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I. INTRODUCTION

In economic modelling the existence and sense of direction of the

causality are often chosen on a priori grounds. However, on many occa-

sions economists fail to agree on the direction of changes, orwhether

feedback is occurring. For instance, the debate between the monetarists,

who view noney as a principal cause of cliannges in nney income, and the

critics of this view, who say money is a passive adapter to business con-

ditions with little independent influence, has continued for decades.

Whether one or the other side proclaims the truth is largely an empirical

matter. A fundamental study of this problem has been done by Cagan in

1965 who, relying on disaggregated U.S. data from 1875—1960 and nonpara—

metric methods, argues convincingly that the long—run relation between

money supply and the price level is largely unidirectional. His analysis

of the cyclical relations between money and income fails to yield a firm

conclusion, however.

Recently Granger (1969) gave an explicit and testable definition of

causality and feedback. Sims (1972) used a Hilbert space argument to

show that Granger's definition was equivalent to the existence of a parti-

cular representation of the "driven" process with respect to the "driving"

process and proposed a univariate regression method to test for the direc-

tion of causality. Since then, a significant amount of interest in the

theory and technique of causality detection has been developed in the

economic literature. However, the particular aspect of inferenceadvo-

cated by each individual author fails to yield a consensus on the parti-

cular problem being investigated. Take the case of money and income

causality. Sims (1972) contended that there existed a unidirectional
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causality from money to GNP in the U.S. On the other hand, DyReys, Star-

leaf and Wang (1976)1, Feige and Pearce (1974), etc., based on different

methods, contended that money and income were, at most, weakly related.

Neither is the pattern uniform f or inter—country comparison. For instance,

Wall (1974) found that money was the driving force for income in the U.K.,

while Williams, Goodhart and Gowland (1976) found the reverse causality

to be the case.

The dispute, as we see it, stems at least in part from concern over

the errors associated with the classical hypothesis testing where we may

(i) wrongly reject the true (null) hypothesis (type I error), or (ii)

wrongly accept the false (alternative) hypothesis (type II error). Take

the simple example of two uncorrelated processes {xt, y• If both are

first—order autoregressive processes with parameters and respectively,

then the variance of the estimated ktl order cross—correlation ((k))

is:

a
(1+

(1) Var ((k))
(1-. )

where T is the sample size. For white noise the corresponding result

is:

(2) Var ((k))

Hence if aS is positive, (1) is inflated relative to (2), whereas if

a5 is negative, (1) is deflated. Equation (1) then shows that very large

cross—correlations, all of them spurious, can be generated between two

uncorrelated processes as a result of the large autocorrelations within

the two processes (for economic examples, see Granger and Newbold [1974]).
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An incorrect inference about the nature of time series data would then set

a critical region which would either give too high a significance level and

too low a power or vice versa. The concern of such a "spurious regression1'

phenomenon led Pierce and Haugh (1977) to propose causality detection based

on cross—correlations of whitened series, which may be viewed as an at-

tempt to set the correct significance level. The concern of "spurious

independence," or the power of the test, led people to propose testing

procedures based on a direct multivariate autoregressive—moving average

model fitting, generalized least square method, etc. (Caines and Chan

[1975], DyReyes, Starleaf and Wang [1976], Sims [1972, 1975], Wall [1974],

etc.). In this paper we intend to survey and suggest the theoretical

framework of the important aspects of causality detection with the pur-

pose of conveying to the reader the essential features and the different

forms in which inferences may be drawn from given data.

Section II presents the basic theorem characterizing the causality

events and suggests two feedback detection methods which, like the

one suggested by Pierce and Haugh (1977), are based on correlation analy-

sis. In Section III we survey other well—known causality detection

methods and try to relate and to compare them with the methods suggested

in Section II. Section IV briefly reviews the theoretical controversy

of the relationship between money and income and presents some empirical

evidence based on the methods discussed in this paper. Conclusions are

in Section V.
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II. CHARACTERIZATION OF FEEDBACK—FREE PROCESS AND ITS DETECTION

