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I. Introduction

In recent years we have seen the rise of a bold and fruitful approach

which attempts to explain the development of individual earnings as if they

result from a continuous choice process. A basic part of this approach is

the on—the—job training hypothesis (See Becker [1964], Mincer [1962, 1974],

Ben Porath (1967], Rosen [1972, 1973]) whereby individuals face at each point

in their lifetime, a set of options which involve the trading of current

earnings in exchange for higher future earning capacity. Given these options

the individual chooses an optimal strategy which is then reflected in his

observed earnings profile.

The basic qualitative result of this approach is that investment is

decreasing throughout life, and therefore observed earnings should increase

as long as net investment is positive. There are, however, many additional

aspects of lifetime earnings which can be analyzed within the investment

framework. The purpose of this paper is to analyze the effects of changes

in exogenous parameters such as the interest rate, the length of the working

period and initial endowments on the shape of the observed earnings profile.

Though this problem can be treated in general, we shall restrict ourselves

to the following "inverse optimal" problem: find a form of the trade—off

function between current and future earnings which leads to a logarithmic earnings

function. Since such an earning function is most frequently used in econometric

research (most notably by Mincer [1974]), it is natural to inquire what restrictions

on it are implied by an optimal accumulation of human capital.

Limiting the earnings function form to the logarithmic class leads us
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to adopt a particular multiplicative specification for the trade—off between

current and future earnings. Under this specification jobs are ranked according

to the rate of growth in earning capacity which they offer. In this formulation

the trade—off is described by a relation' whereby a higher growth rate is

associated with a sacrifice of a higher proportion of current earnings capacity.

This specification which has been used by Blinder and Weiss [19761 and Rosen

[1975], should be distinguished from the alternative additive specification:

where jobs are ranked on the basis of the absolute growth which they provide,

and costs are defined in absolute dollar terms rather than as a proportion

of earning capacity. This special case of the Ben Porath [1967] model was

analyzed in detail by Rosen [1973] Haley [1973], Lillard [1973], Wallace and

Ihnen [1975], Brown [1976], and Heckman [1975]. The additive form which

constrains the absolute growth in earnings does not place direct restrictions

on the behavior of log earnings over the life time.

In the paper we demonstrate that logarithmic earning functions can be

derived from optimal behavior, Specifically, the simple case which we analyze

leads to piece wise linear log earnings functions. In contrast to "approxi-

mations" which derive logarithmic earnings functions by superimposing an

arbitrary investment profile (see Mincer [1974, pp. 80—89] and Johnson [19701).

Such a derivation has the advantage that the effects on earnings of exogenous

factors can be consistently analyzed. The model is sufficiently simple to allow

a clear exposition of the basic elements which govern earnings in a static

world. The same elements appear in the more complicated derivations currently

available in the literature but it is more difficult to trace their impact.

Finally, the multiplicative model provides additional information on the

.
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robustness of the results previously derived from the Ben—Porath specification.

This is particularly important since the "production function" for human

capital is not directly observable and alternative specification can only be

compared in terms of their implications with respect to observed earnings.
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II. The Model

We consider an individual who operates in a static world under perfect

certainty. He is facing an investment opportunity frontier which can be

generally described as:

(1) Y=F(K,K) , F1>OandF2<O

where Y denotes current earnings, K is the unobserved stock of human capital

(measured in efficiency units) and K is Its derivative with respect to age.

The positive partial derivative with respect to K and the negative partial

derivative with respect to K, reflect the trade—off between current and future

earnings which Is implicit In an equilibrium wage structure.

An additive specification of the trade—off function is:

(2) YRK— c(K)

where R is the "rental rate" on human capital. (Without loss of generality

we shall subsequently assume R=l.) This form arises, for Instance in the Ben—

Porath model when the depreciation rate on human capital is assumed to be zero.

The simplifying feature of this specification is that dollar investment costs

are independent of the earnings capacity of the Individual.

