NBER WORKING PAPER SERIES

AN ADAPTIVE NONLINEAR LEAST-SQUARES
ALGORITHM

John E. Dennis, Jr.*, David M. Gay*#,
and Roy E. Welsch+

Working Paper No. 196

COMPUTER RESEARCH CENTER FOR ECONOMICS AND MANAGEMENT SCIENCE
National Bureau of Economic Research, Inc.
575 Technology Square
Cambridge, Massachusetts 02138

August 19877
Preliminary

NBER Working Papers are distributed informally and in limited
numbers.

This report has not undergone +the peview accorded official
NBER publications; in particular, it has not yet been sub-
mitted for approval by the Board of Directors.

%Cornell University. Research supported in part by NSF CGrant
MCS76-00324.

o #%NBER Computer Research Center. Research supported in part
L by NSF Grant MCS76-0032k.

TMassachusetts Institute of Technology. Research supported
in part by NSF Grants S0C76-14311 ar.d MCS76-00324.

ABSTRACT

NL2SOL is a modular program for solving the nonlinear
least-squares problem that incorporates a number of novel
features. It maintains a secant approximation S to the
second-order part of the least-squares Hessian and adaptively
decides when to use this approximation. We have found it
very helpful to "size" S before updating it, something
which looks much akin to Oren-Luenberger scaling. Rather
than resorting to line searches or Levenberg-Marquardt mod-
ifications, we use the double-dogleg scheme of Dennis and
Mei together with a special module for assessing the quality
of the step thus computed. We discuss these and other ideas
behind NL2SOL and briefly describe its evolution and current

implementation.

CONTENTS

Introduction .« « « + ¢ o« e e e e e e e e e e e e e 1
The Nonlinear Least-Squares Problem 2
An Augmentation of the Gauss-Newton Hessian . . . Y
Sizing the Hessian Augmentation . . « « =« « « - 7
Adaptive Quadratic Modeling . . . + « « « ¢ - - - 8
Linear Algebra . . « « « « « « » ¢ & o e e e e 12
Test RESULLS « « + o o o+ o o o =+ o o s e 0 e e e e 15
Acknowledgment« o e e s e e e e e e e 16
References . « « o o o o o o s s+ e s s e e e e .19

Appendix: NL2SOL Usage SUMMATY . » « + o+ o« o 22

AN ADAPTIVE NONLINEAR LEAST-SQUARES ALGORITHM

by
J.E. Dennis, Jr., David M. Gay, Roy E. Welsch

1. Introduction

This project began in order to meet a need at the Computer
Research Center of the National Bureau of Economic Research for
a nonlinear least-squares algorithm which, in the large residual

case, would be more reliable than the Gauss-Newton or Levenberg-

Marquardt method [Dennis, 1977] and more efficient than the secant
or variable metric algorithms [Dennis & Moré, 1977] such as the

Davidon-Fletcher-Powell, which are intended for general function minimization.

We have developed a satisfactory computer program called
NL2SOL based on ideas in [Dennis & Welsch, 1876] and our primary
purpose here is to report the details and to give some test results.
On the other hand, we learned so much during the development which
seems likely to be applicable in the development of other algorithms
that we have chosen to expand our exposition to include this experience.

In section 2 we will set out the problem and the notation we
intend to use. Section 3 will deal with our way of supplementing
the classical Gauss-Newton approximation to the least-squares
Hessian by various analogs of the Davidon-Fletcher-Powell method.
Section 4 will briefly describe our interpretation of the Oren-
Luenburger [Oren, 1973] sizing strategy for this augmentation.

In section 5 we describe our adaptive quadratic modeling of the
objective function. Section 6 contains a discussion of the linear

algebra involved in extracting information from the quadratic

models and section 7 contains test results. The NLZSOL Usage

Summary is included as an appendix.

2. The Nonlinear Least-Squares Problem

There are good reasons for numerical analysts to study this
problem. In the first place, it is a computation of primary im-
portance in statistical data analysis and hence in the social
sciences, as well as in the more traditional areas within
the physical sciences. Thus a computer algorithm able to deal
efficiently with both sorts of data is widely applicable.

Although applicability should always constitute sufficient
justification to tackle a problem, in this case there is also an
opportunity for more far reaching progress in numerical optimiza-
tion. In order to be more specific, it will be useful to have a
formal statement of the nonlinear least-squares problem.

We adopt notation consistent with fitting a model to n
pieces of data using p parameters: Given IQ:HJ>+ZRH, we wish
to solve the unconstrained minimization problem
.(x)2

(2.1) min £(x) = %R(x) R(x) =%) r,
1

ne-s

r
1
Notice that for J(x) =R'(x) = (3:r,(x)), the gradient of f 1is:

J

(2.2) VE(x) = J(x)TR(x)
and the Hessian of f is:

(2.3) VZEG) = JGOTIG0) +
1

i(x)V“ri(x)

He~13

r
1

Since we are seeking a minimum of f, we would wish to have

f(x*) = 0, an obviously global minimum; in the more realistic case
when f is not anywhere near zero, we will be forced to terminate
on small parameter changes or to use some version of a gradient
test. These stopping conditions are controlled by FCONCR, GCONCR,
GRDMIN, and XCONCR (see the NL2SOL Usage Summary). For nonzero f,
the test involving GCONCR, which is explained in more detail in

[(Dennis, 1977], is a scale-free test on the maximum of the
absolute cosines of the angles between R(Xk) and the p columns
of J(xk). This is useful because it is clear from (2.2) that
Vf(x*) =0 and R(x*) # 0 corresponds to R(x*) | C(J(x*)), the
column space of J(x*). Thus it is essential as the iteration
proceeds that J(xk) be approximated very well in the usual case
when p < n and R(x#®*) £ 0.

In addition to making a precise convergence test possible,
having an accurate Jacobian matrix means that a good approxima-
tion to a portion of the Hessian is available as a byproduct of
the gradiept computation. In fact, it is often possible to igncre
the second order term Zri(x)vzri(x) of the Hessian altogether on
the grounds that if the nonzero residuals are not of a sort that
reinforce their nonlinearity, J(X)TJ(X) is a sufficiently good
Hessian approximation [Wedin, 1972, 1974a-c], [Dennis, 1977]. 1In
the resulting Gauss-Newton method, the "Newton step'" for x. 1is

K

defined by the linear system of equations
(2.4) T(x)T (x, s, = ~3(x) R(x,)
’ IS k"7k k L

Since (2.4) is the system of normal equations for the linear

least-squares problem

(2.5) min %(J(x)s + ROgNT(I(xIs + RGy))

it is better to obtain sy from a QR or singular value decomposi-
tion (SVD) of J(x) (see [Golub, 19691).
We can view (2.5) as defining a quadratic model in x= ¥ ts

of the least-squares loss function (2.1):

(2.6) S = mRGxITROG) + (xox) TI) TRGx) +
+ H(xr-x)TJ(X)TJ(X Y(x-%,)
k k k k
From (2.1), (2.2), (2.3) we see that the difference between tliz
Gauss-Newton model and the usual Newton model obtained from a

quadratic Taylor expansion around X, is just the term

%(x—xk)T[gri(xk)Vzri(xk)](x-xk).

