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This paper considers the formulation and estimation of simultanecys
equation modele with boﬁh discrete and continuous endogenous variables. The
statistical model proposed here is sufficiently rich to encompass the elaesieal
simultaneous equation model for continuous endogenous variables and more
Tecent models for purely discrete endogenous variables as special cases of
a more general model.

Interest in discrete data has been fueledby a rapid growth in the
availability of microeconomic data sets coupled with a growing awareness
of the importance of discrete choice models for the analysis of microeconomic
pProblems (see McFadden, 1976). To date, the onl& available gtatistical
models for the analysis of discrete endogenous variables have been developed
for the purely discrete case. The log-~linear or logistic model of Goodman
(1970) as expanded by Haberman (1974) and Nerlove and Press (1976) is one
such model that hes been widely used. The multivariate probit model of
Ashford and Sowden (1970), Amemiya (1975) and Zellnerland Lee (1965) is
another widely used model. This paper expands the multivariate probit
structure to accomodate continuous endogenous variables. Alternatively,
the model presented Here expands the classical simultaneous equation theory
to encompass multivariate probit models.

The models developed below rely critically on the notion that discrete
endogenous variables are generated by coetinuous latent variables crossing
thresholds. Such models have an honored place in the history of statistics
and were first advanced by Pearson (1900). The theory of biserial and

tetrachoric correlation is based on this idea. (See Kendall and Stﬁart,
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Vol. II, 1967; Lord and Novick, Chs. 16~20, 1967.) It is argued ia this
Paper that this class of statistical models provides a natural framework
for generating simultaneous equation models with both discrete and continuous
random variables.

In contrast, the framework of Goodman, while convenient for formula-
ting descriptive models for discrete data, offers a much less natural
appératus for analyzing econometric structural equation models. This is so
primarily because the simultaneous equation model is Inherently an uncondi-
tional represéntation of behavioral equétions while the ﬁodel of Goodman is
designed to facilitate the analysis of conditiona; representations, and
does not lend itself to the unconditional formulations reﬁuired in simultaneous
equatiOn'theory. |

The structure of this paper is in four parts. In part one general
modelz are discussed. Dummy endogenous variables are introduced in two
distinct roles: (1) as proxies for unobserved iatent variables and (2) as -
direct shifters of behavioral equations. Five models incorporating such
dummy variables are discussed. Part two, also the longest section, presents
a complete andlysis of the most novel and most geﬁeral of the five models
Presented in part ome.  This is a model'with both continuous and discrete
endogenous variables. The issues of 1dent1£ication an& estimation are
discussed togethef'by proving the existence of consistent estimators.
Maximum likelihood estimators and alternative estimators are discussed. In
part three, a brief discussion of é multivariate probit model with structural
shift is presented. Part four presents a comparison between the mﬁdels

developed in this paper and the models of Goodman and Nerlove and Press.




I. A General Model for the Two Equation Case

Since few new issues arise in the multiple equationrcaae, for
expositional simplicity the bulk of the analysis in this pPaper 1s conducted
for a two equation system. All of the models considered in this papef can
be subsumed as special cases of the following pair of simultaneous equations

for continuous latent random vafiables yfi and ygi,
(a)  yfy = %1% + disi + yé‘i\ri + Uy
(1) ¥y = %0y + 48, + 7§47, + Uy
where dummy variable d; is defined by -
(lc) d, =1  4iff
d, = b otherwff.se,1
and
B(U;y) = 0, E(W) = oyyr E(U4Up0) = 65, 31,2, g=1,...,1L.
E(U;,Uy0y0) = 0, for 3, 3" = 1,2, 1 # 1",

" 1 P N _ - " . ' !
xli and xzi are, respectively, lxKl and -lsz row vectors of bounded
exogenous variables. The jdiﬁt-dénsity of continuous random variables

Uli’ U21 is g(Uii, Uéi) which is assumed to be a bivariate normal density |
in the analysis of Sections IT and ITI. 1In order to focus attention on the

essential features of the argument, the conventional assumptions of classical

1Clearly, a second dummy variable could be defined as arising from
yfi crossing a threshold. Note, too, that the choice of the zero threshold

is an arbitfary normalization.
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simultaneous equation theory are maintained. In particular, it is assumed
that equations (la) and (lb) are identified if 81 o 62 = 0 and both
yfi and ygi are observed for each of the I obaérvations.l' In this special
case, which conforms to the classical simultaneocus equation model, standard
mgthods are avallable to eatimateﬂall of the patamétera of the structure.

The full model of equations (la)-(lc) is sufficiently novel to
Tequire some discussion. First,.note that the model is cast in terms of
latent variables yii and jgi which may or may not be directly observed.
Even 1if ygi 1s never observed, the event y;i > 0 18 observed and its
occurrence is recorded by setting a duﬁmy variable, di' equal to one. If
y;i < 0, the dummy variable assumes the value zero. -Second, note that if
y;i > 0, structural equations (la) and (lb) are shifted by an amount 81
and 32 respectively.

To fix ideas, several plausible ecomomic models are discussed that
may be described by equation system (la)-(lc). First, suppose that both
yfi and yfi are observed ocutcomes of a markgf at time i, say quantity and
Price. Equation (la) is the demand curve while equation (1b) is the supply
curve, If fhe price exceeds some threshold (zero inequality |
(1c), but this can be readily amended to be any positive constant), the
government takes certain-actions_that shift both the supply curve and the
demand curve, say a subsidy to consumers and a per unit subsidy to producers;
These actions shift the demand curve and the supply curve by ;he amount 81
and 52 respectively. _ |

As another example, consider a model of the effect of laws on the

status of blacks. Let yfi be the measured income of blacks in state i while

lFor Teasons that become clearer in the analysis of Section II, identi~
fication is assumed to be secured through exclusion restrictions or through
restrictions on reduced forms for covariance parameters that are estimable.




5

yii is an unmeasured variable that feflects the state's population sentiment
toward blacks. If sentiment for blacks is sufficiently favorable, (yfi > 0),
the state may enact antidiscrimination legislation and the presence of such
legislation in state i, a variable that can be measured, is denoted by a
dummy variable di = 1. In the income equat}on (1a), both the pPresence of
a law and the population sentiment towards blacks israssumed'to affect the
measured income 6f blacks. The first effect is assumed to operate discretely
while the second effect is assumed to operate in a more continuous fashion,.
An important question for the analysis of policy is to determipe whether or
not measured effects of legislation are due to genuine consequences of
legislation (Bl ¥ 0) or to the spurious effect'tﬁat the presence of legisla-
tion favorable to blacks merely proxies the presence of pro—biack sentiment
that would lead to higher status for blacks in any event (yl # 0). 1In
Section II, methods for consistently estimating the separate effects (Bl and
Yl) are presented.l Th;s example 1s valuable because it illustrates two
conceptually distinct roles for dunmy variables: (1) as indicators of
latent variables that cross thresholds and (2) as direct éhifters‘of'behavioral
functions. These two roles must be carefully distinguished in the ensuing
analysis,

The model of equations (la)-(1c) subsumes a wide variety of
interesting econometric models. These special cases are briafly discussed
in turn.

Case 1. The Classical Simultaneous Equation Model

This model arises wﬁen yfi and y;i are observed, and there is no

structural shift 1n_the equations (Bl = 82 = (),

1Note that even if sentiment were measured (i.e., ygi Were knowm),

least squares estimators of equation (la) are inconsistent because of the

*
correlation of di and y21 with Uli'
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Case 2, The Classical Simultaneous Equation Model with Structural Shift

This model is the same as that of Case 1 except that structural
shift is permitted in each equation. It will be shown below that certain
restrictions must be imposed on the model in order to generate a sensible

statistical structure for this case.

