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1. Introduction

In a number of recent papers (Kareken, Muench and Wallace [1973], LeRoy

[1975], Friedman [1975, 1977], Wog]otn [1979], Black [1976, 1977]. Boyer

[1978] Roper and.Turnovsky [1978], Siegel [1978] and Wogiom [1979]), th

ability of the policy authorities to stabilize the economy has been shown

to depend in an important way on the extent to which the current value of

the policy instrument(s) can be made a function of current random distur-

bances——more precisely of the innovations in these disturbances. This

issue is especially important for financial policy and foreign exchange

market intervention and exchange rate management. Financial policy in-

struments, be they financial asset stocks, interest rates or exchange rates

can be adjusted virtually continuously and costlessly. Some financial

market data (e.g., exchange rate observations, stock prices and trans-

actions in government debt) are observable and available on a fairly cur-

rent basis. Such currently observable data provide information about the

sources of random shocks to the economy. Financial policy should be con-

ducted in such a way as to extract the information contained in observ-

able financial market data and exploit it in achieving the authorities'

stabilization objectives.

In this paper I evaluate the effect of general linear policy rules on

the behavior of a number of stochastic linear rational expectations models.

This extends the analysis of Aoki and Canzoneri [1979] who only consider

feedback policy. The implications of the policy rules are evaluated by

considering the first two moments of the joint distribution of the state

variables of the model. The short—run policy effects are measured by the

single period mean and variance. The long—run policy effects are evaluated

by considering the steady—state mean and variance (see also Turnovsky

[1976]).
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The importance of distinguishing oetween variability and uncertainty

is brought out. The current period variance can be vowed as the sum of

an anticipated component arid an unanticipated component. By making use of the

information contained in currently observed variables the policy authority

can reduce——and in the simple models of Poole, Boyer and Siegel eliminate——

the anticipated variance of the target variables. It cannot affect the

unanticipated component. This unanticipated component is, as Siegel [1978]

points out, given by the conditional variance——the conditional second

moment about the conditional mean, where the conditioning information set is

the subset of the state that is currently observed.

The formal analysis is presented in Section 2. An application to

Boyer's model of foreign exchange market intervention complements the

theoretical exposition.

2. General Linear Policy Rules in Linear Rational Expectations Models

The simplest possible linear rational expectations model is given in

equation (1).

(1) z Az +Bz +Cx +u.
t t—1 itt—i t t

z is a vector of endogenous (or state) variables. x is a vector of

policy instruments. u is a vector of i.i.d. random disturbances with

a zero mean vector and contemporaneous variance—covariance matrix EU

is the rational expectation of t as of t—i. It is defined by

ztlcj = E(zI). I. is the information set, common to the public

and private sectors, available at the beginning of period t—i. E is the

mathematical expectation operator. Equation (1) will be generalized in

three directions represented in equations (1'), (1") and (1"').

(1') z = Az1 1- B1z Ii + B2z2 + Cx + Ut.
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In equation (1'), if policy at t can be based on information that became

available in t—l (or t), it will he based on more recent information than

was available when private agents formed expectations of in period

t—2, even if at each point in time, public and private agents have the

same information available. Multi—period nominal wage or price contracts

can generate models like (1').

(1") z = Azi + BizI + BZt+iIt +
Cx + Ut.

In (1") the current value of z depends on current expectations of the

future and on past expectations of the present. An example of such a

model Is an IS—LM model with a Lucas supply function. If Pt denotes the

log of the price level, current real output is a function of Pt t!t—l

The real interest rate will be a function of
t+lIt

— In (1'") agents

last period made forecasts two periods into the future.

(1") z = Azi + BZt+iIt i.
+ Cx + Ut

Policy behavior is specified in equation (2)

0 1 — 1/
(2) x = Gz + Cz1 + x + Vt. —

GZ is the "current response component" of the policy rule. Current

realizations of the state partly determine the current value of the in-

strument. This will be interpreted in more detail below. GZi is the

"feedback component" of the policy rule' x is the non—stochastic "open

loop component" of the policy rule. It is known in advance for all future

time. v is a random vector representing the "stochastic component" of

the policy rule' It is i.i.d. with a zero mean vector. Its contemporaneous

variance—covariance matrix is and its contemporaneous covariance matrixV
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with u is given by . The luI:orn)al:ion set avallal)] e to both Sec tors
t uv

is given in (3)

0 1
—

(3) 1 , C , z •, x •, z •, x . , x , , }
t—1 t t t—1 t—1 t—1 t--i—u t U V UV

Thus both sectors know the deterministic and stochastic structure of the

model. Policy behavior can be forecast using (4).

