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Abstract

Various quasi-Newton methods periodically add a symmetric "correction"
matrix of rank at most 2 to a matrix approximating some quantity A of
interest (such as the Hessian of an objective function). In this paper we
examine several ways to express a symmetric rank 2 matrix A as the sum of
rank 1 matrices. We show that it is easy to compute rank 1 matrices Ay

and A, such that A = A, + 4, and ||A1|| + IIAQII is minimized, where
]

is any imner product norm. Such a representation recommends itself
for use in those computer programs that maintain A explicitly, since it

should reduce cancellation errors and/or improve efficiency over other

representations. In the common case where A is indefinite, a choice of

the form Al = Ag = xyT appears best. This case occurs for rank 2 quasi-

Newton updates A exactly when A may be obtained by symmetrizing some
rank 1 update; such popular updates as the DFP, BFGS, PSB, and Davidon's

new optimally conditioned update fall into this category.
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1. Introduction

Various quasi-Newton methods maintain an approximation A e ™" +to

some nxn matrix of interest. In the case of unconstrained minimization,
for example, A might approximate the Hessian of the objective function or
its inverse (see [Dennis & More, 19741). Such quasi-Newton methods
periodically determine a new approximation A= A+ A, which is required
to satisfy a "quasi-Newton equation" of the form Aw=Db (i.e. Aw = z = b - Aw)
for certain w, b e R determined by the method. Frequently A, A, and
hence A are required to be symmetric and A is chosen to have rank at most 2.
In this case A and A are also often required to be positive definite. It

may be desirable to maintain such matrices A in the factored form A = LﬁT

and to explicitly update only the factor L: this assures that A has no

negative eigenvalues. Brodlie, Gourlay, & Greenstadt [1973] have shown

under these conditions that A may be expressed as A = (I + qu)A(I + qu)

(for certain n-vectors p, q € R") if and only if A = A - A may be expressed
in the form A = uuT - VVT, which is possible for such popular quasi-Newton
updates as the BFGS and DFP; Davidon [1975] recommends that such a factored
representation be used with his optimally conditioned update. (See Davidon's
[1975] paper for another view of such factored representations.)

Despite the above, it may sometimes be desirable to maintain A explicitly.
Moreover, there exist situations in which the approximation A must be allowed
to be indefinite; this happens, for instance, in certain algorithms for solving
the nonlinear least squares problem, in which a quasi-Newton approximation
is made to only one part of the Hessian [Dennis, 1975]. Thus it is natural

nxn

to ask how symmetric matrices A e R of rank < 2 may be represented as



suns of rank 1 matrices (outer products) and to compare such representations
with an eye toward efficiency and accuracy in computer implementations.

If A has rank 1 and satisfies Aw= z # 0, then it is easily seen that
z2
wiz

be written in any of the forms considered below for rank 2 updates, the

sz £0 and A = While the symmetric rank 1 update (SR1) can also

simple representation 4 = 5%;- would appear to be the most efficient (and
accurate). (Of course, any of the standard, normally rank 2 updates may
degenerate to the SRl under certain conditions; in algorithms using such
updates, detecting degeneracy may be difficult and it may well be most
efficient to always use the rank 2 form of the update.) We therefore
consider below various ways to represent a symmetric, rank 2 matrix A

as the sum of two or three matrices of rank 1.

This paper is organized as follows. The next section presents some .

background material. Section three considers the common case where A

has eigenvalues of opposite sign (i.e. is indefinite). Section four briefly
considers the semidefinite case (where A has two eigenvalues of the same
sign) and section five examines "asymmetric" representations A = Al + A,
with Al, AE, A2, and Ag all distinct. Finally, section six discusses

applications to some quasi-Newton updates and section seven presents our conclusions.

2. Bac und

We shall have occasion below to refer to both the standard inner product

yTx and a possibly nonstandard one

(L <XK,y> = yTMx

defined for x,y ¢ R by a positive definite (hence symmetric) nxn matrix '
XN
Me K", We shall also refer both to the corresponding inner product vector

norm ||+|| defined by




@ |zl = Ve

and to the matrix norm which this induces. >Reasonable choices for M may
include I (the nxn identity matrix) and Afl, if A is used in the
update A = A+ A with A positive definite; we shall say more about the
choice of M in section 7.

We shall find it useful to classify rank 2 matrices A by the signs

of their nonzero eigenvalues. Hence we state:

(3) lema If A = AT e R™% nas rank 2, then A may be expressed
in the form
(4a) wl - va
(4b) A = uuT + va s
T T
(4e) (™ + w)

where u and v are linearly independent, if and only if A has

(a) one positive and one negative
(b) two positive . eigenvalue(s).
(e) two negative

Hence A may be expressed in exactly one of the forms (4). It is possible

to choose u and v in (4) so that <u,v> = 0.