Case 3. The Multivariate Probit Model

This.modei arises when yii and yfi are not observed but the events
yfi N 0 and yfi N 0 are observed (i.e., one knows whether or not the latent
variables have crossed a threshold). The notation of equations (la)-(1c) must
be altered to accommodate two dummy variables but that modification is obvious.
No structural shift is permitted (Bl = By = 0). This is the model of Ashford

and Sowden (1970), Amemiya (1975) and Zellner and Lee (1965).

Case 4. The Multivariate Probit Model with Structural Shift

This model is the same as that of Case 3 except that structural shift

is permitted (Bl, By # 0).

Case 5. The Hybrid Model

This model arises when yfi is observed and ygi is not, but the event

yfi 20 1s observed. No structural shift is permitted.

Case 6. The Hybrid Model with Structural Shift

This model is the same as that of Case 5 except that structural
shifts in the equations are permitted. |

The hybrid wodels of Cases 5 and 6 are the most novel and general.
Accordingly, these cases receive the greatest attention In the ensuing analysis.

Models 2 and 4 are also new but since the analysis of these models follow
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directly from the analysis of the hybrid model they receive .less attention
in this paper. Case 4 is briefly discussed in Section III while Case 2

is never explicitly developed.

II. The Hybrid Model with Structural Shift

In this section, a model with one obsérved con;inuOus random variable,
and oﬁe latent random variable is analyzed for the general case of structural
shift in the equations. The argument proceeds in the following steps. First,
a condition for the existence of,armeaningful statistical model is derived.
Second, consistent estimators of identified paramefers are presented, Third,
maximm likelihood estimators are discussed. Finally, some alternative
estimators are presented and discussed.

To facilitate the discussion, equations (la) and (1b) may be written

in semi-reduced form as
Y11 = Kyymyg F XMy Y dymz + Vg
31 T XyyTart XpgWyp F dymag + Yy
d =1 1ff yf >0

= 0 otherwise,

where
a a.y a.y a
) i T T =, o1 71 2, 12 1 2, 221 - 2 Y
Y172 Y172 Y1Y2 112
. =f1tMb Y8 & Upg *pUy
)
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In the ensuing analysis it is assumed that exogenous variables included in
both xli and x2i are allocated to either Xii or x21' but not both. The
absence of an asterisk on Y14 denotes that this variable is observed. "yfi"
is not observed. Random variables U11 and U21 are assumed to be bivariate

normal random variables. Accordingly, the joint distribution of V v

11* "21°

h(vli’ 21) is a bivariate normal density fully characterized by the

following assumptions:

v2)=m E( E<v2)=m

ViiVag) = w,

To obtain the true reduced form equations, assume that the conditional
probability that di is unity given xli and XEI exists, and denote this

probability by Pi' Then the true reduced forms mway be written

{3a) yli = xli"ll +X ®_ +PwA_+V + (di - Pi)n

21712 1713 11 13

(BP) Y31 = XpyTyy F Ky R M, 4 Va1 * (4 - Py,

(3¢) d; =1 4iff y% >0

di = () otherwisge.

The error term in each equation congists of the sum of continuous and digcrete
random variables that are correlated. The errors have zero conditional
mean but if Pi is a nontrivial function of xli’ X21’ heteroscedasticity is

Present in the errors.




(1) Conditions for Existence of the Mbdell

The first order of business is to determine whether or not the
model of equations (la)-(lb) as represented in reduced form by equations
(3a)-(3b) makes sense. Without imposing a further restriction, it does
not. The restriction required is precisely the restriction implicitly
assumed in.writing equations {(3a) and (3b), i.e., the restriction that
permits one to define a unique probability statement for the events
di =1 qnd di = (}.s0 that Pi in fact exists. A necessary and sufficient

condition for this toc be so is that w,, = 0, i.e., that the probability

23
of the event.di =1 is not a determinant of the event. Equivalently, this
assumption can be written as the requirement that 7261 + 32 = (. This
condition is critical to the analysis and thus deserves some discussion.

The argument supporting this assumption is summarized in the following

propesition.

Proposition. A necessary and sufficient condition for the model of equaticns

(la)=-(1lc) or (3a)-(3c) to be defined is that Tog = 0= 7231 + 52. This

assumption is termed the Principle Assumption.

Proof. Sufficiency is obvious. Thus, only necessary conditions are discussed.
Denote the jJoint density of v21’ di by t(VZi’ di) which is assumed to be a proper

density in the sense that

L J e(v

d )dv,, = 1.
di=0'1 - R

21’

From equations (3b) and (3c), the probability that yfi > 0 given di =1

M oam gratefhl to Peter Schmidt for correcting an important error
in the argument of this section in a previous draft.
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must be unity, so that one may write,

P_(V,, > zi|di =1) =1

21 .
where the symbols Ei and Li are defined by

£ = - n L w
S P TR T TIPTY

and

-

i-'-aﬂ T
i i + 23

Alternatively, one may write this probability as

(4a) / t(VZi, 1)dv21 ap

2y

and obviously

i

L
4p) 1l

20 1)dVpy = 0.

Using similar reasoning, one can conclude that
v

li .

(4c) [ 7 e(v O)dV'zi =1-P

21? i

and

(4d) / t(VZi, O)dv2i = 0,

1
2

The sum. of :the left hand side terms of equations (4a)-(4d) equals the sum
of the right hand side terms which should equal one if the probability of

the event d, = 1 1s meaningfully defined. If w,, = 0, this is the case.

i 23
But if ﬂ23 < 0, the sum of the left hand side terms falls short of ome

while if ﬂ23 > 0, this sum exceeds ome. Q.E.D. Notice that this argument

does not rely on the assumption that V

23 is normally diatributed but does
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rely on the assumption that VZi has positive density at almost all points
on the real line.
An Intuitive motivation for this condition is possible. Suppose
that one rewrites equations (la)-(lc) to exclude di’ i.e., write

x = *
Y ™ e Y YR Uy

* = *
Y71 = Xpq% T ITiYe t Upy-

d; =1 4iff y§, > 0.

A
]

0 otherwise,

Note that yii 1s an unobserved latent variable. The random variable Y4

is observed and is defined by the following equation

+ d

= *
Y11 = ¥y t 448,

Making the appropriate substitutions of Y11 for yIi in the system given

gbove, one concludes that
Y1 = X34 * 448y F IRy YUy

x = -
31 = Xps% ¥ (g ~ 44807, + Uy
Invoking the Principle Assumption, one reaches equations (la)-(lc) including
di' Thus the dummy shift variable dial may be viewed as a veil that obscures

measurement of the latent variable y But, as will be shown, the veil can

* .
11i
be removed, i.e., Bl can be estimated.
It is important to note that the principle assumption does not rule
out structural shift in equations (la) and (1b). It simply restricts the

nature of the shift. However, the Principle Assumption does exclude any
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structural shift in the reduced form equation that determines the probability

ey

of a shift (equation (3b)).

(ii) Identification of Parameters: Indirect
Least Squares Estimators

Given the principle assumption, equation system (3a)-(3c) may be

written as

(5a)  ypg = XpyTyg t KpyTyp FEyT g F Vg H(dy - P,
* =
(5b)  ¥3y = XpyTy * XpyTpo + Vo4
= *
(5¢) d, =1 1iff y% >0

d, = 0 otherwise.

