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economic causes of these effects. Section 2 provides an economic explana-

tion and a simple testing procedure for each type of aggregation effect,

as well as presenting examples of the economi importance of the Grunfeld—

Griliches aggregation effect. In Section 3 a specification is presented

which permits empirical analysis of its nature and magnitude. Aggregated

and disaggregated regressions (to be referred to as macro and micro) are

compared in terms of the underlying parameters, and an estimation procedure

is presented which provides consistent and efficient estimates of them.

Section 4 investigates the R&D intensity equation at different levels of

aggregation. The results indicate that only a single aggregation effect

is present and that it is only operative at a particular level of aggrega-

tion. However, the magnitude of the effect is such that it dominates all

other observable relationships in the data. Aigner and Goldfeld (1974)

present an alternative, and, in their view, more plausible, explanation of

aggregation results such as those reported by Grunfeld and Griliches in

terms of a misspecification in the independent variable of the regression.

Section 5 considers the relationship between these two causes of observed

aggregation effects, presents methods for dealing with both problems simul-

taneously, and uses them to analyze the R&D intensity equation. Finally,

Section 6 summarizes the empirical information on the characteristics of

the aggregation effect in the R&D intensity decision.



Aggregation Effects and Panel Data Estimation Problems:

An Investigation of the R&D Intensity Decision'

This paper is concerned with differences that occur between micro

and macro regression estimates of the same relationship. A preliminary

study of the choice of R&D intensities by American manufacturing firms

indicates that the determinants of inter and intra—industry variance in

R&D intensity differ markedly. This result points to the presence of an

aggregation effect in the R&D intensity decision. Grunfeld and Griliches

(1960) distinguish two types of aggregation problems and consider their

effects on the R2 of micro and macro regressions.2 However, they do

not carry the analysis beyond this. In particular, they fail to give

their aggregation problem operational content in terms of testing procedures

and parameter specifications. As a result it has remained quite conunon to

ignore the possibility that the Grunfeld—Griliches effect exists when in-

terpreting aggregate relationships and little has been learned about the

"This paper is a revised version of part of my thesis and has benefited

from a series of comments by my supervisors, Zvi Griliches and Gary Cham-

berlain. Useful comments were also received from LA. Schankerinan, Manuel

Trajtenberg, and Shlomo Yitzchaki. Financial assistance from NSF grant

73—05374 and the Falk Institute in Jerusalem is gratefully ackniowedged.

All errors are mine.

2Mention should also be made of an earlier paper by Kuh (1959) which

alludes to many of the problems analyzed by Grunfeld and Griliches.
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1. Preliminary Results

In a separate study (see Pakes [19781 Chapter 1) a simultaneous

equation model was developed in order to analyze the variance in R&D in-

tensity among American manufacturing firms. The leading equation in that

model had the log of the R&D intensity of the firm explained by its average

past growth rate and several latent variables. The model was estimated

separately on the firms in each of four industries using a rather compre-

hensive data set supplied by the Census Bureau and the NSF to Zvi Griliches.

The estimates of the parameters of interest to this paper are presented in

the first four rows of Table 1. It is clear that past growth rates do not

account for much of the intraindustry differences in R&D intensity (.02 to

.04 per cent). The intraindustry growth—rate coefficient varied between

2.2 and 5.5 and accorded rather well with exogenous information on that

parameter. Row five of Table 1 presents tie results of regressing the

mean of the R&D intensities of the four industries against the means of

their average past growth rates. The interindustry or macro results are

markedly different from the micro results. Growth rates account for 99 per

cent of the interindustry variance in R&D intensity and the macro growth

rate coefficient is far greater than any of the micro coefficients. In

fact an test of the null hypothesis that the growth rate coefficients

in the different Industries were the same (subject, of course, to sampling

error) resulted in an observed test statistic of .74 which is well below

the expected value of an x deviate, and a pooled intraindustry micro

coefficient of about 4.0 with a standard deviation of about 1.0. It is

obvious that no reasonable confidence interval for the pooled intraindustry

coefficient would intersect the confidence interval for the interindustry
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Table 2. EstimateS of the J?elationship Between Average Past Growth Rates
and R & D Intensity in the Griliche-NSF data./

Regression Units Coefficient Percentage of Number
of of Growth variance in of

Observation Rates R & D intensity Observations
attributable to
growth rates

(1) (2) (3)

Micro, Industry 1 firms 3.94
2 •26

0.03 110

Micro, Industry 2 firms 2.16
13O

0.02 187

Micro, Industry 3 firms 5.64
2l+O

0.03 102

Micro, Industry 4 firms 5.58
34O

0.04 34

Macro, Industry Means industries 107.26
e•t.L,

0.99 4

a! The results reported above are maximum likelihood estimates from a three—
equation model. Similar results were derived in Pakes (1978) for a
six—equation model which allowed for a more complicated unobservable
structure. Small numerals are standard errors.

Source: Pakes (1978) p. 35.
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coefficient.

Table 1 points to two equally important problems. First why does

the response of the aggregated value of the dependent variable seem to

differ so markedly from the response of the firms which comprise the aggre-

gate? Sections 2, 3, and 5 discuss this issue in the general setting of

estimating economic relationships at different levels of aggregation.

Second, both theory (see Arrow [1962]) and empirical work (see Griliches

[1958]) have indicated that market size, the quantity of Qutput in which

the innovation is embodied, is a primary determinant of the social rate

of return to knowledge—producing or research activities. The market size

relevant for today's research activities is determined by today's output

and future growth rates. Since the R&D intensity equation measures research

effort relative to today's output, further differences in market size per

unit of research are determined by future growth rates, a variable unknown

to the firm at the time it formulates its research policy. However, past

growth rates are one indicator of future growth rates, and it is, therefore,

of considerable interest to determine if, and precisely why, private industry

reacts to this incentive. Table 1 gives us mixed signals on this issue and

the results of sections 4 and 5 will serve to clarify the source of the

problem.

2. Two Types of Aggregation Problems

The macro and micro results are, of course, logically consistent and

taken together they point to an important and often forgotten problem in

interpreting aggregate relationships.

The general model underlying both the micro and the macro regression
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is

Yjj
= + + (1 = 1, ..., N, j = 1, ..., J) (1)

where i, j indexes individual i in group j; the Xjj are deter-

minants of y . which are uncorrelated with E •, and E are a set of
13 iJ ii

independent and identically distributed random variables with zero expec-

tations.

The intergroup or aggregate relationship is derived by summing over

i and dividing by N:

= +x.,. + A. + E, (j = l ..., J) (2)

where and A
-

Since the number of parameters in equation (2), 2.3, exceeds

the number of observations (.3) the equation itself cannot be estimated.

