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Abstract

In 1965 Broyden introduced a family of algorithms called

(rank-one) quasi—New-ton methods for iteratively solving sys-

tems of nonlinear equations. We show that when any member

of this family is applied to an nxn nonsingular system of

linear equations and direct-prediction steps are taken

every second iteration, then the solution is found in at

most 2n steps. Specializing to the particular family mem-

ber known as Broydents (good) method, we use this result to

show that Broyden's method enjoys local 2n-step Q-quadratic

convergence on nonlinear problems.
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1. Introduction

In 1965 Broyden [1965] introduced a family of algorithms

called quasi-Newton methods for solving systems of nonlinear

equations, i.e. , for finding x* e ]Rn such that f(x*) 0,

where f; JR" ÷ ]R" is differentiable. Broyden proposed a modified

form of Newton's method in which an approximation H to the

inverse of the true Jacobian matrix f(x) is used and updated

after each step. This leads to an iteration of the form

x. x. - X.H.f(x.), where the steplength A. is chosen to
1+1 1 11 1 1

promote convergence. In what follows we shall usually restrict our

attention to direct prediction methods, i.e., A. 1 as in

Newton's method. By analogy with the DFP method [Davidon,

1959; Fletcher a Powell, 1963] for unconstrained minimization,

and by considering what is desirable when f is linear, Broy-

den proposed updating H. in such a way that the quasi-Newton

equation H1÷1 [fx±÷1 - f(x±)]
x1÷1 - x holds. Since

new information is picked up in only one direction each step,

Broyden suggested obtaining H+1 from H. by means of a

rank 1 update, i.e., by adding a matrix of rank 1 to H1.

This leads to the following iterative procedure.

Choose nonsingular H0 e flXfl and x0 c 3R.

Fork 0,1,2, ... let
(1.la) 5k _Hkf(xk);

(l.lb)
xk+l Xk +

(1.lc)
31k f(xk+l) — f(xk);
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(l.ld) If 0 then

(1.le) else choose Vk c ]RrI such that VYk

(l.lf) and VH'Sk 0

(l.lg) and let Hk+l H + (sk -
HkYk)v

Because of (l.lf) and the Sherman-Morrison [l9Z9] formula,

Hk+l is nonsingular whenever Hk is, so induction shows that

Hk is nonsingular for all k, whence Sk 0 only if f(xk) 0.

Broyden's [1965] method (sometimes called his first or

good method) results from choosing vk Hksk/(skHkyk) in (l.le)

-- and is defined for 0 only so long as SHkYk 0 and

Syk 0.

T

second or bad method results from choosing

Vk
when 0 and is defined so long as

YkHk5k 0

Broyden has shown that his (first) method converges

locally at least linearly on nonlinear problems [1971] and at

least R-superlinearly on linear problems [1970]. Later,

Broyden, Dennis, and Morg [1973] showed that both Broyden's

good and his bad method converge locally at least Q-super-

linearly. More and Trangenstein [1976] subsequently proved

that "locally" could be replaced by "globally" when a modified

form of Broyden's method is applied to linear systems of equa-

tions. In Section 2 of this paper we show that when any form

of (1.1), including Broyden's good and bad methods (so long as

they are defined), is applied to a system of linear equations

f(x) Ax - b in which A c ]RF1<1 is nonsingular, then the

iteration converges in at most 2n steps (i.e., x5 x = A b
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for all j > 2n). We show further that this result also holds

when some nonunit steps are allowed (Sk XkHkf(xk), with

Ak 0, 1). Specializing to Broydens good method, we show

in Section 3 that this method enjoys local 2n-step Q-quadratic

convergence on nonlinear problems. Section presents some

concluding remarks.

2. Finite Termination on Linear Systems

In this section we show that Algorithm (1.1) converges

in at most 2n steps when applied to an f representing a

nonsingular system of linear equations: f(x) Ax - b, where

A nxn b £ lRnl, and A is nonsingular. This follows as

an easy corollary to the following lemma, which holds even if

A is singular. The notation [ci used below denotes the

greatest integer less than or equal to a c ]R, while for non-

zero u, v ]RrI, the notation u v means that u Xv for

some real A 0.