Estimation of equation (5b) is a problem in probit analysis. Subject to
the standard requirements for identification and existence of probit estimates - '”i
(see Nerlove and Press, 1976), one may normalize by wiéz and estimate

"1 T2

= Tk _—,
(6, ,) 0,12

(6 "3 172 * "22 7 )
22

21

by using the reduced form probit fumction to estimate the conditional
probabilities of the events di = 1 and di = 0.
To determine how to estimate the parameters of the equation (5a),

it is useful to write the conditional expectation of ¥14 8iven dg, Xy and
x21, ine-,

= + + .
M EGI% K. d) = Xpgmy o+ Rym, Hdm g HEOV [ Xy )

Utilizing a result familiar in the theory of biserial correlation (see, e.g.,

Tate, 1954 or Johmson and Kotz, 1972, Vol. 4),
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“12
E(V » Byy) =7
1aldyr g0 X @ 172

¢(cy)

(A d + l (1-4 ))
22

where . Ai -—
1- @(ci)

— * %
with g (Xli"21 + xﬁi"zz)' where ¢ and ¢ are the denmsity and distribution

function of a standard normal random variable and

¢{-c )
! #(c, ) .

>

If one kngw, or could estimate, E(V ildi, X, xzi), it could be

entered as a regressor in equation (7) and parameters Ti1e Tyo0 T3 and
w

= li/z could be estimated by standard least squares methods. Since

(u,,)
the normalized parameters of equation {Sb) are estimable, so is ¢y and hence

*®
“T2

_ Ai’ Ai and E(vlildi’ Xii’ xZi)' Elsewhere (Heckman, 1977) it is shown that

use of estimated values of Ai and ii instead of actual valués as regressors
in equation (7) leads, under general conditions, to consistent parameter
estimates of all the regression coefficients in that equation.
Given this result, all of the parameters of equation (7) are estimablé;
Note in particular that the correlation between V ——3—7— V* is also
estimable even though there are no direct observations on22 yfi. This |
result 1s a familiar one in ;he theory of biserial correlation.1
To see how to estimate the reduced form variance, mll’ note thﬁt

the general model, of which equation (7) is the conditional expectation, may

be written as

lNote that the use of the estimated value of E(vlildi’ xli’

regressor to estimate the parameters of the disturbance covariance structure
closely parallela Telser's (1964) procedure of utilizing least squares
residuals from other equations in a system of equations to estimate the
parameters of the inter-equation covariance structure.

XZi) as a




14

(8) Y11 ™ B4R Xpge dp) + g
where

Blng[X) 0 Xp00 d) = 0
and

CEMEIX Xps d) = ey 1A - 0 0% @ge, + Q- dps)

where
b =12
1/2
(w)yw55)
=1l4+2r,c, - AZ
Y 19 T M

N T2
8; =1 = Mey = g
(See Johnson and Kotz, 1972, Vol. 4).

Since w*, can be consistently estimated, and since wfz = (w /2p,

L\
12 11) L
a consistent estimate of Wy is possible using the estimated residuals from

least.squares estimates of equation (8). ‘Denote the estimated residual for

observation i by ny e Then estimate w,, from the following formula:

1
I I
W =2 13l * )2 L ' - '
Wy, =3 Eong+ ) (1-5C(E da + @ =-4d)ls)]

i=] i=]

where estimated values of 9 and s, are used in place of actual values. This
estimate is conaistent.l

Given consistent estimators of reduced form coefficients, estimators

of the structural parameters are easily obtained. Since the coefficient of

equation (5b) can only be estimated up to an unknown constant of proportionality,

lFurther,'it is guaranteed to be positive. One can prove that the
gecond term on the right hand side must be positive.
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1/2
922 °
(la) and (1b). Some of these coefficients can only be estimated up to an

it is not possible to estimate all of the coefficients of equations

unknown constant of proportionmality.
From equation (2), it is clear that if some exogenous variables

appear in equation (la) that do not appear in (1b) it is possible to

1/2 th

% =

estimate S Y2/m22 . Take the j  wvariable in Xy denoted xlji’ and its

associated estimable reduced form coefficients “11 and 131 . Asgume that
J b

this variable is not included in Xzi' Taking the ratio of the estimate of
the second coefficient to the estimate of the first yields a consistent

éstimator of y%,

”~

. ™
YE"“ ’ I=1...,J
11j .

where """ denotes an estimate and where Jl is the number of wvariables in

1 -

X ; not contained in X,,, adopting the harmless convention that the first
Jl variables in Xii are such variables. Similarly, one may consistently
' 1/2
= vk
estimate Yl(mzz) 6y if some variables included in xzi dg not appear

in xli. Utilizing notation previously introduced,

~

T2
—_1 - ‘ i 1/2 - E 3 -
~ Yl(wzz) Yli j 1""’ Jz
b7
3
where J, is the number of variables in xZi not contained in X and the
first J2 variables in XZi are assumed not to be included in X11'

In general, the model will be overidentified if it is identified
at all. The proceduré for resolving the overidentification problem is
entirely conventional and will be discussed below. Assume, for the moment,

that this problem can be resolved. Given unique estimates of Y{ and v¥%,
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one can exploit the information in equations (2) and (6) to estimate

-1/2 $1/2 '
ars 0ylw,,) af, B8,(w,,)""" = 8%, and 8,.

The only parameters that remain to be identified are the disturbance
covariance terms of the structural equations. Without further information,

it 1s not possible to estimate all of the parameters of the structural

equation covariance matrix, just the normalized parameters ¢

SU2 o -1
912%22 * %22 22922°

To see this, note that

X =
11* %12

| 2
2, unt 2v)97, + Y195,

9 w,, *E(V.,}) =
11 11 Z
2
* %
Lt 2Yf"lz + P e
7
a- 'riw?_)
Y20+ @ v7y)0,; 19
“12 E(vli Vos) = PREIRY
172
*
w1 E(VyVoy) Yhoyy + (L + Y1"2)"{2 +v§ of,
(190) =
12" 172 @ - 2
w52 w55 Yivs
' 720 + 2y,.0,., + cr
2 2911 ¥ 2701, 0y
E( wi) = 2
E(VS) (e + 200y, + o, 1/
b L) P oy 3091, Y 95, L

“22 a - vyvp?

Since Y1Y2e Yf and 75 are estimable parameters, and since consistent estimators

of the left hand side terms of equations (9) and (10) are available, these

lThis final restriction was suggested to me by Professor L. Leé.
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equations, supplemented by equation (11) provide three linear equations in
the three unknowns 611, sz’ 052. In general, these equations can be solved

for unique estimators.

(ii11) Maximum Likelihood Estimators

The preceding analysis not only yields criteria for the identification
of structural coefficients but also produces consistéﬁt estimators for
identigied coefficients. These estimators are useful for providing estimates
enroute to deriving maximum likelihood estimators, but they are not, in
general, efficient. The maximum likelihood estimator that is discussed

next.is asymptotically efficient.

The density function for the disturbances Vn' in is bivariate

normal. For notational simplicity normalize VZi by uiéz and define V;i =

'1/2- * * =
v21”zz - The joint density of vli' Véi is h(vli’ VZi)' Since di' 1

iff y4 > 0 and d; = 0 otherwise, the density of y,;, d, is given by

. d
@ _ i
(12) E01gr 4 =) S hOyy - Rymy - Xyymyy - dgmg v avg |
i
|
3 S | | _ -4
S hlyyy = Xymy = Xpympp = 7y 0, VE) vy

where cy has previously been defined as
= - * x ).
oy ~(X 375 + Xpy75,)
Using equation (2), the density may be rewritten in terms of identified

structural parameters.

1For a discussion of this rather unusual density see Appendix A.
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Assuming random sampling, the likelihood function for the hybrid

model with structural shift is

I
an & - 1 £y 4,05
i=1

where I is sample size. Under conditions specified below, this function
possesses an optimum, and the maximum likelihood estimators have desirable
large sample properties. The identification procedure previcusly discussed
provides an algorithm for generating initial consistent estimators so that
one Newton step produces asymptotically efficient estimators. These initial
estimators are particularly valuable because likelihood function (13) is not
a globally concave function of the structural parameters.