Hence one looks for realistic, and one hopes testable, simplifications

which can help us intepret aggregate relationships.

3me problem will be described assuming that the groups are balanced,

i.e., N. = N for all j, that the error variance between groups

is constant, and that there is only one observed independent variable.

None of these assumptions are necessary.
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Partition the set of feasible structural (onstralnts into two

groups. First one may be able to model the distrubution of responses of

individuals in different groups to changes in the independent vari-

able. The extreme assumption would be

H°: (j = 1, ..., J and k = 1, ..., K). (3)

Given micro data, H° is a testable hypothesis. In order to focus

attention on the aggregation problems in the R&D Intensity equation, I

would like to anticipate some of my results. The preceding section reported

an test which clearly indicated acceptance of (3) for the R&D inten-

sity equation on the Griliches—NSF data (the GD). A similar test was

applied to observations for 530 firms in 17 industries provided by Business

Week (these data are described in Section 4); this resulted in an

test statistic of 14.71, which again indicates acceptance of H°. That is,

firms respond in the same manner to a change in their growth rate no matter

which industry they belong to but that response is much lower than the

response of the industry aggregate to changes in its growth rate.

This bring us to the second type of constraint. All individuals may

respond in the same manner to a change in every independent variable but

the constant terms may still differ between groups. They will differ if

there is some independent variable which has the same value for all members

of the same group but different values for different groups. As noted by

Griliches and Grunfeld [1960], the existence of such a variable implies some

misspecification in the original model. One should be careful, however.

The specification error dealt wth here has no implications for the properties
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of the micro or intraindustry regressions. Any omitted variable which

has the same value for all members of a given group is submerged in the

constant term in the within—group regression and has no other effect on

these regression results.

Consider now the aggregate or between—group regression. Assuming

that hypothesis H° is accepted, the aggregate relationship is written as

+ + + A. (j = 1, .. ., J). (4)

The properties of equation (4) depend on those of the vector A.

If the sample covariance of A with the rest of the independent variables

is zero then an ordinary least—squares (OLS) repression will produce un-

biased estimates of (the other properties of these estimates cannot

be discussed without imposing more structure on A). If A is

correlated with at least one independent variable, then the regression

will produce biased estimates of all coefficients.

A few examples will illustrate the potential importance of this

type of aggregation effect in economics. In his analysis of Investment

demand, Grunfeld (1960) was one of the first to point out the existence

of an aggregation effect which was not explicable by differences in response

parameters. Consider the investment demand of a cross section of firms

in different industries. Since capital is a long—lived asset, the demand

for it will depend on the expected output of the firm. Generally, evalua-

tions of the "health" of the industry will affect the output expectations
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of all firms, that is A Ô. Further, it is likely that these evaluations

will depend on the past trend In the industry's output. In such a case,

as long as the firm's output is an included Independent variable, the

micro, the macro, and the pooled regression with a single intercept will

each estimate a different set of coefficients and have different measures

of goodness of fit. Moreover, the nature of the relationship between A

and industry ouput may be of considerable interest in the analysis of

investment. A similar analysis, of course, can be applied to the dif-

ference between the equation determining industry investment demand and

the equation determining investment demand of the economy.

Perhaps the most obvious example of this aggregation effect occurs

when there are externalities in production or consumption. Consider the

case of an industry in which the output of one firm in a given region

creates externalities for other firms in the region. These externalities

may be a result of the spread of training facilities or equipment suppliers,

of learning by doing, or of infrastructure investment. Say one is investi-

gating the production function of the industry; for simplicity assume both

that all firms produce on the same Cobb—Douglass function and that the

externalities are a function of the sum of the region's output. The pro-

duction function is then written as

y..= +a .+ac..+cNy •+e .
13 0 2 ij c ij y j

where i, j indexes firm I in region j; y, Q , and c represent the logarithms

of output, labor, and capital; N is the number of firms in each region, and
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c is an error which may have a regiori—specffic component but which

is uncorrelated with the rest of the independent variables.5

Since aNy is the same for all members of the region, the intra—

regional or micro regression will estimate labor and capital coefficients

which will be unbiased efficient estimators of a, and respectively.

On the other hand, the intrareglonal or macro regression is written as

a0 ______+ ..+—-------c +
.j 1-aN 1-aN .j 1-aN .j 1-aN

y y y y

That is, the coefficients of labor and capital from the macro regression

will provide consistent estimates of c'(l — aN) and a/(l — aN). A

pooled regression of all the observations will, of course, estimate a

weighted average of all these parameters. Here again one is not simply

concerned with "taking care" of the influence of
Y•j

in order to derive

consistent estimates of c and . The coefficient a will be of

considerable policy interest in itself. Note, however, the difference

between this and the previous example. In this case the aggregation

effect does not arise because of an omitted independent variable but

because the group mean of the dependent variable is itself a determinant

of individual outputs.

5.

This example is taken from, and analyzed in greater detal in Grunfeld

and Levhari [1962]. Note that the logarithm of the sum of industry outputs

is written as N times the mean logarithmic output of the industry. This

is justified so long as factor markets are competitive.
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Finally, consider a simple case from elementary micro theory.

The short—run factor—supply curves facing different industries may be

fairly price elastic since the increase in the price offered by one indus-

try will draw resources away from others. An increase in the offer price

of the economy, however, is not likely to elicit a large output response,

because of overall fixed endowments which enter the supply curves facing

different industries in a similar manner.

These examples should suffice to show that the aggregation effect

described above has relevance for a broad range of problems. The

next section discusses a method for analyzing them.

3. Mixed Effects

To analyze the Grunfeld—Griliches aggregation effect, that is,

differences in estimated relationships at different levels of aggregation

whenresponse parameters do not differ between individuals, hypothesis H°

of the last section is imposed and equation (1) is rewritten as:

y1
= + A + (i=l ... N, j=l ... J) (5)

where it is understood that all variables are written as deviations from

their sample means and it is assumed that the augmented matrix (X, Z),

(where Z is a matrix on qualitative or dummy variables, one for each group,

and X is the vector of observations of x .) Is of full column rank.
IJ

Models of this type have become increasingly familiar to econometricians

in a slightly different context, the estimation of relationships involving
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panel data (data which follow a cross sectiun of economic units over

time). In these applications the joint i, j index refers to unit j

in period i and A represents a vector of individual effects which

remain constant over time. As will be shown in the next section, the

idea may be extended to a model which puts each observation into two or

more groups, each with its own effect, without changing the nature of the

estimation problem.

