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ABSTRACT

This study presents a general methodology for fitting multiple time
series models to panel data. The basiec statistical framework considered
here consists of a dynamic simultanéous equation model where disturbances
follow a permanent-transitory scheme with transitory components generated
by a multivariate autoregressive-moving average process. This error scheme
admits a wide variety of autocovariance patterns and provides a flexible
framework for describing the dynamic characteristics of longitudinal data
with a minimal number of parameters. It is possible within this framework
to consider generally specified rational distributed lag structures involving
both exogenous and endogenous variables which includes infinite order lag
relationships. This paper outlines the generalizations of standard time
series models that are possible when using panel data, and it identifies
those instances in which procedures found in the time series literature
cannot be directly applied to analyze longitudinal data. Data analysis
techniques in the time series literature are adapted for panel data analysis.
These techniques aid in the choice of a time series model and prevent ocne
from choosing a specification that is breoadly inconsistent with the data,
Several estimation procedures are proposed that can be used to estimate all
the parameters of a multiple time series model including both regression
coefficients and parameters of the covariance matrix, The techniques
developed here are robust in the sense that they do not rely on any specific
distributional assumptions for their asymptotic properties, and in many

cases their implementation requires only standard computer packages,
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Introduction

This paper applies the apparatus of stationary time series analysis
to the analysis of panel data. Multiple time series models, such as those
studied by Zellner and Palm (1974, 1975) and Wallis (1977), are combined
with the components of variance models of Balestra and Nerlove (1966) and
Hussain and Wallace {1969). Grafting these two distinct models together
offers a natural framework for pooling cross section and time series data.

The statistical model considered in this paper is based on what is
known in the time series literature as a dynamic simultaneous equation model
{(DSEM). This model merges multiple time series analysis with the analysis
of simultaneous equations. It consists of a system of structural equations
where endogenous variables are related not only to one another and to exogenous
variables, but also to lagged values of these variables. Generalized variants
of this model offer a rich statistical framework for the analysis of panel data.
Virtually any empirical specification that is linear in measured variables can
be analyzed within this framework, including generally specified distributed
lag relationships which may be of infinite order involving either endogenous
or exogenous variables,

To model the correlation properties of disturbances over time, this study
recognizes a broader class of error processes than has been considered in

existing work on panel data. Disturbances are assumed to consist of permanent

components and time varying compenents that follow generally specified auto-

regressive-moving averages (ARMA) processes. Previous studies typically impose
specific autocorrelation schemes on the data, and they do not perform systematic
tests among competing specifications. This study, on the other hand, approaches

the problem of choosing an error structure for panel data the same way that
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a time series analyst decides on a particular time series specification.
Given the class of models considered in this paper, an important part

of the statistical problem is to find those specifications that are con-
sistent with the data.

The statistical framework considered below goes beyond the single
equation case and proposes the use of vector ARMA processes as a method for
pooling cross section and time series data in the multi-equation case.

Multiple time series models offer a robust scheme for combining systems of
equations like those found in seemingly unrelated or simultanecus equation
models. These models allow one to use time series techniques to estimate
simultaneously several structural distributed lag relationships involving
both endogencus and exogenous variables and still allow for a general auto-
correlation pattern for disturbances.

This study provides a general method for fitting multiple time series
models tﬁ panel data. It is especially tailored for analyzing a panel data
set that has a large number of individuals and a relatively short time series.
Special problems arise when one uses panel data to estimate time series models,
and some procedures found In the time series literature are not directly
applicable. On the other hand, panel data permits the consideration of more
general parameterization than is possible in standard time series analysis. E
This study proposes solutions to the special problems, and it identifies the
generalizations of empirical specifications possible in the analysis of panel
data.

To aid in the choice of model specifications, techniques found in the
time series literature for identifying the forms of distributed lag relation-
ships and the orders of ARMA processes are adapted for application in a panel

data setting. These techniques prevent one from choosing specifications for




the DSEM and for the error process that are broadly inconsistent with the
data. Treating residuals as dependent varigbles in a seemingly unrelated
regression analysis, it is possible to compute estimates of the sample
covariogram, correlogram, and partial correlation function associated with
disturbances and the standard errors of these estimates. As in the case of
standard time series analysis, these estimates provide information to choose
among competing ARMA specifications for the error process and they provide
the basis for simple tests for several forms of nonstationarity and hetero-
Scedasticity.

This study alsc develops general methods for estimating the models and
the error processes described above. Specifically, these methods provide
for the estimation of the parameters of a system of seemingly unrelated
regression or simultaneous equations including parameters of the covariance
matrix when thege parameters are subject to an arbitrary set of nonlinear
constraints. These constraints may simultaneously involve regression coeffi-
cients and parameters of the covariance matrix. Estimators based on least
squares and on quasi—maximuﬁ likelihood procedures are proposed that do not
rely on any specific distributional assumptions for their asymptotic properties.
Both limited infermation and full information estimation procedures are
developed. These procedures are computationally efficient and simple to
implement.

Section I presents a general statistical framework and considers a
wide range of issues associated with model specification. Section IT develops

data analysis techniques, and Section 1IT describes estimation procedures.




I. A General Statistical Framework

Panel data offers observations on a sample of "individuals" in more

than one time period. An individual here refers to an observational unit
such as a household or a firm. The models developed below are designed to
estimate the structures relating an individual's wvariables both within and
across time periods using all the available data.

Dynamic simultaneous equations offer a flexible framework for describ-
ing the relationships between an individual's measured variables. A set of
structural equations from a DSEM, suitably modified for a panel data analysis,

may be written as

n r s
(1) DOTLY (-3 =} ov.Y, (t-3) + ] B.X (t-i) + U.(t), t =1,...,T,
420 j1i 320 j 24 i=0 ji i
i=1,...,¥,
where
Yli(t) = g x 1 vector of endogenous variables for individual
i in time period t,
YZi(t) = h x 1 vector of endogenous variables,
Xi(t) =@ x 1 vector of exogenous variables,
Tj, i=0,...,n, wj, j=0,...,r, and Bj’ j=20,...,s8, are
coefficient matrices of order g x g, g x h, and
g X m, respectively,
and

Ui(t) g x 1 disturbance vector.




In terms of matrix lag operators, this system of equations may alternatively

be written as

(2) T(L)Yli(t) = ‘P(L)YZi(t) + B(L)Xi(t) + Ui(t), t

1l
[
i

i=1,...,N,

where L is the lag operator (i.e., Lin(t) = Xi(t-j)), and T(L) = E Fij,
v(L) = .E Wij, and B(L) = _% Bij are finite order matrix lag og;Sators.
Period i_(i.e., t =1) in thi;Omodel refers to the first period of the panel
in which one observes all of the current and lagged values of bofh the endo-
genous and the exogenous variables. Thus, T = T% - max (n, r, s)rﬁhere T* =
total number of time periods supplied by the panel data‘source and n, r, and
s are the orders of the lag polynomials T(L), ¥(L) and B(L). The,following_
analysis assumes that time dummies or polynomials in time are inciuded among
the exogenous variables to capture period effects that are common atrosé
individ;als. Thus, we have N independent sets of T time series observations
with which to estimate the parameters of model (2). The above specification

assumes that a researcher wishes to analyze g equations at once, and the pro-

cedures developed below apply to the analysis of this case. A researcher may

desire to consider more than one equation at a time in order to achieve parameter

identification, to impose restrictions across equations, or to cbtain more
efficient estimates.

Sepcification (2) includes virtually all econometric models that are
iinear in measured variables as special cases. If a researcher chooses to
analyze a single structural equation (or one equation at a time), then in (2)
one sets g = 1, h = the number of separate endogenous variables on the right-

hand side of the equation, and n = the number of separate exogenous variables.

lNotice that a variable is said to enter the equation if either its
current or its lagged value appears on the right-hand side of equation (2).




"If T(L) = FO and Y(L) = ?0 where T and TO are coefficient matrices of

0
orders g x g and g x h, respectively, the system of equations given by
(2) reduces to a standard simultaneous equation model (i.e., there are
ne lagged endogenous variables) with g equations per period. If, in

addition, T 1 and Y, = 0, we obtain a seemingly unrelated or a multi-

0" g 0
variate regression model with g equations per period.l If, still further,
g = 1, we have a standard multiple regression model where there is a single
equation per period for each individual.

The statistical framework given by (2) permits the consideration of
a'widervariety_of‘distributed lag relationships between the elements of
Yl’ Yz,“and X, including infinite order schemes. The assumption that the
lag polynomials T'(L), ¥(L), and B(L) are of finite order is not as restric-
tive as-it may first appear. It is possible to estimate any infinite order
distributed lag relationship which can be written as a ratio of finite order
lag polynomials using model (2). Such lag schemes, known as ratipnal dis-
tributed lags, admit flexible weight patterns on past variables and contain
many well known schemes as special cases.2

To see how it is possible to analyze this type of lag structure within
-the framework of (2), consider a single equation version of the model where
Y2 and X each represent a single variable. Assuming that Y, is related to

1

Y2 and to X through rational distributed lag schemes, we have

1“Saemingly unrelated regression model" in this paper refers to any
system of regression equations whose disturbances are not assumed to be
uncorrelated. These equations may or may not contain the same set of

explanatory variables, and there may be parameter constraints across equations.

Also, there may exist some form of covariance restrictions for disturbances
included in a system, and there is no requirement that disturbances are un-
correlated across systems. ’

2See Griliches (1967) for a survey of these distributed lag schemes.
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where bl(L), bz(L), cl(L), and cz(L) are lag polynomials of finite (and
typically low) order, and U;(t) is a disturbance.1 Multiplving both sides
of this equation by bz(L)cz(L) converts it into the form of equatiomn (2)
with TI'(L) = bz(L)cz(L), ¥{L) = bl(L)cz(L), B(L) = Cl(L)bZ(L)’ and Ui(t) =
bz(L)cz(L)U;(t) where T(L), ¥(L) and B(L) are all finite order. There is,
then, an equivalent relationship between equations (2) and (3). Analyzing
rational distributed lag schemes using specification (2) will, in general,
imply nonlinear restrictions relating the coefficients of the polynomials
T(L), ¥(L), and B(L). This, however, introduces no significant complications
in the following Aiscussion. Both the data analysis and the estimatiom pro-
cedures developed below permit the imposition of such restrictions. While
imposing these constraints will, in general, yield more efficient parameter
estimates, it is important to recognize that one can estimate all the parameters
needed to construct rational distributed lag structures without impesing any
restrictions in the estimation of equation (2). One can always convert the
estimates of equation (2) into those of equation (3) by observing that

vy _2® sy W
T b, M TM T e, )

The following analysis assumes that the error terms, Ui(t)’ are dis-
tributed independently across individuals (i.e., across the index i), but
that these disturbances are autocorrelated over time (i.e., over the index t)

for the same individual. It is often useful or necessary to restirct the

1The.polynomials bz(L) and cz(L) are assumed to have roots that lie

strictly outside the unit circle.




form of this autocorrelation. Imposing such restrictions reduces the
number of parameters in a model; it can create a statistical model that
may be used for prediction outside the sample period; or, in the case of
a simultaneous equation model, it can aid in securing the identificatiqn
of structural parameters. A natural specification for the error process
in 2 pandel data setting is one that merges linear multiple time series
models with variance component schemes.