The multiplicative specification is:

(3) Y = KG()

.
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where K is earnings capacity, is its rate of change, and G() is the pro-

portion of earnings capacity used to generate current earnings l—G() is the

proportion sacrificed), associated with each rate of growth. Note that we

ignore the direct costs of training and assume that all costs are opportunity

costs. The simplifying aspect of this specification is that "time" costs,

i.e. the proportion of earning capacity which is sacrificed, depend only on

the rate of growth in human capital and not on the level of accumulated stock.

The trade—off function G() is best described within the framework of

activity analysis, (See Rosen [1972]). One option which is open to the

individual is full—time schooling. Let us denote the rate of growth which is

obtained in this case by a—S where S is the depreciation rate. For this option

the individual has to give up all his earnings, i.e. G(a—5) = 0. The job

market also offers training opportunities. It is convenient to use an index

x to rank the growth options associated with the various jobs as compared to

the growth which can be obtained at schools. Thus, x runs between 0 and 1,

x = 1 characterizes the school activity, x = 0 corresponds to the job in

which = —S, that is no investment is performed. It is natural to

assume that G(—cS) = 1, i.e., no sacrifice of current earnings is necessary

in this case. In Figure 1, we present the various options, assuming

no mixtures of activities. The line ab' describes the options in the

job market. Its negative slope indicates that in an equilibrium wage

structure, jobs with better growth options are not provided freely.

The point b describes the schooling option. If it is feasible to purchase

linear mixtures of jobs or of schooling and jobs by an appropriate alloca-

tion of time, then the efficient frontier is the line acb. We shall denote

this frontier by g(x). The point c is determined by the condition
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.
Figure 1. The Earning Investment Frontier
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f(x0)
(4) —f'(x0) =

xO

where f(x) is the trade—off in the job market.

Notice our implicit assumption in describing the set of training options.

We assume that a higher rate of growth can be achieved at school than in the

job market if one is willing to give up all his current earning. On the

other hand, pure on—the—job training is more efficient than full—time or

part—time schooling if low levels of growth are desired, i.e. x < x0. This

specification is designed to capture, among other things, the discontinuity

in investment In human capital which seems to occur upon leaving school,

See Mincer [1974, p 94]).

We assume a perfect capital market and ignore the choice of leisure. The

objective of each individual is to maximize the present value of his life time

earnings. The maximization problem is thus:

T

(5) Max J Kg(x)dT
{x}

s.t ax — 0 x 1 , K(O) =
1(0

The length of life is denoted by T, and r is the exogenously given rate of

interest. Using the Hamiltonian function, the above can be transformed into

the following maximization problem:

(6) Max eT K[g(x) + p (ax — 5)]
O x 1

with b = r - g(x) - (ax - ) , (T) = 0
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.
This maximization problem is easy to interpret. The returns from human

capital, (in the form of "full" wages per unit of capital) depend on the

amount of investment. The "full" wage consists of the observed current wages,

Kg(x),and on the returns from investment Kp(ax — S), where:

() (T) = Je -
t)[g(x) + (ax - 6)] d

denotes the marginal returns of the investment activity. Note that at each

point of time these benefits are equal to the present value of future optimal

"full" rates of returns. The optimal path is such that for any given shadow

price, p, the individual chooses the level of investment which maximizes the

full wage.

The optimal path of investment can be presented graphically as a movement

along the investment frontier g(x), which is associated with the changing shadow

price for investment. As long as a > —g' (x0) the individual will specialize in

schooling (x = 1). If ai = —g'(x0), the individual will be indifferent among

the various allocations of time between school and work at the job x0. For

—g' (0) < ap < —g' (x0) the individual will choose a tangency point in which

a = —g'(x). Finally, if a4i < -g'(O) there will be no investment and the job

with maximal current earning will be chosen.

Since we are interested, in this paper, in a model which is solvable

in a closed form, we proceed by specifying a functional form for the

investment frontier.