0 1 —

(4) x .=Gz .+Gz .± . i>0
t t—1 t t t-.i t t—l t—i t

The model of equation 1 contains the "policy surprise model," according

to which only unanticipated policy matters, as a special case. Note that

e can be contained in z. If the submatrix b1 of B1 corresponding to

is equal to the negative of the C matrix, policy enters the model

only as C(x — x ).tt—l t

The rational expectations solution of the model given in (1), (2)

and (3) is given in (5).

(5) z =Az +Cx +e
t tt—1 tt t

(6a) A = [I - (I - CG)B11 (I — CG°Y1 (A + CC')

(6b)
= [I — (I —

CGY1B1}1 (I — CG)1 C

(6c) e = (I — CG) (Cv + u)

Aoki and Canzoneri analyze the special case
of this model when the

policy rule is simplified by setting G and identically equal to zero.

Considerable interest attaches to the dependence of the first two

moments of this stochastic difference equation on the various components

of the policy rule. It is to this that we now turn.
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The asymptotic mean and variance of z

By successive substitution in (5), z can be expressed as in (7):

t—1 t—2 j —
t—2 j —

(7) z II A.z0 + e TI A.e.1+ Cx + TI

i=0 j=O i=0
- j=O i=O

If the policy matrices G and were time—invariant, i.e., = G and

= G1, and if the open—loop component were a constant , equation (7)

simplifies to:

t—l_.
(71) z =Atz0+ E Ae •+ E ACx

t j=0 tJ
j=O

The expectation E(z) is given by

- t—l_.
(8) E(z) = z =

Atz0 + E ACx
j=O

If all characteristic roots of A have modulus less than unity, the mean

function will, as t approaches infinity, approach the limit:

(9) 1im==[I_A)1Cx
t-

Thus the asymptotic or steady state mean function will in general depend on

three of the four policy components: the current response component

(G° in A), the feedback component (C1 in A) and the open—loop component.

The stochastic disturbance term e in (5) is i.i.d. with a zero mean

vector and contemporaneous variance—covariance matrix E given by

(10) E = (I — CG0) [CE C' + CE + E C' + E ] (I — CG°)1
e t v uv uv u t

Let z denote the deviation of the state variable from its unconditional

mean, i.e. = z — z. The unconditional variance of z, for the case

in which G is time—invariant is given in (11).
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(11) E(z* z*') + A A'
2 A'2 + . . . . + Atl

t L e C e C

The unconditional asyml)tOtiC var:i.aitcc of is given by

(12) urn E(z* z*') = + + ,2 +t t z e e et-
If the eigenvalues of A all have modulus less than unity, the right—hand

side of (12) will converge to the expression given in (13).

(13) =

—1
is a matrix whose typical component is given by w.. = p..(1 — X.X.)

th .

A. is the i characteristic root of A. p.. is the typical component of

the matrix N which is defined by: M =e'' or M' = . denotes
a matrix consisting of columns of the right--characteristic vectors of A.

Note that E depends on the current response matrix G0 and on the

second moment of the stochastic component of policy, and .

Even if the current response matrix were the zero matrix and even if

policy behavior were non—stochastic (E = = 0), policy will affect

the asymptotic variance of z, because E depends not only on e' but also

on A, which is a function of the feedback component C1. Both the first

and second moments of the steady—state distribution of will therefore

in general depend on the deterministic components of the policy rule, even

if there is no current response of the instrument vector to the state

vector.

The unconditional single—period mean and variance of z

From equation (5) it is easily seen that the unconditional single—period

(or current—period) expectation of z is:

(14) E(z) = Atzt 1 + tt
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This is a function of the current rcsponse component, in A andC,
of the feedback component in and of th? open—loop component x.

