——
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as in the foregoing example—-which of the solutions is relevant. That the

procedure is in principle applicable in more general moiels, with a large

number of endogenous variables, is demonstrated in the Appendix.

Referring again to the example provided by (1) and (13), it should be

mentioned that the stipulation p1J < 1.0 serves to guarantee that the

solution values in (18) will be real. For values of p1 > 1.0, however,

it would be possible to have (a—l)2 + 4ap1 < 0 , so that the solution values

to (18) would be complex. But a complex value for is inconsistent with our

formulation, so the conclusion given by the suggested procedure is that in such

a case no solution for Pt exists——the model's specification is in some sense

internally inconsistent. In the case at hand the inconsistency apparently

arises from the excessively explosive behavior of m and Pt implied by

p1 > (_1)2/(_4).

In describing the proposed solution procedure, undetermined coefficients

with a minimal set of state variables, we have thus far considered only

cases in which the system's disturbances are white noise. But the procedure

is essentially the same for more general disturbance processes. Suppose,

for example, that u is generated by a first—order autoregressive, first—

order moving average process (often denoted ARNA(l,1)). In other words,

assume that

Ut _ pUt_l + — eEt_l

where p1 < 1. Then the latter should be regarded as one of the "structural"

equations of the model, which makes u a dependent variable and uti a

predetermined variable. A solution in terms of predetermined variables

and disturbances can then be obtained, with u1, ' and ct included

in the (minimal) set of state variables. This sort of approach can evidently

be extended to higher—order ARNA processes.
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Another case that needs to be mentioned is that in which lagged expecta-

tions, such as E.xt = E(xk.), appear. This case can be handled by

including j—l lagged values of all predetermined variables and disturbances.

As an example, consider the model

x =ctx +aE x +u
t it—i 2t—2t t

with u = Pu + c and c white noise. Then the minimal set of state van—
t t—l t t

abies would include x1, ui, ' and To solve for these coefficients

in

x =iTx +iru +1TE +TTEt it—i 2t—l 3t 4t—i

we note that

E x =E (rrx +iru )
t—2 t t—2 1 t—l 2 t—l

= ii(xi — ¶4Eti) + 1T2(ui

Substitution into the original equation and recognition of identities then leads to

= c/(l —

—

'113
= 1

iT4 = — c2(p1 + a1)/(l + a2)

More generally, lagged expectations of x. could appear. If i > 0, the previous

discussion applies directly. If i < 0, it may be possible to delete some of the

lagged values of predetermined variables or disturbances.
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The foregoing procedural rules agree with those described by Aoki and

Canzoneri (1979, p. 64). They appear to provide sufficient scope for handling

any system meeting Shiller's (1978) definition of "the general linear rational

expectations model". Thus, it is possible, as well as potentially desirable, to

single out solutions that do not contain bubble—type or bootstrap components.
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IV. Taylor's Model

Let us now apply the procedure suggested above to the model discussed

by Taylor (1977). This model is of special interest because it is one in

which a potential solution multiplicity, described by Taylor, cannot be

eliminated by assuming—— as some writers have done—— that the conditionally

expected price path must be stable. The multiplicity can, nevertheless, be

eliminated by means of the procedure described above.

As initially specified, Taylor's model includes IS— and LM—type

functions and an aggregate supply function with a real—balance term. But

because he considers a case with a constant money stock, Taylor is able to

reduce the system to a single equation involving actual and expected values

of the (log of the) price level. That equation is

(19) EtlPt+l = Et iPt + lt + +

where u is again a white noise disturbance. The (composite) parameter

is assumed to be non—zero but Taylor admits both positive and negative

values. The value of the constant term, is dependent upon the (constant)

value of the money stock.