This study considers such an error structure. In particular, Ui(t)

is assumed to follow a permanent-transitory scheme of the form
(4) U (e) = ¢, + v, (1)

where

¢i = g x 1 vector of permanent components with
¢ if 1 =3
1 E 3
E(4,6})

0 otherwise,

and the vi(t) is a g x 1 vector of transitory components uncorrelated

with ¢i and generated by the multiple time series process

p g

(5) v (£) = - jzl Agvi(E=3) + ey (t) ¥ jZl Me, (€-3)

which may be equivalently written as

(6) Ay (e) = M(LDe, (t)

where



P .
AL) = & A.1? and ML)
j=0 j=0

0 MD = Ig and the roots of |M(L)| =0

1]
e =]

MjLJ are g x g matrix lag

operators with A
are assumed to lie on or outside the unit circle,l
and
ei(t) = g x 1 vector of white noise with

Z if ¢t = t* and i

]
[ ]

E(Ei(t)ej(t*)) =

0 otherwise,

Thus, Ui(t) is the sum of a vector of correlated permanent components,
¢i, and a vector of individual specific variates, vi(t), which follows a
multivariate ARMA process. There are two sources of autocorrelation
accounted for in this error épecification: one is due to the presence
of permanent components which capture the effects of unmeasured charac-
teristics unique to the individual that remain constant over the sample
period; and the other source is the time series components which account
for the existence of unobserved wvariables that vary systematically from
one period to the next. This error process admits a wide wvariety of
autocorrelation patterns and provides a flexible scheme for describing the
time series aspect of panel data with a minimal number of parameters.
Previous studies on longitudinal analysis have considered special
cases of the error specification proposed above for a single equation
{(which implies g = 1 in (4) and (6)). The most popular specification is

one that combines a permanent component with a pure autoregressive scheme

1The restriction on the coefficients of M(L) is the usual one imposed
in the time series literature to guarantee that these coefficients are
identified,
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{i.e., p>0and q =0 in (6)).1 A few studies consider a permanent
cbmponent and a low order moving average process (i.e., g =1, p = 0,
and q > 0).2 No study considers a mixture of an autoregressive and a
moving average process. ..
There are several other error specifications found in the literature

that can be analyzed using the statistical model for disturbances given

by (4) and (6). One such specification attempts to generalize the above

model following the suggestions of Nerlove (1967} in his work on ''unobserved

components.' Disturbances are assumed to depend on more than one transitory

component. In particular, instead of (4), it is assumed that

h~—14

Ui(t) = ¢i + vu(t) t=1,...,T,
=1
i=1,...,N,
where the transitory components in(t), £=1,...,]J, are mutually independent

and each follows a restricted ARMA process of the form
AR(L)in(t) = MQ(L)EEi(t) L=1,...,J,

where AE(L) and ME(L) are matrix lag operators with the same properties as
A(L) and M(L) defined above, and the Egi(t)'s are white noise vectors.
According to this specification, the disturbance vector of the DSEM depends

on permanent components and a sum of J time varying components that are each
generated by a unique multivariate ARMA process. Since this new error process

includes the simpler process proposed above as a special case with J =1,

1David (1971), Hause (1977), Lillard-Willis (1978) and Lillard-Weiss
(1979) are examples of studies that estimate first order autoregressive
schemes (i.e.,, p = 1). Ashenfelter (1978) considers higher order processes.

2Friedman (1954, p. 353) and Hause (1977) are examples of such studies.
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some authors have offered this new process as a way of providing for a
wider class of autocorrelation structures for disturbances.1 This more
complex error process, however, does not admit more general autocorrelation
structures. This result is a direct consequence of the fact that summing
disturbances generated by ARMA processes yields a new disturbance that

also follows an ARMA process.2 Thus, any autocorrelation pattern produced
by the complex error process can be duplicated by the simpler process given

by (4) and (6).3

1Hause (1977), Lillard-Weiss (1978) and lLillard-Weiss (1979) estimate
elementary specifications of this error process for the case J = 2. The
most widely estimated specification assumes that vli(t) follows a first order

autoregressive process and v i(t) is white noise.

J

2Define the disturbance vector n(t) = Z Ui(t) where each of the vg(t)'s
ﬂ,:l
follows an ARMA process of the form assumed in the text (i.e., AQ(L)vR(t) =

2

ME(L)ER(t)’ 2=1,...,J). It is always possible to represent the ARMA process
) = ® = *

for v, (t) as |A£(L)|v£(t) AS(LIM, (L)e, (t) = M¥(L)e, (t) where |4, (L)] and

A;(L) are the determinant and the adjoint matrix associated with AR(L)’ and

M*(L) is a fine order matrix defined as AE(L)MR(L)' Thus, premultiplying
: J J
n(t) by p(L}Y = 1 lAl(L)l yields p(L)n(t) = } 8, (LYM*(L)e, () vhere g (L) =
2=1 =1
p(L)/[Ag(L)I is a finite order polynomial. The right-hand side summation

expression is known to have a vector moving average representation since its
autocorrelation function is zereo after finite order (see Hannan (1970, p. 66)).
Thus, we see that n{t) follows a vector ARMA process.

3There is, then, a fundamental identification problem associated with
the use of the complex specification of the error process. To estimate
this specification, one requires a priori restrictions on each of the ARMA
processes generating transitory components.
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One can also analyze error specifications in which permanent
components are not uncorrelated with "exogenous" variables or in which
disturbances depend on individual specific growtﬁ rate terms as well as
permanent and time series components. For those specifications where ¢i
is correlated with the Xi(t)’s, first-differencing equations (i.e., multiply- -
ing both sides of each equation by (1-L)) eliminates permanent components
and creates a new model that satigsfies the assumptions of the DSEM and error
process proposed above. Similarly, if disturbances depend on individual
specific growth rate terms and, instead of (4), Ui(t) = ¢i + bit + Ui(t)
where bi is a g x 1 vector of permanent components distributed randomly across
in&ividuals,l then first-differencing can once again be used to transform this
error specification into a model like those proposed above.2 In the case of
an individual specific quadratic trend (i.e., bitz), second-differencing puts
the model into the appropriate form. Differencing, then, offers a way of
collapsing more general DSEM’'s and error processes into a specification which
is nested within the framework considered in this paper. It is important to
recognize that differencing changes the specification of the DSEM and the
ARMA process for transitory disturbances in a known way and introduces no
new parameters. Thus, the effects of differencing can easily be undone in
the sense that one can construct the model associated with levels using only
the parameter estimates of the differenced equations. -

One can estimate rational distributed lag relationships using the

strategy outlined above when disturbances are assumed to follow the error

Such error specifications are common in the empirical literature
on earnings (see, for example, Hause, 1977 and Lillard and Weiss, 197%9).

2 . . .
First differencing in this case reduces random trends teo permanent
components.
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scheme proposed above. If the disturbance U;(t) appearing in (3)

follows a permanent-transitory scheme of the sort given by (4) and (6),
then the transformed disturbance Ui(t) in specification (2) (which equals
hZ(L)C2(L)U§(t)) follows an error scheme of the same form. Thus, using
model (2) along with error processes (4) and (6), one can fully estimate
rational distributed lag structures while imposing covariance restrictions.
Translating from equation (3) to specification (2) will, in general, imply
nonlinear restrictions relating the coefficients of the lag polynomials
I'(L), ¥(L) and B(L) associated with measured variables and the polynomials
A(L} and M(L) determining the autocorrelation of disturbances. The data
analysis techniques and the estimation procedures developed below permit
one to consider and to incorporate these types of constraints. Introducing
the possibility of covariance restrictions in the analysis of rational lags
can lead to an increase in the efficiency of estimation, and it can provide
a source of parameter identification which relaxes the need for exclusion

restrictions and exogeneity assumptions.

A Familiar Representation

Combining all the structural equations for an individual into cne
model creates an alternative representation of the above DSEM that is partic-
ularly useful for the analysis of panel data. Stacking the equations given

by (1) for individual i in descending order starting with the last period

yields
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n A [ T 3
I Ty, (T-) L Y.y (T-j)
j_—_-o J 11 j=0 J 21
%) . . ,
n T
I T~y (-3 I Yy (1-1)
] - 0)-
\ J J
r . . , \
L B.X (T-j) U, (T)
=0 J 2 i
+ +
5 . .
I B.X.(1-3) U. (1)
j=0 J ] 1
\ | )

In matrix netation, this svstem of equations may be written as

| = “r + = . \J
with
9 i = J
E(U,UY) =
1]
0 otherwise
¥ — 1 L) . ] _
where iii = (Yli(T)! Yli(T“J),----sYli(l-n+1), Yli(l n)),

Y.‘Ei = (Yéi(T)""'Yéi(l'r))’ ]\; = (X;(T),...,X'i(l—S)), U; = (Ui(T),...,

U;(l)), and the coefficient matrices T', ¥, and B are block diagonal band

matrices with the matrices [TO,...,Tn], [WO,...,Wr], and [BD,...,%;] running
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down the diagonal of T, ¥, and B, respectively.l Written in the form of (8),
we have constructed a system of simultaneous equations in which disturbance
vectors are independently distributed over observations so that it is poss-
ible to estimate the unknown parameters of the coefficient matrices I', ¥, and

. . . . . 2
B using standard simultanecus equation estimation procedures.

The main consequence of assuming a DSEM of the sort presented in
equations (1) or (2) when analyzing panel data is the imposition of constraints
across equations in different time periods for a given individual. Inspection
of equation (7) reveals that the specification assumed in (1) implies equality
constraints across the rows of T', ¥, and B.