Let fi , y } be joint covariance stationary, purely linearly in—

deterministic, processes. Let At be the given information set, includ-

ing at least Cx., y}, and AtXt be the information set apart fromX.
Let At = {A:s<t}, = {A:s<t}, and similarly define X1, '1 Denote by

2 (YIB) the mean square error of the minimum mean square error prediction

of Y given information set B . Granger's (1969) definition of causali-

ty and feedback are:2

Definition 1 (Causality): If a2(YIA) < 2(yI), we say that X

is causing Y, denoted by X

Definition 2 (Feedback): If a2(Y) < 2(YI) , and

2(x) < (XV), we say that feedback is occurring, denoted by

tt
To give an operative meaning of these definitions, we write the

linearly regular processes X and Y as:

(3)
aj

+ b.

j0

x cj + d
where and r are mutually uncorrelated white noise processes with unit

variance. In order to make the representation (3) unique, we take
a0

to be zero and a0, d0 positive. The following theorem is proved by

Caines and Chan (1975), Sims (1972).
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Theorem 1: If YX relative to the information set A, the following

statements are equivalent:

(i) c identically zero.

(ii) the least squares estimate of given the observations

is identical to the estimate of y given {xt}, for

= . . . , —1,0,1, .

(iii)if XY, there exists a unique representation of y with res-

pect to x of the form

=
I( x_ + .JL L t—j'

where the processes x and are orthogonal.

Based on this theorem, various testing procedures have been proposed

to detect feedback. In this section, we propose yet two more testing

procedures. The methods are based on the idea of correlation between

two time series rather than regression analysis. In regression theory,

one variable is considered random or "dependent" and others fixed or

"independent." In correlation several variables are considered and

treated synmietrically. Since both X and Y are stochastic, we feel it

is more natural to consider them in terms of a correlation approach rather

than a regression approach. Of course, if we start with a joint normal

distribution, we arrive at the same tests in either case when the two

procedures are independent. The probability theory under the null hypo-

thesis is the same. However, if the alternative is true, the distribution

of the test criterion will be different.
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Let be a unique orthogonal projection matrix of on

{x5Is<t} and let be a unique orthogonal projection matrix of y on

X. Define

(4) v = (I — x
and

Ut
(I — fl

(5) P(k) E (utvt+k).

By construction P(k) = 0 for k � 0. Then

Lemma 1: P(k) = 0 for all k > 0, if and only if Y+X.

Proof: A direct proof is obtained by noting that from theorem 1(u) the

partial covariances of y and for j 1 given X are zero. Thus

the if part follows immediately. To prove that leia 1 implies all par—

tia]. covariances between y and given are zero, we note that

0 only when u is orthogonal to By the inductive argu-

ment of the orthogonality principle, we conclude that P(k) = 0 for

all k > 0 states that u is orthogonal to I . Therefore lmm 1
t

holds.

To devise testing methods from lpimn 1, we assume that the linear

regular nondeterministic process (3) satisfies the stability condition.

Therefore we can approximate it by a finite order autoregressive pro-

cess. Under the null hypothesis of no feedback from y to x, the

probability distribution of x given (X_Xt...,)
,

P (xIx_i, . . .,
for p sufficiently large, would be approximately a white noise. The

correlation between Vt+k and will then have mean zero and asymptotic

variances (T—p)1 . Thus, one way to test feedback is to:
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Test 1: Regress x on past x's, and denote the residual by

Regress y on current and past x's and denote the residual by Compute

the cross—correlation coefficient between and
t+k'

(k), where

(6) r(k) = [cA(O) . c'(O)] cA(k)

and c.(O), c.(O) and C-(k) are the sample variances and cross—covariances

of u, v. The test statistic calculated would be

(7) = (T_p)?(k)

In a large sample this statistic is approximately chi—square distri-

buted with M degrees of freedom under the null hypothesis, because the

asymptotic distribution of a finite set of lagged cross—correlations

between two independent linear processes is normal (Hannan [1971, p. 230]).

The proof of (k) having the same asymptotic distribution follows

straightforwardly from that of Haugh (1976) except for the minor compli-

cation here that although v is a white noise process, u is not. How-

ever, the independence of u and v implies that c(k) is still of

O(T); thus, there is no change in the basic argument. Neither is there

a reduction in the degrees of freedom for this test because the constraints

placed on the residuals by the fitting process did not play a crucial role

as that in the case of Box and Pierce (1970) or Chitturi (1974).