Suppose that the opportunity set for pure on—the—job training, f(x), is

given by:

.
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(8)
= [1 — ( + a > > 0 0 < a < 1

a <

The parameter can be interpreted as the efficiency of producing human

capital on the jobs Higher values of imply that for a given growth rate a

higher proportion of earning capacity is retained. The assumption that < a

means that even if all earning capacity is given up, the rate of growth

which is attained by pure on—the—job training will be less than that which can

be achieved in school. In the same vein 'a' can be Interpreted as the effi-

ciency of producing human capital in school. Higher values of 'a' mean that

upon giving up all earning capacity and choosing the schooling activity higher

growth is attained. Finally, a is a parameter which governs the concavity of

the opportunity set; we assume that 0 < a < 1. The condition a < /a guarantees

that for small levels of investment on—the—job training is more efficient.

Using the definition x = --( + 6) we obtain the following specification

for g(x).

F

(1 — - x)a for x x0

g(x) =
a a a a a—i

(1 — - x0)
— a - (1 —

- x0) (x—x0)
for lx

wherex =a ,a>anda<
0 1—a a

This particular form leads to an extremely simple optimal pattern for

the observed net earnings. The rate of growth of earnings is piece—wise

constant. Productive life is thus divided into three phases: a schooling
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.phase in which no earnings are observed, an investment period in which observed

earnings are positive and grow at a constant rate, and a non—investment period

in which earnings decline at a constant rate. The length of each phase, as

well as the slope of the earnings and investment profiles in each phase can

be related to the basic parameters which the individual faces.

These solutions are: (See appendix for derivations)

(10) T1 T + —- ln(l —
(r+6))

l—cz
ln[ (a—r—S)(l—c)(11) T0 =

T1
-

B-r- (-a(r+))(a-8)

l2) —5+—--(—r—5) forT0T<T1
fori-1T<T

(13) ( ÷ 8y for t0 � T <y 1—cz

1°
forTlT<T

where Y denotes observed earnings and y = = g(x) is the proportionof

earnings capacity used in the tprod ti of earnings and l—y is the

proportion invested. Even though these activities are performed jointly

on the job one may think of y as the "proportion of time" spent in pro-

ducing goods, and 1—y as the proportion of time spent in producing new

knowledge. (see Mincer 11974, p. 19])

The boundary conditions for this system are:

S
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(14) y(T) 1, y(To) = g(x
= •j; — 1)]

(15) Y(T0) = KOeT0y(TO)

where Y(T0) can be interpreted as observed starting salaries and is

the exogenously given initial level of human capital.

As seen from the above set of equations there are some restrictions

on the parameters which are implicit in a life time earnings profile which

includes all three phases. The basic condition is:

(16) a > r+5 which implies > (r+S)

The interpretation of these two conditions is quite transparent; for posi-

tive investment to exist, it is necessary that the returns from investment

exceed the costs associated with the postponement of earnings.

As suggested by Becker [1964, pp. 14—151 and Ben—Porath [1967], one

may explain the general shape of the earnings profile in an

investment framework. In particular the positive slope during the on—the—

job investment period reflects positive and decreasing investment on the

job)' The concavity of the log earnings profile depends, however, on the

specific trade—off function g(x). The specific form (9) which we adopted has

the property that increases with age as y increases. The degree of convex-

ity in y (concavity in investment time) is just sufficient to offset the reduc-

tion in as investment decreases.
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The comparative statics of the model are also extremely simple. Con-

sider first a change in the interest rate. An increase in the interest rate

will tend to reduce the slope of the log earnings profile. (See figure 2.)

This is directly evident from equation (12). It can be seen from equatlon (10)

that the length of the no investment period, T — r1 , will increase; that is,

the peak in earnings will be attained at an earlier age. Since y(To) and

yt1) are both independent of r and since y is decreasing with r for

every y, the individual will stay a longer period In the region of on—the—job

investment. It follows that 'r0 must decrease, i.e., the individual will

invest less in schooling. A similar result can be derived for the additive

formulation (2). The only difference is that the increase in the interest rate

reduces the absolute growth in earnings rather than Its rate of growth.