Note that if w), = 0, so that the reduced form disturbances V,; and
Vgi are independent, density h(vli' Vgi) factors into a product of marginal '

. o _
densities hl(vli)h (V¥ ) and f(yli, di) becomes

2724

£yy0 d9) = B0y = Kymyy = Xyymy = mpadi) -

T e di 4 1= 4d
*) dVk *) qVk

I hz(Vz)dV2 -i h2(V2)dV2

1

i

Cc

80 that regression estimators of equation (5a) and probit eéfimators of
equation (Sb) are maximum likelihood estimators. In most practical problems
the assumption that w9 = 0 is untenable.

In addition to the ordinary identification conditions previously
discussed, another condition is required in order for likelihood function
(13) to possess a well defined maximum with respect to its parémeters. In

order to understand this condition, it is helpful to use conditional

normal theory to write demsity f(yli, di) as
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P R T T TR AL PR R CCRIEICICR) ot

where ¢ is the cumulative distribution of the univariaﬁe normal, and

1/2
N S\ T LA VI
i 7172
a - o5
where V), - 5™ T %™ T 43
L]
and O'%E.
(m11m22)

This representation of the density is both'computationally and theoretically
convenient.

In a sample of size I,-classify the observations into two groups
depending on whether or not the dummy variable di is one. Among the I1
obgervations with di = 1, denote the smallest r, by ril&in., gnd the lﬁrgest
by ril%ax. Among the Io(= I - Il) observations with di = (0, denote the
largest ry by riOAax, and the smallest by rEOAin. Then, likelihood

function (13) possesses no interior optimum in a compact parameter get if
(14) rio&ax < r§1&in or if rio&in > rilgax

so that there is no overlap among the values of the ry ciassified by the
occurrence of the event.l

This condition arises in standard probit analysis (see Nerlove and
Press, 1976). To unﬁerstand it, consider estimates of an ordinarj probit
model. If any variable perfectly classifies the outcomes of a discrete

experiment, the coefficient of that variable becomes unbounded and is not

lA similar condition arises in the conditional logit model. See

McFadden (1974, Appendix).
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identified. This phenomenon may arise in the current problem even if no
: linear

exogenous variable (or/combination of exogenous variables) perfectly

14 in ri.

There is a positive probability that condition (14) will be met and

classifies outcomes because of the presence of random variable V

maximum likelihood estimators will fail td exist. However, using standard
results in the theory of order statistics, it is trivial to establish that
the probability that condition (14) is met tends to zeroc if sample size
expands by "fixed in repeated samples™ sampling.l Given their existence,
maximum likelihood estimators are consistent, asymptotically normal and

efficient.>

lBriefly congider the condition rio&ax < rillin. If one data
configuration (i.e., a choice of xli’ xZi) is considered and the number of
observations on that configuration becomes large, the condition becomes

I I
P vJ. i < o v0 0
max - min ¢ ——————=
/ 2.1/2 - 2
- 0% / 11 (1 - o )1/2 11i
i=1 i=1
= ] while VO is
i 11i

= (. One may write

where Vii is random variable Vli conditional on d

random variable vli conditional -on di

0
Vii ky+ My, and ¥y = ko + 1500 0’

and n, rare continuous independent random variables. The probability

i-l’.l.’ Il’ i‘ =1,.I., I

where nli

that "ii - > ko - kl is less than one for any pair of obsérvations from the

(0) (1)
i i

Moy

disjoiﬁt sets. Hence, in 1arge.samb1ea, condition r
with probability zero.

max < T min occurs

2It is a straightforward exercise to verify that LeCam's (1953)
generalization of the classical Cramer conditions applies to the model in the
text for suitably chosen values of the parametera. These conditions are local
in nature and imply the existence of some root of the likelihood equations
that is consistent and asymptotically normally distributed. Olsen (1977)
verifies the LeCam conditions for a model based on the one in the text. Olsen's
structural model is the reduced form of the current model with the exception
that T3 is set at zero in his work. His proofs carry over to the more general

case.

One point is not obvious, and is not covered in QOlsen's work. Since
a model with 13 # 0 superficially resembles the model advanced by Amemiya (1974)
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(iv) Some Alternative Estimators

Sinée maximum likelihood estimation is computationally cumbersome,
it 1is useful to consider alternative estimators for the hybrid model. 1In
addition, the problem of the multiplicify of consistent estimators that
arises in an overidentified model remains to be resolved. It.will be shﬁwn
that the fact that ygi 1s never observed has important consequences that
cause the analysis in this paper to differ dramatically from conventional

simul taneous equation theory.

Consider equations (la)-(lc), rewritten below to facilitate the

11
by Yig° With this change, the equations become

exposition. Because -it is assumed that y*_,6 is observed, it is replaced

to demonstrate the inconsistency of maximum likelihood estimators for tﬁe
parameters of a discontinuous density, it is worth verifying that the
expectation of the first partial of the log of the density Of'f(yli’ di)

with respect to T . vanishes when the expectation is taken with respect to

the deasity evalu%ged at the true parameter values,

Denote E0 as the expectation taken with respect to the demsity of

Y14 and di when the true parameters are used in the density. Let V. , =

11
-X .7 -X.. m -d, v, .. Then . —
Y1 T *f11"11 7 f21™12 T 4T3 B oV - p VA  L(V... V& )dVA
- - e SRS U 11 247921
3 20 £(y,,, d,) d e, Wyl ."’111;2
. 11’ 94 1 i :
= E —
0 31!'13 0 a - pz) o .
v %*
_ . £ BV, VB DAVE
¢4
Since .
© o * * = @ ] % ]
b V), h(V ., VE)avEav S Vs, h(V,, Vzi)dVZidVli
= ¢, 911 Tty 7

(See, e.g., Johason and Kotz, 1972, Vol. 4), it follows that

3 Ln f(yli, di)

E = (
0 awla.

as desired.
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= %*
(la)  ypy = Xjyo) +diB) + 5y, + U,

{1b) = X a, + diB2 + ¥14Ys +U

*
Y21 T %21%2 21

where dummy variable d, is defined by

i

(1lc) d, =1 1ff

and the Principle Assumption is invoked so that Y,8, + 8, = 0.
Using the results of the previous analysis, it is possible to
estimate equations (la) and (1b) directly using the reduced form coefficient

estimates to generate instruments. To see this, note that it is possible

* /mljz

517952 conditional on

to use equation (5b) to estimate the expectation of y

311 and x21‘

-~

~ 1/2 ~
* = * *
4 T YRR SPL TR YL PY
From the probit éstimates of (5b) it 1is possible to estimate the

probability of the event di = 1 conditional on values of xli and x21 (Pi)'
Replacing yfi and di by their estimated expectations, equation (1a) becomes

. * =172

1 = % *

(1a) ¥y = X340 + 4By + OFup; i
- ~1/2 r o -1/2
- k(yk .
Uy b G4y - BB F Oy - YEe,y )

Least squares applied to équation (1a') yields unique consistent estimators
of @, 8, and Yf' The proof 1s trivial and hence is omitted. Estimation of
this equation resolves the problem of the multiplicity of estimators that
arise from the application of indirect least squares discussed in Section (ii).

Precisely the same procedure may be used to estimate the parameters

of equation (1b)., There is one new point. The choice of a normalization
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rule in a simultaneous equation system is usually arbitrary. Here the
choice is important because yfi is never observed, although its expectation
can be estimated. In equations (la) and (1b), Y14 is selected as the depen-
dent variable., Substituting estimated conditional means for endogenous

variables, equation (1b) may be written as

-1/2
(1b') y11=-$—;(xz “*+P B% - (Yzi 22 1) -
1 -1/2 - : -1/2 _ ; -1/2
3 (Uyggy = + (dy - BI85 - (y3ju), Y3155 )

It is straightforward to prove that least3qures estimators of equation (1b')
are consistent.