Lemma 2.1

If A c and Algorithm (1.1) is applied to f(x) E Ax - b

with the result that f(xk) and are linearly inde-

pendent, then for 1 < j < L(k+i)/2J,
(2.1) (AHk_2j÷l)'fk_2j+l 0 < i < j, are linearly independent.

Proof: Since k-l Ask_i _AHklfkl, this is easily seen

to hold for j 1. Assume it true for j m < L(k+l)/2J.
Note that 2m < k-i, whence k-2m-i > 0. Also note from

(l.la,b,c,d) that y. 0 => y11 0, ° k—l 0 >
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'k-2m-l
0. Now

s -H y -H f +H AM fk-2m k-2m k-2m k-2m k-2m k-2m k-2m k-2m

-H (I—AH )f sok-2m k-2m k-2m

AHic2m+i AHk2(I - CI - AHk2]fk2V2). Moreover,

k-2m+l
- k2mk2m Since

0 < i < m, are linearly independent by the induction hypothesis

(2.1), we see by the two preceeding equations and induction on

that there exist y (dependent on k and m) such that

(ARk 2m+l 2m+l (I_AHk_2m)[(AHk_2m)' + .(AHk21fk2
for 0 < m, whence (I - AH )(AH )'f , 0 <— — k-2m k-2m k-2m — —

are linearly independent. But (I -
AHk 2yk2l 0 by

(l.le,g), so k-2m-l _AHk2mlfk2ml and (AHk2ffl)'f2m

o < I < m, are linearly independent. As before, we see that

there exist (dependent on k and m) such that

(AHk2)'fk2 (I -
AHk [(AHk2 l +

+
i,i(AHk_2m_l)jfk_2m_l

for 0 < I < m, whence we readily see that (AHk2ml)'fk2ml

o < I < m+1, are linearly independent. Thus (2.1) holds for

j m+l, and the lemma follows by induction. I

Theorem 2.2: If f(x) Ax - b and A c is nonsingular,

then Algorithm (1.1) converges in at most 2n steps (i.e.,

2n 0).
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Proof: As noted above, Hk is nonsingular for all k; since

A is nonsingular, we thus see that if f22 is nonzero,

then the same is true of s -H f and2n—2 2n—2 2n—2

'2n-2 AS22. If f1 0, then necessarily 2-2

SO 2n2 0 and Lemma 2.1 implies that f21 2n-2

(since otherwise ]R would contain n+l linearly independent
vectors). Since s22 H21Y22 H21A522 by (l.le,g),

we have y22 As22 AH21y22 and hence

f AH f , so2n—l 2n—l 2ri—l

f f +A f -AH f 0.2n 2n-1 2n-l 2n—1 2n—l 2n—l

Theorem 2.2 leaves several questions unanswered, such as

whether a full 2n steps may actually be required. Computer

runs suggest for small values of n that Broydents good and

bad methods may both require a full 2n steps. As we shall

now see, it is possible for arbitrary n and nonsingular A

to choose H, f, and the Vk in (l.le) so that Algorithm

(1.1) requires a full 2n steps. This is the content of

Theorem 2.L., proof of which requires the following lemma.

Lemma 2.3: In Algorithm (1.1), if 0, vy1 0, and
Rank(I -

AHk) n-l, then Rank(I - AHk+l) n-l.

Proof: I - AHk+l
I -

AHk(I
- [I - AHk]fkv)

(I - AHk)(I + AHkfkv)

(I - AHk)(I
-
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It suffices to show that (I - AHk+i)u 0 whenever u is

linearly independent of Now Rank(I - AFIk) n-i and

(I -
AHk)Yk 0, so (I - AHk)W 0 whenever w is linearly

• T Tindependent of kl• But vk(I - k"k 0, so for

w (I - ykv)U, we have vw 0, while vYkl 0 by

assumption. Thus w is linearly independent of

whence (I - AHk+l)u (I -
AHk)W 0. •

Theorem 2.4.: If I - AH0 is nonsingular, if (AH)'f,

o < i < n-i, are linearly independent, if vfk 0 and

vHk'sk 0 for k > 0, and if VYkl 0 for k > 1,

then Algorithm (1.1) requires a full 2n steps to converge.