The unconditional current—period or singl c—period variance of z is

(15) E(z z') = E(ee') = e,t
Thus the single—period unconditional variance of z depends on the current

response component, G, and on the stochastic component, Li and It

is independent of the open—loop component and of the feedback com-

ponent G. Boyer [1978], Roper and Turnovsky [1978] and Black [1976, 1977]

analyze foreign exchange market policies aimed at minimizing the uncon-

ditional single—period variance of real income. Woglom [1979] analyzes

a rational expectations extension of Poole's model (Poole [1970]) in which

a monetary policy rule is chosen that minimizes the single—period uncon-

ditional variance of real income. The policy rule consists of a current

response component and a feedback component. Woglom's conclusion that the

variance of real income is independent of the feedback component is correct

for the single—period variance but not for the asymptotic variance.

In general, the stabilization policies pursued by the authorities can

be represented as the selection of values for the policy matrices that will

minimize some bilinear form of the appropriate variance—covariance matrix,

i.e. minimize w E w with respect to C° and G1 or minimize w E w with

respect to °. 1w s a row vector, w2 a column vector.

1 e 2

The conditional single—period mean and variance of z

The interpretation of the current response component of policy is by

no means obvious. The value of the policy instruments in period t, x, is

made contingent on the realized value of the state vector in period t, z.
This realized or equilibrium value of the state vector is in turn co—determined
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by the value assigned to the policy instrument vector n t. The ability to

plan and execute current policy decisions contingent on the current value

of the state vector, requires that the state vector can be currently ob-

served, whoiiy or partly. Current policy is determined on the basis of at

least partial information about the current state. Such partial information

about the current state can be modelled in many ways. One natural way to

proceed is to take an errors—in—variables approach: the policy maker at

time t does not observe z but z = z c, where is a random, i.i.d.

0' 1 —observation error. If the true policy rule were x Cz + + x,

this would provide an explanation of the error term v In the policy func-

tion, because the policy rule can now be rewritten as: x = Gz + +

+ v, where v = This is not the approach adopted in this paper.

Instead I shall assume that when the response of x to is decided, the

policy authority observes some linear combination of the current state,

i.e. he observes If is invertible, knowledge of tYis equivalent

to the observation of z, as the policy authority knows We do not

assume to be invertible but we do assume it to be of full rank. The

current response of the policy instrument is a linear -function of this

currently accrued information. Thus the current response matrix G can

be viewed as the product of the current information matrix
tp and the

true current policy response matrix G.

(16) =

If the private sector has access to the same partial information as the

public sector, and if it is uncertainty about rather than merely

ability of z that matters, the conditional variance of z rather than its

unconditional variance should be evaluated, with 'conditional' referring

to the knowledge of
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The conditional. first moment is found quite easily.

(17) E(Z IWtZt) 'tet' -- Eet' te't' ]l

Thus the conditional expectation of is a weighted average of the uncon—

ditional expectation and the c.urrent partial observation on z. Consider

some special cases. In the information matrix is invertible, E(zIz) =

as if the complete state is currently observed. If the information matrix is the

null matrix, E(zI!1z) = Azi + When there is no information con-

ditioning the forecast, the conditional expectation equals the unconditional

expectation. Note that unless there is full current information, the con-

ditional expectation will depend on C0, C1, , E and E
t t t V UV

The conditional variance of that we are interested in is given in

(18). It is the conditioning information set.

(18) Var (zII) = E([z — E(zjI)] [z — E(ztjlt)] II)

This is indeed the most appropriate definition of the uncertainty about

the conditional second moment of z around the conditional mean of z. It

is instructive, however, to first consider the unconditional variance about

the conditional mean, given in (19).

(19)

Two limiting cases arise when is invertible (the full current information

case) and when is the zero matrix (the no current information case).