There is one further problem.l Although the Principlé Assumption
requires stl + 32 = 0, this constraint is not imbosed in the preceding
analysis. One way to impose the constraint is to estimate equation (la')
and use the fitted value of B*/Y* (= -8 1) @ a parameter in equation (Ib').

A more satisfactory approach that is computationally more burdensome is
to impose the constraint directly in formulating joint least squares

estimators for equations (la') and (1b').

It is tempting to use the rasiduals computed'from the fitted equations
{la") andr(lb') to directly estimate the structural covariance terms 911° cfz
and 052. A direct application of structural two stage least squares formulae
will not work precisely because y2i is never observed. If estimated values
of y;i are used in place of actual values, the residuals from (lc) and (1b)
will not permit identification of the structural covariances.

One method for tircumventing this difficulty is to use the estimated

structural parameters to solve for the reduced form parameters'ﬂgl, "52’

lI owe this point to Tom MaCurdy.
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“11’ Tio and Tiq- These estimates may be treated as known parameters in
-1/2

estimating equation (7). Hence it 1s possible to estimate W1 and bW,

and by use of equations (9), (10) and (11) to obtain unique consistent

*
11° %%, and 9%,

While these estimators are simply computed, consistent, and free of

estimates of ¢

the nonuniqueness problem that plagues indirect least squares estimators in
the overidentified case, they are not asymptotically efficient nor are their

asymptotic distributions simple. The standard formulae used for the computation

of large sample parameter variances 1s inappropriate. This 1s so because

ygimzilz is never directly observed and only an estimated value of this

variable is available.
To understand these difficulties, 1t 1is ugseful to discuss two
special cases that are of interest 1In practical emﬁirical work. First
consider estimation of equation (la) when Bl = () so that no direct structural
shift is present in that equation. Then consider a case in which Y * 0
so that no unobserved latent variable is present in equation (1a). In both
cases consistent parameter estimates are available, as has been shown.
Consider the disturbance from equation (la') under the assumption

that Bl = {), Denote the composite disturbance by U1i

y -1/2 ~ «~1/2
- * * - *
Upg = Uy +vdOfgey) " = v55up5 )

The crucial feature of these residuals is that they are not independent
across observations nor are they identically distributed. Accordingly,
standard central limit theorems do not apply to regression coefficient

estimates of equation (la'}. In particular, it is not the case that the

standard estimator of the regression parameter variance-covarlance matrix,

Yyt
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‘ ~ L1772
] -
o1 %K L X ¥3i%, |1
g
11
~ o -1/2 A =1/2.2
*
L X Y550y, Z (y34095 )

is the appropriate asymptotic variance-covariance matrix for the regression

coefficients.
The source of the problem comes in the final term in Uli; Utilizing '
the reduced form for y2i ;;/ y this term becomes
172 s s - (k. =
Y3122 " Y2122 " %1001 T M) Ry (Mg, - omEy) Yy

Vg is an iid random variable. But the first two terms are not iid. Since

"51 and ";2 are maxipum likelihood estimators, they possess asymptotic
normal limiting distribution, and in large samples the first two terms
converge in probabilityrto zero. But their rate of cqnvergence is not
fast enough. |

In fact, regression estimates of equation (la') with Bl = (0 obey

the following relationship.

-~ 1 N 1/2 -1
ay - oy z Xlixli LK 0358, 0)
/I— . = . -% R -
~ : 172 A o1/2.2 -
K - %* *
oY | G Xy O%m, ) T e, )
L (X, (U + V)
1 - +
YT ~ -1/2 |
z (y21 22 CUpg *Vyy)
L.
T* K - h*
L 2 (X (K43 21~ 21] + Xy lng, = 73,1
| . .
1%k * - *
(y3q¥ 22 (xli[ 2 21] + Xy 3, - 73,1
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Both terms on the right hand side converge to proper normal random variables.1 »’)
Accordingly, the standard formula for the asymptotic variancé—covariance matrix |
is inapplicable. Although the correct asymptotic variance-covariance matrix
can be estimated, the computational burden of doing so is greater than direct.
optimization of the likelihood function.
Now turn to the second case. Consider the estimation of equation (la’)
for a case in which Y, = 0 so that no latent variable is present in equation (la).
The analysis of this case is thoroughly conventional.
The estimated reduced form probability Ei may be used as an instru-
mental variable for d;. Standard instrumental variable formulas may be
used to estimate the appropriate‘asymptotic variance-covariance matrix of
the coefficients.
The procedure to be used is as follows. 51 may be employed as an
instrument for di in equation (la'), and consistent estimators of ay and Bl
may bg produced. Using actual values for di’ and the estimated coefficients,
one may estiﬁate the residuals for each observation which when squared,

summed and divided by I yield an estimator of % The appropriate asymptotic

ll
variance covariance matrix for the regression coefficients @ Bl may be

consistently estimated by the standard instrumental variable formula

-1 p 5 1-1
b ) A r ) v
X4%4 B X4y DX X AR P PR L
U - L ]
11
- ~ 2
IXP, L4 IXpP, IP, IXd, Id

Note that since the residuals from the prediction of di (di - Pi) are not
guaranteed to be orthogonal to the xli regressors, the instrumental variable

formula is not equivalent to the standard two stage least squares formula, and

1The proof is straightforward. See Heckman (1977a, Appendix A for a
more complete discussion).
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the instrumental variable estimator is not equivalent to the standard two
stage least squares estimator,

Note further that if the sole purpose of the analysis is to estimate
equation (la), it is not necessary to estimate probit functions at all. It
is possible to generate an instrumental variable for di by estimating a
simple linear probability moedel with di as a dependent variable that confains

and some other .exogenous variable
at least all of the variables in Xli/as Tegressors. If these estimators are

utilized, the standard two stage least squares procedure applies and
predicted values of di may be utilized as regressors since in this case

the regression residuals from the prediction of d, are constructed to be

i

orthogonal to the X . regressors. This result simply restates the well

11
known point that it 1s unnecessary to obtain consistent estimates of the
parameters of reduced form equations in order to consistently estimate
structural equations.

Since the linear probability procedure is the simplest one to use,
it 1s recommended. However, it is likely thaF the use of the probit
instrument results in more efficlent estimates although no proof of this
assertion is offeged.

The discussion of these two cases is illuminating. For both cases
8imply computed consiafent parameter estimates are available. In the first
case, with an unobserved random variable present, the estimators converge
to a normal distribution but the theoretically appropriate asymptotic
covariance matrix 1s cumbersome to compute., In this case it is suggested
that analysts utilize the consistent estimators discussed in this section

as starting values for at least one Newton step towards the likelihood

3
optimum to produce estimators with desirable large sample properties.” The

lSee Sant (1975).
2This follows directly from the analysis of Kelejian (1971).

3A.copy of a computer program to produce both one step Newton iterates
and full information maximum likelihood estimates is available, on request,
from the apthor for the cost of duplication, postage and handling charges.
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second case requires only a simple application of conventional instrumental
variable estimator theory. For both cases and in the general case that
contains both special cases, full system maximum likelihood estimation will

produce asymptotically efficient estimates and is certainly recommended for

all but the special second case. _ ,
The hybrid model can be generalized in' several ways. Two extensions

ére particularly important. First, several dummy indicator variables can
be introduced into the model. Two types of multiple dummy shift variables
can be introduced. The first type of dummy variable represents a poly-
tomization of a single latent variable and is appropriate for the case of
ordered dichotomous variables. The second type 1s for intrinsically
unordered case.1 These models, and obvious multivariate extensions, are
briefly discussed in Appendix B. Second, the random variable Y;4 may be a
truncatéd variable. This case, which nests Tobin's model (1958) into a
simultaneous equation system, follows as a trivial extension of the previous

analysis and hence is not discussed here.