Let us then assume rational expectations and apply the procedure

recorm-aended above, undetermined coefficients with a minimal set of state

variables. In this model, the only necessary state variables are 1 and

u. Thus the solution to (19) will be of the form

(2O)p ir +lrUt 0 lt

if appropriate values are chosen for u0 and if1. The expectational
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variables will then be

(21) E1p + 1E1u =

and

(22) Etlpt÷l o + 7riE 1Ut+1 =

Substitution of (20), (21), and (22) into (19) gives

=
Ito + + rr1u ) + o + u

which implies that IF0 = 0'l and =
_l/c5l . Accordingly, the solution

obtained by this procedure is

(23) Pt = 0"l
The foregoing solution is mentioned by Taylor as the only one with a

finite variance when > 0. But, as stated above, he admits the possibility

that —2 < < 0, in which case he finds that "even after imposition of

the stability condition multiple equilibria remain" (p. 1382). How does

Taylor obtain these additional equilibria? In terms of our approach, what

he does is augment the set of state variables so as to include and

u1, in addition to 1 and u. Thus he considers solutions of the form

(20') Pt It0 + 1u + It2p 1 + Thul

In this case, the expectational expressions are

(21') Et_lPt =
IF0 + IF2p 1

+

and

(22') Etlpt+l It0 + It2(IF0 + It2pt 1 + ¶3u1)

Substitution into (19) now results in
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+ 2O + 2t—l + 23t—l O + 2t—l +

+ + ¶iUt + 2t—l + ¶3u1) + + u

The implied identities are then

(24) 2O lO +

0

2

n2 2+1Y2

23 = +

As before we have =
—1/cS , but equations (24) do not uniquely define

the other parameters. The third equation implies that either +

or 2 = 0. In effect, Taylor's response was to opt for the former

solution, 2 = 1 + Given that choice, one is not able to pin down

113 from the fourth equation. So by choosing 2 = 1 + instead of

0, Taylor was led to the conclusion that 113 can take on an infinite

number of values.

But of course the procedure recommended here would treat t—l as

an extraneous variable and therefore lead to the 2 0 solution. In

this case the fourth of equations (24) would imply 113 = 0, so a single

solution would be indicated.



V. Fischer Black's Model

Next, let us turn our attention to another famous non—uniqueness

example, that of Fischer Black (1974). Black's "basic model'T is simply a

special case of the system (l)—(2) above, the special case in which m is

constant (so that p0 = m, 1 0, and e 0), y = 0, and u 0. Of

course the last of these conditions makes the system non—stochastic so

that rational expectations collapses to "perfect foresight." In some

respects perfect foresight systems may be easier to analyze that ones with

non—degenerate rational expectations, but in the present context the stochas-

tic system is conceptually clearer because it distinguishes a period's

price level from its expectation. That is, the stochastic framework lets

one know whether he is referring to p or EtiP. Consequently, let us

adopt Black's assumptions
p0 m, p1 = 0, e 0, and y = 0, but

continue to view u as a non—degenerate, white—noise, random variable.

In this case, the system (l)—(2) becomes

(25) m — Pt a(Etp+1 — p) u -

As in the Taylor problem, we seek a solution of the form

(26) Pt = o +
ir1u

.

It is easy to verify that rr0 = m and ill = lI(c—l) so that the solution is

(27) Pt = m+—-1u

Thus, fluctuates randomly about m while the inflation rate,

Pt — follows an ARNA (0,1) process with MA parameter equal to —1.
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In the non—stochastic case considered by Black, with u 0, we would have

Pt = m and ip = 0 for all t.

These last conclusions differ, of course, from Black's, which are that

is not defined while approaches +00 or — as time passes,

depending on whether the "initial" value of the inflation rate is positive

or negative. Again, according to the view here proposed, Black's conclusion

results from his inclusion of an extraneous state variable. Instead of

(26) he in effect considers (as in the Taylor model) solutions of the form

(26') Pt = + Trlu + •Tr2Pt.i + ir3u1

In this case, Etpt+l = +
ir2(ir + TrlU + 2t—l + Tr3u

+ 'rr3u so the

implied identities in 1, Ut, _' and u1 are as follows:

(28) rn =
air0

+ + =

o = +
(l_cz)rri

+ + 1

o =
a7T2 + (l—a)ir2

0 = + (l—a)Tr3

The third of these has two roots, iT2 = 0 and Tr2 = (a 1)/a

procedure would select 112 = 0, giving (27) as the solution for

implicitly chooses rr2 = (a—l)/a . This choice implies 110 rn/ct

but leaves ill undetermined (as is 113 in Taylor's model). Let

less consider Black's non—stochastic case with u 0. Then

Pt
is

(29) Pt a a nt—i

and for the inflation rate we have

a—i
(30) Ap =—Apt a t—l

Our solution

p, but Black

and iT3 = —1/ct

us neverthe—

his solution for
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Black uses the latter—— which is the same as his (6)—-- to write

t
(31) = [(a—1)/c]

and concludes that "if the initial value of [ip0] is positive, the rate

of inflation increases exponentially over time" while "if the initial value

of [Ap0} is negative the rate of deflation increases exponentially over

time" so that "there is a price level path consistent with every possible

choice of the initial price level" (p. 57) despite the constancy of m.