3. An Augmentation of the Gauss-Newton Hessian

Our purpose in this section 1is to suggest a way to augment
the Gauss-Newton model (2.8) by adding an approximation to the
difference between it and the quadratic Taylor expansion to

obtain

(3.1) S0 = uROOTRGy) + eox) TI GO ROy +

+ %(x-xk)T[J(xk)TJ(xk) 5. 1xx,)

We will suggest an approximation rule for Sk which 1is

simple, general and geometric. The apprcach is to decide on a

set of desirable characteristics for the approximant and then to
select Sk+l to be the nearest such feasible point to Sk' The
rationale is that every point in the feasible set incorporates
equally well the new information gained at Xp47 and that taking
the nearest point (in a sense to be explained later) corresponds
to destroying as little of the information stored in Sk as pos-
sible,

Currently we begin with SO- 0, since this is both cheap and

reasonable 1in the sense that q§= q%.
First let us decide on the properties Sk+l should have.

. . . 2
Remember that it is to approximate ZIE(xk+l)V ri(xk+1) and so
it should obviously be symmetric. It is easy to find examples
where the term to be approximated is indefinite, so we reject any

restriction on the eigenvalues of S

T
k+1 T I+l

1> except that it 1is

reasonable to make S Jk+l positive definite if this 1is
consistent with other properties. Finally, we want to incorpo-

rate the new information about the problem, J and R into

k+1 k+1?

Sk+l' The standard way to do this is to ask the second order
approximant to transform the current x-change into the cbserved

first order change, i.e.,

»

2
Sipqbxy 2 Irs (320720, (%),) 8%,

k+1

(3.2) 2 I (% YV (R g 1) = Vg (g)
_ T T _
T Iie1Rrer T IR oy

It is perhaps worth noting in passing that we tested several

choices for Y including the Broyden-Dennis [Dennis, 1973] choice

T T T .
Jk+1Rk+1"JkRk"Jk+le+lek and the Betts [1976] choice

JT R - JTR - JTJ Ax Happily, (3.2), which makes more

k+1 k+1l kk k" k"7k*® ? tei

use of the structure of the problem, was the slight but clear win-
ner. In summary then, we choose SO =0, Sk+l€ ;X«= {s:8= ST and
SAx, = Yt

Qur choice of Sk+l from A4 is made in analogy with the DFP
method for unconstrained minimization [Dennis & More, 1977].
Before giving the formula and its properties, we review some use-
ful notation.

If A is any real matrix, then the Frobenius norm of A is
HA”F = (ZA;j)%. If B is any symmetric positive definite matrix,
then B has a symmetric, positive definite square root, B%.
Define ILA”F,B: HB-%AB—%HF. This weighted Frobenius norm is a

natural analog of the Frobenius norm for a matrix when the stan-

i
dard inner product norm on the domain is replaced by |[[x||;= (xTBx)*.

The following theorem gives the update formulas as well as their
defining properties. The proof is a straightforward modification

of Theorem 7.3 of [Dennis and Moré, 1977].

THEOREM 3.1: Let vTAxk> 0. Then for any positive definite sym-

metric matrix H for which HAxk= Vi,

min ”S"SKI|F,H for Sed

is solved by

T T
(yk— SkAxk)v +v(yk-S Ax
T

k

k4%)

AXTv

T T

(AXEV)Z

In NL2SOL we compute Sk+l corresponding to v = Agk=

T T . . .
k+1Rk+l"JkRk‘ This corresponds to welghting the change by any

positive definite symmetric matrix that sends A%, to Agk. Thus

J

we hope the metric being used is not too different from that in-

duced by the natural scaling of the problem.

4. Sizing the Hessian Augmentation

It is well known by now that the update methods do not gener-
ate approximations that become arbitrarily accurate as the itera-
tion proceeds. On the other hand, we know that for zero residual
problems, Sk should ideally converge to zero and that if it does
not at least become small in those cases, then the augmented
model (3.1) cannot hope to compete with (2.6), the Gauss-Newton
model.

The crux of the problem can be seen by observing that even
if Rk+l happened to be zero and even if Yy defined by (3.2) were
used to make the update to Sk’ then Sk+lek= Yy = 0, but Sk+l
would be the same as S, on the orthogonal complement of '{Axk,v}.

We use a straightforward modification of the Oren-Luenburger
self scaling technique [Oren, 1973). The idea is to update 71,85,

k7K
m 3
rather than Sk’ to get Sk+1' The scalar Ty 1s chosen to try

to shift the spectrum of Sk in hopes that the spectrum of TkSk

will overlap that of the second order term we are approximating.

We could take the scalar to be

T T 2 Tﬁ =1
ARy Yy . Axk[Zri(xk+l)V ri(xk+l)]Axk A%, Sy 8%,
T - T T
AXkSkAXk AxkAXk AxkAxk

We prefer to call this sizing, and since we are primarily concerned

with Sk being too large, we actually take

T

AxCy
(4.1) T, = min k7K 51
K AXES, AX
k"k" "k
Whatever this strategy is called, notice that when Rk+l: 0,
our y, = 0, and so Ty = 0 and Sk+1: 0. The use of sizing factor

(4.1) made a great difference in the performance of the algorithm.

5. Adaptive Quadratic Modeling

In section 3 we noted that SO= 0, which means that the
augmented model (3.1) is initially equal to the Gauss-Newton model

(2.6). Tests have shown that often qi(x) predicts f(x)

k+1 k+1

better than qi(x) for small k, so it seems useful to have

k+1

some way to decide which model to use to determine the step.
Betts [1976] also starts with SO= 0, and he takes Gauss-
Newton steps for at least p iterations and until Axk is small

enough to make it likely that Xy is near x¥*. It seems there-

+]

fore as though his aim is to make a last few refining iterations

..........

based on the augmented Hessian. The heuristic we use in NL2SOL
usually uses the augmented Hessian much sooner.

NL2SOL uses the double dogleg [Dennis & Mei, 1975] strategy
to pick Axk. This'modification of the Powell dogleg algorithm
[Powell, 1970] is based on the model, trust-region concept
which also underlies the Levenberg-Marquardt and Goldfeld-Quandt-
Trotter [1966] algorithms, particularly as viewed by Hebden
[1873]. 1In fact, the dogleg step is properly thought of as a
cheap approximation to the step that the relevant one of the
latter two algorithms would generate,

The important thing is the idea of having at x, & local
quadratic model Q. of f and an estimate of a region in which

Q. is trusted to represent f. The next point x is chosen to

k+1l
approximately minimize Q) in this region or to minimize gy in
an approximation to this region. In either case, the information

gained about f at Xy is then used to update the model and also

+1
to update the size or shape of the trust region.

We begin with the assumption that qg holds globally. Since
the trust region revision is always based on the length of the
step just taken, this causes the radius to be set automatically
by the initial Gauss-Newton step. Some advantages of this scheme
will be mentioned in the next section, but it does have some
problems. vathe Gauss-Newton step is too long, the trust region
may have to be shrunk repeatedly with attendant evaluaticns of the
residual function R to obtain an acceptable Xy Much more serious
is the possibility of overflow. The initial assumption of global

linearity can be overruled by assigning a small value to LMAXD, the

-10-

maximum length allowed for the very first step attempted.