One obvious generalization of the above DSEM that is possible whén this
model is used to analyze panel data rather than time series data concerns the

constancy of matrix lap operators over time. In specifying the DSEM given

lA matrix Q is a diagonal band or a block diagonal hand matrix if it
has the form

abecgd

abcd

abcd
If a, b, ¢, and d are constants, then Q is a diagonal band matrix. If a, b,
¢, d are matrices, then @ is a block diagonal band matrix with the matrix
la, b, ¢, d] running down the diagonal.

These procedures include two stage and three stage least squares methods
that assume disturbances are correlated across eguations but not across obser-
vations, When a nonsimultaneous specification of the DSEM consits of g multiple
regression equations per period (i.e., I'(lL) = Ig and ¥(L) = 0 in (2)), we have
r = ITg and ¥ = 0, and (8) becomes a seemingly unrelated regression model which
can be estimated using standard joint generalized least squares procedures. See
Section IIT for further discussion.
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by (2), it is not required in a panel data analysis to assume that the

matrix lag operators T'(L), ¥(L) and B(L) are the same across time periocds.
Instead, one can add a "t" subscript to these matrices indicating that there

is a new set of coefficients for each period and, thus, a different distributed
lag relationship. The consequence of this generalization in (8) is the relax-

ation of equality constraints relating the rows of T, ¥, and B.

A Specification for the Covariance Matrix

The consequence of assuming that disturbances appearing in (1) follow
the error specification given by (4) and (6} is the imposition of restrictions
on the covariance matrix 9 = E(UiUi) assoclated with the stacked representation
of the DSEM given by (8). The following analysis derives the exact restrictions
. on autocovariances implied by the combined variance component-multiple time
,séries process assumed above, and it formulates an explicit parameterization
~ for the covariance matrix ©.

: Accordiné to (4), each component of the disturbance vector Ui 1s generated

by an erfor model of the form Ui(t) = ¢i + ui(t), t=1,...,T, where
E(¢i¢i) = §, ph§ vi(t) follows the multivariate ARMA process, A(L)vi(t) =
M(L)ti(tj, which is distributed independently of ¢i with E(ei(t)e;(t)) = I,
Défining u£"= (v;(T),...,vi(l)) and 1 as a T x 1 vector of ones, we have

v, = Q ®¢i) + v.; so,

(9) © = E(UUD) = (' ®9) + E(v,v}).

To specify ©, we need the implied parameterization for E(vivi).

According to (5), vy is determined by the system of equations
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{ P h roq 3
v, (T) I A Vv (T-1) I M.e,(T-3)
1. j:l J 1 j=0 J 1
= . = - - -+ .
(30) Y3 ) P . } 3 . )
v, (1) I A,v.(1-] I M.e (1-]
i §=1 J1 3=0 J 1
L F 3 /
where MO =1T. This system does not represent a one-to—-one transfor-

mation from the Ei(t)'s, t=1,...,T, to vy One cannot, then, derive the
covariance matrix for vy from (10) if given only distributional assumptions
for Ei(T),...,Ei(l). Also appearing in (12) are the variables vi(O),...,
ui(l-p) and ei(O),.,.,ei(l-q) which are known in the time series litera-

ture as initial conditions or starting values for the error process. To

derive a parameterization for E(vivi), one requires a treatment for initial
conditions.

This paper treats initial conditions for disturbances as random
variableé. Conventicnal time series techniques that treat starting values
as known constants (usually chosen to be zero) result in inconsistent
estimates for the parameters of the error process if applied in a panel data
analysis where T is fixed because, in contrast to time series analysis, initial
conditions do not become "irrelevant” as the sample size increases. Similarly,
time series procedures that "backforecast" or treat initial conditions as
parameters introduce an incidental parameters problem in a panel data analysis
which under most circumstances also leads to inconsistent estimates for all
pérameters of the error process.l Treating initial conditions as random
variables avoids problems with inconsistency by introducing only a finite

number of new parameters: those determining the distribution of the starting

lThis problem of incidental parameters and inconsistent estimation is
examined by Andcrson-Fsiao (1981).
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values, and those‘relating the distribution of the starting values to the
distribution of disturbances realized in periods 1 through T.
There are several complications associated with choosing a distri-
bution for the two sets of initial conditiomns specified above. If we assume
that the stochastic process generating disturbances during the sample period ={
is alsc operative prior to this period, then one would expect the vi(R)'s,
£2=1-p,...,0, to be not only correlated with one another and with the Ei(j)'s,

3

1-q,...,0, but also with all the wv(t)'s realized after period 0. Further-
more, the correlations relating these variables will, in general, depend
directly on parameters of the ARMA process given by (6), and one must account
for these restrictions to achieve efficient estimation. It is possible to
minimize these complications by specifying the system of equations given by (10)
and considering an alternative expregsion for vy

A moving average representation of an ARMA process provides the basis
for this new expression for vy Assuming the multiple time series process
given by (7) started sometime in the finite past, say between the periods
T-b and T with b > 0, it is possible to write each of the vi(t)‘s realized

after period T as a moving average scheme of the form

t-1-1 t-1+b )
(11) v, (1) = Z Kjei(t-j) + _Z Kjfi(t—J) >t :
j=0 j=t-1
where
KO = Ig
K1 = Ml - A1
K, =M, - A, - AK

2 2 2 171

k
et L ARy
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and the fi(L)'s, £ = 1-b,...,7, are error vectors distributed independently

of ei(t*) for all t* > 1. Formally, one can derive a relation like (11)
P

by starting with the ARMA representation vi(t) = - 7 Ajvi(t—j) +

q j=1

‘Zo P%s(t—j) and successively substituting out for past vi(t-j)'s using

i;eir ARMA representations until t-~j = 1. One can readily verify that (11)

is indeed a valid expression for ui(t) since premultiplying this equation

by A(L) yields A(L)vi(t) = M(L)gi(t) for t > t+q. The fi(g)'s in (11) may

be interpreted as the true initial conditions of the ARMA process. Specifying
the distribution of these variables determines exactly how and when the ARMA
process generating ui(t)'s began.

Using (11), it is possible to reformulate the system of equations
given by (10). To avoid the need for dealing with several possible cases, it
is convenient teo introduce the notation Kj =0 for j < 0 (for j > 0, K, is
defined %n (11)) and the definition that a summation of the form ; is equal

=0
to zero whenever ¢ < 0. Using this notation, equations (10) and (11) imply

[ (T-31) W E (T-3) 1 ’ 4] W
I A,v,(T-j I M.e_ (T-j
j=0 J i j=0 J 1
p N q
I A,v_(ptl-j I Me,(p+tl-j) 0
j=0 J 1 j=0 J1
gq-1
(12) vi(p) = E sti(p-J) + ni(p)
j=0
qg-1
vy (p-1) z Kj_lei(p—J) n, (p-1)
j=0
q-1
vy (1) jio Kj—p‘i-lei(p-‘]) n; (1)
J L J
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where
t-1-1 t-14b
n{(t) = I K,e. (t-j) + I K.f (t-3), t=1,...,p.
P geteprg T j=t-r 37

The first set of T-p sets of equations in (12} are simply the standard
representation of the ARMA process generating vi(p+1),...,vi(T), and the
second p sets of equations are the moving average representations of the
ARMA process for ui(l),...,vi(p) with the ni(R)'s, R=1,...,p, defined
to include all disturbances realized prior to perioed p-q+l (i.e., the
Ei(t)'s and the fi(t)'s for t < p~q). The formulation of (l2) assumes

that 1 < p—q.l In matrix notation, (12) may be written as

£,
‘ _ i
(13) Fv, =G
up
1
with
3 r 3 ¢ 3
v, (T) ., (1) n, (@)
\J1= , Ei': s n1= .
v, (1) e, (p-q+l) n, (1)
L1 J Lipq J | 1 J

and F is a gT x gT matrix and G is gT x g(T+q) matrix defined as

21 22 Igp

1This assumption concerning the starting time of the ARMA process
generating the vi(t)‘s is a weak restriction and follows immediately from

the assumption that v (p+l) can be represented by the specification given

by (5). This restrlction on T ensures that no £, (t) s appear in the moving
average component of (5) for t = p+l.




‘11 €12 " 0
G = = .
21 €22 B3] |© K I
where: Fl = A is a g(T-p) x gT block diagonal band matrix with
the matrix [AO"°"Ap] running down the diagonal; le =0 is a gp x g(T-p)

matrix; F22 = Igp is an identity matrix of dimension gp; Gll =M is a g(T-p)

x g(T-p+q) block diagonal band matrix with the matrix [M .,Mq] running

0*""
down the diagonal; G12 = 0 is a g{T-p) x gp matrix; G21 =0 is a gp x g(T-p)

matrix, G23 = Igp; and G22 = K is a gp x gq with
Ko % K-z ¥
K—l KO . Kq_3 Kq_2
K = -
K K . K K
[ 1-p 2-p q-p-1 g-p_

When forming the partioned matrices associated with F and G, the above
analysis assumes that any matrix with an implied dimension equal to zero is

deleted from the specification. Thus, when p =0, F = [Fl] and G = [Gll];
“11 12

GZl G23

and wvhen q = 0, K is eliminated and G = The above specification

for K is written in general terms to handle all possible orders of the ARMA
p}ocess including p < q, p = ¢, and p > g. Recognizing Kj =0 for j < 0 and

I(.j # 0 for j > 0 reveals that K has a fairly simple form with nonzero elements
in those Kj's on and above the positions (1, 1), (2, 2),...,(min{(q,p), min(g,p)),

1
and zero elements in those K,'s below and left of these positions.