Quenou.Lli (1948) showed, by a sampling experiment, that when the two series

are uncorrelated, the variances are approximately (T—p)1, even for small samples,

and the bias is small.' On the other hand, if the alternative is true, the

cross—correlation estimates based on moments are not necessarily efficient. The
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variance/covariance matrix of the cross—correlation functions are now

complicated functions of the true autocorrelation functions and the true

cross—correlation functions (Hannan [1971, Ch. 4]). The efficiency of

the statistics, as test statistics, depends not only on their variance

under the null hypothesis but also on their distribution when the null

hypothesis is not true. Although it does not necessarily follow that a

more powerful test will be obtained by using a statistic which is more

efficient than the one which is less efficient, there is a strong intui-

tive appeal to use a statistic which is consistent and asymptotically

efficient under both the null and the alternative. It is likely to be

locally more powerful than others (see Kendall andStuart [1961, Ch. 25],

Rao [1962], and the discussion in Section III below).

The reason one suspects Test 1 is not fully efficient is that the )

stochastic processes (vs, Ut) are not serially independent. Using spec-

tral representation, we can trade our sequence of dependent random vari-

ables for a sequence of independent random variables. Thus, an approxi-

mate likelihood ratio test can be proposed for the two residual time series.

The null hypothesis in the frequency domain can be stated as:

H0: F(w) diagonal for aLl. ,

where
f (w) f ((i))

(8) F() = [u; ]

irf(w) = -Lexp(_it)c(T),
= *exp(_ir)cv(t),

Zexp(...t)c(t) Iexp(_ir)c(T) (by construction)
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c(t) = E [(ut_Eut) (uEUt)], c(T) = E [(v_Evt)(v+1_Evt)],

C(t) = E [(ut_EU)(v+_Evt)].

If the spectra are sufficiently smooth, they can be divided into M

bands between (O,ir ) such that for each band each spectral matrix is con-

stant (see Wahba [1968] for a precise condition). We can then obtain an

estimate of (w) by first transforming and ' into Vu(Wd) and

where

w(wd)
= (211)2 exp(itwd)

w() = (2irn) exp(itwd)

d = 1, . . . [n/2] , with n = (T—2p) and (] the largest

integer not greater than the indicated number. Let m satisfy mM =

As T- , we can group the Wd into i sets (excluding = 0), the Lth

which we call S, containing m adjacent d nearest to . We put

W(Wd) w (Wd)
W

dC
S

- 1 r= ; 1. w(w) w
WdS

f (w)uv i in u d v d

WdCS

where the super asterisk indicates transposition combined with conjugation.

Under appropriate conditions, such an estimate is consistent (see Anderson

[1971, Ch. 10], Brillinger [1975, Ch. 7]).

The approximate likelihood ratio test for the null hypothesis is

given by:
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Test 2:

I'(w )l
9) A

() 1(w i [1 — R(wfl
where

(10) R() =

which is a measure of causal coherence from y to x Although (10) is

different from the definition given by Granger (1969) , it may be viewed

as a direct generalization. We note that F(), 21, . . . H , is

asymptotically indepently distributed as complex Wishart distribution

m1 W {m,F(UL)} under appropriate conditions.5 Since the distribution

in the complex case is identical with the real case except for having

twice the sample size and twice the variable dimensions, we can show,

by a similar manipulation as Anderson (1958, ch. 9) and Wahba (1968),

that when H is true

(11) A" It

where are M independent beta random variables with 2(m-.1) and 2

degrees of freedom. Therefore

(12) = — log A

has mean and variance under the null hypothesis. Choosern-i M(m-1)

m (large) fixed and let H+° , it is asymptotically normally distributed.

If the sample size is large, this causal spectral analysis has

conceptual advantages for conveying information about interdependent

events. Usually it also has desirable properties for working with

reasonably smoothed spectra. For instance, if no feedback is occurring,
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the residual spectra f. would be approximately a constant over the

frequency. If feedback Is occurring, then simply removing past effects

of x would not, in general, make f constant. On the other hand, if

feedback does occur, the causal coherence squared (10) would give a

measure of the strength of causality Y-'-X plotted against frequency.