The picture given here will perhaps be helpful. The
ellipses represent the contours of q; and the circle is the trust
region. The point Nk is the "Newton step" or global minimum of
the convex quadratic model Q. and the point Ck is the "Cauchy
point" or minimum of q) along its negative gradient direction.
The "double dogleg" point Dk is chosen using the parameter BIAS
to be along the Newton direction far enough so that qk(Ck)z
qk(Dk) 2¢qk(Nk). In fact, we choose D, so that Qe is monotone
nonincreasing between Ck and D, .

k

Since we were using this adaptive approach, it is not sur-

prising that we also thought of using the new informaticn at X141

to select between qi+l and q§+l for use in determining Xy poe

Our decision rule is rather straightforward. Since SO= 0, we

clearly begin using the Gauss-Newton model. After making a

prospective step based on the currently preferred model to obtain,

say, Xi+l’ we compute Ri+1 and fi+l' If f}"<‘+l>fk then Xi+l
is discarded, but first the other model is evaluated at Xi+l to
see how well it agrees with fi+l' If there is not sufficient

1
k+1

original model preference, shrink the trust region, and try again.

agreement between f and the other model, then we keep the

If the agreement is sufficiently good then we change our model
2

preference and, with the same trust region, compute Xig If
Xi+l is unacceptable then the trust region is shrunk and we re-

peat the above process on the smaller trust region with whichever
model gave the least function value, but now we no longer consider

changing models while continuing to seek an acceptable X4

-12-

. S G
When an acceptable =xy ., 1s found, qk(xk+l) and qk(xk+l)
are compared to fk+l' We have found that it is best to retain
the currently preferred model unless the other model does a

significantly better job of predicting the new function value.

6. Linear Algebra

Nonlinear problems are almost always solved approximately
by solving a related sequence of linear problems. The solution
of these linear approximations has been found to be a crucial
part of many implementations, both in its effect on performance
and, more often, in extending the applicability of the program.

The purpose of this section is to outline the linear alge-

bra our current program uses. We do not feel that we are doing

anything overtly stupid but we believe this part of the algorithm

is the most susceptible to improvement.

The update to Sk-l is carried out as in [Gay, 1876].
Remember that Sk is a pxp symmetric indefinite matrix. Since
P < 20 1s the rule, we have not tried to conserve storage by
exploiting symmetry.

The important linear algebra considerations are in the
computation of the "Newton step". There are Iwo different cases
depending on the current model preference. Since SO: ¢ is the
usual case, the first step is a Gauss-Newton step. We actually
compute the Gauss-Newton step in different ways, using the SVD

or QR decomposition, depending on the situation. This step,

defined in section 2, comes from solving the linear least squares

problem

-13-

(6.1) J

In order to solve (6.1) in the least squares sense, we first
apply Householder transformations to effect a QR decomposition of
Jk‘ We then apply the techniques of Cline, Moler, Stewart and
Wilkinson [1977] to estimate the condition number of R and hence
of Jk' If the conditioning is acceptable, then the step is com-
puted in the obvious way. If ‘Jk and R are judged to be ill-
conditioned, then we carry out an SVD on R.

Recall that when k=0 we are assuming that the problem is
linear (unless the user specifies otherwise through LMAXO), and
SO we want to use a currently recommended procedure to solve the
linear least-squares problem (6.2.0), where
(6.2.k) Rs ¢ -Q'R, .
In the case k=0, our condition test is controlled by RKTOL

(see Usage Summary), the default for which amounts to
(6.3) K, (R) < (Macheps) ™2

where KQ(R) denotes the Euclidean condition number (i.e., ratio
of largest to smallest nonzero singular value) of R and Macheps
is the unit rounding error. At present we make a call to MINSOL

[Coleman et al., 1977] with the default condition that the rank

of R 1is reduced by setting its smallest singular values to

zero until the condition number is bounded as above.

~14-

In the previous section we mentioned disadvantages that arise
from this assumption of linearity, but we feel there is an impor-
tant advantage to the user. In our experience, users with a mix-
ture of linear and nonlinear problems will frequently
treat all the problems as nonlinear rather than learn to interface
with two programs. In fact, this is not unreasonable from the
occasional user's point of view.

Now suppose k>0 and R and \%< are ill-conditioned. As
mentioned above, we obtain an SVD of R (by calling the EISPACK
routine MINFIT [Garbow et al., 1977]1). 1In this case, we improve
the condition by adding to the small singular values of R until
K7(R)2 ¢ 1/EPSLON, where EPSLON is an eigenvalue modification tol-
erance (see Usage Summary). The reason the rank is not reduced is
to avoid doing the minimization prematurely in a parameter subspace.

For many problems that are at least moderately difficult,
Gauss-Newton steps are only computed for the first few iterations.
The augmented model quickly becomes the preferred one. Thus we
have to solve the symmetric p x p linear system

T

_ T
(6.4) (Sk'+Jka)s = -JkRk

We do form the augmented Hessian explicitly since it seems that

the addition of Sk submerges any 111 effects of forming JiJk'
We currently deal with negative curvature when computing

the "Newton" step by effectively modifying the augmented Hessian,

if necessary, to be positive definite. Since p is small, we do

not presently use methods based on the Cholesky and symmetric

~15-

indefinite factorizations. Instead we do a symmetric eigendecom-

position and obtain modified eigenvalues g -o-,SP from the

original eigenvalues 0,, ***, 0, according to the rule

o 1if o 2¢€

e/[1l+1In(l+e=~-0)] if o<e ,

where ¢ =max{€1,82} with e, = EPSLON -max{ol, ---,op},

€, = 100 * Macheps « 8, and &8 is the maximum diagonal element of
JiJk. We include e, to guard against the unlikely case that con-
siderable cancellation occurs in computing the sum JiJk-FSk, and

we arrange the calculations for the Gauss-Newton model so that we
compute the same "Newton" step from it as from the augmented model
with Sk= 0.

7. Test Results

We have run NL2SOL on a number of the test problems reported
in the literature. In particular, we have run it on the test
prcblems listed in [Gill & Murrey, 1976], which include all those
considered in [Betts, 1976]. Table I below gives the results we
cbtained on the Gill & Murray test set with default stopring
tolerances for the machine used, the IBM 370/168 at Cornell
University. The columns labelled n and p specify the dimensions
of the problems, while those labelled I{f and Ng tell how many
function (i.e., residual vector) and gradient (i.e., Jacobian
matrix) evaluations respectively were required to achieve conver-

gence. The type of convergence attained is listed in the column

~16-

labelled CT: F means function convergence: f(x):sMac:hepsa/2 2
3.3x1072%; G means gradient convergence: HJTR(x)”2 <1070,

C means cosine convergence: the maximum absolute cosine between
R(x) and the columns of J(x) is at most 5 x 107 x Macheps
1.11x10"8; and X means X-convergence: a poor step of length at
most (1+ |[x||,) x Macheps x 103 * (1+||x]],) x2.22x10713% was
attempted. Table II below gives the original reference for each
problem in Table I.

We have encountered a couple of test problems on which NL2SOL
performs poorly, including one due to Meyer [1970] and the one
obtained (at the suggestion of Jorge Moré [private communication])
from the Kowalik & Osborne problem by adding 10 to each component
of the residual vector. Many eigenvalue modifications occur on
these problems, so we suspect that a better way of dealing with
negative (or not sufficiently positive) curvature in the Hessian

approximation may be needed. We intend to experiment with some

promising alternatives and report about them later if they succeed.