Consider next the issue of differences in ability. One measure of

increased ability is an increase in earning capacity which is uniform and

independent of the (endogenous) level of skill. Differences in the initial

stock of human capital will induce parallel shifts in logarithmic earnings

function without any further effect on the length of the various investment

periods. (This result is in contrast to that of the additive Ben—Porath model

where increase in leads to a shorter time span in school. See Haley [1973].)

An alternative specification is to associate increase in ability with an

increase in the efficiency of "producing" human capital as represented by the

parameters a and . If a person is a better student at school (higher a)

the effect will be higher y0, while and t1 remain the same. It is easy to

show that rçj must go up. In other words, there will be a longer period in

school with a lower investment on the job once out of school. The log earn-

ings profile will shift in a parallel fashion with the peak remaining unchanged.
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Figure 2. Effects of a Change in the Interest Rate
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If a person is a better on—the—job student (higher ) will increase while

y0 will decrease. The effect on r1 is positive and on T0 negative. In other

words, this individual will invest less In schooling and more in on—the—job

training. The log earnings profile will have a higher slope, and will peak

at a later age.

The most realistic case seems to be that in which both a and increase.

The effect on the length of the schooling period is ambiguous in this case.

An interesting special case is that in which the optimal level of schooling,

T0 , remains the same. The implication of higher ability will be a higher log

earnings profile with a higher slope and a later peak. Another special case

is that in which a and grow at the same rate so that y0, the initial

investment in on—the—job training, remains the same. In this case, higher

ability will lead to more schooling, and the log earnings profile will have a

higher slope and a later peak.

An important empirical phenomenon is the existence of considerable

variation in the at which a given level of schooling is obtained. To

a large extent, postponement may result from many factors not incorporated

in the present analysis, such as imperfections in the capital market, differ-

ences in preferences towards leisure, and uncertainty with respect to one's

own abilities and preferences. Within our simple model, we can, however,

deal with the effects of exogenous changes in the age of entry, due to, say,

military service. A person who is a late starter (See Johnson and Stafford

[1974]) will have a shorter horizon, and naturally will tend to invest less.

If there is a positive period of specialization, the reduction in investment

will take the form of a shorter schooling period. The log earning profile

will be lower but Its slope will remain the same. The age of entry and peak



—15—

in earning will be unaffected. This is a somewhat unrealistic result

which follows from the assumption that the age of retirement is exogenous. A

perhaps more realistic assumption is that for brief postponements the length

of the working period is constant (See Mincer [1974, p. 10—11]).

Finally, consider the effects of a disruption in the accumulation of

experience, that is, exogenous changes in participation.

If a woman, say, plans to stay out of the labor force for some interval

[T',T"] her profile will be as depicted In Figure 3. Note that upon returning

to the labor force her earnings are somewhat lower reflecting the effects

of depreciation. If the disruption is expected, the woman will also plan

under a shorter horizon and therefore her specialization period will be

shorter and the level of earning will be lower for every level of work experience.

This horizon effect will be absent if the break Is unexpected, but otherwise the

results will be identical. This is a direct consequence of the independence

between the investment rate and the level of human capital in our model. Notice

that when log earning is plotted against experience, rather than age, the out-

come is a flatter log earnings profile.
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.
Figure 3. Effects of an Expected Break in Participation
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III. Empirical Implications

The simple model just described has several important implications

for empirical research.

1. Since in a static world schooling and investment on the job are governed

by the same basic exogenous factors, individual differences in schooling

are associated with corresponding differences in the slope of the earnings

function. For instance, if the main source of individual variation is due

to differences in the interest rate, we would observe a positive interaction

between the level of schooling and the growth of earnings. (For some evidence

on this point see Weiss and Lillard [1976].)

2. Log earnings profiles when estimated from either cross section (see

Mincer [l974])or longitudinal data (see Weiss and Lillard [1976]) tend to

be concave in age (or experience). That is, the rate of growth in earnings

appears to decline smoothly with age. As our simple model illustrates, this

is not a general property of earnings profiles which arise from optimal

accumulation of human capital. It is quite easy, however, to introduce

concavity into the multiplicative model. One may either add age effect

explicitly (see Weiss and Lillard [1967]) or choose an alternative form-

ulation of the trade—off function2. (See Rosen [1975], Weiss [1974].)