We can also define causal phase and gain by

(13)
ip(w)

= arctan[ Imag(fw))1
Re (f))

and

f (w2,) 1/2
(14) G(w) ()
accordingly to give us an idea of the causal lead and amplification
or attenuation from Y to X at each frequency component

w.

III. OTHER TESTING TH0DS

In this section, we try to relate the two testing procedures

suggested in the last section to other well—known testing procedures,

which are based on prefiltering and regression methods and, to the extent

possible, compare their relative power. All these tests are derived

from various equivalent statements of theorem 1.

Test 3 (Sims test): From theorem 1(u), Sims(1972) suggested an F

test for causal detection. That is, first regress Y on past and future

values of X, taking account by generalized least squares or prefiltering

of the serial correlation in the residuals. If there is no feedback from

Y to X, future values of X in the regression should have coefficients

insignificantly different from zero, as a group.
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Test 4 (Pierce and Haugh (1976), Wall(1974)): First use separate

filters on X and Y to ensure that each is very nearly pre—whitened.

Then use cross—correlation analysis to determine whether the residuals

of the two prewhitened series are cross—correlated. If causality runs

from X to Y only, all the cross—correlations between the residuals of

X and lagged residuals of Y should be insignificantly different from

zero. Haugh (1976) showed that .mder the null hypothesis these esti-

mated residual cross correlations are asymptotically normally distributed

with mean zero and variance 1/n. Thus
M

(15) f=fl rkk=1

is chi—square distributed with M degrees of freedom.

Test 5: From theorem 1(iii), it is clear that one way to test

feedback free is to test the independence between the stochastic regres-

sors x and the disturbances v. Various testing methods have been sug-

gested by Wu (1973). However, the power of these tests depend crucially

upon the available instrumental variables. Therefore, except mentioning

it as a possible candidate, we shall not elaborate on it here.

Test 6 (Direct test): From theorem 1(1):, we can test for feedback

free by fitting an impulse response function to model (1) and then test

whether C=O. Such a procedure has been applied by Caines and Chan

(1975), and Wall (1974), etc. on British data.

All these tests have the same distribution when the null hypothesis

is true. It is, however, of no use to know merely what properties

a critical region will have when H holds. For in general we can find

many, and often even an infinity, of sub—regions W of the sample space,

all having the same significance level. The problem of testing a hypothesis
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is essentially one of choice between the tests which minimize the proba-

bility of a type II error, after controlling the probability of a type

I error. Although all these tests are consistent under the alternative

hypothesis in the sense that the power of the test, defined as the pro-

bability of rejecting the null hypothesis H0when H0 is false,

approaches one when sample size goes to infinity, their relative effi—

ciencie.s are not identical. In particular, the power of these tests is

not independent of the process characterizing the perceived driving

forces. We use following simple examples to illustrate their inter-

relationships, and to the extent possible, compare their relative

efficiency.

Consider the null hypothesis of the following simple model U0:

(16) yu
x = cc1 +

against the alternative H1:

(17) x = t—l + >'t1t
where u and are serially and mutually independent G aussian random

variables with mean zero and variances a 2 and 2 Then a direct test
U V

(test 6) of no feedback from y to x is to construct the statistic

(18) XA 1 B1Yt_1AXt= xxt .(T3)

where and X are (T—1)xl vectors of (y2 ..., and (X2....,XT),

and d is the least square estimate of the coefficient of (of the

regression of on x1 and yi)M = I — Z(Z'Z) 1Z, with I the (T—1)

rowed identity matrix, Z = [X1, Y1], A I —



14

B = — YiXti(X_iXt_i)1Xt...iYt_i. '6 has an F distribution

with 1 and T—3 degrees of freedom wider the null hypothesis and a non—

central F distribution with the non-centrality parameter cSB1S/a2 under

the alternative hypothesis.