Thus, he suggests, holding m constant has no implications for inflation.

What Black neglects to mention, given his approach, is the possibility

= 0 for all t. Emphasis on the difference equation aspect of (30) leads

one to ignore the "trivial" solution = 0. But in this problem it is,

trivial or not, an entirely sensible solution—— one in which each period's

price level is independent of past events. This was overlooked by Black

because, I suspect, the non—stochastic version of the model leads to a

difference equation in Pt that obscures the solution in which each

period's "equilibrium" value for Pt IS independent of the past.

In Black's second model (1974, Pp. 58—60), monetary growth in each

period depends on the previous period's inflation rate:

(32) = kptl , k > 1.

First differencing of the money demand equation gives

(33) Ap = c(EAp+1
— E11p) +

where u — u1. For simplicity, let us assume that is white

noise (i.e., that {u} is a random wa1k).-" Then our procedure suggests

a solution of the form
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(34) = t—1 +

in which case EtP+l = and EtlPt = 1—1 Substitution into

(33) then yields

(35) kp1 (l+ct711) [TilPt_l +
— TlPt_l +

so the implied identities are

(36) k = (l+air1)ii1
—

0 = (l+air1)rr + 1

The roots for the first of these are—— just as in (18)——

(a—i) /(a—1)2 + 4ak

(37) 2a

and consideration of the case k = 0 indicates that the positive square

root is relevant. So we have

(38) Tilt_l —
l+aTr1 t

with = [(a—i) + _l)2 + 4ak }/2a . If
be real. If in addition a < will

value. Thus in this case the behavior of the

But TI1 will be greater than 1.0, and

is small enough)' In either case, the inflation rate will be uniquely

defined if an initial value is given for ip0, so as to "start up" (32).

And if p0 and p1 are given separately, the price level will also be

uniquely defined.

Black's conclusions are different. The reason is that, as before, he

includes an extraneous term in his solution. In particular, he obtains a

solution of the form

a1X + a2A

k < —(a—l)214a , will
be less than 1.0 in absolute

inflation rate is stable.

will be explosive, if at
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where A1 and A2 are the roots in (37). Then, since two initial conditions

are needed to determine a1 and a2, the path of the inflation rate is not

defined if only a single value of Lp is given, even though that is enough

to start up the money supply process. But use of my recommended procedure

would in effect set
a2 0 in (39), in which case the nonuniqueness would

disappear—— as we have seen in the previous paragraph.

It remains to consider the possibility k > —(a—l)2/4a , in which case

the roots in (37) are complex.2" In terms of my solution procedure, this

suggests that the model has no economically sensible solution. The
problem,

I believe, is that the posited money supply behavior lacks "process con—

sistency," in the language of Flood and Garber (l980a). With large k,

expected money supply growth is too rapid for agents to be willing to hold

money. This conclusion contrasts sharply with Black's suggestion that the

inflation rate will, as in the case with k —(cL—l)2/4a , approach zero

as time passes when (as he assumes) a < —1.
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VI. Money Growth Model

Next we consider a two—asset growth model of the type introduced by

Tobin (1965), the stability of which has been questioned by Sidrauski (1967),

Nagatani (1970), Burmeister (1980a), and many others. Temporarily letting

y, k, m, and s denote per—capita magnitudes of income, capital, money,

and saving, with r and p the real interest rate and the price level,

the model can be written as follows:

(40) y = f(k) [production function]

(41) r = f'(k) [marginal product condition]

(42) s = c[y + ( — n — [saving]

(43) = s — - n — -) - nk [capital accumulation]

(44) = (y, k, r + pip) [portfolio balance]

(45) in/rn = [money growth].

Here a (0 < a < 1) is the fraction of disposable income saved and n is

the rate of population growth. Assume that f and i have the usual

properties. By combining the first four equations and using rn/rn = p

we can obtain

(46) k = af(k) - (1-a)(m/p)(p-n--/p) - nk

And by substituting (40) and (41) into (44) we get

(47) rn/p = (k, f/p)
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Given the (exogenous) behavior of m, (46) and (47) then determine the

evolution of k and p. The usual analysis views (46), (47) as a system of

two first order differential equations. With the usual properties assumed

for f and Z, the equilibrium for (k,p) is a saddlepoint so the system

will be stable only if the "initial value" of p is "correct," given k(0) ——

see, e.g., Burmeister (1980a).