Proof: As in the proof of Lemma 2.1, we find

(2.2a) k+l (I - AHk)fk,

(2.2b) AHk+lfk+l _(vfk)(I - AHk)(AHk)fk, and

(2.2c)
(AHk÷l)1fk÷l _(vfk)(I - AHk)[(AHk)'

+ E
(AHk)1fk

for 1. In particular, since vf0 0, I -
AH0 is non-

singular, and (AH0)1f0, 0 < i < n-l, are linearly independent,

we see for j 1 that

(2.3a) (AH21)1f21 0 < n-j, are linearly independent.

Moreover, since I -
AH1

(I - AH)(I - y0v), we see for

j 1 that

(2.3b) Rank(I — AH2.1) n—l.
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Suppose (2.3) holds for 5 k < n. Since 2kl _AH2klf2kl,

we see from (2.2) and (2.3a) that 2k-i and (AH2k)'f2k,

o < i < n-k-i, are linearly independent. But

(I - AH2)21 0, while Rank(I - H2k) n-i by (2.3b)

and Lemma 2.3, so 2kl spans the null space of I - AH2k

and (I - AH2k)(AH2k)'f2k, 0 < n-k-i, must be linearly

independent (since otherwise 2k1 were a linear combination

of (AH2k)'f2k, 0 < i < n-k-i). From (2.2) it follows that

(2.3a) holds for j k+l, while (2.3b) holds for j k+l

by Lemma 2.3. Thus (2.3) holds by induction for 1 < j < n.

In particular, f1 0, whence Algorithm (1.1) runs a full

2n steps before converging. I

Another question that Theorem 2.2 leaves unanswered is

what happens when a step-length parameter is introduced, i.e.,

when step (l.la) is replaced by Sk AkHkfk For

Ak 0, 1, (2.2) becomes

(2.) (AHk+l)'fk+l
(I - AHk) AHk)' + E (AHk)]fk +

+ i,ok
i.e., multiples of k are added to the right-hand sides of

(2.2). Thus the proof of Lemma 2.1 is unaffected if

Ak21 1, 1 < m < L(k+i)/2J; it seems essential only that

Xk2m 1. More generally, we see from (2.Ll.) that if

0 < m, are linearly independent, then the
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set {(AHk)1fk I 0 < i < m+1} must contain at least m+l

linearly independent vectors, whence (AHk)1fk 0 < i <

must be linearly independent (since if (AHk)fk were dependent

on (AHk)1fk 0 < I < j, for some j < m, then (AHk)fk

could be expressed as linear combinations of these same vectors

for all > j). Hence the proof of Lemma 2.1 may be modified

to obtain

Theorem 2.5: If Algorithm (1.1) is applied to a linear function

f(x) Ax - b with A c ]Rnl>(11 nonsingular and (l.la) replaced

by 5k XkHkfk (Xk 0), and if there are integers k.,

o < i < n, such that k -l and X 1 with— — o k.
1

k.>k. +2 for 1<i<ri, then f 0.i— i-i — — k
n

Theorem 2.'-i. is readily generalized to allow X2k 1,

o < k < n. Whether a further generalization along the lines

of Theorem 2.5 is possible remains an open question.
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3 Local 2n-Step Q-Quadratic Convergence of Broyden's Method

We now restrict our attention to the direct-prediction

version of Eroyden's (good) method. This amounts toAlgo—

rithm (1.1) with Vk HkTsk/(skTHkyk). With this Vk, it is

well known (and easily seen from the Sherman-Morrison [19L49]

formula) that if is nonsingular and Sk Hkyk 0, then

—l —l —1 T T
Hk÷l Hk

+ k Hk sk)sk /(sk sk). We shall find it some-

what more convenient to restate the direct—prediction Broyden's

method in terms of B Hk. Thus for k 0, 1, 2,

we are dealing with the following iteration (in which

(3.la) s kk
(3.lh) Xk

+
Sk

(3.lc) k k+l —
(3.ld) If skBkyk 0 then k±l = + ( - Bksk)sk/(sksk)

(3.le) else Bk+l Bk.