The method of estimating (5) depends upon what one is willing to

assume about A. Three specifications have received most of the attention

of econometricians. The fixed—effects (FE) model simply assumes that A

contains a set of numbers to be estimated. The random—effects (RE) model

imposes more structure. This model assumes both that the observations on

(A, X) are random drawings from a common population and that the covariance

of A with X in this population is zero.6 It then proceeds to estimate

the parameters of the distribution of A. I shall impose the prior condi-

tion that the drawings on (A, X) are in fact random.7 In that case the RE

model is a special case of the FE model. The third alternative is that

the distribution of the effects is degenerate, or that there are no effects

(NE), and it is therefore a special case of the RE model. The efficient

6Strictly speaking the RE model makes the stronger assumption that the

conditional distribution of A given X does not depend on X

See also footnote 8.

7When there is reason to believe that the drawings are not random one

should consider adding a sample selection equation to the model described

below.
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estimators for these three specifications are reviewed in Mundlak [1978)

and Pakes [1978].

Briefly the FE estimators are found by adding a dummy variable

for each group to (5) and then performing OLS on the resulting equation.

It produces the within group covariance estimator of and an estimate

of the vector A which is unique up to a normalization. Under RE consis-

tent estimators of the distribution of (A + t) are obtained and then used

to perform generalized least squares (GLS) on (5). Since the RE estimator

of uses part of the between group variance in X, it will generally have

a lower variance then the FE estimator of that parameter. However, if A

is correlated with X, the between group covariance of y with X will

pick up part of Cov(A,X), and the RE estimator of will be biased. The

NE model amounts to a standard regression of y on X and therefore uses

all of the between group variance in X to estimate . If the specifica-

tion is correct the OLS estii'iates have all the familiar desirable properties.

If not, it yields inefficient (under RE), or inccnsistent (under FE), estimates

of the coefficients.

Faced with the alternatives the econometrician must choose an esti-

mator. Since the various models are ordered with respect to their generality,

the obvious procedure is to specify an overall model which includes all the

alternatives as special cases and to test the constraints implied by each.

To do so, return to equation (5) and note that the vector A can always be

partitioned into a linear function of the group mean of the independent

variable and a residual which is, by construction uncorrelated with it,

i.e.,
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A. x• + Ci 1, ..., J) (6)

where Cov(X, n) = 0, by construction. I will assume that the ii. are random
8

drawings from a common population with variance c2.

(4) can then be rewritten as

y.. =x..+xij ij (7)

where p. = n + E •. Since the vectors n and c are uncorrelated with each
ij I ii

other and with the vectors X and rx, where r = Z(z'Z)z' so that FXis just

the vector of observations on , we have; Cov(p, X) = Cov(p, rx) = 0, and

Var(p) =
1NJ

+ FN, where I is the identity matrix of order q.

Since the covariance of A with rx is equal to the covariance of A

with X, (6) partitions the variance in A into a correlated effect (rX)

and a part that is uncorrelated with X (ri). If = 0 the effects are not

correlated with X and the RE model is relevant, and if = 0 and = 0

there are no effects.

The aggregate or between—group :egression can now be given an explicit

interpretation. Sum (7) over i and divide by N, i.e.,

= ( + ) + + c. (j = 1, ..., J). (8)

8.
In order to specify the regression function of y given X in (5) one needs

to specify E[AX]. In general, E[AIXI will depend on all the x.. as well as

powers of these variables so that (6) does impose a non—trivial prior on the

model. Statistically, the appeal in Lhe structure imposed by (6) is that its

estimate of , and that parameter's sandard error will be precisely the (cont.)



— 15—

(8) is the traditional between—group or macro regression. Recall that the

within—group or micro regression correctly estimates the resonse of the

individual unit to changes in the independent variable, given the value

of the effect. The aggregate regression estimates the sum of the values

of this resonse plus the response of the aggregation effect to a unit in-

crease in the group mean of the independent variable. Except for the

special case where = 0, the micro and the aggregate equations are esti-

mating different parameters. A comparison of the within and between group

parameter estimates gives us information on the relationship between the

aggregation effect and the independent variable which, as noted above, may

be of considerable interest in itself. The comparison does not, however,

provide two sources of information on the same parameter vector.

This latter point is illustrated rather nicely by the form of the

GLS estimators for (7). If we let X' = X—rX and yd = y—ry, that is, if

we let the superscript d denote deviations from group means, then a simple

partitioning of the inverse matrix fr the transformed independent variables

proves that these estimators are indpendent of the error structure and

equal to:

'd d -1 'd J= (X X ) X y ,

and (7a)

= (X'FX) 1XFy - (XdXd)_1XdyI

same as those derived from a model using any more general structure for

EjAIXI. Chamberlin (1978) discusses this point, while p. 17 below considers

the interpretive benefits of using tie tructure in (6).
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, is, of course, just the within—group covariance estimator (b)

Referring to equation (8) and noting that r is idempotent one finds that

(x'rx)x'ry Is just the parameter vector estimated in the aggregate regres-

sion, or the between—group covariance estimator (bb).9 Hence is calculated

as the between—group estimator minus the within—group estimator. That is,

there are no fixed aggregations effects 1ff the difference between the

within—group and between—group estimators is attributable to sampling error.

The analogy between the within and between group covariance esti—

mators may be carried further in order to determine the variance—covariance

matrix of the estimated parameters. Recall that =
bw and =

bb
— b.

Since cov(bb, b) = 0, it follows that cov(B, q) = _var(b) and

var(s) = var(bb) + var(b). This variance—covariance matrix may conven-

iently be written as

cxv dd—l

var(,4) = a2 (9)

d (a +N1a)
_(xtdx )_1

2 + (x?dxd)

The assymptotic properties of these estimators are provided in the

appendix and are worth noting here. Under the traditional assumptions on

population moment matrices (, 4) is, of course, consistent when both

N and J approach infinity. Since successive increments in either the

number of groups, holding the number of members in each group constant, or

in the number of members in each group holding the number of groups constant,

both provide successively more information on the within—group estimator,

If the groups are unbalanced the between—group regression must be weighted

in order for the equivalences to be discussed here to hold. For details se

the next section.
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is consistent when either N or J approach infinity. Consider now the

variance of which maybe written as: var(q) = a2N(X'FX)+a2 (x'rx)

+ c (X' X ) . The first expression is constant as N increases. That

is, r is a random error which is group specific and will not be averaged

out unless the number of groups grows large. Hence, var() does not

approach zero as the number of members in each group grows when the number

of groups is held constant. The implication of this point is that it may

be difficult to derive precise estimators of when the number of groups

(J) is not large. Since the number of groups in panel—data analysis is

usually quite large this should not be an important problem in panel—

data applications of the procedure. However, in the context of analyzing

aggregation effects the number of groups is often limited by the nature of

the problem. In our example there is a finite number of industries in

the economy, and one may need to add another dimension to the data (e.g.,

time or economies) in order to derive precise estimates of 4.