In order to see how our solution procedure would treat this model,

we need to adopt discrete—time, linear versions of (45)—(47). These will

seem to be more plausible if k, m, and p are now thought of as logarithms

of the corresponding variables. As before, the system will be made stochastic,

in which case one is led to recognize that p/p in both (46) and (47) is

appropriately interpreted as the expected rate of inflation. Thus our

version of the model is as follows:

(48) k+i — k =
a0 + a1k + a2(Etpt+1_p) +

a3(rn_p) + Ut , —l<cz1<0,a2>0,ct3>O.

(49) m+i - EtPt+l
= o + + 2(Ep+i — p) + 3(m — + v

l>0 2<°' 3>0.
In this form the model is obviously quite similar to that of Lucas (1975,

p. 1117). There are some differences, however: the relevant real return on

capital is a function of k rather than kt+i
, the real—balance terms which

Lucas deletes are here included, and m+1 is deflated by

A minimal set of state variables for (48) (49), given the policy equation

(50) m_m1j1

is 1, k, in, Ut, v. So solution equations will be of the form
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(51) k ir + k +lr m U + v
t+l 10 11 t 12 t 13 t 14 t

(52) Pt = 20 + + 1T22m + +

The expectational representation is then

(53) Ep =71 +71 (ir +71 k +r m u +Tr v)+71 (m +)t t+1 20 21 10 11 t 12 t 13 t 14 t 22 t

Substituting (50)—(53) into (48) yields

(54) + k + m u +ir v a +
10 11 t 12 t 13 t 14 t

=
0 + l)k

1 t

+ a2[ii20 + 2110 + 7riik ÷
1r12m

+ 7r13u + ) + 2(m + ii)]

—(a +a)[71 +ir k +ir m + u +lr v]+a3m+u
2 3 20 21 t 22 t 23 t 24 t

Let us record only the identities implied by equating coefficients of k
t

and m They are
t

(55) u11 = (a1 + 1) + a2ir21ir11 —

(a2 +

12 = 22ll2 + a3(1 — 22

Analogously, substitution into (49) yields

(56) (l+p-)m =—(13 +){ir +71 k +71 m +r u +71 v]+ +8k3 t 3 2 20 21t 22t 23t 24t 0 lt

+ (1 + 82)[7r20 +
7121(11

+ 11 k + 71 flI + 71 II + 71 V ) + u (ni + ii) ] +
10 11 t 12 t 13 t 14 t 22 t

and, therefore, the identities

(57) 0 =
—(83 -f 82)1121

+ + (1 + 82)71217111

1 =
83

—
(83 + 82)1122 + (1 + 82)(ii21ii12 + 22 -



Using the first of equations (55) and (57) yields the following quadratic

for

-q /q2_4( ){(l+a )(8 +8 )-8 (a +a )]
(58) 1 3 2 1 2 3

1

2(1+82)

where q —(83 + 62) +
a261

— (l + 62)(1 + ar). To determine which root should be

used, note from (48) and (51) that = 0 should be obtained (i.e., k deleted)

if 1 + =
81.

= 0. It can then be found from (58) that the positive (negative)

square root is relevant if 82 + 83 < 0 (82 + 83 > 0). Given this value of
Till,

Ti21 can readily be found from the first of either (55) or (57). Then Ti12 and

Ti22 can be found uniquely as they enter linearly in the second of equations (55)

and (57).

The dynamic behavior of the system depends crucially, of course, on Ti11.

If we add to our sign conditions the weak restrictions 1 + < 0 and

83 < t821 , then Till will be real and will have absolute value less than

1.0 so the system will be stable.

But the main point of the example is that application of the

suggested procedure suggests that t—l does not enter the system (51)

(52). Given the behavior of the exogenous variables,
m, Ut, and v, the

evolution of and k is fully determined for T = 1,2,... once the

single initial condition k0 is assigned. There is no need to select a

"correct" value—— indeed, any value—— for
p0.