When is invertible, the unconditional variance about the conditional

mean is zero. When is the zero matrix the unconditional variance about

the conditional mean equals Ze the unconditional variance about the un-

conditional mean. The unconditional variance about the conditional mean

depends on the current information matrix and on the determinants of



—1 0—

the unconditional variance about the unconditional mean, . The lattere,t
is, as was shown in equation (10), a function of the current response

matrix G° and of the stochastic component of policy, through and .
Let (zt — E(ztII)) (z — E(zII)) be denoted by P. If is on n--vect:or,

will be an n x n matrix. vec (A) denotes the n2 X 1 column vector COfl—

sisting of the n stacked columns of A, i.e. vec(A) = [X1A2 . .

is the th column of A. To obtain the conditional expectation of A is

therefore equivalent to obtaining the conditional expectation of vec(A).

The information set conditioning the expectation is the variance—covariance

matrix of the disturbances, and the current observation ' A 'p'. We can
e ttt

express this in "vec" form by using the result that vec(ABC) = (C' A) vec(B)

(Nissen [1968]). Thus the information set conditioning the expectation is

= vec(P))', vec(E)'}

We then apply the formula for the linear least squares predictor (see. Shiller

[1978]):

(20) E[vec(AY lIt] = I[E(I'It)]' E(It'(vec(At))}

It is readily seen that the evaluation of (20) will in general be extremely

messy. E(I'It) and E[I'(vec(A))']involve expectations of fourth powers

of the elements of the z vector. The assumption of normality of the distur-

bances is therefore essential for practical purposes.

reign exchange market

intervention

It is quite easy to derive the explicit solution for the two—dimensional

case (z = (zi, z2)') when only z1 is observed concurrently. This cor-

responds to the case studied by Poole [1970], in which the interest rate

(or money stock) is observed concurrently but real income is not. It is also
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the case studied by Boyer and by Roper and Turuovsky in which the exchange

rate (or money stock) is observed concurrently but: real output is not.

For the two variable case, o. a . If tlic first variable,e 11 12

La12
a22

is observed while the second one is not, = [- 0]. Applying (20)

we obtain the following conditional variance—covariance matrix for

(z1, z2)'

(20') E[veC(A)lIt] = E[(zi_E(z1II))2fI] 0

E[(z1_E(z1II)) (z2_E(z2II)) lIe]
0

E[(z1_E(z1II)) (z2_E(z2II)) I]
0

2 2 —l

E[(z2_E(z9! ') I iJ a22—a12a11

The simplicity of this result is due to the fact that z1 is observed con-

currently; E(z1_E(z1jI)ll) is therefore equal to zero. Because of this

special structure, the conditional variance about the conditional mean

equals the unconditional variance about the conditional mean, given by (19).

Note that the conditonal variance of the unobserved variable will be strictly

less than the unconditional variance, unless the errors in the reduced form

equations of the observed and the unobserved variables are uncorrelated, i.e. unless

2 —l 2 .

(a12 0). a22 — a12 a11
=

a22[l
—

p12
], where p12 is the correlation

coefficient between e1 and e2.

As an example, consider Boyer's model of foreign exchange market inter—

5/
vent1on It can be summarized as follows:
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(22)

z2 — az1
— bC =

U1

z2
+ Cz1 — dM =

U2

—12-

z2 is real output, z1 the spot exchange rate, G the level of government

spending and M the stock of money. u1 is the goods market disturbance,

u2 the money market disturbance. The exchange rate is observed con-

currently, the level of output is not. There are two non—stochastic cur—

rent response policy functions, relating the level of government spending

and the stock of money to the exchange rate:

(23)

(24)

z =0gi
M+ z = 0ml

6/

Substituting (23) and (24) into (21) and (22) we obtain the reduced form

equations

(25) z1 = [u2
— u ] [a + c + d — b

1 m g

(26) z2 = [(c + d6)Ui + (a — bg)U2}
[a + c + gI1

The unconditional variance of output is:

(27) E(z22) =
a-bS j2

2+1 I

Ia+c+dS —b6 I

L mgj

2(c+dó )(a—b5 )
2+ in g

(a+c+d6 —b )2
m g

u1u2

(28) E(z22jz1) = E(z22)
-

[E(z1z2)]2 [E(z12)}

2 2 ,
—IG J

= U1 U2 U1U2 =

2 22cr
U1 U2 U1U2

The conditional variance of output about its conditional mean, with the

exchange rate, z1, as the conditioning variable is according to (20')

2 2r 2
a a (l—p
U1 U2 U1U2

2 2
a +a —2a

U1 U2 U1U2
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The conditional variance can, with a little arithmetic, he shown to he

equal to the minimal, value of the unconditional variance. The lat:ter is

obtained by minimizing (27) with respect to the policy instruments and

Thus current response policy can alter (and in general reduce) the

anticipated variability of currently unobserved real income. It cannot

alter the residual uncertainty (i.e. the unanticipated variance) of real

income, if private agents have the same information as the public economic

agent engaged in the current response policy.