We also use basically the same statistic for test 1 and 2 Since, wider

the null hypothesis, x conditional. on x_1 is a white noise, the classical

test based on R in the case of test 1 is equivalent to using the statistic

As far as test 2 is concerned,because conditional on x1, x and are

white noise processes, their spectra and cross—spectra are flat, therefore M = 1

and the estimate of the spectral density matrix in this case is:
n
2 w(w)

(19) !(O) = { wV(_d)) ÷ wU(_. (w(wd) ,w(d))}j1 vd v d
(1

2 w(w)
Ii wW (wU(_d)) w(_wd))

j=1

Equation (19) is asymptotically distributed as a real Wishart distribu-

tion of dimension 2 and degrees of freedom n(=T—2) (Brillinger (1974),

theorem 7.3.3). Therefore, A has a beta distribution with T—3(n1)
1

and 1 degree of freedom. Since A =
l+(1/T—3)F , we have

l,T—3

(20) (T-3) • = l, T-3
=

Test 3, which is the same as test 1 in this case except that the

former uses the regression analysis while the latter uses the correla-

tion analysis, uses the statistic:
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Y AX D1X AYt—1 t t t—l
—

Y1iY —
/T—3

=
{—i. ÷ B(Y_iAXtD1XAYt_i)}'

= '
where

= I —

I = (X, Xvi),
D = [XX —

That is, Sims test in this case is identical to the likelihood ratio

test in the paraineteric model.

Although test 1, 2 and 3 and 6 use the same statistic, they are

based on different conceptions about the joint distribution of y and x.

The probability theory under the null hypothesis is the same whether one

uses the correlation analysis or the regression analysis. The distri-

bution of the test criterion when the null hypothesis is not true differs

in the two cases (see Anderson (1958)). Thus the power function will be

different even though the same test is valid in each case. Whether

one prefers the former approach to the latter wiil be largely a matter

of judicious choice and individual preference. However, when T-.c , the

results are identical in both situations. (Kendall and Stuart (1965,

ch. 26)).

Test 4 in this case uses the statistic

(22) X;AY..1(Y_jYt_1)Y;_1AX= •(T—3)
4 XAII_Y(YiY_iY'Y]AX
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Under the null. hypothesis
c4

is again F distributed with 1 and T—3 degrees

of freedom. However, under the alternative the test is less powerful

than the testing procedures just mentioned. Since the difference of the

numerator of 6 iS

(23) XAY_i(Y_1Yi)'Y_iX_i D1XiYi(YiYt_1)1YiAXt,
which is positive definite, while the denominator of is equal to the

denominator of 6 plus (23). Thus, although test 4 has the advantage of

eliminating possible spurious correlation, it overkills by losing the

power of the test, which may partially contribute to the fact that most

of the time series Pierce (1977) studied showed no sign of causation.

When fo1bo a first order autoregressive process:

(24) = +
Ut,

the direct test is independent of such a change in the characteriza— )

tion of the perceived driving forces, but not for other testing methods.

For instance, to apply Sims test without taking account the serial cor-

relation in the residual is identical to the direct test, which is a

likelihood ratio test. However, the estimated residuals of the least

squares regression of on and are now serially correlated.

The estimated serial correlation coefficient of the residual tends to

av2D_htpz(_1x2(1_D_xx(2fl
2 —2 2 2 2 —1 —l 2

D [1+ (1) ]—2d D {l+D (1)]

where
2

= U l+aY+
X

(1—cL2) (l_y2) lcr 1-a
2() 2

2 U __i2) (j.2) (l—ccy) 1—ct2 i

2c 2(aZ...yZ) 2

a2(2) =
(l-ct2)(1-)(l-cty) +

=
2
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The usual procedure of re—estimating the model using the r—differenced

data will, instead of increasing the power, in general lower the power

of the test, thus making comparison of the power of test 3 and test 6

very tricky. The reason that such an adjustment is not necessarily

optimal is because under the alternative, the regressors are not inde-

pendent of the residuals. The prob].eni is similar to the errors—in—

variables case analyzed by Grether and Haddala (1973). It might partially

explain why DyReyes, Starleaf and Wang (1976) found a reduction in the

F—statistic value using the generalized least squares method.