Of course it would be possible, as in previous examples, to add an

"extraneous" state variable to equations like (51) (52). In this case, one

obvious contender would be t—l But, as a result of the previous examples,
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one might conjecture that entering could lead to identities that would

have multiple solutions, one of which is zero. To see that this conjecture

is correct, consider again the special case in which 1 + c= = 0. Then the

system determining Pt is (49)(50) with kt exogenous. Now add and

vi to equation (52), obtaining

(52') = + + 7r22m + Tr23u + + +

Next verify that

Etpt+l = 20 + 2llO + u) + ¶22(m +

+
ii25(r20

+ + r22m + Tr23Ut + + TF2SPt 1 + w26v1)

+71 V26 t

Substitution into (49) then gives a long expression that yields the following

identities for _i and v1:

0 = (1 + 225 2 + 325

0 = (1 + 22526 — + 326

Clearly the first of these implies that either 25 = 0, or 26 = + 3)I(l +

If the latter solution were chosen, the second of the identities would fail to

determine 26 But, just as in the Taylor example of Section IV, this results

from the the inclusion of extraneous state variables.
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VII. Additional Properties of the Solution Procedure

The purpose of this section is to make two points regarding our proposed

solution procedure. The first point is that adoption of this procedure——

undetermined coefficients with a minimal set of state variables—— is not

equivalent to assuming stability for the model at hand. In order to demonstrate

this, let us consider an example suggested by Burmeister (1980a, 1980b).

In this example, money demand is given by the Cagan function, but price

adjustments are presumed to be "sluggish." In particular, we adopt the

following specification:

(59) md Pt + y + a(Etp+i — < 0

(60) Pt — = — +

(61) mm

Thus prices rise when the money supply (assumed constant for simplicity)

exceeds the quantity demanded.±' Now (59) and (60) can be combined to yield

(62) Pt
— [m — — y —

o(Et ipt — +
Ut

The procedure suggests a solution for Pt of the form

(63) Pt = + +

so we have

(64) Et_lPt = 0 +

and substitution into (62) results in the implied identities:
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(65)
iT0

= 8(m - y) -

iT1
= 1 — + c —

From the second of these we obtain

(66) ii=

Thus, for stability we must have

(67) l+c >8/2

But since ct < 0, this requirement is rather demanding. With c. = —5, for

example, it implies 8 < 0.182. Accordingly, for even moderately large

values of 8, the solution defined by (63) and (65) will imply price level

instability. Thus adoption of the undetermined coefficients

solution procedure does not require that the model be stable, as some analysts

have suggested.

The second point involves admissable parameter values. To illustrate the

relevant issue let us refer to the model considered in Section II, which

we repeat with =
p0

= 0 for convenience:

(1') m — Pt
= a(EtP+i

— + u a < 0

(2t) m p1m1 + e

The solution provided by our procedure is, as above,

(68) Pt =
l—a(l--p1) t

—

Ut
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Now in Section II it was assumed that 1. But suppose that p1 > 1.

Unless p = (a—l)/a , the expressions in (68) will nevertheless continue

to provide an apparent solution. In fact, (68) gives a finite value for

Pt even if p, > (a—l)/n , i.e., even in the "proc inconsistency" case

in which

(69) E Etm+.[a/(a_l)]J m
j=0

fails to converge. But convergence of this series is required for (68)

to be obtainable by the alternative procedure of solving

(70) Pt = (i)[mt —
Ut] + (—1)Ep1

by repeated substitution into the (expectational) future, as in

(71) Pt = — +
Et[m + am+1+ a2m+2 + ] + lim aEP.

= + —- [1 + ap1 + a2p + •] + urn aEp.
J -*

with a = o/(a—l). Consequently, Flood and Garber(1980a) have contended

that Pt would not be finite in this case.