Acknowledgment

We are grateful to Virginia Klema for helpful discussions,
to Scott Smolka for some programming help, and to Mark Gelfand
for his programming of DMINIMIZ, a nonlinear robust regression
program with which we tested various ideas incorporated into
NL2SOL. We give special thanks to Stephen Peters for his out-
standing help in preparing the NL2SOL package. In addition, we
are happy to thank the various peocple who have given us useful

comments after running NL2SOL on their computers.

TABLE I

Performance of NL2SOL on Gill & Murray Test Set

Problem Name

Rosenbrock®
Helix*

Singular®

Woods®

Zangwill*
Tngvall#

Branin®

Beale®

Miele®

Box 3%

Davidon 1%
Freudenstein & Roth
Watson 6

Watson 9

Watson 12

Watson 20
Chebyquad 8
Chebyquad 9%
Chebyquad 10
Brown & Dennis
Bard

Jennrich & Sampson
Kowalik & Osbormne
Osborne 1

Osborne 2

Madsen

oW N U W N3 FEWw

w w W w | ad g
H = NN oo O

10
20
15
10

33
65

W E NN W W EE oW N I'U

[
[« 20 S RN &4

12
20

10

N

11

Ww o 0 NN 3

N
_£g
7

11
15
47
3
15
2
7
15

w @ o

10

18

28
18

14
12

[€e)

1
12

O O 0O

C,G

Note

*denotes zero residual problems: f(x#)=0.

Note 1: If IMAXO, the limit on the length of the very first step

tried, were increased slightly from its default value of 100, say to 101,

then NL2SOL would solve this problem with Nf==Ng= 2.

-18-

Note 2: This problem differs from the original Miele problem
described in [Cragg & Levy, 1969] in that it has an additional residual
component r5(x) = x4 - 1, which has the effect of forcing X,

more rapidly towards its optimal value. NL2SOL gave similar performance

on the original Miele problem: G convergence with Nf = Ng = 16.

Note 3: This is a linear least-squares problem so ill-conditioned
that it cannot be accurately solved from the approximate singular value
decomposition computed in double precision on an IBM 370. The first
step that NL2SOL attempts is thus both very poor and very small, so
NL2SOL recognizes X-convergence at the starting point. Ironically, if
NL2SOL had simply used the QR decomposition which it first computed,
rather than going on to compute a singular value decomposition of the R
just obtained, then the problem would have been solved in one step.

to move

Note 4: NL2SOL found a local solution of this problem; the residual

vector vanishes at the global solution.

Note 5: Gill & Murray [1976] do not list results for Watson 12,

Chebyquad 9, or Chebyquad 10. Jorge Moré [private communication] suggested

that these might be interesting test problems.
Note 6: Gill & Murray [1976] call this problem "Davidon 2".

Table II

Original Sources of Test Problems

Problem Name

Rosenbrock

Helix

Singular

Woods

Zangwill

Engvall

Branin

Beale

Miele

Box 3

Davidon 1
Freudenstein & Roth
Watson 6, 9, 12, 20
Chebyquad 8, 9, 10
Brown & Dennis

Bard

Jennrich & Sampson
Kowalik & Osborne
Osborne 1, 2

Source

[Rosenbrock, 1960]
[Fletcher & Powell, 1963]
[Powell, 1962]

[Colville, 1968]
[Zangwill, 1967]

[Engvall, 1966]

[Branin, 1971]

[Beale, 1958]

[Gill & Murray, 1976]
[Box, 1966]

[Davidon, 1976]
[Freudenstein & Roth, 1963]
[Kowalik & Osborne, 1968]
[Fletcher, 1965]

[Brown & Dennis, 1971]
[Bard, 1970]

{Jennrich & Sampson, 1968]
[Kowalik & Osborne, 1968]
[Osborne, 1972]

.........

-19-

REFERENCES

BARD, Y. (1970), Comparison of gradient methods for the solution
of nonlinear parameter estimation problems. SIAM J. Numer.
Anal, 7, pp. 157-186.

BEALE, E.M.L. (1958), On an iterative method for finding a local
minimum of a function of more than one variable. Tech. Rept.
No. 25, Statistical Techniques Research Group, Princeton
University, Princeton, New Jersey.

BETTS, J.T. (1976), Solving the nonlinear least square problem:
Application of a general method. J. Optimization Theory
Appl. 18, pp. 469-484,

BOX, M.J. (1966), A comparison of several current optimization
methods and the use of transformations in constrained
problems. Comput. J. 9, pp. 67-77.

BRANIN, F.H. (1971), Widely convergent method for finding mul-
tiple solutions of simultaneous nonlinear equations. IBM
J. Res, Develop. 16, pp. 50u-522.

BROWN, K.M. and DENNIS, J.E. (1971), A new algorithm for non-
linear least-squares curve fitting. in Mathematical Soft-
ware edited by John R. Rice, Academic Press, New York,
pPp. 391-396.

CLINE, A.; MOLER, C.; STEWART, G.W.; and WILKINSON, J,H. (1877),
On an estimate for the condition number of a matrix.
informal manuscript.

COLEMAN, D.; HOLLAND, P.; KADE!l, N.3; and KLEMA, V. (1977), A
system of subroutines for iteratively reweighted least
squares computations. NBER Working Paper No. 183.

COLVILLE, A.R., (1968), A comparative study of nonlinear pro-
gramming codes, IBM New Ycrk Scientific Center Tech. Rept.
No. 320-2849.

CRAGG, E.E. and LEVY, A.V, (18€8), Study on a supermemory gradi-
ent method for the minimization of functions, J. Optimiza-
tion Theory Appl. 4, pp. 181-205.

DAVIDON, W.C. (1976), New least-square algcrithms, J. Optimize-
tion Theory Appl. 18, pp. 187-187.

DENNIS, J.E. (1973), some computational techniques for the non-
linear least squares problem., in Numerical Solution of Sys-
tems of Nonlinear Equatiors edited by G,D. Byrne and C.A.
Hall, Academic Press, New York,

-20-

DENNIS, J.E. (1977), Nonlinear least squares and equations. in
The State of the Art of Numerical Analysis edited by D.
Jacobs, Academic Press, London.

DENNIS, J.E. and MEI, H.H-W. (1975), An unconstrained optimiza-
tion algorithm which uses function and gradient values.
Cornell Computer Science Tech. Rept. TR 75-2u46, (to appear
in J. Optimization Theory Appl.).

DENNIS, J.E. and MORE, J.J. (1977), Quasi-Newton methods, moti-
vation and theory. SIAM Rev, 19, pp. 46-89,

DENNIS, J.E. and WELSCH, R.E. (1976), Techniques for nonlinear
least squares and robust regression. 1976 Proceedings of
the ASA Statistical Computing Section, American Statistical
Association, Washington, D.C,, pp. 83-87.

ENGVALL, J.L. (1966), Numerical algcrithm for solving over-deter-

mined systems of nonlinear equations. NASA document N70-35600.

FLETCHER, R. (1965), Function minimization without evaluating
derivatives--a review. Comput. J. 8, pp. 33-4l.

FLETCHER, R, and POWELL, M.J.D. (1963), A rapidly convergent
descent method for minimization. Comput. J. 6, pp. 163-168.

FREUDENSTEIN, F. and ROTH, B. (1963), Numerical solutions of
nonlinear equations. J. Assoc. Comput. Mach. 10, pp. 550-556.