ITI. Multivariate Probit Models with Structural Shift

In this section multivariate probit models are discugsed. In these
models fhere are no observed latent variables so that the only information
available is that yfi_z 0 and yfi z 0. These models are superficially
different from those considered in the analysis of the hybrid model. Appear-
ances are deceiving. Both‘models are generated from underlying continuous
latent variables and the analysis of one model readily applies to the analysis
of the other. |

Equations (la)-(lcj apply to this case as well. As before, d, 1s

i
defined as the dichotomization of y%i

lAn important reference for such models is Amemiya (1975).
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= *
d =1 1ff yx >0

\ di = 0 otherwise

and define dummy variable a, as the dichotomization of yfi

i
(15) a, =1 {1ff y* >0

a = 0 otherwise.
The argument of Section II may be applied to this case.
As In the case of the hybrid model, the Principle Assumption
(Yzﬁl + 82 = Q) 1s a requirement for a meaningful statistical model.to exist,
Accordingiy, the argument of Section II (1) of this paper applies to the multivariate
probit modél. The models of Ashford and Sowden (1970), Amemiya (1975), and
Zellner and Lee (1965) satisfy this assumption since noné of these papers
considers structural shift in the equations (i.e., they assume that By = By = Q).
The identification prdcedure in Section II (ii) must be modified
since no observations are available on Y1i° The analysis of idenfification
of “51 and “52 1s as before.  But the analysils of equation (5a) must be

modified. Two distinct cases are worth considering. First suppose that

7. = 0 so that there is no structural shift in the equations,

13

In this case, normalized parameters of equation (5a) may be estimated.,

That is, one may use probit analysis to estimate

m n
k= 1l and w*, = — 1z .
11 1/2 12 1/2
(wll) (wll)

The correlation between Vli and VZi may also be estimated, even though both

yfi and ygi are latent variables. This result is well known in the theory
of tetrachoric correlation (Kendall and Stuart, Vol. II, 1967). To establish

this result is is useful to recall that c::L 1s defined as

= - * *
¢ (X 757 + Xp075,)

and that bi can be defined as

).

= - * *
1 (X471 * %5471
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The probability of the events a

1 and di can be written as

(16a) Pll(i) = Prob(ai 2 1A di =1) = F(-bi’ - 0)

(16b) POl(i) = Prob(ai =0 A di = 1) = F(bi’ - cyy - p)
(16c) Pj(4) = Prob(a, = 1 A'di = 0) = F(-b;, ¢;, = p)
(led) Poo(i) = Prob(ai =0Ad =0)= F(bi, cyr P

wherg F(,) is a standarized bivariate normal cumulative distribution.1
Substituting consistent estimators of bi and ¢y in Place of the true values,
these probabilities are solely a function of P, the correlation coefficient.
The sample likelihood function may be maximized with respect to p to achieve

a consistent estimator of that parameter. The appropriate likelihood function

s
L) = n [Pll(i)] 1% (2 1% Y20 e @)1 di)ai 2, (1)](1 a,)(-4,)

There are alternative minimum chi square estimators and modified minimum
chi square estimators for this parameter discussed elaeﬁhere (Amemiya (1975);
Heckman (1976)). All of these estimators are consistent but not efficient
since the information matrix for the reduced form coefficients is not block
diagonal in p. |

Next suppose that T3 # 0 so that there i1s structural shift in
reduced form equation (5a). For this case, Initial comnsistent estimators

are also available. The conditional distribution of a, glven di may be written as

1 b. ¢

1
Thus, F(by, c;s p) =/ 11 h(V§, V§)dvidvs

1/2
* =
where Vl V1’“11 .
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P ,(D)ayd  |B (1) [(a)(Q-d ) (P, (1) ](1~a)d, [P, (1)](1-a,)(1-d,)
11 14 10 1 1 0l 1’71 00 b
Froblag 4o = [g) (i):| ,; :i::’ l:PI (i)J ,.;0 i:] i

where PO'(i) = F(=, ci) and Pl'(i) =1 - P0°(i)’ and where bi is replaced

everywhere by bi defined by

t = -
by = by - nfqd,.

Since consistent estimators of c, are avallable, these may be inserted as

parameters in the appropriate conditional (on di) likelihood function. If

that function is maximized with respect to p, 1*3, nfz and w*. consistent

1 11
estimators result. These estimators are not efficient since the full

system information matrix is not block diagonal with respect to these parameters.
This analysis establishes that it is possible to estimate all of the

. . % * * * Tk
normalized reduced form parameters: p, "ll, "12’ w13, “21 and "22' Under

the identification hypothesis postulated in Section I, one can utilize

equation (2) to solve for normalized structural parameters

(17) a* = g /(.ulj2

le
1/2 1/2 Wa2

* = k% = gk = —£L
1 /%, 31 B, /uw » Y Y*/w Yl[ ]

111 1l 111 Wiy

% =
97 T %yl 2~ Pl 11 :

' ' , 1/2
PRICIRPS 7 B ya* = nglIZg Yzl‘z]
“11

Moreover, the argument presented in Section II(ii) on the estimation of
structural covariances may be readily extended to show that it 1s possible

to estimate

1/2 W

: 1/2 %11 11
* e %% o % = — *®%k = * = —

(18)  of) = oy g » 0fF = oful)” = 9y 0y and o33 = 03,9y, °22[w22

This completes the analysis of parameter identification.




32
The analysis of the full information maximum likelihood estimators

is straightforward and need not be belabored. The likelihood function is

I
- (1-d,) (1-a,) (1-d,)a d, (1-a ) ad
4 R O R R CC) e O N EO) e Ul S L

The function may be maximized with respect to the parameters listed in
equations (17) and (18). As in the hybrid model,rin a finite samplé there

is some probability that mwaximum likelihood estimators fail to exisf but this
probability becomes arbitrarily small as sample size becomes arbitrarily
large. The maximum likelihood estimators are conéistent, asymptotically

normal and efficient.l

IV. The formulation of Simultaneous Equation Models

with Discrete Endogenous V’ariables2

In this section, the models developed in this paper are contrasted
with previcus work on discrete models with Jointly endogencus variables by
Goodman (1970) and Nerlove and Press (1976). These models deal with purelf
discrete random variables. Accordingly, the appropriate comparison is one
between that work and the models of Section IIT although an important topic
to be considered is the issue of generalizing purely discrete models to

accommodate both discrete and continuous endogenous variables.

It is argued here that the log linear model of Goodman and Nerlove
and Press is an inadequate scheme for formulating the simultaneocus equation
model required in econometrics. This is so for two reasons. First, the log

linear model is designed to simplify the estimation of conditional probabilities

l'I'he same sort of existence conditions are required as those presented
in Section II. With probability one, maximum likelihood estimators exist in
large sample samples.

2I have greatly benefited from discussions with Marc Nerlove on the
material in this section.




33
whereas the simultaneous equation model is intrinsically on unconditional
representation of réndom variables. Estimators of conditional probabilities
in the log linear model have the same Interpretation as direct least squares |
estimators in classical simultanecus equation theory which are alsoc condi-
tional probability statements. Both estimators confound true structural
parameters with elements of the equation error covariance structure. Second,
the log linear model does not readily generalize to accommodate continuous
endogenous variables while the multivariate normal structure can easily
be modified to do so, as has been showm.

To fix ideas, consider a log linear model for a two equation system
compar&ble to the model of Section III. Nerlove and Press (1976, p. 51)
explicitly consider a log linear model for this case. Altering their
notation to conform with the notation of Section III and suppressing

subscript 1, the log linear analogue of equations (l6a)~(16d) is

2n Prob (a=0A d =0) = &n POO = a5 +a) +B+u
¢n Prob (a = 0a d=1) = &n P01 =ay -0y - B+ u
¢n Prob (a= 1A d=0) =2n PlO = —a, + - B + u
20 Prob (a= 1A d = 1) = Ln Pll = -a, - oy + B +

where u = -4n [exp(ay + ay + g) + exp(cx0 -ay - g) + exp(—co +ay - g) +
exp(-uo - + 8)] and @gs & and B may be parameterized as functions of
exogenous variables.