3

lFormally, the matrix K has [KO, K K —l] as its first set of

107k
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Given the expression for vy implied by (13), the problem of parame-
terizing E(vivi) becomes one of specifying a correlation structure for the
disturbance vectors g and ny - Since each of the compoments of €y follow

a white noise error process, we have
' = = *
(14) E(Eisi) (IT—p+q @:I) =z

where I = E(si(t)si(t)) for t = p-g+1,...,T and I* is defined by the
Kronecker product. Inspection of the formula for the ni(ﬁ)‘s reveals three
facts: (i) the ni(E)'s depend on a common set of disturbances; (ii) all of
these disturbances are realized prior to period ptgq-1l; (iii} included among
these disturbances are the initial conditions for the ARMA process (i.e.,
the fi(t)'s). Since each of the components of £; are realized during and
after period p+q-1, fact (ii) implies E(niei) = 0. Fact (i) implies that
the components of ny are mutually correlated, so E(nini) contains no zero
elements in general. In addition, without imposing rigorous restrictions on
both the number and the correlation structure of initial conditions, fact
(iii) indicates that no restrictions will exist on the form of E(nini). In
the general case, the ny will possess an arbitrary covariance structure which

we may formally express as
¥ -
(15) E(nini) = A

where A is any positive definite symmetric matrix.
Combining the above results, we obtain the following specification

for ©

th

g rows, [0, K Kq-Zl as its second set of g rows, and so on until the p

SRRRE:
set of g rows is reached, or if q > p, until the qth set of g rows is reached
after which the rows of K contain zeros.
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(16) 0= E(ww!) =F1lg e 1

1Y
This parameterization imposes all of the restrictions implied by the
ARMA process unless cne is willing to introduce precise information about
how and when this process started.
There are two modifications of the above parameterization for A that
may be useful in applied work, First, to simplify the construction of the
matrix K, one can replace each of the nonzero elements of K (i.e., all the
Kj's, j > 0) by arbitrary parameters rather than using the coefficients of
the ARMA process and the formulas specified above to form these elements.
This modification avoids the ﬂeed for imposing nonlinear restrictions, but
it introduces new parameters and reduces the efficiency of estimation.
The second modification concerns the parameterization of A defined
by (15). This matrix is purely a theoretical construct and represents
nuisance parameters. An unattractive feature of this parameterization is
that one cannot easily infer an approximate value for A using preliminary
data analysis techniques or estimation metheods that do ndt require the full
estimation of ©. The availability of approximate values greatly reduces
computational burden when used as starting values for parameters in 5 nonlinear
computer program which is invoked to estimate 0. A wayv around this problem
1s to replace A by M= E(nini) + g(Iq()zD K' which is also only restricted to be

positive definite and symmetric. Substituting this new parameterization into (16)

M I M of]
- ~ MoI*|
=1 - EJ -1?

implies

an 6 =F
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According to this new specification for 0, A*= E(v;vi') where the vector
v;'= (ui(p),...,ui(l)) includes the last p components of U;. In contrast
to the previous parameterization, A*is directly interpretable and can be
easily estimated prior to the full estimation of O.

There are several ways in which the above specification of O can
be generalized in the analysis of panel data that are not possible in
standard time series analysis. Each of these generalizations involves a
form of nonstationarity.

First, there is no requirement for the roots of the autoregressive
matrix lag operator (i.e., the roots of {A(L)) = 0) to lie cutside the unit
circle, Thus, it is possible to consider such error processes as random
walks when using panel data. Whereas in a time series analysis the existence
of such nonstationarity‘has significant consequences on the asymptotic
porperties of estimators, it has no such effects in the case of panel
data wheré'asymptotic results rely on a large number of individuals rather
.than a lérge number of time periods.

Second, it is possible in the analysis of panel data to permit
the white noise vectors, ai(t), to be heteroscedastic over time, which

introduces yet another form of nonstationarity. To account for this

heteroscedanicity in the above analysis, one only needs to define I* appearing
in (14) as a block diagonal matrix of the form Dia(ET,...,ET_p_q) where Et =
E(ei(t)ei(t)). In standard time series analysis this sort of nonstationarity
does not necessarily create any concepticnal difficulties, but it does require
an explicit parameterization of the suspected form of the heteroscedasticity that
avoids an incidental parameters problem. In the case of panel data, however, it

is possible to allow for arbitrary forms of heteroscedasticity of white noise

disturbance vectors over time.
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A third form of nonstationarity permitted in panel data analysis
concerns the constancy of the autoregressive and the moving average matrix
lag operators appearing in the multiple time series error process given

?“ by (6). The matrices A{(L) and M(L} can be allowed to vary arbitrarily
across periods so that there is a new set of autoregressive and moving
average parameters for each t. To modify the above analysis to account
for A(L) and M(L) being peried specific, one must subscript the Aj’ the
P%, and the Kj matrices appearing in the specifications of F and G defined
by (13) to indicate the time period eacﬁ matrix is associated with. This
subscripting has the effect of relaxing the equality constraints across
the rows of the matrices A and M, and it essentially voids any constraints‘

relating the nonzero elements of K to one another or to the coefficients

of the ARMA process.

A Reduced Form

In the following analysis on estimation we require a reduced form
specification for the simultaneous equation model given by (8). Write

this specification as

| Yi = HXi + V1 i=1,...,8,
: a8) '
a 1= ‘
E(VV!) =
- j 4] otherwise

where Yi is a vector that includes all the endogencus variables appearing
in (8), the vector Xi contains all exogenous variables for each period

including lags, 11 is a coefficient matrix, and Vi is a vector of distur-

bances.
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The various specifications of the DSEM considered above imply
different restrictions on the II and the { matrices. If considering a non-
simultaneous specification (i.e., when I'(L) = I and ¥(L) = 0 in (2)),

then (8) is obviously its own reduced form which implies I = B and @ = @.

If considering the special simultaneous specification where there are no

right-hand-side endogenous variables Y and no lagged endogenous variables

2i

(i.e., when I'(L) = T_ and ¥(L) = 0 in (2)), then I is a nonsingular matrix,

0]
and (B) can be solved in the usual way for the reduced form by premulti-

- - L]
lB and § = I 1 er 1 .

-

plying through by E-l which implies II = E_
A If analyzing the general specification of the DSEM, however, (8)
does not constitute a complete system of equations in the sense that there
aré more endogenous variables than there are equations; so, it is not poss-—
ible to solve (8) for reduced form specification and determine the restric-
tions on N and § without introducing additional equations. The strategy
.followed here to add the needed equations is the one normally used in
limited informétion analysis of simultaneous equations; namely, a prediction
equation is introduced for each endogenous variable that is not determined

by the structural model under consideration. There are two sets of endogenous

variables that are not directly determined by the DSEM considered above.

The elements of the 'vector YZi defined by (8) constitute the first set,

and the elements of the Yli realized prior to period 1 (i.e., the initial

conditions for the Yli(t)'s) make up the second set which we group into the

vector Y¥*

li = (Yii(o)""’Yii(l - n))}. This study assumes that these variables

are determined by the equations

®
Y1i

(19 =1.X, +V i=1,...,N
1

2i

2i
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where H2 is an unrestricted coefficient matrix, and V2i is an error vector

that is uncorrelated with all the elements of Xi. These specifications
for prediction equations are not restrictive. It is always possible to

define the disturbance vector VZi so that it has zero mean, and it is

uncorrelated with all the exogenous variables of the model. There is no
guarantee that the covariance matrix of this error vector will be indepen-

dent of Xi, but most of the procedures described below do not require the

assumption that VZi is homoscedastic across individuals. We maintain this

assumption only to simplify the expositiom.
Combining equations (19) with the structural model given by (8)

implies a complete system of equations that can be solved for a reduced

1

. . | l 1 , i ; 8
form like (18) with Yi (Y P YZi) where Yli and Y2i are defined by (38).

The parameter constraints implicit in (8) translate into restrictions on

the T and the 2 matrices, These restrictions can be shown to take the

& 11 M2
following form. Partitioning I = and Q = a Q where H2 is

T, 21 %22

the unrestricted set of coefficients and E(VZivii) = 922 is the unrestricted

covariance matrix associated with (19), we have Hl = F_l(I - W)Hz, Qll

1 1. F—lWQ -0 WT'-l - F_1WQ W'P'-l, and ﬂl = ! is an unconstrained

21 12 ~ o~ gg~ - 2 21

matrix. These restrictions, of course, collapse to those presented above

T Ter'

for the special cases of the DSEM.

lThe complete system of equations can be written as HYi = GXi + 61

U
I'| .
where H = |x ¥ , G = Bt .nd 6 = |.2|. The reduced form is obtained by
0 I H2 i v2i
- . -1
premultiplying by H = which implies the restrictions 11 = H G and O =

-1 [ '-l
H E(Giﬁi)H .
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IT, Techniques for Data Analysis

.This section develops simple procedures that provide the basis for
choosing the orders of the lag polynomials appearing in the above specifi-
cations and for determining whether or not it is reasonable to assume that .
the coefficients of these polynomials are constant over time. These pro-
cedures prevent a researcher from choosing a model specification that is
broadly inconsistent with the data. Methods for choosing an appropriate
specification for the lag polynomials detefmining distributed lag relation-
ships (i.e., T(Lj, ¥(L) and B(L) in (2)) are a by-product of results contained
in the next section on estimation and Will_be discussed
there. This section focuses on the more complex problem of correctly speci-
fying the form of the autoregressive and the moving average lag polynomials
generating the ARMA component of the error process given by (6).

The two principle items used in the time series literature for
choosing the specification of an ARMA model are the sample covariogram (or
correlogram) and tﬁe sample partial correlation function.l To provide formal
definitions of these concepts, let U(t) denote a random vector which is
generated by some time series process. Given a sequence of realizations of
U(t}, the covariogram is a plot of the covariance or autocovariance between
any two elements of this sequence as a function of the number of time periods
between realizations. The kth order matrix of autocovariances is E(U(t)U"'(t-k)). y
Plotting this matrix as a function of k creates the covariogram. The (j, %)

element of this plot, E(Uj(t)UE(t—k)), is called an own covariogram when

J = k and cross covariogram when j # k. The partial correlation function,

lGranger-—Newbold {1977, Chs. 3 and 7) provide an extensive discussion
of how to use the covariogram and the partial correlation functions to build
time series models. Nelson (1973) provides a more elementary discussion.
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on the other hand, is a plot of the partial correlation coefficients against
the length of the lag between random variables. The kth order matrix of

partial correlation coefficients denoted as Ak is defined by the regression

equation U(t) = -

k
J=

. AjU(t—j) + £{t) where E(e(t)U'(t-j)) = 0 for j = 1,...,k.1
Plotting Ak as a function of k produces the partial correlation function.

The covariogram is particularly useful for identifying the presence of a
moving average process, The partial correlation function greatly aids in
identifying an autoregressive process,

This section formulates simple procedures for estimating the
covariogram and the partial correlation function using panel data. The
discussion develops these procedures for the analysis of the time series
properties of the distrubances Ui(t} appearing in the specification of the
DSEM given by (2) and (8).2 Thus, it provides information that is useful

when cheoosing a specification for the error process given by (4) and (8).
To simplify the following exposition, the data analvsis procedures are
formulated for the situation in which a researcher_is investigating the
properties of a distrubance from a single eqﬁation (i.e., g =1 in (1)),
which implies that Ui(t) is a scalar., These procedures, however, immediately

generalize to the multi-equation case,

1
Formally, Aj cannot be interpreted as partial correlation coefficients
unless the stochastic process generating U(t) is stationary.