The essence of this result, that the policy authorities can affect the

single—period anticipated variance but not the single—period unanticipated

variance should survive generalization to a greater number of instruments

and state variables. Note however, that in the example under consideration,

the number of unobserved variables (1) equals the number of linearly inde-

pendent policy instruments (1). If the number of unobserved variables (or

more generally the order of the rank deficiency of the 'Y matrix) were to

exceed the number of linearly independent instruments, the policy authorities

will not be able to eliminate all anticipated variance. A trivial example

is a "model" consisting of a single stochastic state variable and no in-

struments. If the state variable is observed concurrently, the single—

period conditional variance Var(ztz) is zero. This however is not the

minimized value of the unconditional variance, Var(z), which is indepen-

dent of the non—existent instrument. If randomness is incorporated in the

policy reaction function, the single—period conditional variance will de-

pend on the stochastic component of policy. A multi—period objective
T

functions such as E E(z till) will also yield a role for policy in
t=l

reducing true uncertainty.

One— and two—period 1aged expec tat Ions of the current s tate

To endow a macroeconomic rational expectations model, open or closed,

with the inertia or sluggishness in price and quantity adjustment character-

istics of many commodity and labor markets, it is necessary to introduce
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expectations of z formed at several different dates before t. The pro-

cedure will be illustrated with ore-- and two—period forecasts of x. The

extension to an arbitrary finite length of the forecast horizon can be

found in Aoki and Canzoneri [1979]. The new state equation is equation (1').

The "policy surprise" version of the model is obtained by assuming that x

is again included in z. b1 and b2 are the submatrices of B1 and B2 cor-

responding to xdti and xtk2. If —c b1 + b2, policy can only affect

the behavior of via policy forecast errors. Because of the lag in ex-

pectation formation, however, deterministic feedback control (G) now can

affect the single—period variance of z. This is because policy forma-

tion can be. based on more recent information than was available to private

(and public) agents when some of the expectations that influence the cur-

rent state were formed.

The rational expectations solution of equations (1') and (2) is most

easily found by the method of undetermined coefficients. After substitut-

ing (2) in (1') we obtain

(29)
= K + K1 z1 + K2 z1_1 + K3 z12 + e

where

0—1 —
(30a) K0 = (I —

CG) Cx

(30b) K1 = (I. — CG)1 (A + CG)

(30c) K2 = (I — CG)1 B1

0 —1

(30d)
K3 = (I —

CG) B2

(30e) e = (I - (C v + u)

Use the tentative solution given In (31) to derive and
ztlt2•
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(31) z = + R1 z1 + R2 e + R3 e_1

Substituting these expressions for and into (29) and equating

coefficients between (29) and (31) we obtain the following expressions for

R0, R1, R2 and R3 (all relevant inverses are assumed to exist).

(32a) [I -
(K2 + K3)]1 K0

(32b)
= [I — (K + 1(3)11 K1

(32c) R2 = I

(32d) R3= -(I — K3(I - (K2 + K3))1 K1

As pointed out by Aoki and Canzoneri [1979], the number of lagged expecta-

tions of the current price can be extended without technical complications.

If the earliest forecast of z in a generalization of (29) is the

solution analogous to (31) will be a first order difference equation with

an (n_l)th order serially correlated disturbance vector.