GARBOW, B.S.; BOYLE, J.M.; DONGARRA, J.J.; and MOLER, C. (1877),
Matrix Eigensystem Routines--EISPACK Guide Extension, Lecture
Notes In Computer Science 51, Springer-Verlag, Berlin,
Heidelberg, and New York.

GAY, D.M. (1976), Representing symmetric rank 2 updates. NBER
Working Paper No. 124,

GILL, P.E. and MURRAY, W. (1876), Nonlinear least squares and
nonlinearly constrained optimization. in Lecture Notes in
Mathematics No. 506 Numerical Analysis, Springer-Verlag,
Berlin, Heidelberg, and New York.

GILL, P.E. and MURRAY, W. (1976), Algorithm for the solution of
the non-linear least-squares problem. NPL Report NAC 71.

GOLDFELD, S.M.: QUANDT, R.E.; and TROTTER, E.F. (19866), Maximi-
zation by quadratic hill-climbing. Econometrica 34,
pp. 541-551.

GOLUB, G.H. (1969), Matrix decompositions and statistical calcu-
lations. in Statistical Cecmputation edited by R.C. Milton
and J.A. Nelder, Academic Press, New York, pp. 365-397.

-21-

R GOLUB, G.H. and REINSCH, C. (1971), Singular value decomposition
and least squares solutions. in Handbook for Automatic Com-
putation, Vol. II: Linear Algebra edited by J.H. Wilkinson
and C. Reinsch, Springer-Verlag, Berlin, Heidelberg, New York.

HEBDEN, M.D. (1973), An algorithm for minimization using exact
second derivatives. A.E.R.E. Harwell Report TP515.

JENNRICH, R.I. and SAMPSON, P.F. (1968), Application of step-
wise regression to nonlinear estimation. Technometrics 10,
pp. 63-72.

KOWALIK, J.S. and OSBORNE, M.R., (1968), Methods for Unconstrained
Optimization Problems, American Elsevier, New York.

LAWSON, C.L. and HANSON, R.J. (1974), Solving Least Squares Prob-
lems, Prentice Hall, Englewood Cliffs, New Jersey.

OREN, S.S. (1973), Self-scaling variable metric algorithms with-
out line search for unconstrained minimization. Math.

Comput., 27, pp. 873-885,

OSBORNE, M.R. (1972), Some aspects of nonlinear least squares
calculations. in Numerical Methods for Nonlinear Optimiza-
tion edited by F.A. Lootsma, Academic Press, New York and
London.,

POWELL, M.J.D. (1962), An iterative method for finding stationary
values of a function of several variables. Comput. J. 5,

POWELL, M.J.D. (1970), A new algorithm for unconstrained optimi-
zation. in Nonlinear Programming edited by J.B. Rosen, O0.L.
Mangasarian, and K. Ritter, Academic Press, New York.

ROSENBROCK, H.H. (1960), An autoratic method for finding the
greatest or least value of a function. Comput. J. 3,
pp. 175-184.

WEDIN, P-A. (1972), (1974a), The non-linear least squares prob-
lem from a numerical point of view, I and II. Lund Univ.
Computer Sci. Tech. Repts.

WEDIN, P-A., (197u4b), On surface dependent properties of methodls
for seperable non-linear least squares problems. Inst. for
telldmpad matematik, Box 5073 Stockholm 5, ITM Arbetsrapport
nr. 23,

WEDIN, P-A. (1974c), On the Gauss-Newton method for the non-linear
least squares problem. Inst. fOr telldmpad matematik,
o Box 5073 Stockholm 5, ITM Arbetsrapport nr., 24.
ZANGWILL, W.J. (1967), Nonlinear programming via penalty functions.
Management Sci. 13, pp. 34u4-358.

APPENDTIX

NL2SOL Usage Summary

= 1. Purpose

Given a continuously differentiable function (residual vector)

T T
R(x) = (R;(x), Ry(x)5 v R (x))" of p parameters x = (X515 Hps vees xp) .

NL2SOL attempts to find a parameter vector x* which minimizes the sum-of-

R.(x)z.

squares function F(x) = 184

N

n
Zi=
2. Method

. Reference 1 explains the algorithm realized by NL2SOL in detail. The
algorithm amounts in part to a variation on Newton's method in which part
of the Hessian matrix is computed exactly and part is approximated by a quasi-
Newton technique; once the iterates come sufficiently close to a (local) solu-
tion, they usually converge quite rapidly. To promote convergence when the
iterates lie far from a solytion, NL2SOL may choose to step in an adaptively
chosen combination of the '"Newton" and steepest-descent directions. At times
the algorithm reduces to the Gauss-Newton method, while at other times it may
bear some similarity to the Levenberg-Marquardt method. On large-residual
problems (in which F(x*) is large), however, NL2SOL often works much better
than these methods.

i 3. Calling Sequence

CALL NL2SOL(N, P, X, MAXITR, CALCR, CALCJ, IPARM, RPARM, IWORK, WORK,
UIPARM, URPARM, UFPARM)

Note: 1In DOUBLE PRECISION versions of NL2SOL, all variables and arrays termed
RFAL below are actually DOUBLE PRECISION,

N (input INTEGER) is the number of components in the residual vector R.
P (input INTEGER) is the number of parameters on which R depends.

X (I/0, REAL array of length P) on input is an initial guess at the desired
solution x*; on output, X contains the best parameter estimate that
NL2SOL has found so far (i.e. the one giving the least wvalue of F).

MAXITR (input INTEGER), if positive, is the maximum number of iterations that
NL2SOL should perform: this value is stored in IPARM(MXITER) = IPARM(3).
If MAXITR is not positive, then IPARM(MXITER) is left unchanged.

CALCR (input subroutine) computes the residual vector R = R(X) when called by:

CALL CALCR(N, P, X, NFCALL, R, UIPARM, URPARM, UFPARM)

CALCR should not change its first four arguments. KFCALL is the invo-
cation count of CALCR and may be stored to indicate which X belongs to
any intermediate results that may be helpful to CALCJ; such results may
be stored in UIPARM and URPARM (or in COMMON).

CALCJ (input subroutine) computes the Jacobian matrix J = J(X) of first partials

NL2SOL

Jij =

oR

-

9%

(X) when called by:

J

CALL CALCJ(NN, N, P, X, NFCALL, R, J, UIPARM, URPARM, UFPARM, CALCR)

CALCJ should not change its first 6 arguments. NN is the declared

row dimension of J (i.e. J is declared to be REAL J(NN,P)), which

in fact always equals N in the present version of NL2SOL. NFCALL
is the invocation count of CALCR at the time R was computed at the

X passed; thus NFCALL may be used to decide whether -- or which copy
of -- any intermediate results stored by CALCR are valid for this X.
(At most two copies of intermediate results would have to be stored,
since CALCJ is always called at the X passed on the latest or mext-to-
latest call to CALCR.)

R = R(X) and CALCR are passed to CALCJ to facilitate computing J
by finite differences. The subroutine FDJ, supplied with the NL2SOL
package, may be passed as CALCJ to compute an approximate J by forward
differences.

Note: the subroutines passed for CALCR and CALCJ must be declared
EXTERNAL in the calling program.

IPARM (1I/0 INTEGER array of length 19) on input contains certain quantities
(such as limits on the number of iterations and calls on CALCR allowed)
that control the behavior of NL2SOL and on output contains various counts
and other quantities of interest: see the detailed description given

below.