In what follows, = denotes the Euclidean

T
vector norm lxii (x x) or the corresponding induced

matrix norm. We may now state the main result of this section:

Theorem 3.1: Suppose f: n -]R is differentiable with

1
f(x) - f(y) ff'(y + T(x-y))(x-y)dT, that f(x*) 0 with

0

A E f'(x*) nonsingular, and that the Jacobian matrix f' j
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Lipschitz continuous at x*, i.e., for some constant A

and all x sufficiently close to x,

(3.2) f' (x) - f' (x < A - x.
Then there exist y, , > 0 such that if

(3.3) x_4 < and B- A <

then the. iterates produced by Algorithm (3.1) satisfy

(3.) - x < -

for all Q > 0.

Proof: From (3.2) and the proofs of Theorems 3.2 and 14.3 of

[Broyden, Dennis, & Mor, 1973], there exist ,c > 0 with

< l/(LIA'II) such that if (3.3) holds, then

(3. 5) Xk+l
-

Xk
- x

(3.6) Bk - A < 2,

(3.7) <

(3.8)

and sBy 0 only if x*. Fix 9 and let h - x*jI:

we must show that there is a y independent of 9 such that

IIx+2 - x < yh2.

Consider the sequences ' x2, .. . , x2 of vectors and

B2, 2 of matrices generated from x and
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B B by (3.1) with f(x) replaced by f(x) A(x -

i.e., k xk), Sk Bkfk, Xk+l Xk
+ Sk,

= k+1 - k Ask and

(3.9) B±1 Bk + - Bkskk/ksk)

for Sk O with Bk+l = Bk Sk
0. Similarly to (3.6)

and (3.8), we have

k A < and

(3.11) <

W' s:w by ii.iuction that there ex.Ltt ',
(independent of ) such that

(3.12a) -
BI! II+5II y1.h nd

(3.12b) Ilx+ - xii

for 0<j<2n.
Since B B and x = x , (3.12) holds for j = 00 0

with - 0 2 0 = 0. Suppose it holds for j k. To
, ,

establish (3.12b) for j k+1, we first note that

IIS+k
-

Sk Bkf÷k Bf
(3.13) IIBII IIBkII IIB+k - BkM IIf+kII +

+ Ii1II t'+k -

Now +k - k [fx+k - f(xj+k)1
+ Lx÷k -

xk)l
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and (3.2) and (3.5) imply

A

- f(x+k)M Lf* + T[XL+k_X*]) - ft(x*)1(x_x*)dT
1

< — x*II /lIX2.+k — xITdT

- x*112 <

while for
'3,k tIAIIy2k,

IJf(x+k) - xk)II hAil ilX+k - Xkil 13,kh by (3.12b), so

(3.13), (3.8), (3.11), and (3.12a) imply

(3.1k) -
skIl

where ,k lA'iI2y1 + All(X + 213k), which,,k

along with (3.12b) for j k, gives (3.12b) for j k+1

with
12,k+1 12,k

+

It remains to show that (3.lL) and (3.12a) for j k

imply (3.12a) for j k+1. If 5+k 0 or Sk 0, then
A

either +k+1 0 or 0, whence the reasoning above

(3.1LI.) shows if < (— + 3,k+l together with (3.6)

and (3.10), this shows for 15k+1 + 23k+1 that

!IB+k+l - Bk+lii '1i+k+11'
YSk+1h2. On the other hand, if

A

both 5+k 0 and Sk 0 (as we henceforth assume), then

in view of (3.ld), (3.9), and (3.7), we need only show that

T T(3.15) +k - B+ks+k)sj+k/(s÷ks+k) -

A A AT ATA- -
Bksk)sk/(sksk) II+kII 16,kh,
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for then (3.12a) holds for j k+l with
1

11,k+1 max{y5 k+1' 11,k + Let Ak ff'(xL+k+ T5+k)dT,0
Aso that

.+k Aks,+k. Since Ash, we have the follow-

bound on LHS(3.15), the left-hand side of (3.15):