Equations (30), (31) and (32) make clear how the four components of a

linear policy rule, current response, feedback, open—loop and stochastic,

affect the probability distribution function of the z• The major dif-

ference between this model and the single period forecast lag model of

equations (5) and (6) is that the stochastic process that characterizes

the disturbances is now also affected by the feedback component of the

policy rule. The matrix R3, premultiplying the lagged disturbance term

1 0
ei is a function of (as well as of Ge). As before we can derive the

unconditional asymptotic mean and variance—covariance matrix of z and the

conditional and unconditional single—period means and variances. For rea-

sons of apace this is left as an exercise.
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Expectations of the future

Rational expectations models incorporating past or current expectations

of the future are significantly more difficult than ilioe incorporating only

past expectations of the present——the kinds of models considered so far.

The simplest case involves forecasts no more than one period into the future.

Such a model is given in equation (1"). Combining it with the poli.c.y rule

(3) we obtain:

(33) z = K + K1zt + K2zI + K3z+iI + e
where

(34a) K° (I — CG0) Cx
t t

•(34b) K1 = (I — CG)1 (A + CG)

(34c) K2 = (I —
CG)1 B1

(34d) K3 = (I — CG)1 B

(34e) e = (I — CG) (Cv + u)

Equation (33) can be used to solve for z as a function of z
tlt—l t+lt—1

z11 = [I — K2]1 K + [I — K2]1 K'Zi + [I — K2]1 K3Z+iIi

in turn depends on
z÷j1:

zt+11t1 I_K2]1K+i+I_K2]'K1[I_K2]1Kt

where A [I — [I-K2]1K1[l-K2]1K311.

To find a unique solution for (33) therefore requires not only an

initial condition for but also a condition on the expectation forma—
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tion process. With such a condition, which has frequently been chosen to

be a "terminal condition" on the asynptotic behavior of the forecasting

process, we can solve for z1_1 and thus also for Substituting

these solutions in (33) we obtain the rational expectations solution of

the model which can now be ured for policy simulation and optimization.

To save space, I shall discuss the non—uniqueness issue in the con-

text of the very similar model given by equation (1'"), which has economic

agents forecasting more than one period into the future.

Combining (1'") with the policy rule (2) we obtain (35).

(35) = K + K1z + K2z +l + e
where

(36a) K° = (I CG0)1 Cx

(36b) K' = (I — CG)1 (A + CG)

(36c) K2 = (I — CG) B

(36d) e = (I — CG)1 [Cv + u]

It is easily seen that in (35) z111 depends on the forecast, as of t—l,

ofz
t+2

(37a) =
[I_K1K2]_1[K÷l+K1K]+[I_K1K2]_lKlKlz_l+[I_KlK21lK2zt+2jt_l

Similarly, z21_1 will depend on zt+3Hl etc.

(37b)

+ [I_K1[I_K1K2]_1K2]_lKl[I_K1K2I1K1K1zt_l

+ [I_K'[I_K1K2]K2] 1K2z÷3l _i



—18—

Siniply specifying an initial condition for say z0, in (35) does there-

fore not suffice to yield a unique solution. (35) is a second—order dif--

ference equation. We need an additional set cf restrictions on the ex-

pectations formation process to yield a unique solution (see Taylor [1977]

and Shiller [1978]). Sometimes the conditjon that the expectation formation

process be stable suffices to find a unique solution, but thi.s is not gen-

erally true. Another important aspect of the solution to (37) has been

brought out by Shiller [1978]. Lead (37a) by k periods and take the con-

ditional expectation as of t—l. This gives:

(38)
ZF1÷k t-l IKK] [Kt+k+l+KKt+k]+ KKJKKzt1+kIt—l

+ [I_K'K2]K2zt+2+kJ t—l

(38) is a partial difference equation in k and t. It therefore requires an

infinite number of terminal conditions to specify the solution completely.

For each t, we. have a difference equation in k which requires an approprIate

terminal condition for its solution. For a different t, this whole process

needs to be repeated. In Shiller's words ". . . . people in effect change

their minds in each time period about terminal conditions" [Shiller, 1978,

p. 26]. Clearly, the conceptual and technical problems involved here have

only just begun to be explored. Having found a solution for zt+llt_l we

substitute it into (35)and obtain a model which no longer contains any

expectations terms.