2When considering a simultaneous equation specification, it is
implicitly assumed that the parameters of the [, ¥, and B matrices in (8) are
identified and can be estimated without using any covariance restrictions. Under
these circumstances, it is possible to obtain consistent estimates for each Ui(t)
using standard two or three stage least squares procedures which neglect covariance
constraints. If this assumption is violated, then it is not possible to directly
analyze the time series properties of the structural disturbances, and one must
apply the following data analysis techniques to the reduced form disturbances
given by (17).
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Procedures for Estimating the Covariogram and the Partial Correlation Function

Suppose, for the moment, that one knows the true values of the
disturbances. The discussion below shows how these disturbances can be used
to estimate and test hypotheses concerning the form of the covariogram and
the partial correlation function using a standard seemingly unrelated
regression framework,

To construct the sample covariogram, we require estimates of auto-

. . th
covariances for each order or length of lag. To estimate the k  order

autocovariance, consider the following set of regression equations
(20) Ui(t) Ui(t -k = N + wi(t) t = k+1,...,T

where Ui(t) Ui(t-k) is a dependent variable, 8 . is a parameter, and wi(t) is

k
an error term distributed independently across individuals. Stacking these
equations for a given individual yields a seemingly unrelated regression
model of the form

Ui(T) Ui(T-k)

. = Bk + wi i=1,...,N,
Ui(k+l)Ui(1}
(21)
C i=3
" =
E(d;0))
0 otherwise

where a}'( = (@

= I
kT""’Bk(k+1)) is a vector of intercepts, vy ﬁpi(T),...,wi(k+1))

is a disturbance vector, and we have implicitly assumed that the fourth moments

of Ui(t) exist and are constant across individuals. The intercepts of these
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equations 9, = E(Ui(t) Ui(t—k)) represent the kth order autocovariances

kt
assoclated with periods t, t = k+1,...,T.

Thus, estimating equation; like (20) or (21) by least squares or
joint generalized least squares using data on individuals provides all the
information needed to construct the sample covariogram and to test hypotheses
concerning its form, Unconstrained estimation yields multiple estimates of
kth order autocovariances (i.e., one for each period t = kt+l,...,T} which
reflects the fact that in a panel data analysis one can permit the parameters
of time series processes to be different in each period.1 Constrained
estimation, on the other hand, of seemingly unrelated regression model given
by (21) restricting the intercepts to be constant across equations (i.e.,

constraining the elements of 8 to be the same) produces a unique estimate

k

th . ; . ; ]
of the k order autocovariance which uses all available data. Estimating
models like (21) for each k, then, with equality constraints on intercepts
yields unique autocovariances for each order. Plotting these constrained -
estimates against k creates the sample covariogram.

Combining the system of equations given by (21) for all values of

k yields a model of the form

(22) St(UiUi) = 8+ Ei i=1,...,8
T i=3
1 =
E(EiEj)
C otherwise
1

As discussed in the previous section, in a panel data analysis where
asyriptotics rely on a large number of individuals, it is possible to allow the
autoregressive and/or the moving average lag polynomials (i.e., A(L) and M(L)
in (6)) to differ in each period, or allow for heteroscedastic white noise
over time. Permitting variation in parameters of this sort generally implies
that the Bkt's are different for each t,.
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where St(+) denotes an operator that stacks the rows of a matrix

and deletes all the elements that lie below the diagomnal, 9§ = St(p) =
St(E(UiUi)) is a vector of intercepts, and Ei is an error vector that

contains the wi(t) disturbances appearing in (20) for all values of k.

This expanded seemingly unrelated regression medel provides a framework

in which one can simultanecusly estimate or test constraints invelving auto-
covariances of different orders. An especially interesting hypothesis in

tﬁis regard is stationarity of the error process which implies that ¢ is a
Toplet:z matrix.l This hypothesis translates into simple equality constraints
relating the elements of 6 which are easily tested jointly using standard

generalized least squares procedures applied to (22).

To construct the sample partial correlation function we require
estimates of partial correlation coefficients for each order. To estimate
th s . . , ,
the k order partial correlation coefficient, consider the following set

of regressiocn equations

(23) U () = o) U (e-1)  + .o, +opp o

1 .
A matrix Q is a Topletz or a block Topletz matrix if it has the form

M

abcd el
babed
bab
decbatb
ledcba

0

o
i
[¢]

A

If a, b, ¢, d, and e are constants, then Q¢ is a Topletz matrix. If a, b, c,
d, and e are matrices, then Q is a block Topletz matrix with a, b, ¢, 4, and
€ as its submatrices. When Ui(t) represents a univariate time series, which

is the case considered here (e.g., g = 1), stationarity implies that autocovar-

Ui(t—k) + Ei(t) t = k+l,.

., T,

iances of a given order are constant, or equivalently that € is a Topletz matrix.

In the multivariate case (i.e., g > 1}, stationarity of Ui(t) implies that ©
is a block Topletz matrix.
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where the pjt's are parameters and ei(t) is a disturbance distributed
independently across individuals, Stacking these equations for a given
individual yields an equation system of the form

Ui(T) Ui(T-J) 0

-

i
e
o
+
®
H
Il
p—
=2

U, (k1) 0 U, (k=3+1)

(24) R i=3
E(eieij =

0 ctherwise

where p5 = (pjT""’pj y, 3 =1,...,k, are parameter vectors, and

{k+1)

ei = (ei(T),...,ei(k+l)) is a disturbance vector. The parameters Pre reﬁresent
the kth order partial correlation coefficients associated with perieds t,
t = k+1, R

Estimating the parameters of the seemingly unrelated regression
model given by (24) for the different wvalues of k, then, allows one to form
the partial correlation function and to test hypotheses relating to its structure.
Unconstrained estimation vields estimates of partial correlation coefficients
that are period specific. Estimating the parameter vector Py constraining its
elements to be equal creates a unique estimate of the kth order partial correla-

tion coefficient. Graphing these constrained estimates for Py against k produces

the sample partial correlation function.
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Using Residuals in Place of Disturbances

An apparent difficulty with the preceding discussion is that one
does not have the true values of the disturbances available for d;ta analy-
sis, This turns out, however, not to be a2 problem. All of the estimation
procedures and properties of estimators described above remain valid if
one uses consistent estimates of the disturbances in place of the true
values. Thus, one can use residuals and standard seemingly unrelated
regression packages to estimate and to test hypotheses concerning the forms
of the covariogram and the partial correlation function.

Verifying this proposition requires two theoretical results.
Letting Gi denote the vector of residuals associated with the stacked repre-

sentation of the DSEM given by (8),1 the needed theorems are

1 N 1 N ..
(25) plim [ = § U, U! - = © U, U!}] =0
N oi=1 2t o amiel PR
and
1 N 1 N " A PN
6 . = 1] "' = ' 1y =
{26) plim [ N iil vec(UiUi) vec(UiUi) N iil vec(UiUi) vec(UiUi)] 0

where vec{+) denotes an operator that stacks the rows of a matrix into a

column vector. Proofs of (25) and (26) are presented in Appendix A.2

-~

. . 11 91 = §Xi. Theﬁestlmators :1

I's ¥ and B are assumed to converge in probability at a rate so that Ui - Ui is

1he residuals are defined as U, = DYy - ¥

0-(Nh) for h < 1/2 which is satisfied for familiar estimators (e.g., least
sfuares, generalized least squares, two~ and three-stage least squares, maximum
likelihood, etc.).

2Similar results are proved by Hannan (1970, Ch. 7) who considers the
use of least squares residuals from a time series regression to estimate auto-
covariances and the spectrum.
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These theoretical results imply that replacing Ui by U, in regression

i

models {20) - (24) yields estimators with the same asymptotic properties as
those computed using the true disturbances, Pfoof of this proposition is
presented in Appendix B. The central fact used in this proof is that all

unconstrained and constrained joint least squares or generalized least
squares estimators of models (20) - (24) are linear functions of the matrix
N

T UiUi, and their asymptotic normality depends on the large sample behavior
i=1

1
/N

of this matrix multiplied by the normalizing constant » Similarly, when

residuals are used in place of true disturbances, the asymptotic normality

of the new estimators depends on the behavieor of the matrix

LI e B~

Uiui. Condition (25) guarantees that the asymptotic distributions of

2] I

¥N i=1
these new estimators is the same as the estimators computed using true dis-
turbances. Condition (26} guarantees that use of standard techmiques to
compute the covariance matrix of estimators based on residuals and on true
disturbances yield equivalent results.

Therefore, when residuals are used to estimate either model (21), (22)
or (24), all parameter estimates, standard errors, and test statistics

reported by a standard seemingly unrelated regression package are asymptoti-

cally valid.l Constrained estimation of models like (21), (22) and (24) using

1Notice that these results do mot require any special distribu-
tional assumptions other than the existence of fourth moments and the con-

_stancy of moments across individuals. More precisely, the application of

the central limit theorems requires the existence of any absolute moment
greater than fourth order.
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residuals, then, offers a simple way to estimate the covariogram and the
partial correlation function and to test hypotheses concerning their
structure. It ia also possible to construct estimates of the correlogram
which is aneother data analysis tool found in the time series literature.
The correlogram is like the covariogram except that it is a plot of the
autocorrelations instead of the autocovariances. It is often used instead
of the covariogram in time series analysis because correlations are unit
free and normalized to lie between -1 and 1, and, so, they are more easily
interpreted. Using the estimated values of Gk from equations (21) or (22),

. t . : . )
an estimate of the k h order autocorrelation coefficient equals & = h(g)

k

where o is a vector defined by o' = (Bk, 80) and h is a function defined
. &

by h{(og} = Ek' A standard application of stochastic limit thecrems implies
- 0

that ék is approximately normally distributed with the true value of the

th . . . . .
k™ order autocorrelation coefficient as its mean, and a variance given

dh ah' . . . . . .
by 5375 35 here 5 is the covariance matrix of the estimates contained
in ¢. Thus no further estimation is required to compute estimates and

standard errors for the correlogram.

Using standard seemingly unrelated regression packages and residuals,
then, one can test between completing spécifications of the time series process
generating the structural disturbances. If, for example, the estimated covar-
iogram is not significantly different from zero after a short lag, then a
pure moving average process is implied. In this instance, if we further
test to see whether autocovariances are constant across years, we can deter-
mine if the white noise error process is homoscedastic over time. By
testing further to see whether autocovariances are constant -across samples
composed of individuals of a given characteristic, we can determine if the

moving average process is the same across individuals, If, instead, the
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covariogram converges to a positive constant after a short lag, then the
error terms may be generated by a moving average process and a permanent
component.