If IPARM(1) = 0 on input, then default values are supplied for

the input quantities of both IPARM and RPARM. The caller may supply

nondefault values for selected quantities in IPARM and RPARM by first
executing a CALL DFAULT (IPARM, RPARM) and then assigning the appro-

priate nondefault values before calling NL2SOL.

RPARM (I/O REAL array of length 34) on input contains certain quantities
(such as convergence tolerances) that control the behavior of NL2SOL
and on output contains various quantities of interest (such as the
current value of F(X) and the norm of the most recent gradient computed):
see the detailed description given below.

IWORK (INTEGER scratch array of length 2P).

WORK (REAL scratch array of length 2P(N + 2P + 7} + 3N) contains certain
quantities that may be of interest on output: after any return with
IPARM(1) < 10,

R(X), the residual vector giving the least value of F so far encountered,

starts at WORK(IPARM(17));

G, the gradient of T at X, starts at WORWZ(IPARM(16));
J, the Jacobian matrix of R at X, starts at WORK(IPARM(18)) and is

dimensioned J(N,P);

GG, the current approximation to the Hegsian of F, starts at

WORK (IPARM(19));

S, the current quasi-Newton approximation to the second-order part

of the Hessian of F, starts at WORK (IPARM(15)) = WORK(1).

UIPARM (INTEGER array of length determined by the caller) is passed without
change to CALCR and CALCJ and may be used in any way that the caller
may find convenient.

NL2SOL -3-

URPARM (REAL array of length determined by the caller) is passed without
R Change to CALCR and CALCJ.

UFPARM (subroutine) is passed without change to CALCR and CALCJ. If there
is no need for such a subroutine, then the caller may pass an arbitrary
variable or constant. But if an actual subroutine is passed for UFPARM,
then it should be declared EXTERNAL in the calling program.

4. Return Codes

When NL2SOL returns, IPARM(1l) contains one of the following return codes:

3 - X~convergence (see RPARM(XCONCR) below);

4 - gradient convergence (see RPARM(FCONCR), RPARM(GCONCR), and RPARM(GRDMIN)

below);

5 - function evaluation limit reached (see IPARM(MXFCAL) below);

6 - iteration limit reached (see IPARM(MXITER) below);

7 - STOPX returned .TRUE., after ASSESS (this return is only possible
when a system~dependent STOPX function is used in place of the one
included in the NL2SOL package -- see the discussion of STOPX below);

8 - STOPX returned .TRUE, after UPDATE;

9 - error in an EISPACK routine (IMTQL2 or MINFIT) -- let us know if
this occurs;

10 - P is less than 1 or N is less than P;
11 through 22 - IPARM(IPARM(1)-10) is out of range;
23 through 50 - RPARM(IPARM(1)-22) is out of range.

5. COMMON
NL2SOL makes use of two COMMON blocks:

COMMON /NL2ICM/ ISTART, MXFCAL, MXITER, NITER, NFCALL, NGCALL,
IASSES, KASSES, SUSED, INCRAD, NFGCAL, USES,
OUTLEV, FDTYPE

COMMON /NL2RCM/ LMAX0O, EPSLON, FCONCR, GCONCR, GRDMIN, XCONCR,
BIAS, TUNER1, TUNER2, TUNER3, TUNER4, INCFCR,
DECFCR, FUZZ, COSMIN, RADIUS, DOGLOC, GTHESG,
MU, SIZE, WSCALE, GTSTEP, STNORM, FDIF,
PHI, FLSTGD, F, FNEXT, GNORM, MAXCOS,
RKTOL, FDSTEP, FERROR

These variables are used to index the IPARM and RPARM arrays respectively.

They are initialized in a BLOCK DATA program -- and the caller's only concern
with these COMMON blocks should be to ensure that the BLOCK DATA subprogram

is loaded along with the other modules of the NL2SOL package. The BLOCK DATA
subprogram supplied with the NL2SOL package initiazlizes the variables in NL2ICM
to 1 through 14 in order of appearance and the variables in NL2RCM to 1 through
18, then 20 through 34 in order of appearance.

6. IPARM Entries

Before describing the IPARM entries in detail, we list their indices
alphabetically together with the corresponding subscript:

NL2SOL -4~

FDTYPE = 14 NFCALL = 5
IASSES = 7 NFGCAL = 11
INCRAD = 10 NGCALL = 6
ISTART = 1 NITER = 4
KASSES = 8 OUTLEV = 13
MXFCAL = 2 SUSED = 9
MXITER = 3 USES = 12

The INPUT entries include: ISTART, MXFCAL, MXITER, and OUTLEV. Default
values for these are listed in square brackets [] at the beginning of the
description of each. These values are supplied when NL2SOL is called with
IPARM(1) = 0 and may also be obtained via a CALL DFAULT (IPARM, RPARM) statement.

The OUTPUT entries include: ISTART, NITER, NFCALL, NGCALL, IASSES, KASSES,
SUSED, INCRAD, NFGCAL, and USES.

ISTART: TIPARM(1) [1] should be 0, 1, or 2 in the initial call on NL2SOL; O means
that default values should be assigned to the IPARM and RPARM arrays;
0 and 1 mean that the N X N matrix S that occupies the first

N2 locations of WORK and is used to approximate the second-order
part of the Hessian of the least-squares objective function should
be initialized to 0; 2 means that an initial value for § (as well
as for the input entries of IPARM and RPARM) has been supplied.

IPARM(1) contains a return code when NL2SOL returns; the possible
return codes are listed above (84).

MXFCAL: IPARM(2) [200] is the maximum number of function evaluations (calls on
CALCR) allowed. NL2SOL returns with IPARM(1l) = 5 if this limit is
reached without convergence.

MXITER: IPARM(3) [100] is the maximum number of iterations allowed. NL2SOL
returns with IPARM(1) = 6 if this limit is reached without convergence.
This also amounts to a limit on the number of Jacobian matrix evalua-
tions, since there is one call on CALCJ per iteration.

NITER: IPARM(4) (output) contains the number of iterations performed.

NFCALL: IPARM(5) (output) contains the number of function evaluations (calls
on CALCR) performed.

NGCALL: IPARM(6) (output) contains the number of gradient evaluations (calls
on CALCJ) performed.

TASSES, KASSES, SUSED, INCRAD, NFGCAL, USES: IPARM(i) for i = 7,8,9,10,11,12
(output) contain information describing the state of the NL2SOL algoe-
rithm; this information facilitates restarting (see below) and is
described in more detail in the comments at the beginning of the module
NL2ITR.

OUTLEV: TIPARM(13) [1] tel.s the module ITSMRY how often to print an iteration
summary and how much to include in that summary. If IPARM(OUTLEV) = 0,
then no iteration summaries are printed. Otherwise a summary is printed
every |IPARM(OUTLEV)| iterations. If IPARM(OUTLEV) is positive, then

NL2SOL -5-

the summary lines have a maximum length of 117 characters (including
the carriage control character), and if IPARM(OUTLEV) is negative,

then the summary lines are less detailed and have a maximum length

of 66 characters. See the discussion of ITSMRY below for a description
of the various quantities printed.

FDTYPE: TIPARM(14) [1] is currently unused, but may see future use by a more
elaborate version of FDJ.