A different problem arises for tests 1 and 2 with the change in the

characterization of the driving forces. We note that now y no longer

possesses a flat spectrum. The lagged cross correlations between the

two time series under study are not zero under the alternative hypothesis.

The theoretical coherence diagram is no longer a constant. However, it

is virtually impossible to compare test 6 with test 2. Test 6 presupposes

a known structure of the model, while test 2 takes account of any given

lag structure and gives equal weight to all frequency components. Of

course, if the structure of the model is known, a direct test has the

advantages of essentially weighting each component by its importance

and also having better tests available for use with it.

Although a direct comparison between test 2 and test 6 is impossible,

a comparison of the asymptotic relative power of test 1 and test 6

may shed some light. We know that under the null, both tests have the

same central F distribution. Under the specified alternative, test 6 is a
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likelihood ratio test, but not test 1 because of the serial dependence

of However, even in such an ideal case for direct test, one

fails to establish the optimum property of a regression approach. The

criterion we use for evaluating the asymptotic efficiency of a test is

the concept of asymptotic relative effiency [iandail and Stuart (1961,

ch. 25)).

Suppose and are statistics of an hypothesis specified by a
parameter e, computed from a sample of size T, their asymptotic
efficiency as tests is defined as:

2

(25) e(t2,t2J ) = 11 {-.E(t1)]ée} Var (t21800)

T- Var(t1I80)

where E(ri) and Var
(Ti)

are respectively the expected value and variance )

of r, i = 1, 2. The justification for this criterion is that, tider

certain regularity conditions, for and 12 to have the same power

against alternative values of 0 which differ from 0 by quantities of

order T
1/2 is in the limit given by e(r1,12100). It can be shown that

for test 6

2

(26) =
(l_y2)Z

While Test 1 is equivalent to test the partial correlation between
and with the effects of x removed, thus

(27) fE[r(xt+iyIx))2 n(1_cz2)2

Varfr(x÷iyIx)] =o
=
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Therefore the asymptotic relative efficiency for test 1 relative to

test 6 is:

(29) e =
(1_cLy)2

2i
If > + , e < 1.. It follows that even in the

ideal case when we know the true structure of the model, it is not necessarily

true that a direct test would be more powerful than test 1. Actually, none

of the statistics considered so far are asymptotically fully efficient in gen-

eral. However, a direct test presupposes a structure of the model, but other

testing methods do not. Test 3 in the ideal case is a likelihood ratio test,

but there is a problem of whether to adjust for serial correlation. Test 1

is basically the same as test 3 except that we choose a correlation approach

which allo''s us to get around this problem in some sense. On the other hand,

test 4 prefilters time series data to eliminate serial dependence, but it is

deficient because of the low power under the alternative. Test 2 puts the

time series data in the frequency domain, thus allowing us to write down the

approximate likelihood function neatly. The test statistic with the inforina—

tion generated by the causal coherence and phase diagram would give a measure

of the strength of the causality and the extent of the time lags Y-X plotted
against frequency. They give a more complete picture of the relationship

between the time series than just some summary statistics.

IV. DNEY AND INCOME CAUSALITY DETECTION

The description of the money—income relationship has been a subject of

much debate in economic literature. Standing on one side are the quantity

theorists who claim that money or its rate of change tends to "lead" income.

(Friedman and Schwarz [963, Friedman [1970], Brunner and Meltzer [1964], etc.)

Standing on the other side are the new viewers who provide explicit examples

of the possibilities for non—correspondence between causal ordering and tem-

poral ordering of turning points (Brainard and Tobin [1968], Tobin [1970], etc.)
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T)
The extreme critics even maintain that the money supply has no relevant place

in the determination of money income. They attribute the association between

money supply and income to the demand for money which contains income as an

important argument. The money stock is somehow called forth to meet the

demand. For instance, Davis (1968), Gramley and Chase (1965), Kazken (1967),

etc., contend that cyclical fluctuations of monetary growth cannot be attri—

buted to the behavior of the Federal Reserve authorities. These fluctuations

are claimed to result primarily from the behavior of commercial banks and the

public.