In a more general context, testing among various specifications of
Bk's in (21) or (22) and Dk's in (24) allows one to test for a pure moving
average process, a pure autoregressive process, and many kinds of mixed
processes.. One can also test for several forms of nonstationarity and
heteroscedasticity. One can distinguish between a fairly wide class of
alternative specifications of the error process if one analyzes the data
in first and second differences along with analyzing the data in levels.
As in standard time series analysis, identifying the specifications of the
ek's and the pk's that are consistent with the data only narrows the class
of models one needs to consider. Rarely does this type of data analysis identi-
fy a unique specification. Several models will often explain the data just

as well.- In the analysis of panel data, this is likely to be even more cf

a problem because there is typically available only a short time series.
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III. Estimation Methods

This section presents methods for estimating time series models
that are especially tailored for panel data where T is fixed and asymptotic
results depend on large N = number of individuals. These estimation
methods are very general; given all equations are linear in the variables,
they can be applied to estimate any simultaneous equations model that
involves any set of nonlinear restrictiong between parameters including
covariance‘restrictions. Two kinds of estimation procedures are considered:
the first is "least squares methods" which includes generalized, and two
and three stage least squares procedures; and the second is "quasi-maximum
likelihood methods." For each set of procedures, we consider both limited
and full information methods.

The following analysis does not present any formal identification
conditions. TFor the standard multivariate ARMA model, Kashyap-Nasburg
(1974) devélop necessary and sufficient conditions for identification.
Hannan (1969) presents sufficient conditions. These conditions are not
easily applied in practice, Panel data introduces additional complications.
The length of the time series becomes a crucial factor, The treatment of
initial conditions reduces the effective length of the panel and at the
same time introduces new parameters, Notice, on the other hand, that
adding permanent components to a multiple time series model does not
complicate the identification conditionsf First differencing equations
.eliminates permanent components, and it does not introduce any new
parameters. The standard identification criteria can be applied directly

to the first~differenced specification of the model. Introducing
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permanent components, then, has the effect of reducing the length of the
time series by one period. Identification will be lost only in those
cases in which the orders of the autoregressive and the moving average
components are sufficiently high to make the length of the time series

a crucial factor.

The statistical models proposed in Section T involve two sets of
parameters: the first set--hereafter called the structural coefficients--
consist of all those coefficients appearing in the stacked representation
of the DSEM by (9) (i.e., the elements of r,¥ and g);l and the second set--

hereafter called the covariance parameters—-includes those parameters
inveolved in the specification of the covariance matrix of the disturbance
vector in (8), 0 = E(UiUi) (i,e., the coefficients of the autoregressive
and moving average lag polynomjals and the elements of the covariance

matrices of the white noilse error vectors and initial conditicns).

Least Squares Methods

Three estimation procedures based on "least squares methols" are
proposed below: one to estimate the set of structural coefficients,
another to estimate the set of covariance parameters, and a third to
estimate both sets of parameterssimultaneously.

Standard procedures can be emploved to estimate the set of struc-

tural coefficients. 1f one is analyzing a nonsimultaneous specification

1Hopefully this terminology will not result in any confusion. When

analyzing a nonsimultaneocus specification of the DSEM (i.e., [ = I and

Y = 0), the set of structural coefficients obviously just includes regression

coefficients,
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of the DSEM (i.e., I'' =1 and f = 0 in (8)), then joint generalized least
squares procedures that permit the
imposition of equality constraints across equations can be appiied to (8)
to estimate these coefficients (i.e., the elements of E). If, on the
other hand, one is amnalyzing a simultaneous egquation specification of the
DSEM, then two or three stage least squares methods that allow for
linear restrictioms across equations can be applied to estimate the struc-
tural coefficients of (8).1 Recall that the need for imposing equality
constraints across equations is a direct implication of the assumption
that distributed lag relationships are constant over time. All of the
above procedures may be classified as limited information in the sense
that they do not simultaneously estimate the parameters of the covariance
matrix ©. They require a consistent estimate of @, but this obviously can
be constructed without directly estimating any parameters of the time
series process generating disturbances. In those cases where one chooses
not to introduce any assumptions regarding error processes Or covariance
restrictions, the above procedures yield estimates of the structural
coefficients that use all available information and restrictions.

These estimation procedures provide a natural framework for per-
forming preliminary data analysis to determine the length of the lag poly-
nomials associated with distributed lags (i.e., T(L), ¥(LY and B(L} in (2))},

and to test whether or not the coefficients of these polynomials are constant

1 . . .

The asymptotic properties of estimators obtained from these pro-
cedures do not reguire the assumption that the disturbances in the predic-
tion equations given by (19) are homoscedastic. Thus, to employ these
simultanecus equation estimation procedures, one requires no assumptions
in addition to those presented in (8),
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aCcross periods; This form of data analysis involves standard tests of
linear hypotheses. Identifying the orders of lag polynomials involves
tests of whether.coefficients on lagged endogenous and exogenous variables
are significant or not. Checking for the constancy of distributed lag
relationships over time involves tests of equality of coefficients across
equations. An attractive feature of the data analysis techniques is that
they can be implemented in complete ignorance of the stochastic process
generating error terms. An unqonstrained estimate of the covariance matrix
can be used in the computatioﬁ of coefficient estimates and test statistics.
The results developed in the previous section cffer a general
method for estimating the set of covariance parameters. The seemingly
unrelated regression model given by (22) is particularly well suited for
estimating parameters of the covariance matrix 0 = E(UiUi) associated with
the stacked representation of the DSEM given by (8). If one assumes that
the components of Ui are generated by the combined variaqce component-~ARMA

error process given by (4) and (5), then as shown

in Section I, the elements of © are functions of the parameters of this error
process where the exact functions are implied by the relations (16) or (17).
Substituting these functions for the elements of o = S5t{®), one can estimate

the entire set of covariance parameters using a standard nonlinear joint

generalized least squares procedure applied to (22). As noted in the

previous section, conditions (25) and (26) imply that residuals can be used in place
of the true disturbances as dependent variables in the estimation of a

model like {22) without any need for adjusting the output reported by the

computer package; all reported standard errors and test statistics are

asymptotically valid.
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This, then, provides a simple method for estimating the para-
meters of any covariance matrix which must satisfy an arbitrary set of
nonlinear conétraints. This procedure may be classified as limited infor-
mation in the sense that it does not simultaneously estimate the set of
structural coefficients, One requires consistent estimates of these
coefficients to compute residuals, but these can be obtained from the methods
described above for estimating structural ccefficients., The fact that one
is not required to estimate all parameters simultaneously is an attractive
feature of this procedure since it means that a researcher can concentrate
on correctly specifying and estimating the error structure for any
given specification of DSEM,

Thus, while the above methods for estimating structural coeffi-
cients permit one to neglect specifying the precise form of the covariance
structure, this covariance estimation procedure allows one to ignore the
specification of the relationships between measured variables once it

has been chosen. This, of course, does not mean that the results of one

procedure when used as input for the other will not lead to a different set
of parameter estimates. Using, for example, estimates frqm the second
procedure to construct a consistent estimate of ® needed in the first
will in general produce different estimates of the structural coefficients;
and, in turn, using these estimates to form new residuals is likely to
imply different estimates for the covariance parameters., In theory,
however, these differences should not be statistically significant, and
there should be no changes in inferences as a result,

The two limited information procedures cutlined above can be
combined into one that simultaneously estimates both structural coefficients
and covariance parameters. Stacking the system of equations given by (8)

on top of those given by (22) yields




Yy .
[Yll _Y21 + BX1
= ta, i=1,...,N
[ ]
St(UiUi) St{0)
(27
H i=3
' =
E(aiaj)
0 otherwise

where ai = (U;, Ei) is a disturbance vector, Substituting St(Uiui) for
St (UiUi) (i.e,, residuals for disturbances), it is possible to estimate
this expanded model by three stage least squares techniques that permit
the imposition of nonlinear constraints on parameters. In those cases
where one is not considering a simultaneous specification of the DSEM
(i.e., ' =1 and ¥ = 0), joint generalized least squares procedures can be

applied instead to estimate (27), In Appendix B, it is shown once again

that the treating of residuals as if they were the disturbances is
appropriate in the sense that all the output reported by the standard estimation
procedures applied to (27) is asymptotically valid. |
Simultaneously estimating structural coefficients and covariance
parameters yields estimates that are more efficient than those obtained
from the above limited information methods. There are two sources of
increased efficiency. TFirst, in those instances where third moments of
Ui are nonzero (which implies that E(Uigi) # 0 soH = E(aiai) is not block
diagonal), the estimates based on (27) will be more efficient than those
obtained from the above procedures for the same reason that generalized
least squares estimates are more efficient than ordinary least squares
estimates. The second source of éfficiency gain arises if there are any
constraints involving both structural coefficients and covariance parameters;

it is possible to impose these restrictions when estimating (27).
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An important assumption maintained in the above discussion of

"least squares methods" is that all structural coefficients are identified
without the use of any covariance restrictions. If this assumption is not
true, it is obviously not possible to estimate structural coefficients using
the first procedure, and without these estimates one cannot compute residuals
to serve as dependent variables for the second and third procedures. In those
cases where covariance restrictions are required for identification, one must
work instead with the reduced form specification of the DSEM given by (18 )

and apply the above procedures to estimate its parameters. The third full

information procedure then can be used to obtain a complete set of parameter

estimates.

Quasi-Maximum Likelihood Methods

The technique usually applied to estimate models where one is
interested in estimating parameters of a covariance matrix is the method
of maximum iikelihood. Typically, a researcher assumes that disturbances
are normally distributed and, then, computes estimates by maximizing the
kernel of a multivariate normal density function. Such a procedure is
computationally efficient, and it can incorporate nonlinear constraints
invelving both regression coefficients and covariance parameters. Below
we consider the application of these techniques to estimate structural
and covariance parameters.