Now the Flood—Garber contention is attractive, but it is nevertheless true

that (68) satisfies equations (1') and (2'). What, then, should one make of

this case? In my opinion, it points out the desirability of specifyirzg admis-

sible parameter values as an integral part of the model. The crucial fact is

that the coefficient on m in (68), r1 = 1 / [1 — a(1 —p1)],approaches +° as

- (a — 1) /a from below and approaches —
asp1 - (a — 1) Ia from above.
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Thus, there is an infinite discontinuity in Tf1 at (ci — 1) / a. It seems

to be necessary to require that values on only one side of the discontinuity are

admissible. Such a requirement is to some extent analogous to the familiar

condition in static models that the Jacobian relevant for comparative—static

experiments be non—zero —— for otherwise "multiplier't values will not give good

predictions of the comparative—static effects in question. In the present case,

the effects of e realizations on Pt will be entirely different depending on

whether < (a — 1) / ci. A sensible specification would include the last

inequality as part of the model.
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VIII. Conclusions

The argument of this paper does not, it should be said clearly, claim

that there is only one solution path consistent with rational expectations

in general or in the models considered. What it does claim is that one path

can be singled out for special attention and that, relative to that path,

others which satisfy the model occur because unnecessary or "extraneous"

state variables are permitted to influence expected (and therefore actual)

values of endogenous variables. In a sense, then, the argument proposes

a condition or criterion which, if adopted, would lead to a unique solution.1'

The question then naturally arises, should this criterion be adopted?

As it has no obvious choice—theoretic (utility maximizing) rationale, there

seems to be no basis for suggesting that it should invariably be adopted,

i.e., whatever the purpose of the analysis. But that is hardly surprising.

Since its adoption directly rules out extraneous elements or "bubbles,"

adoption would clearly be out of place in any analysis the object of which

is to determine whether bubbles exist.11 But of course most analyses do

not have such an objective, and for many of these other, more mundane

problems, the solution provided by the proposed criterion would seem to be

20/well—suited. —

In any event, there is no reason—-- according to our argument—— to

abandon rational expectations in favor of other currently—available

expectational hypotheses. One cannot escape arbitrariness by simply re-

jecting the hypothesis—— that expectations are consistent with the model

at hand—— in favor of its negation.
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And while the proposed criterion cannot be used in cosmic analyses

designed to determine whether extraneous variables—— or explosive instability

resulting from the same—— are features of a market economy, it would also

be entirely inappropriate in such analyses to presume--- that such extraneous

variable will necessarily be of importance. For it has been shown that, in

several cases, the proposed criterion leads to cogent, economically plausible

solutions. These have been ignored or deemphasized in the literature,

apparently because the more general solution descriptions have obscured the

special status of these paths.
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The object here is to show that the procedure described in Section IlIwill

yield unique solutions inmodels with several expectatiorial variables. We first

consider the case in which lagged endogenous variables are absent and then turn

to the more difficult case in which the minimal set of state variables includes

lagged endogenous variables.

Let y be the mxl vector of endogenous variables in the model and let

be the kxi vector of exogenous variables. Consider the psuedo—reduced form of

the system

(A—i) yt = AEtYt+l + Bz +

where A and B are mxm and mxk parameter matrices and u is a mxl white noise

vector. There will be adequate generality if we assume that z is generated by

a first—order autoregressive scheme, viz.,

(A—2) z = Rz + e,

where R is a kxk parameter matrix and e is a kxl white noise vector.

In this system the minimal set of state variables includes only z and u

so the solution equation will be of the form

(A—3) lIz + Fu

where II and r are mxk and mxm matrices of undetermined coefficients. The

conditional expectation in (A—l) is then



A- 2

(A—4) Etyt+l = flEz÷i + rEu+1 = IIRZt.

Substitution into (A—i) then yields

(A—5) IIz + ru = ATIRZt
+ Bz +

so the identities in question are r=i and

(A—6) ii = AHR + B.

To see that II is determined uniquely by (A—6) we transform A into the Jordan

canonical form

(A—7) A = G1JG

where the eigenvaiues A of A appear on the diagonal of J. Premultiplying (A—6)

by C then gives

(A—8) Q=JQR+S

where Q = Gil and S = GB. If Q is uniquely determined by (A-8), il G1Q will be

unique.

First consider the subcase in which J is diagonal. Then (A—8) can be written

as

(A—9) q = A1q.R + s.
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where is the ith row of Q and s. the ith row of S. Since is a scalar,

(A—la) q.[I — X.R] = s i 1,.. .,m,

and the are uniquely determined if [I — exists for i = 1,.. .,m.

But [I — will exist unless is an eigenvalue of R so, with A and R

representing independent parameters, TI will be unique for almost all values

of A and R.

In the subcase in which A is not diagonalizable, equations (A—9) and (A—la)

must be modified. But the same conclusions result because J is triangular and

again has the eigenvalues of A on its diagonal.