Proof (Cf lemma 1 of [Brodlie, Gourlay, & Greenstadt, 19731): It is easily
seen that A may be expressed in the form (4) if and only if A is
respectively (a) indefinite, (b) positive semidefinite, or (c) negative

semidefinite.



Tt remains to show that <u,v> = 0 is possible. If L is any
matrix (e.g., a Cholesky factor of M) such that M = L?L and x,y are
(orthogonal) eigenvectors of

(a) L - ny

ALY such that LALL = M) ok gyt

() —(XXT + ny)

then (4) holds for u = I % and v = L_ly.l

In comparing expressions for A, we shall employ the following easily

proved lemma.

(5 lemma With A as above, if u and v span the column space of A4,

then there exist unique scalers u, v, £ ¢ R such that

A=1mJj+va4-awﬂn+wF).I

3. Eigenvalues of Opposite Sign

As we shall see presently, many quasi-Newton updates generate a A with
one positive and one negative eigenvalue. Hence we shall first examine the

case where

(6) A

uu - vV

for some linearly independent u, Vv € R’. There are many ways to express A
in the form (6), as the next lemma shows:
(7) lemma If (6) holds, then

--T =-T

(8) Az un - v

if and only if there exist © € R and o = + 1 such that




(9a) u

(sec @) u + (tan @) v and

(9b) ov = (tan 0) u + (sec 0) v.

Proof: (=) If (6) and (8) hold, then U and v must be linear combina-

tions of u and v, say u=ou+B8v and Vv = yu + 6v. Since

T

A = uuT - w (au + Bgv)(ou + BV)T - (yu + 8v)(yu + sv) T

(a2 - yz)uuT - (62 - Bz)va + (aB —yé)(uvT + vuT),

lemma (5) implies

(10a,b,c) o? = 1+ y2, 52 = 1+ 82, and aB = §y.

From (10a,b) we have vy = olygﬁ:i and § = 02/67:? for the 01500 = + 1
of appropriate sign. From (10c) we obtain aB = olozw%&B)z + a2 - 82 -411, SO
a2 = 82 + 1 and hence there exists © ¢ R such that a = sec 8 and B = tan 6.
Inserting these into the above expressions for y and 6§ and using (10c), we
obtain y =o tan ©® and 6§ = 0 sec 9, where o = + 1, whence (9) follows.
(&) Conversely, if (6) and (9) hold, then it is easily verified that (8) also
holds. @&

It seems to be fairly well known that a matrix of the form xyT + yxT

has one positive and one negative eigenvalue. We can, however, say more than

this:

(1D lemma. If A = AT e R? has rank 2, then A has one negative and
one positive eigenvalue if and only if

(12) A= xyT + yxT

for some linearly independent x, V ¢ R". Moreover, if (12) holds, then x

and y are essentially unique: if A = i?T + ?iT, then there exists Tt ¢ R,

T # 0, such that either



(13) (Xx=1x and ¥ =y/1) or (R=1y and § = x/1).

Proof If A has eigenvalues of opposite sign, then by Lemma (3) there

exist linearly independent u, Vv € ®R” such that A = uuT - va:

then (12) holds with

(1w x=u+v and y = E%! .

Hxlly + [lyl]x
2l x| [yl

Conversely, if (12) holds, then u =

Ux[ly « [{y[]x

T T
v = h that A = - > =
TR TT5T are suc uu vwo (and <u,v 0,

whence A has eigenvalues of opposite signs. Finally, if

A = XYT + yXT = §§T + §§T, then X and y must be linear combinations

of x and y, say X =ox + By and y = tx + 8y. From Lemma (5) we obtain .

ay = B8 = 0 and of + By = 1, whence the essential uniqueness (13) follows. W

Generalizing Powell's [1970c] derivation of the "Powell-symmetric-Broyden" (PSB)
update, Dennis [1972] showed that a large family of symmetric rank 2 quasi-

Newton updates could be obtained by symmetrizing nonsymmetric rank 1 updates.

Thus, given nonzero w, z € Rn, we may obtain a symmetric rank 2 A € R

which satisfies the quasi-Newton equation.
(15) Aw = z

by starting with the rank 1 update A, = 2d” determined by some specified

0
de R with dTw = 1 and generating the sequence Al, Ass A3, ... in which
_ 1 T - T .
A2j+l =5 (A2j + Azj) and A2j+2 = A2j+1 + (z - A2j+IW)d for j = 0,1,2, ...