The reduced form specification of the DSEM given by (18) provides
tﬁe appropriate formulation for application of maximum likelihood methods.
As outlined in the discussion following (18), the DSEM implies restrictions
on both the elements of the matrix of regression coefficients, N, and the

parameters of the covariance matrix 2. Denote these restricions by
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writing Il and Q@ as functions of the form N(y) and Q2(w) where y and u are
vectors of parameters.l
The maximum likelihood estimates of these parameters are defined

as those values of y and w that maximize the function

N
(28)  QuI(y), W), ¥, ¥ =5 I q
i=1
1 N -1
= ﬁ'iil (-en |l | - (Yi - ﬂ(Y)Xi)'Q (m)(Yi - H(y)Xi)
= - o] -3 o, - g1
n |02 v (Y, = TOX) 'O (@) (¥, - TX)

- - o] - erlg LW smen)

where
1 N
SM) =% T (¥, - HXDE, - TNX)’

i=1

1 ¥ 1 N 1 ¥

= fﬁ 'E YiYi) - (ﬁ'.f Yixi)ﬂ(Y)' - H(Y)(ﬁ"i XiYi)
i=1 i=1 i=1
1 N
+ H(Y)Cﬁ iil Kixi)n(Y)

and 9y is the function of v, w, Yi and Xi defined by the second expression

for QN.2 Under the assumption that reduced form disturbances are normally
distributed, it is well known that maximum likelihood estimates of the
parameter vector a' = (y', w!) in large samples are approximately distributed
according to a normal distribution of the form

IThe following analysis does mot rule out the possibility that y and
w contain common elements.

2The reader will immediately recognize that Q, is proportional to the
kernel of a multivariate normal density function. Q, then, is the distance
function ome would use to obtain maximum likelihood estimates assuming that
the reduced form disturbance vectors are identically and independently
distributed according to a multivariate normal distribution.
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toe 1 -1
29 n et ol
(29) a i N(aos N1 )
BZQN
where o, denotes the true value of the parameters and G, = ———;. 1is an
0 1 3udo

a
estimate of the matrix of second partials which is also known as the

information matrix. All maximum likelihood computer packapges report standard
errors and test statistics based on (29), and it is these results that many
researchers use in their empirical analysis,

An apparent disadvantage of this method of estimation composed with
the least squares methods described above is that it relies on specific

distributional assumptions. The assumption that reduced form disturbances

are normally distributed, however, is not needed in order to use the
estimates produced by maximum likelhood procedures to make statistical
inferences. Below we briefly describe the properties of these "quasi-
maximum likelihood estimates" in absence of the normality assumption
and indicate how the output reported by standard maximum likelihood
compute% packages must be modified to avoid specific distributional
assumptions.1 The proofs of the results summarized below are contained
in MaCurdy (1980a), and the reader should consult this reference for
further details.

Under fairly weak conditions, it is possible to show that the
estimate of a obtained by maximizing QN defined by (28) is consistent
and asymptotically normally distributed even if reduced form disturbances
are not distributed according to a multivariate normal distribution. 1In
.particular, it can be shown that the 'quasi-maximum likelihood estimate'
of o in larpe samples approximately possesses a normal distribution of the

form

In the absence of the normality assumption, estimates obtained by
maximizing Q  defined by (28) are commonly called “quasi-maximum likelihood
estimates" (see Malinvaud, 1966).
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1 c G—l)

1 -
Gl 271

(30) . @ % Nag, =

N 3q, 8g,
where G2 = % z sai - 5—% -
i=1 |u . Ia

is the matrix of outer partials}' This result
depends on exactly the same assumptions as those reguired to prove consistency
and asymptotic normality of the estimators based on least squares methods
described above.

According tc the above results, a researcher may make incorrect
inferences if he uses output from a standard maximum likelihood computer
program and disturbances are in fact not normally distributed. Many of
the reported standard errors and test statistics are invalid without
normality.2 The correct asymptotic distribution is given by (30). If
the reduced form disturbance vectors are distributed according to a
multiva?iate normal distribution, then G2 = Gl in the probability limit

and the covariance matrix GIl G2 GIl reduces to Gll which is the one

1

reported and used by most computer packages., Using instead GII G2 G; -=

-

which is readily cowputable -- as the covariance matrix of o avoids the
requirement of any special distributional assumptions.

There also exists quasi-maximum likelihood techniques that can be
applied to estimate subsets of parameters analogous to the limited informa-

tion least sguares methods proposed above. These estimation procedures are

1
. In addition to the assumptions implicit in the specification of the
reduced form given by(18), two conditions are required to prove this result:
(1) the absolute moments of the disturbance vector exists for any order greater
N
1 . .
than fourth; and (2) plim-f I Xixi exists and is positive definite. See
i=1
MaCurdy (1980a) for details.

2The standard errors and test statistics associated with regression
coefficients remain valid without the normality assumption. The standard
errors and test statistics associated with covariance parameters, however,
are all invalid., See MaCurdy (1980a) for details.
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particularly useful if the aim of an analysis is to estimate only covariance
parameters (i.e., only the elements of {I or w) or only regression coefficients
(i.e., only the elements of I or ¥).

To estimate only covariance parameters, it can be shown that
evaluating the distance function QN defined by (28) at a consistent estimate
of 1T and maximizing the resulting function with respect to w yields estimates
of the covariance parameters that are consistent and asymptotically normally
distributed, Evaluating the function QN at ﬁ, which
is any consistent estimate for the true value of the regression coefficients,‘1

creates a new function Q§ that looks like QN except that the matrix S =

N N . . - -~
= I Vivi is replaced by the matrix-l I V,v' vhere Vi =Y, - X, is a

N =1 Nyap 13 1

. vector of reduced form residuals. The function Qg may be interpreted as a
"likehood function" that treats residuals as if they were the true values

of the disturbances. Given the same conditions assumed for each method

"of estimation proposed above, one can prove that the estimates of w obtained

by maximizing Qﬁ in large samples are approximately distributed according

to a normal probability law of the form

dwiw’

-1
*
BZQN
" N

-1
N g% * *
1y 29 %9 %
- T l" 3m'|‘ dwdw' |”
i=1 W w w

(B w3 Ny, %i["

vhere W is the true value of w, and q; is the function 9y defined by (28)
evaluated at II. Notice that the estimate of w derived from this computa-
. tionally simpler procedure has the same asymptotic distribution as the full

information quasi-maximum likelihood estimate for w proposed above, Thus,

there is no efficiency gain in simultaneously estimating either 1 and w or vy and

lBy "consistent" 1 mean that convergence in probability is QP(Nh)

where h <<%.
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w when using quasi-maximum likelihood methods. These results are important
because they imply that a researcher can use maximum likelihood computer

routines to compute estimates of covariance parameters using only the matrix

of the outer product of residuals as input. Modifying the standard error
and test statistic output reported by this routine along the lines
described above avoids the requirement that disturbances are normally
distributed.

A quasi-maximum likelihood procedure analocgous to the one
described above for estimating covariance parameters also exists for only
estimating regression coefficients. Evaluating the function QN at a
consistent estimate of {, rather than I, and maximizing the resulting
function with respect to Y yields estimates of the regression coefficients
that are consistent and asymptotically normally distributed, This proposi-
tien is obvious once one recognizes that this is completely equivalent to
a joint generalized least squares procedure. It is well known that the
estimates produced by such a procedure have the same asymptotic properties
as the full information estimates proposed above where one simultaneously

estimates all parameters.

Quasi-maximum likelihood techniques, then, offer an attractive
method of estimating the parameters of the DSEM and the error processes
considered in Section I. They are not only competitive with the above
least squares methods in terms of their computational efficiency, they
are also as robust in the sense that they rely on the same assumptions
as the least squares methods to produce consistent parameter estimates
and to test hypotheses. For the nonsimultanecus specification of the DSEM,

the computationally simpler procedures that condition on consistent estimates
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of subsets of parameters can be used without loss of estimation efficiency.
For the simultaneous specification of the model, one can apply the full
information method in which one-simultaneously estimates all parameters and
imposes all constraints. This full information method not only allows one
to estimate all structural coefficients directly, it also produces more
efficient estimates if there are constraints involving both regres-

sion coefficients and elements of the reduced form covariance matrix.

IV, Summary

This paper presents specifications of a dynamic simultaneous
equations model that can be applied to analyze panel data. This model
allows for generally specified error structures and rational distributed
lag relationships involving both endogenous and exogenous variables. Ome
has a wider choice of specifications in the analysis of panel data than
in standard time series analysis: one can permit parameters to vary freely
over time in a panel data setting; permanent components can be combined
with multiple time series error processes; and it is possible to relax
many stationarity and homoscedasticity assumptions maintained in time
series analysis. To derive explicit parameterizations for the covariance
matrix associated with disturbances, this study presents a general treat-
ment for initial conditions in a panel data framework.

For purposes of data analysis, simple procedures for estimating the
‘covariogram and the partial correlation.function are developed, These pro-
cedures use residuals as dependent variables in a seemingly unrelated regres-
sion framework. It 1s shown that the estimates based on residuals have the
same asymptotic properties as estimates based on the true disturbances.

Thus, using standard computer packages, it is possible to narrow the choice

of time series models and test among competing specifications.
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General nonlinear estimation procedures are formulated to

estimate the full set of parameters of the dynamic simultaneous
equations model and the error process, Both "least squares'" and
"quasi-maximum likelihood" methods of estimation are discussed.

These procedures permit any form of nonlinear relationship between
parameters in a simultanecus equation model, including restrictions
involving both regression coefficients and parameters of the covariance
matrix. Simple limited information estimators are proposed to estimate
only regression coefficients or only parameters of the covariance
matrix. All of these estimation methods generate estimators that are
consistent and asymptotically normally distributed without any specific

assumptions regarding the distribution of the disturbances.
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APPENDIX A

The purpose of this appendix is to verify propositions (23)
and (26)}.
The disturbance associated with the stacked specification of

the DSEM given by (8) can be written as

where R is defined as a matrix of coefficients and Z, is defined as the

i

veétqr of observed wvariables for individual i. Let Ui = R Zi denote the
vecﬁor pf fesiduals for individual i where R is a consistent estimator

- - . k 1 . - ) ky |
for R so that R - R is OP(N } for k < 3-(1.e., R- R is op(N )y if
plim(Nk(R -~ R)) = 0). Defining vec(+) as an operator that stacks the

columns of a matrix into a column vector, it can be shown that vec(P C Q) =

(Q'()P) vec(C). Thus,

1 1 1
vec(UiUi) vec(R Z,Zy R )

(RE@R) vec (ziz'i}

]
H vec(ZiZi)

where the matrix H is defined as the Kronecker product between R and R.

a A

The analogous expression for the residuals is vec(UiUi) = H vec(ZiZi)

where H = URCDR). Since R - R is Op(Nk) for k < %3 it is easy to verify

- 1
that H - H is op(NHf).
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Proposition (25) follows from the observation that