The marginal probability of the event a = 0 in the log linear model is

exp(e, + o, + g) + exp(a, - a; - B)
exp(- w)

(19) Prob (a = 0) =

This expression is to be compared with the corresponding probability given

in Section III for the normal model with structural shift
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(20) Prob (a=0) = L [F(b - wf3
d=0,1

R \
Recall that F is a function of correlation parameter p.
\

d, - 0y1* [F(b - m*.d, ¢ jl-d

When B = 0, the log linear probability model collapses to a simple

logit model

1

Prob (a = Q) = —————
1 +e2%

With p = 0, the normal model becomes a probit model with structural

shift

Prob (a = 0) = I [8(b - mhd)e¢-0)1? (o(p)o(e)1?™

DA |
d=0,1
where ¥ (t) 1s the standard univariate cumulative density (= F(=, t)).
Finally, note that if there is no structural shift (ﬂfa = (0), as well as

‘no covariance (p=0)
Prob {a = 0) = &(b)

so that a simple probit model arises.
Further note that in the log linear model, the conditional probability

that a = 0 given d may be written as

1
(21 Prob (a = 0[{d) = =
) ob (a = 0[d) L+ o 2% o\2fd - 28(1-0))

The simplicity of this representation is the basis for the popularity of the

log linear model. The coﬁparable expression for the normzl model 1is

F(b - m¥,d, c)|1-d
F(», c)
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Hote that e, and b, a, and ¢ play similar roles in the model in which they

1
appear. The important point to note, however, is that g and p and ﬂfs play
similar roles. In the normal model the probability that a = O‘given d
depends on d for two conceptually distinct reasons: one related to the
true structure of the model (ﬂf3 # 0) and the other due to covariance in
latent errors (p # 0). In the log linear model, these effects are
indistinguishable. Thus the log linear parameter of associatiom, g,
corresponds to two distinct parameters in the normal model p and FIS.

As long as one only seeks to estimate empirical relationships among
endogenous variables, this issue may be ignored. Suppose, however, that
one seeks to utilize fitted econometric relationships to answer policy
questions. Then, as Haavelmo (1944) has stressed, it is important to
identify structural paraﬁeters. A simple e;ample will fix ideas.

Let a = 1 if a family has a child and iet a=01if it does not.

Let d = 1 if the family uses birth control and d = 0 otherwise. Itlmay
happen that because of unmeasured taste and knowledge factorg, families
more likely to contracept are more likely not to have a child. This effect
would be captured in a normal model by setting values of the parameter |

p < 0. There is,. however, a second effect. For obvious structural reasons

families on birth control will have fewer children (nf3 < 0 in the normal

model). TFor either reason B < O in the log linear model.
Suppose that the government forces all families to contracept, say
through a sterilization program. The normal model would permit identification

of the effect of this policy shift through use of Thus the predicted

* -
13
change In the probability of a couple having no children as a result of the

policy would be derived from equation (20) as
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d 1-d
(@ =0 = I [FG -ty - 01 (76 - 1y, o]

1/

- I [F(b - dn*

d 1-d
» = c)]” [F(b - dux_, c)]
d=0,1 13 13

Notice that if ﬂIB = 0, there would be no effect predicted for the policy,
whether or not p = Q.

The estimate of the policy effect from the log linear model would
be given by subtracting the conditional probability thdat a = 0 given d = 1
(given in equation (21)) from the marginal probability (given in equation
(19)),

AP = Prob (a = 0|d = 1) - Prob (a = 0).

Since it is not possible to disentangle purely statistical association froml
purely causal association in the log linear model, it is not possible to
identify meaningful structural parameters interpretable within the classical e ‘
simultaneous equation framework. If one were to follow Amemiya's (1975)
suggestion and use the log linear model to approximate a multiVariate

normal model, misleading predictions of policy effects wight occur. Indeed,

if ﬂf3 = 0! but p < 0 in fhe normal model, the log linear model would predict

an effect of the program (B < 0) even when nbne in fact would occur. Conversely,
if ﬂf3 > 0.and p < 0, estimated independence of events in the log linear

model (B = 0) would lead to incorrect forecasts of policy effects. HNote,
however, that 1f dummy variables are defined as indicators of latent variables
that cross thresholds, and not as structural shift paramgtérs (“IB = 0),
Amemiya's suggestion is appropriate, and the log linear model may be used to

approximate a multivariate normal model. The parameters B and p then play

lThe difference between the first term and the second term is that d }

is set to one inside the brackets signifying that everyone in the population
is forced to use birth coatrol. .
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the same role in their respective models.

A second, more minor point, concerns the computational intractability
of the multivariate logistic model when both continuous and diacrete
endogenous variables are present. The reader is Invited to differentiate

function ,
the cumulative distribution/of the multivariate distribution to confirm
this point.1 Further, as Amemiya (1975) has noted the multivariate logistic
distribution arbitrarily fixes the correlation structure among the random
variables, a highly unattractive feature.2 For both reasons, the log linear

structure does not generalize to accommodate continuous and discrete

endogenous variables in a simultaneous equation system.

1That distribution is
1

£(Y )=

preees T -
1+ L exp(-Yi)
1=1

2Note, however, that it is misleading to think that the cumulative
logistic distribution introduced in the previous footnote plays the same
role in the log linear model as the multivariate normal plays in the models
of Sections II and III of this paper. In the multivariate case, the log
linear probabilities are not dichotomizations of underlying continuous latent
logistic random variables. Thus, the transition from the log linear model
to the multivariate normal model involves more than a convenient choice of
a joint distribution for the latent variables introduced in Section I of this
paper. Moreover, 1f one were to alter the log linear model to incorporate
a structural shift term in &, that would play the same role as parameter

ufa in the normal model, thag term would not be identified. This result 1is

gimply a restatement of the argument in the text.
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Summary

This paper develops a class of econometric models for simultaneous
equation systemswith dummy endogenous variables. These models are based on
the pioneering work of Pearson (1900) on dichotomized variables. The general
model presented here includes simultaneous probif and ordinary simultaneocus
equation models as special cases. Dummy éndogenous variables are introduced
in two conceptually distinct roles: (1) as proxy variables for unmeasured
latent variables crossing thresholds, as in the classical quantal response
model (Amemiya, 1975) and (2) as direct shifters of structural behavioral
equations formulated in terms of latent variables. This distinction is
shown to be quite important in the formulation and interpretation of the
econometric models developed here. Maximum likelihood and alternmative
estimators are discussed. Conditions for the existence of a meaningful
statistical model are derived.

The models presented here have already been put to practical use
(see Edwards (1975) and Heckman (1975, 1977)); They are computationally
tractable and in the applications cited have led to new interpretations
of old evidence.

The models formulated here are compared with alternative models by
Goodman (1970) and Nerlove and Press (1976). It is shown that the log linear
model does not provide a natural framework for formulating the simultaneous

equation model of econometrics whereas the models presented in this paper do.




APPENDIX A

DERIVATION OF THE DENSITY f(yli’ di)

In this appendix, there is a brief discussion ¢f the derivation of
density f(yli’ di) that is used in the text. This discussion is useful
because random variables that are the sum of underlying continuous and

discrete random variables are unfamiliar in econometrics. The joint

/

density of V Vgi (=V 2) is given by h(Vli, Vzi), a bivariate

{w 1
1L’ 214" 722
normal density. The joint density of vli and di is

> B [ Pl ! e TR
e(Vyyr dp) = I:cj B(¥yy VZi)dVZi] |:_£ BV VZi)dvzi]
1

o _ * *
where ey (Xn TH1 + XZi 1r22).