The monetarists, on the other hand, although agreeing with the general

relevance of money and income, are far from reaching a consensus with regard

to the impact of economic activity on money supply. The strong view (e.g.,

L. Anderson [1968])contends that the behavior of the monetary authorities

dominates movements in money income. The weak view (e.g., Cagan [1965], Fried-

man and Schwartz [1963])does not exclude feedback from income to the money

supply, except that the monetary impulses are considered the major factor

accounting for variations in money income.

Such controversies can only be resolved by empirical studies. In

this section we use the concepts of feedback and causality as they apply

to stochastic processes to derive a time series interpretation of the

direction of cause and effect. Hopefully it will shed some light on

this empirically difficult problem.
We use seasonally adjusted U.S. quarterly money stock and current

dollar measures of GNP from 1947 I to 1976 II, for our analysis.

Both N]. and N2 were used as alternative measures of money stock variables.

All variables were measured as natural logs. Following Sims (1972), we

prefiltered each logged variable using the filter 1 — 1.5L + .5626L2.

Tests for the direction of causality were then performed using methods
1 to 4 di iid in 2 nd
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Test 3 uses identically the same method as Sims (1972). The income

(or money) variable was regressed on current, eight past lags and four

future money (or income) variables together with a constant term, trend

and seasonal dummies, to test for income—money (or money—income) feedback.

If the four future coefficients are significant by an F—test, then we say

that feedback is occurring.

Separate autoregressive processes were fitted to prewhiten the

money and income series before constructing test 4. Whether the direc-

tion of causality goes one way or another depends upon whether the chi—

square statistic based on the first four positive or negative cross—

correlations between the residuals of money and income is significant or not.

Tests 1 and 2 use a different methodology. To test for causality

direction from money to income, we first regress income on its own part

and the constant term to remove its past effect. Then we regress money

on current and past incomes and the constant term to remove the effect

of income variables on money. Test 1, just like test 4, then computes

the chi—square statistics from the cross—correlations between the resi-

duals of these two series to test for the feedback from money to income.

Test 2, on the other hand, uses the money series, with the effect of in-

come removed, and the income series, with its past effects removed, to

compute the causal coherence and uses the normal. distribution as its

large sample approximation to determine the significance of the feedback.

To test for causality from income to money, we similarly remove past

effects of money from money and income series.

The results of these tests were reported in Tables 1 and 2. All

these tests indicate that the feedback from income to money, if any, was



TABLE 1: ONEY TO P FEEDBACK DETECTION

Ni N2

(x2) 11.097838* 29.3291**
1 L

(N(O,1)) 1.06383 4.6479**

(F ) 7.81875** 14.1563**3 .86

8.76262 8.39573

* Significant at 5% level.

** Significant a 1% level.

22



TABLE 2: GNP TO })NEY FEEDBACK DETECT ION

Ml M2

1(x)
1.68625 3.92849

4(N(O,1)) —0.294991 —0.749216

(F ) 0.011231 0.936669
3

Li.,86

(x2) 0.35256 4.39254
Lf L

* Significant at 5% level.

** Significant at 1% level.
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extremely weak, hence confirming Sims' (1972) earlier finding. However, the

test for causality from money to income is less conclusive. Tests 1 and

3 confirm Sims earlier result that causal relation runs from Ml to income,

but not for tests 2 and 4. The reason that these results are different might

be explained by the observ-ation mentioned in the introduction. That is,

if the 'residual money and income data were not serially independent,

tests 1 and 3 might be in favor of the alternative hypothesis, hence

generating spurious correlations. On the other hand, tests 2 and 4 take

explicit account of the serial dependence of the time series data, thus

proper precautions were taken against spurious dependence. However, as

demonstrated in 3, the power of test 4 is low, thus wil]. in general favor

the null hypothesis of no relations. But test 2 does not have this de-

ficiency. That is why test 2, as well as tests 1 and 3, shows that feed-

back from M2 to income is occurring, but test 4 is not.