The same sort of result holds if the expectational variable is EtYt+. for

j 2,3 Then we have Ey+. = flR3z and the discussion proceeds as before

but with R instead of R in (A—la).

Now we turn to the case in which lagged endogenous variables appear in the

system so that (A—l) is replaced with

(A—il) =
AEtYt+i + Bz + Cy1 +

where C is mxm, and instead of (A—3) we have

(A—12) yt = llz + + rut

with II, , and r to be determined. In this case the expectational representation

is -
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(A—13) Ey1 llRz +
= rrRz+c(flz + —l + ru).

The counterpart of (A—5) is then

(A—14) llz + + ru =
AITRZt

+ AcO1z + + r) + Bz + Cy1 + Ut.

so the relevant identities are

(A-15) 11 AIIR + AQIT + B

= A + C

F = AF + I.

The first and third of these would be uniquely solvable for TI and F if were

given, but clearly the second is not linear in the elements of 1. This is the

multivariable counterpart of the nonlinear identities that are discussed in

Section III. In the present case, the number of solutions —— not all real,

most probably —— is 2m.

A unique solution may nevertheless be obtained by a generalization of the

approach proposed in Section III. Let us demonstrate this in the special case

in which B = 0 in (A—il), which implies 11=0 but retains the troublesome non-

linear equation involving . In this case the model is

(A—16) =
AEtyt+l + Cy1 +

and the solution equation is
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(A—17) t = t—l + run.

There will be no loss of generality if we take A to be invertible, as we shall.

The first step is to put the system in the form used by Blanchard and

Kahn (1980). Thus we define

(A—18)
yt—1

and write

IXt+l 1 10
'

1 Ft1 10 1
(A—19)

I

=
1 .. lI I I + j Ut.

LEtYt+IJ L_A C A J [j L_A j

Then we have

(A-20) yt = +

(A-21) Ety÷1 = c(x + rue)

so (A—l9) becomes

(A—22) + ru

L2x +cru

10 1 10]
[A_lC A_li +

+
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The portion of this system corresponding to then implies

(A—23) Q = 0 I I

-A1C A' 0

Let the square matrix on the right be denoted M; it is 2m x 2m in dimension.

Let A be the matrix with elgenvalues of M on its diagonal and let P1 be the

matrix of eigenvectors. Then M P'AP so w can premultiply (A-23) by P and

obtain

I'1 P12 1 f A1 0 1 Iii i21 f I
(A—24) I I 2 A''

[p21 '22i
0

[0 2] [P21 P22

For our purposes, the assignment of eigenvalues to A1 and A2 is both crucial

and unusual. Note that each eigenvalue A satisfies

1—xI I
(A—25) det[M — XI] = det

1-A C A -XI

= det[A - XI] det[—AI ÷ I(A.— XI) 1A1C] 0.

ThuswhenC=O, half of the eigenvalues of M equal zero while the other half

equal the eigenvalues of A1, which are all non—zero. We then take A1 to include

the eigenval.ues that approach 0 as C-*0 and A2 to include the others (which

approach the eigenvalues of A1). That this assignment can be implemented

follows from the fact that each eigenvalue is a continuous function of the ele-

ments of M.



A- 7

Returning to (A—24) we write out the row equalities as follows:

(A—26) (P11 + P1Q)c = A1(P11 + PQ)

(A-27) (P21 + PQ)Q A2(P21 +

These suggest the two solution expressions

(A-28) (l) = —

(A-29) Q(2) -

Each of these satisfies the model and gives a value for that will, with the

implied F, provide a solution to the model. But by our extended principle of

minimal state variables, we require a solution expression that makes =O

in the case in which C=O. Now when C=O we have A10 by construction and

(A—26) becomes

(A—30) (P11 + P12Q) = 0.

But the latter will be satisfied by whether or not it equals a matrix

of zeros; in other words

(P11 + P12Q)c2
= 0

does not imply Q=0. By contrast, (A—s)) will be satisfied by (2) only if

(2) (2) .Q =0. Thus Q is the only solution expression for that is guaranteed to
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take on the value 0 when C0, as our principle requires. Thus, is

the value of Q in (A—17) that excludes bootstrap effects.