Finally, a brief comparison of the new mixed effects (or ME) model

with the models already available is in order. The ME and the FE models

provide exactly the same estimates of and its variance. The ME model,

however, has two advantages. First, it summarizes the information in the

FE estimates of the qualitative or dummy variables in terms of a small

number of interpretable parameters [ and a2] which provide the links

necessary to coopare and Interpret aggregate and micro relationships and,

hence, are likely to be of considerable interest in an aggregation context.

Moreover, it is easy to think of cses where these parameters would be

of interest in panel data estimati n. Indeed, Grunfeld and Griliches

[1960] originally pointed out the 4xistence of their type of aggregation

effect in two panel—data estimatio problems.
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Second, much of the literature on panel—data estimation has, perhaps

wrongly, been concerned solely with the properties of the estimators of

the within—group coefficients, (see Balestra and Nerlove, 1966). In

this context the NE model has the advantage of providing a direct test

of the RE structure. If 0 within sampling error one may wish to impose

an RE specification and re—estimate the model in order to derive more precise

estimates of Of course, in multivariate regressions some but not all of

the elements of may be close to zero in which case the between—group variance

in some of the independent variables may be used in order to estimate .

I would like to raise one further problem here but postpone discus-

sion of it until Section 4.5. As noted above most of the theoretical

discussion of the relative advantages of the FE, RE, and NE estimators has

concentrated on the relationship between the bias caused by an omitted

variable with group structure in the estimates of and their variance.

However, users of these techniques are equally worried about the properties

of the alternative estimators of when there exists the possibility of

an error in one or more of the independent variables of the regression.

Once one admits the possibility of omitted variables without group struc-

ture, or errors in variables, as well as those with group structure, the

performance of the alternative estimators of differs markedly. Section

5 considers models which allow for both omitted variables with group struc-

ture and errors in variables.

10.

The ME model, of course, can also be used to provide a direct test of

the NE structure; that is, one could test if both and o equal zero.

However, a simple comparison of the FE to the NE regression results pro—

the same information; see Section 4.
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Given the conceptual and econometric framework for analyzing aggre-

gation effects presented in the las two section, we can now return to the

original problem of analyzing the RD intensity equation at different levels

of aggregation.

4. Aggregation Effects in the R&D Intensity Decision: EmpiricalAnalysis

This section used two additional data sets and the framework outlined

above to analyze the nature of aggregation effects in the R&D intensity

decision.

The first data base to be exanined is drawn from the periodical Busi-

ness Week (June 27, 1977) which contains the 1976 ratio of company-financed

R&D to sales and five year undeflated growth rates for firms who performed the

vast majority of all privately financed R&D in the U.S. in 1976. The Securi-

ties and Exchange Commission's (1976) annual report was used to classify 530

of these firms into two and three—digit SIC industries, which in turn can

be used to put the firms into the NSF industrial classification used through-

out this paper. The growth rates were deflated by 2 1/2 digit industry—

specific price deflators. The major difference between the Business Week

These data are described In more detail and compared to the other data

sets used in this paper in Pakes (1978). BusIness Week claims that the

original data set covered firms which accounted for 98% of all privately finan-

ced R&D in the U.S., but NSF calculations indicate that the data cover only

82% of total privately financed R&D when NSF definitions of R&D are used (see

NSF 78—303). The Business Week sample contains 598 fIrms. The firms in the

"other manufacturing," "all manufacturing" and oil industries were dropped

from the data used here; the first two on the grounds that these categories

confuse inter and Intraindustry differences In R&D intensity, and the latter

because no adequate price deflator could be found for the oil Industry.
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Data (BWD) and the other data sets used in this paper are that the BWD

have observations on company—financed R&D and totaL sales while the others

use total R&D to sale ratios. The difference consIsts of publicly—finan-

ced R&D performed in the private sector which, according to Business

Week (June 27, 1977), accounted for 39 percent of all privately performed

R&D expenditures in 1976.

Table 2 presents the results. The first question one would like

to answer is whether there is evidence of any aggregation effect in the

R&D intensity decision. Under the null hypothesis of no aggregation

effects the OLS regression provides the Gauss—Markov estimators while

under the alternative that there are effects the ordinary least squares

with industry—specific constant terms (OLSC) regression estimates the

value of the aggregation effect for each industry. A test of the null

hypothesis is simply a test of the joint significance of these effects.

16, 512Columns (1) and (2) indicate that the observed value of the F

test statistic is 24.20 while the 5 and 1 percent critical value of an

16, 512F deviate are 1.67 and 2.03. There are highly significant aggre-

gation effects and the ME model is now used to summarize their character-

istics. The estimation procedure used for the ME model is as described

in Section 3 except that since there are unbalanced groups one must weight

the observations from the between regression by [02 + cJ/N1} 1/2

and are consistently estimated by the 2 of the OLSC regression, and

by the a2 of an OLS regression of the firm's R&D intensity against the

firm's and industry growth rate [label1d first—stage 2 of column (3)]

minus the a2 of the OLSC regression. The variance of the random firm

effect (02) was estimated to be .39 while that of the random industry

effect (a2) was .12.
n
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Table 2. Aggregation Effects in the BWDa/

Regress ion

No effects Industry— Mixed
(OLS) specific effects

effects
(OLSc)

(1) (2) (3)

Micro growth rate, o. 1.04 1.04
O•31 O31 10.96

188
Macro growth rate, 4) 9.93

1 •91

Pooled data growth rate 3.08
O36

02 0.66 0.39' n.r.4' n.r.

R2 0.12 0.O2i n.r. 0.66

512 527 15Degrees of freedom 528

Small numerals are standard errors: n.r. means not relevant.

The weight for industry j is (o +

/ 0.39 = cj.
4/ First stage 2 = 0.51. It follows that = (0.51 — o) = 0.12.

/ Between firms, within industrieb.

Coefficient
of

We ighted
aggregate
between
industryi'

(4)
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It is clear from the results in olumn (3) that the industry's growth

rate is a significant determinant of he aggregation effect)2 Indeed,

the effect of a unit increase in the ;ndustry growth rate on the firm's

R&D (9.93) intensity is about 10 times the effect of a unit Increase in

the firm's own growth rate on Its R&D intensity (1.04). As a result

growth rates account for only .02 percent of the within—industry variance

in R&D intensity but for 66 percent of the between—industry variance. The

weighted between—industry coefficient [column (4)1 estimates the sum of

the micro and the aggregation effect growth rate coefficients, while the

OLS regression estimates a weighted average of the between—group and

within—group coefficients and has no meaning in itself. Note also

that the standard error of the coefficient of the industry growth rate

(1.91) is relatively large owing to the small number of industries in the

sample.