Dennis [1972] has shown that 1im A; = A, where
i o




(16) b= z2dt + dzt - (zlwyddl.

Such well known updates as the DFP and BFGS have the form (16) for the properly
chosen d. The next lemma is of interest because it characterizes those rank 2
updates A which may be expressed in the form (16), a form convenient for

certain proof techniques (see, e.g., [Broyden, Dennis, & Mbré, 19731):

(17) Lemma: If 4 = A ¢ R' has rank 2 and (15) holds, then & may

be expressed in the form (16) with z and d linearly independent

if and only if A has eigenvalues of opposite sign.

Proof: If (16) holds, then (12) holds with x=d and y = z - (—7—0d
whence A has eigenvalues of opposite sign by Lemma (11). Conversely, if
A has eigenvalues of opposite sign, then by Lemma (11) there exist x, Vv e R

such that (12) holds. From (15) we have
(18) 0#2 = 4w = (yTw)x + (xTw)y

and we may assume without loss of generality that xTw # 0. Setting

d=—%, wefind d'w=1 and (using (18))

X-wW

T
zd’ + dzt - (zLw)dd® [(yTw)x + (xTw)y] —;}-+-ﬁ%— [(yTW)x-+ (xTw)y]T -

XW X*W

- 1264w &0 IR
X-W
xyT + yXT =a. 0

From the above proof, we see that there are usually exactly two choices

for d in (16), there being but one in the exceptional case where A = zdT + dzT

(ie. where x'w = 0 or yTw = 0 with x, y as in (12)).



We have seen that there are various ways to express a symmetric
indefinite matrix A of rank 2 as the sum of two or three rank 1 matrices.
For explicit floating point computations involving A, it would appear more
efficient and probably more accurate (as there is less chance for roundoff
to occur) to use one of the forms (6) or (12) expressing A = A, + A

1 2

as the sum of two rank 1 matrices A, and A,. Form (6) offers a one
dimensional family of possibilities, while (12) offers essentially Just

one. To compare all these possibilities, it seems reasonable to examine
RS ||A2||, since minimizing this sum should hopefully tend to minimize
cancellation error in some sense. (We shall have more to say about the choice
of inner product norm (2) below.) Note that the vector and induced matrix

are related by ||xyT|| = ||x|] !ly|ll. Using Lemma (7) and the

norms |

connection (14) between (6) and (12), it is easy to prove:

(19) lemma: If A = w - w' = wu - WL = xyT + yxT, where u and

v are linearly independent with <u,w» = 0, then

==T -=T T T T T
]+ [ ] 2 a1+ T T = syl o+ vl
2 2
= [ |7+ [Iv]]°. =
Thus, no matter what inner product norm |[|«|| is used to measure the

representations (6) and (12) as described above, form (12) rates exactly as
well as the best_representation of form (6). (Note that the best representation
of form (6) depends heavily on the inner product <-,->; indeed, given any u,v
such that (6) holds, it is possible to find many inner products with respect to

which u and v are optimal in the above sense.)




Y. The Semidefinite Case

We next briefly consider the case where the rank 2 matrix A = AT e ROM

has two eigenvalues of the same sign. Since the other case is similar, we assume
both nonzero eigenvalues are positive. Just as in the case of mixed signs,

there are many ways to express A = A, + A2 as the sum of two symmetric rank 1

1
matrices. This time, however, ]IAlII + ||A2|| depends only on the inner
product norm || and not on the particular choice of Al and Ayt
(20) lemma: If u, ve R are linearly independent, then

(21) A uuT + va =au + w

if and only if there exist 6 ¢ R and o = +1 such that

(22a) G = (cos O)u - (sin 0)v and

cl
1]

(22b) o7

(sin 6)u + (cos 0)v.

Moreover, if L is any real matrix such that L = M (with M in (1)), then

(23) ||+ [|wTl] = |[aat]] + ||99%)] = trace(1arl).