3. The observed earnings of an individual at different points in time are

systematically related through his choice of investment program. In fact,

in the absence of exogenous shocks we can predict the earnings of an individual

from a sample of his past earnings without having any additional information
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.about him. All the relevant information on his schooling, his ability and

his access to the capital market is already incorporated in the past level

and growth of his earnings. The particular form of the autoregressive scheme

which emerges depends critically on the form of the trade off function (1).

If one assumes that simple multiplicative form (3) then annual observations

on this continuous process should approximately satisfy:

(17) lnY = lnY1 + constant

Analogous formulations can be derived for the additive case, if it is further

assumed that C(K) is quadratic. Such a specification implies a second order

linear differential equation in earnings (see Rosen [1973]) and discrete

observations would approximately satisfy the autoregressive scheme:

(18) = aY1 + bY2 + constant

Higher order linear schemes arise if one allows the trade—off function

F( ) to be a general quadratic. An interesting aspect of these schemes is

the alternatings signs of the coefficients on past earnings (see Weiss [1974]).

Autoregressive schemes can be applied to longitudinal data and yield estimates

for some of the parameters. The rate of interest, for instance, can be directly

estimated from (18). Furthermore they can be used to differentiate between

alternative specifications of the trade—off function. A sharper discrimination

can sometimes be made when the models are compared in terms of the autoregressive
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schemes which they imply rather than the explicit age profiles (which

frequently become complicated nonlinear functions).

4. The breaks in participation which characterize the work career of many

women lead to flatter log earning profiles, when viewed as a function of

experience. (For empirical evidence see Johnson and Stafford [19741,

Polachek and Mincer [1976]). It is important to note that this result

is independent of possible discrimination against women in the labor

force. If, for instance, the rental rate for human capital of females is

half that of males their investment pattern will be unaffected. As long

as opportunity costs in the market are the sole costs of training, such

discrimination would affect the benefits and costs of training equally. In

the present context discrimination can lead to flatter profiles for women

only if it is increasing with the level of skill.

5. It is sometimes argued that short work horizons are likely to

lead to flatter earnings profiles. This had been suggested by

Johnson and Stafford [1974a and l974b] as an explanation of flatter profiles

of women and "late starters't. As we have seen this need not be the case.

In our simple model the reduction in investment of individuals with relatively

short horizon takes the form of reduced schooling rather than a lower rate of

investment in on—the—job training. Consequently, the level of earnings is

affected but not its rate of growth. In fact, if the comparison holds

schooling constant, those with shorter horizons probably face a lower rate of

interest or are of higher learning ability, therefore their earning profile

may well have a higher slope. It is worth noting, however, that if age effects

are introduced explicitly (see Lillard and Weiss [1976]) late starters do

tend to have a flatter profile, but this reflects the effects of age on the

capacity to learn rather than the shorter horizon effect.
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Footnotes

1. It is possible that there exists an automatic process of learning

from experience which is to some extent independent of individual decisions

(that is, g(x) approaches 1 at a positive( + 6). In such a context, the

theory only explains differences in the slope of the earnings profiles in

terms of differential investment. It is clearly riot necessary to assume

positive investment for the purpose of explaining a positive slope of the

earnings profile.

2. The relation between the form of g(x) and the concavity of the

log earning profile during the investment period Is given by:

z = [x] F(x)

where zlnYand

F(x) = 2 •&— g g g12g g g g

When g(x) = (1 — - x), then F(x) = 0 for all x.

For any function g(x) such that g > 0, g' < 0, g" < 0, a sufficient

condition for F(x) < 0 and thus < 0 is that g" 0.

For a detailed discussion of the case in which g"' = 0, see Rosen [1975].

Needless to say, under our specification g" < 0.

.
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Append ixA

The purpose of this appendix is to derive equations 10 to 13 in the

text and to prove some comparative statics results.

The problem which we solve is the maximization of (6) subject to (9)

in the text.