The qualitative results from the BWD and the GD are strongly comple-

mentary.13 They both indicate that there is a highly significant aggregation

effect in going from firm to industry aggregation in the R&D intensity

decision and that the value of the aggregation effect is in large part

determined by the industry's past growth rate. The NSF (1958, Table C—l)

provides another source of information which can be used to investigate one

other aspect of the aggregation effect in the R&D intensity decision. That

table lists the ratio of total R&D to sales of 54 "product groups" in

12'It should be noted that the phrase industry growth rate refers to the

mean growth rate of the firms In the industry. The difference between

the latter and the growth rate of Industry output can be shown to be a

second order term.

'3The differences between the parameter values estimated from the BWD

and the GD are not highly significant and will be discussed briefly in

Section 6.
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15 industries in U.S. manufacturing in 1958, whLch, when combined with

past growth rates of sales, can be used to ask if there is an aggregation

effect in going from the product—group classification to the industry

classification. The growth rates were obtained from the three data poinrs

on sales taken from the Censuses ol 1958, 1954, and 1947 and the price

deflators mentioned earlier)4 Table 3 presents the results.

The test of the null hypothesis that there are no aggregation

effects in going from product group to industry level aggregation results

in an observed value of an F14'38 test statistic of 6.72. This is to be

compared with the 5 and 1 percent critical values of an F14'38 deviate

of 1.96 and 2.59. There are highly significant aggregation effects in

going from porduct groups to industries. The estimates of the random pro-

duct group (02) and industry (02) effects (derived in the manner describ&d

on p.20) of, respectively, 0.36 and 0.34 were used as the variance components

in the estimates of the ME model reported in column (3). Again, the value

of the product group's own past growth rate has very little to do with its

R&D Intensity decision while the value of the industry's past growth rate

is a highly significant determinant of the product group's choice of R&D

intensity. Therefore, the R2 from the micro or between—product—group with-

in—industry regression is zero while that from the macro or between—industry

regression 0.60.

14The product groups are a 3—digit NSF classification which is slightly

more aggregative than the 3 digit SIC; see also Section 6. The original

data contained observations on 56 product groups but a reclassification

of census Industries forced the dropping of two of them. The analysis was

also done using four—year past average growth rates with similar qualitative

results.
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Table 3. Aggregation Effects in the ND-"

Coefficient
of

Regression

No effects Industry- Mixed Weighted
(OLS) specific effects aggregate

effects

(OLSC)
between_b,
industry—

(1) (2) (3) (4)

Product group growth rate,

Macro growth rate, tj)

cz 0.02
2.85

0.02
2.85

23.43
6.07

23.44
••S$

•

Pooled data growth rate 10.85
3.'.'

2 0.92 0.36' n.r.' n.r.

R2 0.16 0.Oc# n.r. 0.60

Degrees of freedom 52 38 51 13

Small numerals are standard errors: n.r. means not relevant.

The weight for industry j is (a2 +n £3
a2 = 0.36.

First stage a2 = 0.70. It follows that 2 — 0.70 — a2 0.34.

Between product groups, within industries.
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Three independent data sets for three years (1958, 1963, and 1976)

have all indicated that there is a highly significant aggregation effect

in the R&D intensity decision in going to industry aggregation, and that

the value of the aggregation effect is strongly and positively correlated

with that of the industry's past growth rate. The new information in the

ND, however, is contained in its estimate of the product—group growth

rate coefficient (0.02). Considering the standard errors, this is similar

to, if anything, a little below the micro growth rate coefficients estima-

ted from the BWD (1.03) and GD (4.00) which are both based on firm—level

observations. This finding suggests that there are no significant correla-

ted aggregation effects in going from firm to product—group aggregation.

To investigate this possibility further the BWD were analyzed again

allowing for both product—group and industry aggregation effects, the

variance of each set of effects being partitioned into portions accounted

for and unaccounted for by the aggregate's growth rate. Statistically,

this is just a two—way classification ME model and it can be shown that

the GLS estimates of the firm's, the product group's, and the industry's

growth rate coefficients will be identical to the within—product group

covariance estimator of the growth rate coefficient, the between—product

group within industry minus the within—product group covariance estimator,

and the between—industry minus the between—product group within industry

covariance estimator, respectively. Further, the standard errors of the

three OLS regression coefficients are correct and they are distributed
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independently of each other.'5 Briefly the 28,484 test statistic for

product—group aggregatIon effects was 1.98 which is just significant, the

product—group's growth rate coefficient was .03 with a standard error of

1.31, and the other parameters were almost identical to those reported

in table (2). The product—group growth rate does not have a significant

effect on the firm's choice of R&D intensities.

The ND leads to essential the same conclusion as did the GD and the

BWD. There is a consistent significant Industry—wide aggregation effect

on the firm's R&D intensity decision, where an Industry is defined by the

NSF's classification of groups of firms utilizing similar technologies.

The value of the aggregation effect for all firms in a given industry is

a significant and increasing function of that industry's past growth

rate. On the other hand, there is little evidence of an aggregation

effect at a lower (3—digit or product—group) level of aggregation and

what effect there is seems not to be correlated with the past growth rate

of the product group.

5. Mixed Effects, Errors in Variables, and the Aggregation Problem in

the R&D Intensity Decision

It is worthwhile to pause here andconsider whether the reults of

the last section could be explained by alternative model structures.

Figure 2.1 illustrates the use of the Grunfeld—Griliches aggregation

15.
For cases with unbalanced groups, such as ours, the within—product

group between Industry and the between—industry regressions must be weighted.

Details of the estimation procedure are to be found in Pakes (1978).
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effect in this context. The lines + 8g1 fr j = 1, ..., J repre-

sent the within—industry regressions. Differences in R&D intensity be-

tween two firms within any one industry are caused by differences in their

growth rates, and the response toa unit difference in growth rates, , is

the same no matter which industry the two Firms belong to. The intercepts

of the within—industry regressions,
, differ because of

differences in a stimulus which has the same value for all firms within

the industry. This stimulus may be partitioned into a part accounted for

by differences in the growth rates cf the various industries, the line

labelled + g. , and a disturbance which is uncorrelated with g.

and, therefore, with g. The effect of industry growth on the average

R&D intensity is given by the sum of the average effect of industry growth

on the firm's choice of R&D intensitities given the level of aggregation

effect (g) and the effect of industry growth on the level of aggregation

effect (4g). It follows that the between—industry regression is the

line labelled + (q, + In the diagram.