7. RPARM Entries

Before describing the RPARM entries in detail, we list their indices
alphabetically together with the corresponding subscript:

BIAS = 7 GTSTEP = 23
COSMIN = 15 INCFCR = 12
DECFCR = 13 LMAXO = 1
DOGLOC = 17 MAXCOS = 31
EPSLON = 2 MU = 20
F = 28 PHI = 26
FCONCR = 3 RADIUS = 16
FDIF = 25 RKTOL = 32
FDSTEP = 33 SIZE = 21
FERROR = 34 STNORM = 24
FLSTGD = 27 TUNERL = 8
FNEXT = 29 TUNER2 = 9
FUZZ = 14 TUNER3 = 10
GCONCR = 4 TUNER4 = 11
GNORM = 30 WSCALE = 22
GRDMIN = 5 XCONCR = 6
GTHESG = 18

The INPUT entries include: LMAXO, EPSLON, FCONCR, GCONCR, GRDMIN, XCONCR,
BIAS, TUNERl, TUNERZ, TUNER3, TUNER4, INCFCR, DECFCR, FUZZ, COSMIN, and RKTOL.
Default values for these are listed in square brackets [] at the beginning of
the description of each. These values are supplied when NL2SOL is called with
IPARM(1) = 0 and may also be obtained via a CALL DFAULT(IPARM, RPARM) statement.

The OUTPUT entries include: RADIUS, DOGLOC, GTHESG, MU, SIZE, WSCALE,
GISTEP, STNORM, FDIF, PHI, FLSTGD, F, FNEXT, GNORM, and MAXCOS.

LMAX0: RPARM(1) [100.0] is the maximum length allowed for the very first step
that NL2SOL tries. Ordinarily (unless NL2SOL is called with
IPARM(1) = 2) this first step is a Gauss-Newton step; however,
if its Euclidean length exceeds RPARM(LMAXO), then it is scaled down
to make its length exactly RPARM(LMAXO). Such scaling is vital on
certain problems where NL2SOL would otherwise attempt a disastrously
large first step.

EPSLON: RPARM(2) [max{2.22XlO-14, 100u}, where p is the unit roundoff of the
computer in question, i.e., the smallest positive number such that
l1+u>1 and 1 - u < 1] helps determine the threshold € at which
eigenvalue modification should begin. If ¢ is the maximum eigenvalue

of the current Hessian approximation and ¢ is the maximum diagonal

NL2SOL

FCONCR:

GCONCR:

GRDMIN :

XCONCR:

element of JTJ, then € = maX{RPARM(EPSLON)'U, 100u8}, and any
eigenvalues less than € are shifted upwards for the purpose of
computing a "Newton' step.

RPARM(3) [u3/2, where Y 1is described above with EPSLON] is a scale-
dependent gradient-convergence tolerance intended for use with zero-
residual problems: gradient convergence (IPARM(1l) = &) occurs if
the function value F(X) (half the sum of squares) is at most RPARM(FCONCR).

RPARM(4) [uXSXlO7, where J 1is described above with EPSLON] is a
scale-free gradient convergence tolerance: gradient convergence
(IPARM(1) = 4) occurs if the maximum absolute cosine between R(X)
(the current residual vector) and J(X) (the corresponding Jacobian
matrix) is at most RPARM(GCONCR).

RPARM(5) [10_10] is a scale-dependent gradient-convergence tolerance:
gradient convergence (IPARM(1l) = 4) occurs if the least-squares

T
gradient J R(X) has Euclidean norm at most RPARM(GRDMIN).

RPARM(6) [quO3, where | 1is described above with EPSLON] is a toler-
ance for X-convergence: X-convergence (IPARM(1) = 3) occurs if the
current step AX fails to yield much improvement and
| |Ax| |2 < RPARM(XCONCR) * (| | X| L +1).

BIAS, TUNER1, TUNERZ2, TUNER3, TUNER4, INCFCR, DECFCR, FUZZ, and COSMIN:

RKTOL:

FNEXT:

GNORM:

MAXCOS:

RPARM(i) for 7 £ i < 15 are values which control the behavior

of the modules DBLDOG, ASSESS, CNGMOD, and UPDATE and which should
normally require no tinkering. For more details, see these modules
or the comments at the start of the module NL2ITR.

RPARM(32) [-1.0] helps decide what singular values should be dis-
carded in computing the very first Gauss-Newton step (assuming
NL2SOL is called with IPARM(1) = 0 or 1). This first step Axo

is special in that no eigenvalue modifications are considered.
It is obtained by solving the linear least-squares problem
J(xo)Ax0 = —R(xo). The subroutine MINSOL that computes Axo

regards as zero any computed singular values of J(x) which are
less than RPARM(RKTOL) times the largest, except that negative

1/2
values of RPARM(RKTOL) are treated as though they were U / R

where U is described above with EPSLON.

RPARM(29) (output) contains F(X), i.e., half the sum of squares
at the best parameter estimate X yet found.

RPARM(30) (output) contains the Euclidean norm of the gradient JTR(X)
at the best parameter estimate X yet found.

RPARM(31) (output) contains the maximum cosine between the residual
vector R(X) and the corresponding Jacobian matrix J(X) at the
best parameter estimate X yet found.

NL2SOL -7~

RADIUS, DOGLOC, GTHESG, MU, SIZE, WSCALE, GTSTEP, STNORM, FDIF, PHI, FLSTGD,

and F: RPARM(i) for 16 < i < 28, describe various aspects of the
current iteration and facilitate restarting. See the comments at
the start of the NL2ITR module for more details.

FDSTEP, FERROR: RPARM(i) for i = 33,34 [0, O] are currently unused, but may
see future use by a more elaborate version of FDJ.

8. Example 9 2
xl + x2 + xlx2
Let n = 3, p =2, and R(x) = |sin X, . (This problem is due
cos x,

to Madsen, Reference 2.) The following FORTRAN code minimizes F(x) = %R(X)TR(X),
starting from the initial guess (3, l)T, using a single-precision NL2SOL.
INTEGER IPARM(19),IWORK(4)

REAL RPARM(34), WORK(65), X(2)
EXTERNAL MADR, MADJ

X(1) = 3.0
X(2) = 1.0
IPARM(1) = 0

CALL NL2SOL(3, 2, X, 30, MADR, MADJ, IPARM, RPARM, IWORK, WORK, 0, 0., 0)
WRITE(6, 9001) IPARM(1l), X
9001 FORMAT(//25HNL2SOL RETURNS IPARM(1) =,13,8H AND X =,2E15.4)
STOP
END »
SUBROUTINE MADR(N, P, X, NFCALL, R, UIPARM, URPARM, UFPARM)
INTEGER N, P, NFCALL, UIPARM(1)
REAL X(P), R(N), URPARM(1)
EXTERNAL UFPARM

R(1) = X(1)**2 + X(2)%*2 + X(1)*X(2)
R(2) = SIN(X(1))

R(3) = COS(X(2))

RETURN

END

SUBROUTINE MADJ(XN, N, P, X, NFCALL, R, J, UIPARM, URPARM, UFPARM, CALCR)
INTEGER NN, N, P, NFCALL, UIPARNM(1)

REAL X(P), J(NN,P), URPARM(1)

EXTERNAL UFPARM, CALCR

J(1,1) = 2.0%X(1) + X(2)
J(1,2) = 2.0*%X(2) + X(1)
J(2,1) = COS(X(1))
J(2,2) = 0.0

J(3,1) = 0.0

J(3,2) = -SINX(2D)
RETURN

END

NL250L -8~

The main program above passes MADR as CALCR and MADJ as CALCJ. Since
no use is made of UIPARM, URPARM, or UFPARM, zeroes are passed for these
parameters.