Define a random variable Zi = Vn + T13 di' The joint density of

Zi, di is simply
| - * * di
ez - mpqdy dp) = | [ B2y - mpud,, vzi)dvziJ y
Ly
r::L l—di
- * *
} J h(zy = myqd;, V3,)dVE, .

Substitute Yig ~ xli“ll - X211r12 for Zi (noting that the Jacobian is
unity) to reach the density f(yli’ di) used in the text.

The measured density for Zi is
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@ C

i
= -— * *
e; (Zy) [ h(zy - m 4, V5OdVE, + J h(zg, Vidvy, .

C -—

i

Using conditional normal theory one can write

B(Zy = 730 VB = €2y - m5|VEDR, (VE))
and also, clearly

BZys Vi) = 42 [VEOR,(VE))

where ¢([) is a conditional normal density. Then obviously ey

density since

= %*
J #1(2dz, I f ¢(zilv21)h2(v51)dzidv*21
— —0eny ’
. - *
+ J [ 2y “13|v21)h2(v51)dzidV51
=1

* =
since f ¢(21|v21)d21 1.

(Zi) is a proper

[




APPENDIX B
MULTIVARTATE EXTENSIONS

Multivariate extensions of the models of Sections II and III in
the text are presented in this appendix. Let Y: be a row vector of G
jointly endogenous latent random variables, some of which may be observed.
Let T be a G xG nonsingular matrix with unit diagonal elements. Xi is a
1 xK row vector of bounded exogenous variables. A is a KxG coefficient
matrix for the exogenous variables. "di" is a 1 xC vector of duﬁmy
variables (C < G). Only Cl(f C) of thege dummy variables act as shifters
of the structural equations. Assoclated with the Cl shift dumﬁy variables

is a Cl::G coefficient matrix B. Ui is a 1 xG vector of disturbances for

observation i, 1 =1, . . . , L.

The structural equation system may be written as

* =
(B-1) YT + XA +dB = U,

where
E(Ui) =0 E(UiUi) = g
and
EQUU) = 0 143

Ui is assumed to be a multivariate normal random vector. I 1s positive
definite. For notational convenience, suppose that the first C latent

variables activate theC dummy variables
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= ) *
djy =1 iff Y5, >0

dij =0 otherwise, j =1, . . . , C

and that the first C continuous variables in YI are unobserved while the
remaining G-C variables are observed.l Fipally, note that C > Cl, and
assume that the first C1 latent variables generate the cl shift dummies.

The semi-reduced form for the system is

* -~
(B-2) Yy o= XmoH dF 4V
where
x=-Ar 17 = -BrL and v, = Uir'l.

1t is convenient to work with reduced form variance normalized versions

of these coefficients. Define § as

- 1 = (r-l -1
2 E(ViVi) (r =) cr .

Diagonal matrix D is defined by

D2 = diag .

D displays the population standard deviation for each element of V Par-

i
tition D, and define D* as

|

|

D 0
c
D* =
0 Ig¢

INote that case 2 in Part I of the text is excluded by the assump-
tion that C} < C and that only unobserved latent variables generate struc- 7
tural shift. The model can readily be generalized to dnclude this case. _J
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where DC is a ¢ xC submatrix of the first C diagonal elements of D, and

%ﬂisa@4)xw4)ﬁmHWmudL

Postmultiply equation (B-2) by (D*)-1 to reach

_ *k * ~k | ok
(B-3) _Yi Xiw + diw + Vi

E(vH)' v¥) = a* = 07t et

This operation normalizes the first C semi-reduced form equations to have
a unit variance disturbance, on obvious generalization of the procedure

utilized in Section II in the text. Note that
n* = n(D*)-l, a* = i(D*)-l.

In the notation of this appendix, the Principle Assumption in the

1 rows of the first C.1 columns of #* should

vanish. Thus the Principle Assumption in this model becomes

text requires that the first C

ﬁ;j =0 4,3=1,...,C,.

Assuming that the reduced form model is of full rank, the coef-

ficients in the first Cl columns of n* may be estimated by applying

probit analysis to each equation. If C > Cl’ the coefficients in the next

C-C1 columns of 7* and #* may be estimated by applying the methods of

Section III to each equation. Assuming G > C, the coefficients of the

final G-C columns of n* and #* may be consistently estimated by applying
the methods of Section II to each equation. Precisely the same type of
argument offered in Section II establishes that all elements of Q* are

estimable.

Now consider the estimation of structural'coefficients. Assume
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that through exclusion restrictions all nonzero coefficients in equation
(B-1) could be identified if Y: were observable.l Clearly, in the trans- ;
ition to equation system (B-1) with some continuous variables unobserved,
the same regreésion coefficients that can be identified in the previous
case can be identified in the current model if they are suitably re-
normalized. To obtain the required normalization, rewrite equation (B-1)

in terms of normalized latent variables

(B-1) Y;(n*)'l D* + X A+dB=U

1 i°

For the normalization implicit in the choice of I'y it is natural to post-

multiply this equation by (D"‘)-l to reach

(B-1') wron hHeren™ 4 x, A0N™ 4 4, 30" =y, 0.
Clearly, then, one can identify the following parameters:

(B-4) r* = n*r(n*)'?,A* = a0t B* = %)L,

Finally, it is clear that one can identify the following parameters pf

the structural covariance terms

(8-5) t* = 0%l %L,

This completes the analysis of parameter identification.

The likelihood function for the model may be generated from the
density for random variables di and Yi where Yi is the 1 X (G-C) subvector
of YI corresponding to the observed continuous variables. That density is

defined next. Let *1 be defined as

lThe restriction to exclusion restrictions is overly stringent.
Identification through use of covariance restrictions 1is also permitted
so long as such restrictions can be imposed on a*.
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= * *
wi Xin + diw .
Partition wi into wi,C and wi,G—C' i.e., wi = (wi,c' wi,G-C)' Then the

A L
density for di’ Yi, g(di, Yi) is given by

R 2 *
g(dg, Y,) = Fz('bi’c *l2dg -y Y5 - Viech I % [2d; -(1(2d; -(1Y)

where * denotes a Haderard product, | is a 1 x(c vector of "1's," and 2 is the
number "2", F2 is the derivative of the cumulative distribution for the

multivariate normal with respect to the final G-C elements of

-1
UI = U, 0N, ie.,
"1 ECRYI 1,
F (U% ; %) « _{, B -jm |z*| exp -1/2(U} (Z*) ~ U3')dus,

* _ ook *
where Ui (UiC’ UiG-C)'

The sample likelihood function is

é{a= ; g(dy, Yﬁ)
i=1

which is to be maximized with respect to the terms in equations (B-4) and

(B-5). As in the text, the identification analysis produces initial con-

sistent estimators to use as starting values. In large samples, maximum

likelihood estimators exist, and are consistent and asymptotically

efficient.

One final multivariate extension is worth noting. The models

developed thus far are for umordered dichotomous variables. In some cases,
dummy endogenous variables may be naturally ordered. For example, in an

analysis of the effects of legislation on the income of blacks, one might

distinguish existing laws by their 'strength" and a natural ordering would
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exist. One simple way to generate such ordered dichotomies is to polytomize
a single latent continuous random variable. Thus, each element of di' say

dic" might be replaced by a vector of dummy variables, with a typical

(1)

iot defined as

element d

Q) _ c' * c
dic‘ 1 iff ¢j < Yic' < ¢j

= 0 otherwise, j =1, . . . ; J

L]
where the categories are mutually exclusive, and the ¢; y J

1, Ic‘ are
a set of estimable constants (fixing ¢J = « and ¢o = -m),

Each of the C dummy variables may be polytomized in this fashio_n.1

lrhis procedure for generating ordered dichotomous variables is
discussed in more specialized cases by Johnson (1972) and Amemiya (1975).
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