Now consider the aggregation properties of the model proposed by

FrIedman (1957, see, In particular, the figure on p. 64). If the observed

growth rate (g) measures the sum of the growth rate to which the firm

responds (g*) and an independent and identically distributed error (v),

and If, in fact, = 0 or there are no correlated aggregation effects,

then both the within—and between—industry regression coefficients will

estimate a weighted average of the response of the firm to changes in g*

() and to changes in v (zero). The weight given to zero will, In the

limit, equal the fraction of the variance in the observed independent vari-

able attributable to v, say A and A In the within— and between—in—
wg bg

dustry regressions, respectIvely. Since v Is assumed to have no group
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Figure 2.1. The Grunfeld-Griliches Aggregation Effect
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structure its variance will tend to be averaged out in the between—Industry

regression, and provided that g* is correlated with the industry duimnies,

A is expected to be less than 16
In fact, plim A = 0, where Nbg wg N-° bg

is the number of observations in each group, so that for large N and

= O bbg provides a consistent estimate of , whereas, a comparison of the

b with b provides a consistent estimate of , the noise totalwg bg wg

variance ratio in the within—group regression, and, therefore, of a2 , the

variance in measurement error.

This idea was used by Aigner and Goldfeld (1974) to show that an

error—in—variable model provides an alternative, and in their view more reasona-

ble, explanation of the Grunfeld—Griliches aggregation effect than that pro-

vided by the latter authors themselves. As noted by Aigner and Goldfeld,

under their assumptions, that is, assuming there are no aggregation effects

and allowing for errors in variables, a regression of the micro dependent

variable on the micro and macro values of the independent variables, the ME

regression, provides a consistent estimate of . To see this for the simpler

case when N grows large recall that the estimate of from the ME model equals

b — b and that of 4 equals b . From the discussion above it followsbg wg wg

that

plim ( + ) =

N-
and

plim4=X
wgN-*o3

16.
Actually all that is required for bbg to have a larger probability limit

than b is for the intraclass correlation in v to be less than the intraclass

correlation in g*
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Therefore, provided that 0, a test result of 4) 0 under Aigner and

Goldfeld's assumption implies that a2 0, that is, that there are errors

in variables. Recall from Sections 3 and 4 that in the Grunfeld—Griliches

case, that is, assuming that a2 = 0 but allowing for aggregation effects, a

test result that 4) # 0 implies that there are correlated effects. The errors—

in—variables and the correlated aggregation effects models are alternative

explanations of the same observed phenomena.17 To distinguish between them

one needs a model capable of identifying and testing for the existence of

both mixed aggregation effects and errors in variables (MEEV).

Moreover, MEEV models are also needed to bridge a gap which has developed

between the theoretical literature on grouped—data estimation (including

most of the discussion in Section 3) and the factors considered by empirical

researchers who must choose estimators for grouped—data estimation problems.

As noted earlier both theory and empirical analysis have focused on the proper-

ties of the within—group coefficient estimators. The theoretical literature

has concentrated on comparing the bias caused by an omitted variable with

group structure with the variance of the within—group coefficients resulting

from the alternative FE, RE, and NE models. In this context, the FE, or

equivalently the ME, estimator of , is, in general, the only estimator which

is unbiased, a point which is forcibly made by Mundlak (1978). Empirical

research, however, often has to contend with poorly measured or ill—defined

independent variables and as a result is as worried about omitted variables

without group structure (or errors in variables) as those with group struc-

ture (see, for example, the discussion in Griliches, forthcoming). Once one

17.
If and 4) have different signs one can distinguish between the special

cases of 4) = 0, 0, and = 0, 0, but 8, 4) and a2 remain unidentified.
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admits the possibility of errors in variables it is not at all clear which of

the FE, RE, or NE estimators of has a smaller asymptoti( bias. The problem

arises because the more one uses the between-group variance in the independent

variable to estimate the within—group coefficients the larger will be the

bias caused by omitted variables with group structure but the smaller will

be the bias caused by errors in variables. As noted above the FE model uses

none, the NE model uses all, and the RE model uses some of the between—group

variance in the dependent variable to estimate the within—group coefficients.

Clearly, one would like to consider models which estimates , and cr2.

After identifying each of these parameters it still may be worthwhile to trade

off the bias against the variance of, say, the within—group coefficient estima-

tor, but only after the magnitude of the problem caused by both types of biases

are determined.

The MEEV model may be written as:

y = + Sg + A v + c

where g = g* + v, A = rg* + , i, g*, v and £ are mutually independent, and

var(v) = cy2I. The other properties of E and r are found on page 14.

The model contains two unobservables that are correlated with the observed

independent variable, the error in measurement, v, and the group effect, A.

The macro or between—group regression averages out the effect of v on g but

includes the bias in caused by the left out variable with group structure,

A. Therefore, the between group regression coefficient provides an assymptoti—

cally unbiased, as N grows large, and consistent, as both N and J grow large,
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estimate of + •18 The within—group regression differences out the effect

of A but contains the errors in variable bias So that Its regression coefficiont

provides a consistent, as either N or J grow large, estimate of wg It Is

clear, then, that first and second order within and between sample moments

do not suffice to separate out, or identify, $, , or 2. Since when the

observations on both the within—group pairs (d gd) and the between—group

pairs distribute joint normally, first and second order moments suffice to

determine the entire within— and between—distributions, a model with normal

deviates cannot be identified without adding more information then is containod

in these variables.19 As N grows large, the between group moments do not

contain the effect of v, and do not distinguish between and . Therefore,

if, in the non—normal case, higher order moments are to be used to identify

an additional parameter, they must be within moments.