Figures 1 to 10 also provide a heuristic argument in favor of the

assertion that causality runs from N2 to income only. These figures of

causal coherence, phase diagran, gain and residual spectra of money and

income gave a more complete picture about the lead—lag relation between

two time series and their strength, which were used to derive our summary

statistics. For instance, figures 1 to 5 gave the sample measures of causal

coherence, phase, gain, and the residual spectra of QP and l2 after the

effects of past M2 were removed. Figures 6 to 10 gave the similar measures

with regard to H2 and GNP after removing the past effects of GNP. A com-

parison of causal coherence squared (fig. 1 and 6) and the gain from GNP

to M2aud 112 to (fig. 3 and 8) indicate that the net effect of M2 to

GNP is much stronger than the net effect of GNP to M2. Figure 7 indicates
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that the causal lead from M2 to GNP is consistent, but figure 2 shows a

noisy lead—lag relationship from GNP to M2. Furthermore, figures 9 and 10

indicate that even after removing past effects of income variables, the

residual spectra of money and income do not approximate white noise pro-

cesses. On the other hand, figures 4 and 5 indicate that once the past

effects of M2 were removed, the residual 142 spectrum approximates a white

noise process, but not the residual QiP spectrum, thus favoring the uni-

directional causal relationship between 142 and GNP.

On the basis of tables 1 and 2 and the information provided by the

causal coherence, phase, gain and the residual spectra, we may confirm

the monetarists' contention that the proper definition of money is 142 and

that money or its rate of change "lead" incoii in some sense.
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V. CONUSION

In this paper we suiimiarized the basic theorem characterizing causality

events and surveyed edsting testing methods. We also presented two

alternative testing procedures. One used partial correlation analysis,

the other suggested a causal coherence likelihood ratio test. The latter has

the advantage of eliminating spurious correlation without the deficiency

of losing the power of the test. It is felt that if one suspects that

feedback rather than unidirectional causality is occurring in the model, the

correlation approach may be an appropriate one to use. Since the regression

analysis presupposes the dependence of one or more variables upon others,

while feedback is essentially a problem of interdependence, an

interest in the joint distribution of a pair of random variables. Fur-

thermore, it provides a unified approach towards the problem of adjust-

ment for serial dependence, which the univariate regression approach does

not.

In section 3 we offered sri explanation of why various causality

detection methods might yield different conclusions. Section 4 applied

these methods to the empirical detection of causal direction between

money and income. We found that the relationship between Ml and GNP

was dubious, but the relationship between M2 and GNP was stable. Both

the suary statistics and the spectra diagrams indicated that there

was a strong unidirectional influence from M2 to (P.

Based on the experience of analyzing money and income relationship

and the theoretical discussions in section 2 and 3, we feel that if the

sample size is small, and the residuals were serially uncorrelated, Sims

test is a powerful one to use and is easy to implement. If the sample size
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is large, then causal spectral analysis would be a powerful exploratory

tool. Of course, parametric estimation should be regarded as the ultimate

goal in this kind of work. However, the empirical identification of

multivariate autoregressive—moving average processes may not be feasible

in many occasions. (See Akaike (1974) for some theoretical discussions

and Caines and Chan (1975), Wa].1 (1974) for some actual fitting). The

main value of causal spectral analysis is in its flexLbility in examining

the sources of variations in the data. It can be used to suggest possible

models.
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FOOTNOTES

1. The result of their method III only.

2. These definitions correspond to the weak feedback—free (WFF) process

given by Caines (1976). Cams also gave a corresponding definition on

causal process pairs without instantaneous causality (Granger [1969],

Pierce and Haugh [1977]), which he refers to as strong feedback—free

process (SFF). All the tasting procedures to be discussed below can be

easily modified to test for SFF. However, since it is difficult to say

who is causing whom when instantaneous causality was observed and the

strong belief by this author that should there be a causal relation

between two time series variables, the inertia will make it last into

future, we choose the WFF definition. )

3. If we wish to test for strong feedback—free, we regress y on past

x' s only and sum 2,(k) from k=O to kM in (7) and check for the critical

region of chi—square statistic with (?*1) degrees of freedom.

4. The —p) here is not an adjustment of degrees of freedom, but

because we have only (T—p) estimated residuals.

5. For a precise condition, see 3riUinger (1975) or Wahba (1968).

6. I feel compelled to compare these various tests at its idea]. setup

with the given prior information. Otherwise, there are too many alter-

natives to choose from.
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