A fairly arbitrary but simple way of cutting the Gordian knot of non—

uniqueness is given by Chow [1978]. He assumes that for some sufficiently

large T, ZT+lIT_1 is proportional or equal to Substituting zT+l!T1 =

2TIT—l
into equation (35) for t = T, we obtain

= {I + K2[I - K2] 1}K + fI + K2[I — K2] 1}K'zTl + eT

Equation (39) can now be used to derive zTIT2• This yields:
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(40) ZTT2
1 + K[T -. K"] 1}K0 + l K[1 —

ZT1IT2
is found by taking expectations of (35) for t T—l. We obtain

(41)
ZTlT2

= K1 + KZT2 + K2ZTJT2

Substituting ZT1IT2
from (41) into (40) we obtain ZTT2 as a function ot

known parameters and z ,. This solution for z is then substituted
TT--2

into (35) for t = T—l. This yields:

(42) ZT1
= [I + K2[I - (I + K2[I — K2] 1)K1K2] 1] K

+ K2[I — (I + K2[I — K2] 1)K'K2] [I + K2[I — K2]1]K1K1

+ [I + K2[I — (I 4- K2[I — K2] 1)K1K2] 1[I+K2[I-K2] ']K1]K'zT2 + eTl

(42) can then be used to find
zTlIT3

(which requires the evaluation of

zT2IT3). This solution for 2T—ljT—3 is then substituted into ZT_2 =

+
K'ZT3 + K2ZT itT 3

+ eT2. In this way, equation (35) is solved

backward in time. In general the equation for is

T
o -

z Rz + E D •K.+e
t t t—l t,i i t

This is also the general form of the solution for (33) if we impose the

condition that for some large T,
zT+lIT

=
ZT• Rt and Dt. are functions of

K1 and K2 derived by repeated application of the procedure outlined in

equations (37a) — (42).

Note that with e given by (36d) the single—period unconditional vat iance

of will depend on the current response component of policy, C° and on

the stochastic components, Z and Z , but not on the feedback component

G'. The asymptotic variance wiii however also depend on the feedback com-

ponent. The single—period unconditional mean and the asymptotic mean depend
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on the current response component , the iee(lb1f'k component and on the open—

1001) component, which i enibecided in K?.

Conclusion

The scope for policy in the four models given by equations (1) — (1'")
can be summarized as follows. The conditional and unconditional means of

the state vector z, whether single—period or asymptotic, will depend on

the three non—stochastic policy components, C0, G1 and x . Through its

dependence on e' the conditional mean will also depend on the stochastic

component of policy. The asymptotic variance will depend on all four policy

components. The unconditional single—period variance will depend on the cur-

rent response component and the stochastic component, but not on the feed—

back component, except in the case of model (1') which incorporates several

lagged forecasts of the current value of z.

If variability of z, whether anticipated or unanticipated, is of con-

cern to the policymaker, the unconditional variance is the appropriate focus

of policy concern. If uncertainty about z, i.e. unanticipated variability

is what matters, the conditional variance is the appropriate object

of policy design. In Poole's and Boyer's models the single—period

conditional variance of output is independent of the current response

component of policy. The design of optimal linearpolicy rules in

stochastic dynamic rational expectations models along the lines sketched

here, has applications in virtually all areas of macroeconomic stabiliza—

tipn policy.



FOOTNOTES

important gencralization oF equation (2) would be to make x1

depend on current or past predictions of the future or the present, e.g.

[2'] x = GZ + + v +
j=O i=O

The analysis of the simpler equation (2) is still sufficiently complex

for me not to opt for the greater generality of (2') as yet. I am in-

debted to Pentti Kouri for bringing this up,

-'See Chow [1975] and Buiter [1979].

has been objected by several colleagues that an instrument——

almost by definition——is something that can be controlled without error.

I would argue that it is better to model any behavioral relationship,

and certainly one representing the actions of a complex, bureaucratic

organization like a central bank or a treasury, as stochastic.

--"The matrices I — CG and I — (I —

CG) 'B1 are assumed to be of

full rank.

-'The first formal analysis of optimal foreign exchange market inter-

vention was in Stein [1963].

-'Because of the linear dependence of the two policy reaction functions,

one could be dropped without changing the analysis. The exposition stays

as close as possible to Boyer's original analysis.
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