To see how higher order moments can be used for identification note that

d2d 23 3
as either N or J grows large plim 1/NJ L (y ) g =

Gg*d
where ag*d is the

*d d2d 3third order moment of g , and plim 1/NJ (g ) y g*d so that provided

neither nor Ggd are zero, the ratio of these two—third order moments

18.
The variance in the between group regression coefficient will not go to

zero with N unless
2 = 0
Ti

19.
This is a simple extension of a result due to Riersol (1950). As N and

J grow large the five moments which determine the entire joint between distri-

bution will be estimated precisely and will suffice to identify c' (+) , the

variances of ri and g. , and the mean of g. . Since the between and within

variables have zero covariance by construction the only information that is left

in the data is contained in the joint distribution of yd and gd, and Riersl

(1950) has shown that in the normal case this distribution does not identify

either or a2



—33—

provide a consistent estimate of F' . In fact, it is clear that as N grows

large the model determining the joint within distribution, i.e,

= gd — avd + d is a simple error in variable model, and it is well known

that in this case the method of cumulants (see Naliavaud [19701) provides an

easy way of using higher order moments for identification. The variance of

moments of order r contains moments of order 2r. As a result early experiments

with the cumulant method, most of which were based on small sample sizes, con-

cluded that the variance of the cumulant estimator was too large for it to be

of practical use (see, for example, Madansky [1959]). This variance is, how-

ever, of order 1/NJ, where NJ is samp]e size, and the larger data sets now

available in economics may, in fact, provide more precise cumulant estimators

for the errors in variable model. Our sample is moderately large, and, hence,

the first attempt at identifying the MEEV model will use the cumulant method

on the within—group sample moments.

In addition, the average past growth of employment (g) was gathered for

each of the sample firms. Recall that g is calculated as the growth rate of

sales minus the growth rate of prices, and, therefore, the error in g may

be a result of errors in either of the latter variables. For the most part

price Indexes are not adjusted for changes in the quality of the goods sold, and

are, therefore, likely to be particularly bad for technologically progressive

firms such as those that dominate our sample (see Griliches [1979] for a dis-

cussion). Since g is calculated independently of both price and sales data

it is reasonable to assume that Coy (gv) = 0. Moreover, previous estimates

indicate that Cov(rg) and Cov(ng) are small enough to be ignored.2°

20.
See Pakes (1978) appendix 1D.
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Since the output elasticity of labor is non—zero, g can be used as an instru—

ment in both the within— and between—regressions to produce consistent esti-

mates of and , respectively. Note that, unlike the cuinulant estimates,

the instrumental variable (IV) estimators do not depend on the mutual in-

dependence of g*, v, r and r for their consistency properties.

Though the within—group moments were clearly non—normal, the standard

error of the third order cumulant estim2tor (132.0) was extremely large due

to the underlying symmetry of the distribution function, and that of the fourth

order cumulant estimator was too large (4.09) for us to put any faith in its

point estimate of _.26.21 It appears that even in highly non—normal cases

cumulant estimators require sample sizes a great deal largr than 500.

We now move on to the IV estimators of the MEEV model. The parameters

of this model are estimated in precisely the same way as the parameters of

the ME model except that the independent variables in the between— and within—

regressions become the predicted values from the projection of the growth

rate of output onto that of employment, instead of the growth rate of output

itself, and the variance of estimate Is corrected for the error in this projec-

tion. Table 5 presents the results. The first question to ask is whether

there is evidence of significant errors in variables at all in the data.

Letting q be the difference between the parameter values estimated in the

MEEV and ME models and V(q) be the difference in their variance—covariance

21.
The probability of the observed value of the Kolmogorov—Smirnov test statis-

tic for normality, under the null hypothesis that the within—moments were

normal, was zero. The third and fourth oLder estimators were calculated as

K(2,1)/K(l,2) and K(2,2)/K(3,l), respectively, where K(p,q) is the sample

cumulant of order in d and order q in gd, These statistics are discussed

in detail in Kendeli and Stuart (1969).
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Table 5: Instrumental Variable I'stimaee for the MEE'V Model. !'

Coefficient
of

Regress ion

Industry Mixed Weighted
specific effects aggregate
effects between

industry J2!

(1) (2) (3)

Micro growth rate, a 1.55
OI4O

1.55
OS,O

10.77
2O1

Macro growth rate, 9.22
2O5 . .

2 0.39i n.r.i n.r.
4

Degrees of freedom 512 527 15

Small numerals are standard errors: n.r. means not relevant.

The weight for industry j is (o +

0.39=o.

First stage 02 = 0.51. It foUows that = (0.51 - o) = 0.12.
e/ . . .— Between firms, within industries.
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matrix, then, Hausman (1978) has shown that under the null hypothesis that

there are no errors in variables q' [V(q)J distributes, assymptotically,

as an 4 deviate. The observed value of the 4 statistic was 6.16 which

is significant at the .05 level. Similar tests when applied to thewithin—

and between—regressions separately resulted in 4 deviates of 4.5, which is

significant at the .05 level, and .03, which is clearly insignificant. That

is, though there is a significant error variance in g the averaging procedure

leaves relatively error free. Since jj and .j are positively correlated,

a simple left out variable argument indicates that the MEEV estimate should

be higher then the estimate from the ME model, while its estimate of should

be lower. This is, in fact, what occurs as the estimate of $ moves from 1.05

to 1.55 while that of from 9.93 to 9.22. A comparison of the MEEV to the

ME estimator of indicates that the error to total variance ratio in g is

about 33 percent which implies that the value of the ratio in g is 27 percent.

In this problem, then, use of within—group moments to estimate does not aggra-

vate the errors in variable bias in that coefficient markedly. In sum, the re—

suits from the MEEV model are quite clear. There is an error in variable

problem in the BWD but it is not the major factor in explaining the observed

differences between the macro and micro regressions. The macro coefficient

is still seven times as large as the micro coefficient, indicating that there

is a large aggregation effect in the R&D intensity decision, which is highly,

and positively, correlated with the industry's past growth rate.

A slightly different test for the influence of misspecification in the

growth rate measure on the results reported in the last section can be per—

formed on the ND. The errors in variable model assumes that the unob—
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served growth rate (g) measures the true independent variable plus an

uncorrelated measurement error (v). In the context of the micro model

underlying the R&D intensity decision, the firm changes its R&D intensity

in response to a change in its expected future growth rate (ge) and hence

the errors model assumes that g = ge + v. The ND can be used to check

if a rational expectations model of the formulation of ge can account

for the observed aggregation effect in the R&D intensity decision.

Rewriting the equation determining the firm's R&D intensity in terms

of ge, allowing for mixed aggregation effects at an industry level, and

aggregating to determine the R&D intensity of the product group, one has

+ ge + gj + + (11)

where p indexes product groups and j indexes industries.

Since ge is not observable, (10) cannot be estimated without more

information on either indicators or determinants of its value. Consider

the realized future growth rate, gr• It can always be partitioned into a

linear function of the variables, X, known to the firm in period t,

and an uncorrelated error,

gr_x + . (12)

The firm uses the information available to it at t to choose an

estimator o! gr• The minimum vsriance unbiased predictor of gr, given

X, is, of course:

ge= • (13)
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Substituting (12) into (11):

gr=ge÷ (14)

That is, in the rational expectations model gr is an indicator which

measures ge subject to an uncorrelated disturbance. Hence, substitution of

gr into the R&D intensity decision for ge produces the classical errors in

variable estimation problem. Any variable which is a member of the set of

variables described by X and which is uncorrelated with the other error com-

ponents in the R&D intensity decision is a suitable instrument for a two—stage

least—squares estimation procedure which allows for the covariance structure

22
of the errors in (10).