When the above is executed, NL2SOL will produce output summarizing the
11 iterations required to solve the problem, after which the WRITE state-
ment in the main program will produce the line

NL2SOL RETURNS IPARM(1) = 4 AND X = -0.1554E+00 0.6946E+00

1f, say, no printed output had been desired from NL2SOL, then the
statement IPARM(1) = 0 of the main program, which causes default IPARM
and RPARM values to be supplied, would have been replaced by
CALL DFAULT(IPARM, RPARM)
IPARM(13) = O
(See the description of IPARM(OUTLEV) in 86 above.) Other nondefault TPARM
and RPARM values could be supplied similarly.

9. Local Nature of Solutions

It can easily happen that NL2SOL only finds a local minimizer cf the
sum-of-squares function F(x) and that a different starting guess would
cause a point to be found at which F has a still smaller value. Except for
cases where special conditions (such as convexity of the objective function)
prevail, this shortcoming is shared by all minimization algorithms.

10. LMAXO

It should be stressed that on some problems it is necessary to give
RPARM(LMAX0) = RPARM(1) a small value to prevent a disasterously large first
step, one which might lead to exponent overflow or arguments out of range to
intrinsic functions. Even if no disaster occurs, if NL2SOL takes many
function evaluations on the first step, then performance might be improved
by a much smaller (or in some cases larger) value of RPARM (LMAXO) .

11. Finite Difference Jacobiansg

Rather than analytically differentiating R(x) and coding a corresponding
subroutine for CALCJ, the caller may simply pass ¥DJ, which uses forward
differences to compute an approximation to the Jacobian matrix. FDJ is
included as part of the NL2SOL package, so it is merely necessary to include
an EXTERNAL FDJ statement in the calling program. FDJ should work well on
many problems, though, of course, an analytic CALCJ will work much better on
certain problems.

12. STOPX

When NL2SOL is used in an interactive environment (such as CMS), it is
possible to arrange for NL2SOL to be interrupted. To do this, it is necessary
to replace the logical function STOPX supplied with the NL2SOL package (which
always returns .FALSE.) by a system-dependent STOPX that returns .TRUE. if
the "break" (i.e., "interrupt") key has been pressed since the last call on
STOPX and returns .FALSE. otherwise. Then, depending on where in its main
loop NL2SOL is interrupted, NL2SOL will return with IPARM(1l) = 7 or 8 when
the "break' key is pressed before some other ra:turn has occurred.

NL2SOL —9-

13. Restarting

After a return with IPARM(1) less than 9, it 1s possible to resume running
the algorithm at the point where it was interrupted. Simply call NL2SOL again,
passing the same parameters as before, with nothing changed except possibly
MAXITR, IPARM(MXFCAL) = IPARM(2), or the tolerances in RPARM.

14, TITSMRY, the Iteration Summary

Included in the NL2SOL package is the subroutine ITSMRY, which is called
once at the end of each iteration to print a summary of that iteration. (It
is also called once before the first iteration and once before any return
with IPARM(1) less than 10.) 1In some cases it may be desirable to replace
the supplied ITSMRY with another one; this is why the calling sequence

CALL ITSMRY(IPARM, RPARM, P, X, G)

includes P, X (the best parameter estimate yet found), and G (the correspond-
ing gradient), even though these parameters are not used by the supplied
ITSMRY.
IPARM(OUTLEV) = IPARM(13) instructs the supplied ITSMRY how often to
print an iteration summary and how much of a summary to print. If this
value is zero, then ITSMRY returns without doing any printing. Otherwise
an iteration summary is printed every |IPARM(OUTLEV)| iterations. If
IPARM(OUTLEV) is positive, then the summary contains the following columns:

IT, the iteration number.

NF, the number of function evaluations (calls on CALCR) done so far.

STEP, the 2-norm of the current step.

F, the current (best-known) function value, i.e., half the sum of
squared residuals.

DF, the decrease in function values achieved in the current iteration.

G, the 2-norm of the current gradient.

COSMAX, the maximum of the absolute values of the cosines between
the current residual vector and the columns of the corresponding
Jacobian matrix.

MODEL, a code, such as G:S or G or 8S:G:S, which indicates
the sequence of models used in the current iteration. G
stands for the Gauss-Newton model (which igaores S), while
S means the model using S.

MU, the largest eigenvalue modification made while computing the
current Newton step.

DOGLOC, a scalar that tells how the current dogleg step was computed:
3 means a full Newton step; between 2 and 3 means a scaled-
down Newton step; between 1 and 2 means a combination of the
relaxed Newton and Cauchy (i.e., steepest descent) steps;
between 0 and 1 means a scaled-down Cauchy step.

RADIUS, the radius of the new trust region (in which we trust our
new quadraiic approximation to the least-squares cbjective
function).

SIZE, the sicing factor applied during the last update (see Ref. 1).

In this case lines having a maximum width of 117 characters are generated.

NL2SOL -10-

If IPARM(OUTLEV) is negative, then the last five columns are omitted and
lines having a maximum width of 66 characters are generated.

15. LINALG

Included with the NL2SOL package is a collection of linear algebra
routines referred to as LINALG. On small problems execution time may be
reduced significantly if some of these FORTRAN routines are replaced by
their machine-language equivalents. In particular, on machines where under-
flows are quietly set to zero, the precautions taken in DOTPRD, MVMUL, and
MIVMUL to avoid underflows are unnecessary, and execution time on ''cheap"
problems may be noticeably reduced just by removing these precautions.

16. Machine-Dependent Constants

Some of the NL2SOL routines have DATA statements that involve machine-
dependent constants. Such DATA statements are immediately preceeded by a
corresponding CS DATA statement of the sort recognized by the IMSL FORTRAN
Converter (Reference 3). Thus the Converter may be used to produce a version
of NL2SOL appropriate for use on another computer (or for a different pre-
cision on the present computer). The very first card of subroutine NL2SOL
tells for which computer and precision the constants in the present DATA
statements are appropriate.

17. Storage Requirements

The NL2SOL package (excluding the Test Program) amounts to about 5800
lines of FORTRAN code. Many of these are comments: there are only about
1900 "internal statemetns', where an IF statement counts as two "internal
statements", comments do not count at all, and every other kind of statement
counts as one 'internal statement'. When compiled on an IBM 370 by the H-
extended compiler OPT(2), this source code results in around 51200 bytes of
object code. The amount of variable storage needed is listed above in §3.

18. References

1. Dennis, J.E.; Gay, D.M.; & Welsch, R.E. (1977), "An Adaptive

Nonlinear Least-Squares Algorithm', NBER Working Paper No. 196.

2. Madsen, K. (1973), "Arn Algorithm for Minimax Solution of Over-
determined Systems of Nonlinear Equations'', Report TP 559,
A.E.R.E. Harwell, Oxon., England.

3. Aird, T.J.; Battiste, E.L.; & Gregory, W.C. (1977), "Portability
of Mathematical Software Coded in Fortran', ACM Trans. Math.
Software 3, pp. 113-127.

19. Acknowledgement

Research leading to *“he NL2SOL package was supported in part by National
Science Foundation Grants DCR75-10143, MCS76-00324, and SOC76-14311 to the
National Bureau of Economic Research, Inc.