N PO

1
A.l = ™y - '
{ ) plim = 151 (vec(UiUi) vec(UiUi))
1 .- N
= plin] = (H-R)| T vec(ZiZ!)
Y& i=1 t
- } , N
= plim {/N (H - H)} plim{s I wvec(Z.2!)
N . i7i
[
1 N
= " i — ' =
.0 pli X 'Z vec(zizi) 0
i=l
; K 1
where the last line uses the fact that H -~ H is op(N 2) for k < 2 which
implies YN (0 - H) is op(Nk),and the assumption that fourth
N
moments of observed variables exist which implies plim{%— z ZiZi} < o,

i=]l
Noti t 7 o1t Y = ' ty1pt
‘ oting tha vec(vec(LiUi)vec(UiUi)) vec(H vec(ZiZi)vec(ZiZi) H'")

= (H&@H) vec(vgc(ZiZA)vec(ZiZi)'), proposition (26) follows from the
observation that

[vec(vec(ﬁiﬁi) vec(ﬁiﬁi)') - vec(vec(UiUi)vec(UiUi)')]}

(A.2) plim{%
1

i

e =

- - N
plin(y (@B - GOW] I vec(vee (2,2 vee(z,2))")]}
i=1

]

3..
- - 42
where the last line uses the fact that (G{()H) - U{C)H)) is op(NO( 2))
and fourth moments of observed variables exist.
In Appendix B we Trequire a generalization of (A.1}. Let Bi’ i=1,...N,

denote a set of matrices satisfying the condition
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1 N 1
(A.3) plim 4= I B, vec(Z,Z]); < =.
N, 4 iiJ

We have

N n o~ N -
' - v _ '
iil Bi(vec(UiUi) vec(UiUi)) 151 Bi(H H)vec(ZiZi)

N -
T _
< vec(Bi(H H)vec(ZiZi))

]

™=

(vec(ZiZP' ®Bi) vec(H - E)

i=1

where the last line uses the matrix algebra theorem stated above. Thus,

N .-
(A.4) plim {Jé iil Bi(vec(UiUi) - vec(UiUi))
{
Sy m ] .
= plim 455 I (vec(z,2})" @Bi)J - plim }/N vec(d - BH)
i=1
=0

. 1
where the last line follows from (A.3) and the fact that (H - H) is OéNkﬁz).
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APPENDIX B

The purpose of this appendix is to prove that when residuals are
used in place of true disturbances to estimate models (22), (24), or (27),
the output reported by a standard application of estimation procedures based
on "least squares methods" is asymptotically valid. To simplify the exposi-
tion, proofs are only given for the case in which there are no constraints

on parameters. Proofs of the following propositions when constraints are

present (including nonlinear constraints) involve more algebra, but they are
conceptually equivalent to those presented below.

Consider first the use of residuals in estimating model (22) and the
parameters of the covariance matrix. 5Since the seemingly unrelated regression
models proposed for estimating the covariogram given by (21) are nested in (22),
the following results apply to these models as well. Replacing disturbances

by residuals in (22) yields

(B.1) St(UiUi) =6 + gi + (St(UiUi) - St(UiUi))
T i=3j
E(£46]) =

0] i#]

where the Ei's are independently distributed error vectors.

Estimating (B.1l) by a joint peneralized least squares computer program

yields an estimate of & equal to

~ ~

=1
(B.2) 8 8.c =

N -
1
6Ls - °Ls ISy

where we have used the fact that the generalized and the ordinary least squares

estimators are equivalent since all equations contain the same exogenous variables.



56

This procedure prints standard errors assuming the covariance matrix of

-~

eGLS is

(B.3) V(6...) =-% T =

N
i o o NN Y
GLS 2 151 (St(U ) = 8, ) (St(U U4y = B )

and, it reports test statistics assuming that eGLS is approximately normally

distributed with mean 8 and covariance matrix V(BGLS) or, equivalently,

~

(B.4) 8 " N(8, v(eGL

GLS .

S

Using (A.l1), {A.2) and (B.l), standard applications of asymptotic

theory yields

plim{T} = T
and
o [y W . » . o
i - = i = + = U - !
dlim JVN (SGLS 8) dlim = izl El Jﬁ'iil (St(Ui 1) St(UiUi))
J
J 1 ] J 1 ¥ 3 U ]
= dlim = ¢ E,L + plim = I (sc(U.U) - Se(U.U,}")
l#ﬁ i=1 [Jﬁi=1 1 1 J
= N(0O, T)

where dlim denotes convergence in distribution as opposed to plim which is

convergence in probability. So, in large samples, we have

-

8 .. v N(8

1 -
GLS -

YR

This result verifies that the estimator given by (B,2) is consistent and
the reported output of the generalized least squares procedure given by (B,3)

and (B.4) is valid asymptotically.
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Consider next the use of residuals to estimate the seemingly unrelated
regression model given by (24) proposed for estimating the partial correlation

function. A convenient representation of (24) is

(B.5) (I@UDI = (I@U)Q + ey i=1,...,N
R i=13
E(eieg) =
0 143

where I is the identity matrix, J is a vector and Q is a matrix of known
constants, p is a vector of parameters, and e, is an independently distrib-
uted error vector. With the appropriate choice of J and § and dimensioning
of I, p contains the partial correlation coefficients for a prespecified
order. Buppose, for example, we are interested in estimating the kth order
partial correlation coefficient. To do this, we set the dimension of I equal
to {T-k); define J so that (I(T—k) C)Lq)J = (Ui(T),...,Ui(k+l))'; and,

treat Q as a block matrix of the form Q = dia(Ql,...,QT_k) where the T x k
matrices Qj, j=1,...,T-k, are defined so that U;Qj = (Ul(T—j),...,Ui(T—j—k+l)).

)

The implied parameter vector for this specification is p' = (p%,...,p£+l
where pé = (plt,...,pkt), t = kt+l,...,T, with Pt being interpreted as the
kth order partial correlation coefficients associated with the period t.

As discussed in the text, constraining Prr to be comstant for all t produces
a unique estimate for the kth order partial correlation coefficient, but such
constraints are not explicitly considered here.

Using residuals to estimate model (B.5), the estimator for R and the

generalized least squares estimator for p are
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N - - ~ -
" 1 Y t
R=% I (I@U)DU +Q )0+ 00, ) (TEUY)
i=1
. N ~ el - -1 N " ey -
p = 1Q"{ I (I®UIR (I®UDQ Q'| I (I®UIR (1®Ui) J
GLS . i i L i
i=1 i=1
where
. [ N .o -1 N ..
p..=1Q"1I& L U.Ul|Q Q'II® I U,U(J.
LS L oy 1 jop G4

Using (A.1), we see that PLg is consistent for p. The properties of R and
~ N . - R
PoLs depend on matrices of the form I (I @Ql{i)C(ICQ,Ui) where C is a
i=1
consistent estimate of some positive definite matrix C. The (g, h) block of this
-~ N A A ~ ~
quadratic form is Cgh izl Ui!i where Cgh is the (g, h) element of C.
Since plim(Cgh) = Cgh’ we know from (A.1) that this (g, h) block divided by

N or vN has the same asymptotic properties as the (g, h) block of
N
2 C[()Ui)C(I()IQ) divided by the same normalizing factor. It directly
i=1 . - - H . om
follows, then, that the quantities of R, p s Pres and Q' I (I®U DR 1
6Ls’ “Ls o1 i
I()I%_Q have the same asymptotic properties as the analogous quantities

éomputed using the true values of the disturbances. Thus, standard appli-

cations of asymptotic theory yield the conclusion

N -1

vNjo, [0 2 a@uprta@uplel |

(B.6)  poyc
GLS 1=1

The result given by (B.6) is exactly the one assumed by a joint generalized

least squares computer package when it reports output.

Finally, consider the use of residuals in estimating model 27)
which includes both structural coefficients and covariance parameters.
Replacing disturbances by residuals in (27), one may write this system of

equations as
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{B.7) = + a; + i=1,...,N,
St (U, U’ 0y - '
Uy 1) 0 1 e (st(u,ul) St(UiUi))
H i=3
E(a a') =
1]
0 i#]
1 = [] [] . » .
where zli (Yli(T),...,Yli(l)), y 1s a parameter vector, Zi is a matrix

containing both endogenous and exogenous variables (i.e., the elements of

Yli’ YZi’ and Xi), and the disturbance vectors a; are independently distributed.
- - Z, 0
Defining of = (¥}, St(UUD"), Wy = [ * |, and &' = (v', 8",
0 I

a three stage least squares procedure applied to (B.7) yields an estimate of

& equal to

where Wi is the matrix Wi with all endogenous variables replaced by their

predicted values,

R N . -
-1 .
B=g I (g - ¥ 8,080 (g ~ Widorg) s
i=1
and
- N . . |-1 N .
8 = I W'w, I Wa
2LS =1 1+ 3 i=1 1

This procedure prints standard errors and test statistics assuming that

~

(B.8) 63Ls v N|§,

w Rt ow,
1 1

2

i=1
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To determine the asymptotic properties of 62LS and 63LS’ observe

that using (B.7)

-1
+ b}
ay +M

1l i=1

- -1
(15 - £) =M

1t
=

N P
- 1
E Eli(St(UiUi) _St(UiUi))

and
- 1 ¥ oe ey p N -
_ = - i - + - L] - 1t
(53Ls 8) M2 z kiH a; Mz 'z BZi(St(UiUi) St(UiLi))
i=1 i=1
N . . N . . 1 - . 1o - ey 0
= W, M= VH , B, =W | |, and B,, = W!H
where Ml .Z kihi, 12 -Z hiH Wi 1i hl an E21 ki
i=1 i=1 1 1

Assuming the existence of fourth moments, it can be shown that the matrices

Bl. satisfy condition (A.3) of Appendix A and 0O <,plim{% Ml} < =, Thus,
i

plim{GZLS} = § and plim{H} = H. Using standard stochastic limit theorems

(e.g., Theorem 2 of Mann-Wald), it can be further shown that the matrices

23

positive definite. Therefore,

. JP'“ -
dlim{ N(GBLS &)}
-1 1 N~ -1 1
(B.9) =P ~ dlim | = ¢ w{n at+7P  plim | =
VR i=1 * YN
N .
=l arimd 2 ¢ wiyla
A 23
= neo, P hy

B, ., also satisfy condition (A.3) and that P = plim{% Mz} exists and is

1ot

vy SRR
. B2i(5t(UiUi) St(biUi)

where the last lines use asymptotic¢ results typically applied in deriving

the properties of three stage least squares estimators.

Since the matrix

o
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-

B . .
= I W;H 1 Wi is a consistent estimate for P, (B.9) implies that (L.8)is valid

as an approximation in large samples; and, so, the output reported by

standard simultaneous equation procedures is valid asymptotically.
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