The necessary conditions for optimum are:

(Al) g'(x) + a > 0 if x0 > x < 1

g'(x) + a < 0 if x = 0

g'(x) + ai = 0 if 0< x < x0

and

(A2) p = (r+S) — ijax — g(x) p(T) = 0

In the case of an interior solu_ion we can take the derivative of the

first order condition with respect to age to obtain a differential equation

for x.

(A3) = [r + 51 — [—g(x) a

The rate of increase in observed earning is given by

(A4) = + g'(X) = ax - + g'(±)
Y K g(x) g(x)

and substituting for x we obtain
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(A5) = ax - 6 + g'(x) ' [r + 6]

— g'(x) g'(x) [—g(x) + xg'(x)1
g(x) g"(x) g'(x)

a

Under the special functional form (9):

(A6)
[g'(x)]2 = ct and —g(x) + xg'(x) = + x(a—l)

g(x)g"(X) ct—i g'(x) cta

hence

(A7) = —6 + (—r—6)

which is equation (12) in the text.

We can also determine the length of each of the phases in the individual

investment program. During the last phase of zero investment we have:

1 —(r+6)(T—t)
(A8) p = (r+6)ip—l and 1(T) = --- 1 — e ]

the age of the peak in earnings is determined by the condition:

(A9) p(i1)
—g'(O) = (1 — e+6) CT_Ti))

or

(AlO) T—T1 = —-- mCi — (r+6)I)

.
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To determine the length of the investment on the job phase, we have to solve

equation 13 in the text and use the boundary conditions in equation 14.

Define q = y = 1 — x , then equation i3in the text can be rewritten

as:

(All) q = Aq + Bq2 where A = and B =

with the solution:

(A12) T—T0 in Tq — in
A+Bq0

I

using the boundary conditions we obtain:

(Al3) T1—T0 =
[ ln(A+B) + in(0) ].

The schooling (or specialization period) is then found as a residual

using the identity:

(A14) T0 = T — (T—T1) — (T1—T0)

Equation Ai4 can be also used to derive an explicit solution for the invest-

ment profile. This solution assumes the form:

(Ai5) = AeA(TT0)
where C = A+Bqp

C — BeA(TT0) q0
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.
We conclude with a brief discussion of comparative statics. The effect

of a on the schooling level is:

_____ 1 1
r-f-6—8(A16) = -

8-r-6 (a--6) - (a-8)1
-

6-r-6 (a-r-6)(a-8) >

To determine the effect of 8, let us rewrite equation (9) as:

A+Bq0T —
A

11A+B)q01
+ ln(l—r+5 B

___ a awhere A = 8—r—6 B = 8/a , q0 -j--— (.- —1).1—a

a—r—5
is independent of 8. We thus have:Note that A + Bq0 =

_____ 1 1 dA dB 1 dq0 1 dB(A17) — = __________-4 ln(—) + ( ( + -) + +
B2-(r+6)B •

After some manipulations we arrive at:

1 A+Bq0=

A2(1—a)
[ln((A+B)q) — j— (l—q)].

Due to the concavity of the log function,

A+Bq0 A+Bq0 A(l—q0)—1
)q0 A+B

(A+B)q0

It follows that:

(A18) A(l—q0)

A2(1—cz) (A+B)q0 — jj (l—q0)] <

.
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The effect of late entry is analyzed by modifying the maximization

problem to:

T
(Al9) max

s.t. = ax — , 0 < x < 1 , K(T) =
1(3

Where T is the age of entry. Upon a change of variables, =T—T

the problem becomes Identical to the discussed previously except that T

Is replaced by T—T . It is seen that the length of time spent in the last

two phases is unaffected. It follows from (A14) that the period of time spent

in school must decrease.

The effects of an expected interruption in career can be analyzed by

defining an indicator h(t) such that:

(o for TE[T',T"]
h(T) =

1 otherwise

and rewriting the maximization problem as:

T
(A20) max f erThKg(x)dT

{x} 0

s.t. ahx— 0<x<l,K(0)=K0

when 1i(t) = 1 the solution is identical to the one derived previously. On

the other hand = — when h(r) = 0. Therefore during periods of participation

the rate of growth in Y Is the same, the only effect is on the initial Y at

each phase.
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Appendix B

The purpose of this appendix is to derive the autoregressive schemes

in earnings for the linear and multiplicative specifications of the invest-

ment frontier. It reproduces the main results of my "Notes on Income

Generating Functions," (Princeton 1974).