Past growth rates of the product group and the industry for 4 and 11 years

were used as instruments while g' was set equal to the product—group growth

rate for the 5—year period following the R&D intensity decision. Estimation of

the model is done in several steps. First gr is projected onto the instruments

and the value predicted by the instruments is derived. The product group's

22.
It is a suitable instrument because X is uncorrelated with by construction,

and is correlated with g provided that a 0. I thank Zvi Griliches for sugges—

ting to me the basic idea underlying this model which is contained in an unpublish-

ed paper by J.F. Muth. Of course, one does not know the actual list of variables

in X. However, any set of variables, W, which are both known to the firm in period

t and are uncorrelated with the other error components in the R&D intensity dec—

sion, may be used as instruments, since a non—zero correlation between W and

would imply that the econometrician knows more about the future demand conditions

of the firm than the firm itself.
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R&D intensity is then regressed once on the predicted value of gr and the

industry growth rate, and once on the predicted value and the irdustry dummies.

The variance of estimate from the latter regression provides a consistent

estimate of the variance of the error without group or industry structure,

which was 0.37 while the difference in the variance of estimate from the two

regressions provides a consistent estimate of the variance of the error with

group structure, which was 0.33. Finally,y is regressed against the pre-

dicted value of gr and the industry growth rate, using the estimated variance

components to do the required GLS transformation of the data. This latter

regression, after correction for the standarderror of estimate, provides con-

sistent estimates of all parameters and their standard errors.

The estimated micro coefficient (B) was 1.91 which, as expected, is

slightly higher than the NE estimate of this parameter from the ND (0.02) and

more in line with the estimates from the firm level data sets. The standard

error of the estimate of B, however, was 7.83 which indicates that the ND

and the rational—expectations models do not provide very precise information on

the micro coefficient. On the other hand, the estimate of was 23.51 which

is almost identical to the ME estimate of from the ND (23.47), and had a

standard error of 5.35, which is lower than the ME standard error (6.07).

Though the ND and the rational—expectations model do not define B very precisely,

they do provide strong evidence of an aggregation effect in the R&D intensity

which is highly correlated with the indistry growth rate.

Both the MEEV and the rational expectations models indicate that the re--

suits reported in the last section cannot be explained via misspecification in

the growth rate measure. Rather, there is an aggregation effect in the R&D

intensity decision whose variance is mostly (about 62 percent of it) accounted

for by the variance in the indutry's growth rate.
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6. Some Characteristics of the Aggregation Effect in the R&D Intensity

Decision

The preceding five sections used the R&D intensity equation to

illustrate a farmework for analyzing differences-in estimated relationships

at different levels of aggregation when all observations have the same

response parameters. Given the descriptive and policy implications of

knowledge producing activities, one would like to know more about the

causal factors underlying the aggregation effect in the R&D intensity

decision. Though an explicit analysis of this issue is beyond the scope

of the present paper, we are able to summarize some of the characteristics

of this aggregation effect.

First, it is associated with the two digit industry to which the

firm belongs. The two—way ME model indicated that the firm's three

digit industry had little effect on its choice of R&D intensity, and what

effect there was, was uncorrelated with the product groups past growth rate.

When instrumental variables were used to estimate a two—way MEEV model

the product group growth rate coefficient did increase, to 1.51 with a

standard error of 1.49, but was still insignificant and small compared to

the firm's response to a unit increase in its two digit industry's growth

rate. Either the factors underlying the 3—digit classification scheme are

not particularly relevant to the firm's choice of R&D intensity, or those

factors are not adequately represented in the classification that exists.

One should consider this fact when choosing data sets for analyzing issues

related to R&D. One possibility which was not examined here is that the fac-

tors underlying the aggregation effect 'lo not differentiate between all

different two—digit industries but only between groups of them.
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Second, the aggregation effect is highly correlated with the industry's

past growth rate. Since the interindustry variance in R&D intensity is about

49 percent of the total variance in this variable, this makes the industry

growth rate an important determinant of interfirm differences in R&D inten-

sity even though the firm's past growth rate is not. Moreover, experiments

were run using longer term growth rates on the BWD (8—year) and shorter term

growth rates on the ND (4—year). In all cases the larger the term of the

past growth rate used, the larger the R&D intensity response to an increase

in the industry's growth rate, and the smaller the response to the firm's

growth rate. Moreover, the values of the aggregation effects for the same

industries in the different data sets (which, recall, were many years apart)

were highly correlated. Apparently it is sustained, long—term, industry

growth which accounts for the simultaneous movement of the R&D Intensities of

the Industry's firms.

In a recent comparison of micro and macro estimates of investment functions

for traditional capital goods, Eisner (1978) proposed that differences in esti-

mated parameters could be explained in terms of the firm using past industry

output in its predictions of its own future output. The rational expectations

and errors in variable models of the last section indicate that this is not the

major factor underlying the aggregation effect in the demand for research re-

sources. Further, the values of the aggregation effect were not highly corre-

lated with some rough measures of Industry concentration presented in Gort

(1962), so that explanations of the observed results based on rivalry, say

the average value of the industry's R&D Intensity being a determinant of the

firm's choice of R&D intensities, do not seem promising.



—42—

One determinant of R&D demand which is widely discussed in the literature

and whose impact seems to be consistent with the results reported above is

technological opportunity. That is the scientific base of society may

make R&D investments in one part of the economy more productive than in

another. Technological opportunities are likely to be similar for firms

within an industry, and should be involved in a causal nexus relating sus-

tained increases in industry growth to R&D demand [see Pakes (1978)]. Further

investigation of this possibii.ity seems warranted.
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Appendix: The Assyniptotic Variances of 8 and in Dimensions N and J.

The following assumptions are made on the population moment matrices:

urn N 1x'rx = B lint N 1X"X' = w
N-.co N-o

urn J1x'rx =
BN

urn jx"x' =
WNJ-o J+oo

where BN, W and WN are of full column rank and do not depend on the index

excluded in their subscripts.

It, then, follows trivially from equation (9) in the text that

lim Var(8) = lu Var(8) 0. Also,

2 2

but:

=

2

EN' + lu —. (B1 + NW1) = 0

lu Var(4) = urn- (B1 + N1W1) + lim a2B1 =
N-°° N- N-so
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