T T
LHS(3.15) (Ak_Bj+k)s+ks+k/(sj+ks+k) -

' " T ATr II 1 II-
(ABk)sksk/(sksk)JI fV&+kl

T T
)lI hf II +(3.16) < [(A-A) -

(B+k_Bk)]s+ks+k/(sj+k +k
II

T AT .TA+ (A_Bk)[sj+ks+k/(sj÷ks+k) -

5ksk/(sksk)
1

Now IlAk — All < fhlf'(xj+k + TSZ+k) — f(x*)IldT
0

+ Ts+k — x*hJdT
0

< — x'Il

by (3.2) and (3.5), while jfIl < y7h by (3.2), (3.5), and the

definition of h, where
17 hAll + X5/2. Because of (3.5),

T T
(3.7), and the fact that Is÷ksj+k/(s+ks+k)l 1, we thus

find IhAk - All < Xh and

-
'1f+k11

< From (3.12a)

for j k, we thus find that the first term in the right-

hand side (RHS) of (3.16) is bounded by (Ày7 + ylk)h. By

A A

(3.10) and (3.6), lA —
Bk!1 tli+kH

hA —
Bk1! IlBj+ks÷kll . 18IlS.Il

where llAIl + 26). Moreover,



—1t—

T AAT A

S+kS+k SkSk _______ S+k Sk

4+kS+k
-

SkSk

-
I! S+kIJ IIS+kIl

-
liSkil

+

A

_______ 6k Sk
+

IIS.+kI!

—

IIskIJ IkkII

< 2 +k" S+kII - Sk/Sk )
[2/Ils÷I](s÷k

-
Sk)

+ [(IlI -

< - Sk/+k.
Because of (3.lq.), we therefore conclude that the second

term in RHS(3.16) is bounded by Y8Ykh2, so (3.15) holds

with '
Xy.7

+ + Ly0y . Thus (3.12a) holds for j k+l,6 ,. .L.,_

and by induction we see that (3.12) holds for j 2n. But

X2n x by Theorem 2.2, so (3J4) holds with ' 11,2n I

We could use the same techniques to prove a similar

result for Broyden's bad method, i.e., Vk

(l.2e). At the time of this writing, it remains an open

question whether a similar result holds for Broyden's method

with projected updates [Gay F Schnabel, 1977].

4. Concluding Remarks

Theorem 2.2 came as quite a surprise to a number of us

who had confidently shared the belief that Broyden's method

did not enjoy finite termination on linear problems. Among

other things, this theorem should serve to still the criticism

that Broyden [1970, p. 377] had in mind when he wrote, "Thus
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Broyden's algorithm will not solve linear systems in a finite

number of steps and this has been held to be a disadvantage

of the method."

Theorem 3.1 is one interesting consequence of Theorem 2.2:

Broyden's method with unit step lengths enjoys local 2n-step

Q-quadratic convergence and hence has an R-order of (local)

convergence of at least 21/(2n) (see §9.2 of [Ortega S Rhein-

boldt, 1970]). This result nicely complements that of

[Broyden, Dennis, S More, 1973], which establishes the local

Q—superlinear convergence of Broyden's method. The Q-super-

linear convergence assures that eventually more progress is

made in the current iteration than in the previous one, while

the 2n-step Q-quadratic convergence assures a definite amount

of progress at intervals of no more than 2n iterations.

Theorem 2.14 suggests that Broyden's good (or bad) method

often converges no faster than 2n-step Q—quadratically and

hence has an R-order of exactly 21/(2n) If so, then we may

extend the comparison of asymptotic efficiencies in §6 of

[Brent, 1973] to include Broyden's method. According to

Brent's definition, Broyden's method would have efficiency

E(B) (1og22)/(2n), the lowest of the methods compared. Of

course, this says little for practical applications, where

the bulk of execution time is consumed in finding the region

of fast local convergence and where the simple measure of

work (i.e., the number of equivalent function evaluations)

that Brent used may not suffice. Moreover, if (as we suspect)
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a result similar to Theorem 3.1 holds for Broyden's method

with projected updates [Gay Schnabel, 1977], then this

version of Broyden's method often enjoys (n+1)-step Q-quadra-

tic convergence, which gives it efficiency E(P) = (log22)/(n+l),
the same as for the finite-difference Newton's method.
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