Consider first a model which leads to a linear earnings generating

function of the f0rm.

Bi. = 1t_1 + a2Yt 2
+

where denotes annual observed earnings) or in continuous

time formulation

B2. Y. = c Y. +
1 li—i 2i—2

where Y. denotes the i'th order derivative with respect to time
1 .

Rosen fIcrL3] has considered some special cases of this form.

Let us write the individual's maximization problem as

T —rt
B3. MAX I e

F(K,K1)dt.
Kt

to

where K is the amount of human capital and K1 is its rate of

change. We may assume FK > 0, and < 0.
1

The optimal accumulation path satisfies the Euler condition:

—rt d —rt .B4. e
FK -- e F (we assume interior solution)

or

'.
FK

=
_rFK

+ K1 + FKK K2

A necessary and sufficient condition for a linear autoregressive

S
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scheme for observed earnings is that the observed (net) earning

function Y = F(K,K1) iS Quadratic in K and. K1 Eauation-B2 then

becomes a second order linear equation.

B5. K2 = Ao + AK + X2K1

We can now derive a differential equation in Y. Note that if F is

quadratic then Y is a linear function in K K2
K1, K, KK1. Using

condition (B5), we can write Y1 as a function of the same variables

similarly for Y2, Y3, etc. We thus have a linear system of equations

B6. Z = AX where Z = X = [K
/

K2

/
K

The rows of A and the constant vector b
are determined recursively, by

the relation

G =a B
t t—1

element row vector of the matrix A. is given

function. B is the matrix.

where a is a five

from the objective

/0

/ .0

IA11
0

0

0

0

0

A1

1

0

A

2

2 A0

0

0

0

2A2

1

0

2

0

2A1

A2

Also lDiOandbt=a13A.
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.If A is of full rank, we solve Y5—b5 = a135AX and get a fifth order

linear differential equation. However A is in general not of full rank

and the order of the linear differential eauation will be p(A)

For example:
-

B7. If Y = AK — (K)2
a

then =
2A2Y1

+
2A0A

where
A2

= r. A0 = —A/a

B8. If
then Y2 = 2A2Y1

+ 1AY +
2A0A

B -AwhereA =r A A
2 1 a 0 a

B9. IfY=AK—(K+6K)2

then + 2 3A(Y + 6Y1)
—

2(A*)2(Y1 + 6Y) + (r +

where A = r + 6

A *

(the optiniality condition is rewritten in this case as I = — + A I

where I = K + 6K).

BlO. Finally, if Y = AK - - K — (K + K)2 -

then Y = 3A2Y3
+ (5A —

2A)Y2
— 6 A2A1Y1 -

X1Y +
(2X1

+
2A2)

where A = -+ 6(r +6)
1 a

A2 = r

It is possible that due to transaction costs adjustment is not

smooth and decisions are revised only on a set of discrete points.

To provide the discrete analogue of the problem let us subdivide the
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interval (o,T) into equal subintervals by introducing the points

t , t , , ... t where t = 0, t = T and t. — t. = tt is the timeo 1 2 n 0 n i i—i
interval. The function K(t) is assumed to remain fixed in each such

interval, and we have the correspondence t = t , t , t ... t and0 1 2 n
K =

K0, K1, K2 .
. .K. The objective function can be rewritten as

K1, K2.. .K

= E(1 + rat)'
F(K.1, Ki_Ki_l)t

The first order conditions are given by

= 0 for j = 1, 2 (K0 is predetermined).

or

(l+rAt)FK, (K. Ki_l_Kil) -
F1,(K., Ki÷i_Ki) + FK(K., Ki÷i_Ki)t = 0

Dividing through 'by t and allowing it to approach zero we get

the Euler condition [B4'} as urn \j 1. For finite differences,
tt-0 t

eg t = 1, we get due to the assumption that F is quadratic, that:

=
F(Kt,Kt_i) = + + ai3Kt_1 + +

a15 KtKti. In

this analysis we shall restrict ourselves to the case
cz,=O.