If one's selection criterion required stability, then would be the

indicated value of if the eigenvectors of M were arranged so that each of

the diagonal elements of A1 has modulus less than 1.0. This is, however, a

different criterion and can evidently lead to a different composition of A1

and thus to a different solution. The continuity of the eigenvalues with

respect to the elements of C suggests, nevertheless, that the composition of

A1 will be the same when the elements of C are small. Note finally that the

criterion of Section III, unlike the stability criterion, provides a unique

solution when more than m of the eigenvalues are real and have absolute values

less than 1.0.
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Footnotes

Shi11er, for example, says "The existence of so many solutions to the

rational expectations model implies a fundamental indeterminacy for these

models" (1978, p. 33). Blanchard states that "in models where anticipations

of future endogenous variables influence current behavior, there exists an

infinity of solutions under the assumption of rational expectations" (1979,

p. 114). Burmeister (1980h) suggests that "one of the most crucial issues

in rational expectations modelling ... concerns the dynamic properties of

rational expectations paths and the manner in which the stability properties

of these expectations serves to make determinate the stochastic properties

of the actual variables" (1980b,pp. 800—801).

-'Where Barro says "equilibrium analysis," "rational expectations" would

for present purposes be more accurate.

-"Here I use the term "Cagan model of inflation" to refer to any system

that includes the money demand function (1) plus a money supply specifica-

tion as behavioral equations which, with an assumption about expectations,

determine Pt and m.

'More generally, as Shiller (1978) and Flood and Garber (1980b) show, one

can add (1t+l + is any random variable satisfying

= 0. The additional stochastic component is not of particular

interest in the present context.

-'For what it is worth, it should be noted that in his original article

Muth (1961, pp. 325—7) excluded such terms by his choice of solution

procedure. As it is the same as Taylor's (1977), it does not rule out all

types of solution multiplicity.



Since first drafting this paper, I have learned that Wallace (1980)

has made a similar argument in the context of a particular (overlapping

generations) model. He does not, however, propose extensions such as

those introduced below.

FSee, for example, Flood and Garber (1980b).

That there may be several minimal sets is not of importance, since they will

imply (in the class of models considered) identical realizations of the endogenous

variables. For example, in the model (1) (2) the set of 1, mi, e, u is minimal
but yields the same realizations for Pt as the minimal set 1, m, Ut.

This statement implicitly assumes that the roots to the parameter identities

are real. If instead they are complex, the appropriate conclusion, I

believe, is that the model does not possess an economically sensible solution.

(If some are real and the others complex, then the latter are irrelevant

and the former can be considered as described in the text.)

'It can, for example, be used to rationalize the choice of solution values

made by Lucas (1975, p. 1118). Examination of his (2.7) and (2.9) suggests

that, in the special case with 2 o l2 will equal zero in (2.11).

Also, with a2 = 0 the solution for ir1 will, by (2.14), be the one

given in (2.19). Then = 0 implies 22 1 by (2.18) and (2.19)

consequently implies that if21 is as in Lucas's (2.20).

It should be noted that the symbols , ,... have different meanings

here and in Taylor (1977).



--1Tay1or did not explicitly recognize the second possibility at this stage

of the argument. But his proposed criterion for choosing among solutions—--

minimum variance—— leads him at a later point to come back to the solution

in (23).

--'Thus we change the stochastic specification from the "basic model" case.

--'Note that when = 0 the system reduces to Apt kApti +

which is clearly unstable for k > 1.

15/ . . .— This sort of possibility is mentioned by King (1978) and Barro (1981).

16/Equation (49) looks somewhat different than (47) but is, I believe, the

discrete—time counterpart. In any case, the results obtained below also

hold if (49) is replaced with m — Pt + 1k + 2(EtP1 — + v.

--'Burmeister (l980b) recognizes that the specification (60) is questionable.

--"0ther possible criteria are discussed by Blanchard (1979), who finds none

satisfactory. Taylor (1977) also reviews earlier suggestions and proposes

a criterion of his own—— that of minimizing the unconditional variance of

the price level. In monetary models of the type considered above, Taylor's

criterion leads to the same solution as the one proposed in this paper.

It is not clear that such would be true in more complex models, however.

In any event, their rationale is different.

seems unlikely that any theoretical analysis will be able to rule out

the possibility of bubbles. If so, investigations of the type mentioned

will need to be empirical. One such investigation has been carried out by

Flood and Garber (l980b).



an example of an application of this type, see McCallum (1980).

some writers have come very close to doing. See, for example, Hahn (1969),

and Shell and Stiglitz (1967).