The optimality condition assumes the form:

B5)' Kt = Ao
+ ) Kti + A2 Kt2

au3where A
0

a15
a

A = 2[—- A2 —
15 15

X2 = 1 + r
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.
The analogues to equations 7, 9, 10, are

B7'. = (2 + 2r + r2)Yi — (i + 2r + r2)Yt2 - (2 + r)

B9'. = (1 - 6 + + (l+r)2) - (1+r) + l+r + t-2
+ (1-6) (±L)3y — A2 (1-6-r + - 2

2a(1—6

BlO'. = + + 2X)Y 1
+ — — — 2X1 X2)Y_2 — 2XYt3

+ + constant.

where A1 = 2
[. X2

— —n] and A2 = 1 + r

The parameters cl2, 14' 15 are the coefficients in the earnings

function of K, K1, and Kt Kti respectively.

The sign pattern of the coefficients is somewhat surprising. In

the simplest case 7', the partial effect of "_2 holding Yti constant

is negative. This is equivalent to a positive (explosive) relation

betweenY+i andYt. Indeed equation 7' can be rewritten as

= (1+r)2 lY_1 — a— (2+r)

More generally we notice that at least some lagged values appear with a

negative coefficient. One hesitates to interpret these a partial

derivatives, since all income levels are determined endogenously and

simultaneously.

Consider now the multiplicative model and let F(K,K') = f(K)g(x) where

x = ( + 6) and f(K) is assumed to be of constant elasticity, I.e.

f(K) =AK O<<l
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The Euler condition assumes the form

Bil. = + a
g (x) g (x)

Let us denote Z = logY, then

B12. Z = (ax - + g'(X)

Using equation Bil the change in log earnings, Z, can be written as

a function of x, e.g. Z = R(x).If R is a monotone function of X we

can solve x= i'(z). Finally Z = R'(X)X is also a function of X

Under the invertibility assumption it follows that a second order

differential equation exists such that

B13. z =

This again is an autoregressive scheme, but in terms of log earnings.

The particular form of the function a(Z) will, of course, depend on

the choice of g(x).

We have already considered the degenerate case in which g(x) = (l—x)

and R(x) = constant. We have seen that this form leads to a linear log

earnings profile during the phase of on—the—job investment.

A relatively simple form, which leads to a concave log earnings

profile is g(x) = (l—x)(1+x) = 1-x2. In this case

B14. x = (r+85)x — l+x2) < 0

B15. Z = — Bô + ax — 2x2(r+)2 >Oforlargex
< 0 for small x

B16. z = - [(1÷X2) —
(r+ô)x]2

<

(we assume that a > r + 5, note that > 2 for xL0,lJ )
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.
Z is monotone increasing in s, in the relevant range. We can

solve for x in terms of Z. The resulting relation between Z and

Z is, however, not particularly attractive.

A form of g(x) hich is somhat more tractable is a combination

of the two previous cases in which g(x) is the positive portion of

the unit circle. That is g(x) = (l_2)½. In this case

Bl7. x = (l—x2)(r-s-85)x — 8a) < 0

2 <OforsmaflxB18. Z = 2ax — —x (r+)
> 0 for large x

B19. Z -2(a - r(8+)x)2(1—) < 0

Finally the autoregressive scheme assumes the form_ 2
B20. Z = -2 [(Ba)2 -

2(8a) + (+z)() + 2(a)2 - (r+))
- (z+)2 - 2

{(a)2 -

2.The coefficient of $+6Z is negative, that of (Z+) is osjtive.
To summarize, it is easy to find simple go function which yield

an earnings profile which is concave in the logs. These forms, however,

in general do not lead to a simple autoregressive scheme. In practice

a quadratic approximation Z = a + 8Z + may be advisable.

.