Proof: The equivalence of (21) and (22) follows from reasoning similar to

that in the proof of Lemma (7). From (22) we obtain

T T T T 2 2
(24 [wa [+ [l o= [&@ ]+ Jloec]] = [lal [+ []v]]°.

let x and y be eigenvectors of LALT (such that xTy = 0), scaled so that

1anl = sl + ny: then u=L'x and v = Lrly have <u,v> = 0 and satisfy
xTx + yTy = trace (LALT), whence (23) follows

(21), and ||u||2 + ||V||2

form (24). W
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5. Asymmetric Representations

Heretofore we have considered expressing symmetric rank 2 matrices

A as the sum A. + A. of rank 1 matrices which either are symmetric or

1 2
else satisfy AE = A2 . These expressions require only two vectors to express
both Al and A2 in outer product form. There also exist choices for Al
and A2 which neither are symmetric nor satisfy AE = A2. Indeed, we may
state:
(25) lemma: If u, ve R" are linearly independent and o = £ 1, then
(26) A= uul + ovvl = qu + rsT,
if and only if there exist ©, t € R such that either
(27a) qu = ﬁﬂ? and st = 24T or
g T _ ~~T T _ ~~
(27b) pg- =rs’ and rs’ = pq, where
(27¢) ﬁﬁ? = ([cos 0Ju - olsin 61v)([cos 6 - 1 sin 0Ju - [sin 0 + 1 cos oIt
and
(27d) 28T = ([sin o + © cos 6lu + olcos © - © sin 01v)([sin eJu + [cos o) .

Moreover, if <u,v> = 0 and (27) holds, then
T T 2 2

(28) Hpa [+ [es™[| = [u][7 + [Iv]]%,

with equality in (28) if and only if =t = 0.

Proof : The proof of (26)€*(27) is similar to that of Lemma (7). To
1,

show (28), consider #(0,7) = ||pat]| + |]rs where p, q, r, s are given
2
by (27). It is straightforward to verify that g—f (6,0) = 0 and a_g (0,7) > 0 .
9T
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for all T ¢ R, whence ¢(0,7) > ¢(0,0), with equality only for Tt = O.

But ¢(0,0) = ||u]|2+ ||v||2 for all e ¢ R. W

If 1=0 and o =1 in (27), then qu and rs’ are both symmetric
and (27) reduces to the expression described in Lemma (20). On the other hand,

if 1 =0 but o = -1, then (26) becomes

(29) A = ([cos 0Ju + [sin 0Jv)([cos 01u - [sin O]v)T +

+ ([sin 0Ju - [cos 0lv)([sin 0Ju + [cos O]v)T,

which involves four pairwise independent vectors unless © is an integral
multiple of #/4. For 0O an integral multiple of /2, (29) reduces to (6),
and for © an odd multiple of =/4, (29) reduces to (12). Other choices of

© apparently boast no practical advantages.

6.  Application to Quasi-Newton Updates

As previously remarked, it may improve efficiency and reduce some cancel-
lation errors to express rank 2 quasi-Newton updates A = A + A as the sum

A = Al + 4, of two rank 1 matrices. This is readily done for some of the popular

updates. Tor example, the direct DFP and inverse BFGS formulae satisfy the

T T T T
quasi-Newton equation Aw = b by choosing A& = A + zb ; bz _ (z ¥)bg
b'w (b'w)
_ . . ~ _ T T _ b
where z = b - Aw; 1in this case A=A+ xy~ + yx* for x = 7 and
b'w
sz b Z'W .
y =z - (=) = (1~ )b - Aw. The direct PSB update,
2 T T
b'w 2b'w
= Zw t wz (zw)wn . . . ..
A=A+ s 1s readily expressed in a similar form.




~12~

pbT Ca) (aw)T ®
T T ?
b w w Aw

And the inverse DFP and direct BFGS updates, A = A +

are already expressed as the sum of two rank 1 matrices, though they may also

- T
be expressed in the form A = A + xyT + yxT with x = b + (ETE—)l/zAw and

' Aw
<bT.W >l/ 2 W
b— T Aw
_ W Aw
y =

T
2b"w
diagonal elements of A = A - A with a smaller bound on the absolute error.

: the latter form permits the calculation of at least the

b]

For more information on the various updates, see [Dennis & More, 1974] and
the references cited therein.
Davidon's [1975] optimally conditioned (OC) update is not so easy to

express as the sum of two rank 1 matrices. In this case

T T T
bb (Aw) (Aw) b Aw,,b Aw
= - + - - ) (= = —
(30a) A 2 2 occb(B a)(B a)
where o = W.Aw , B = wa, y = bIA—lb, and
PR ar s o< I
ay-B
(30b) ¢ =
B
B-o. otherwise [SR1] -
If B z.%%%—, then Davidon's OC update reduces to the symmetric rank 1

(SR1) update discussed in the introduction. The other case is more complex,
but we may approach it in the following general way.

Suppose s, t € R" and
(31) A = GssT + TttT + g(stT + tST)

with o, t, £ e R and 1 # 0. Then
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2
(32) A=<2§4$T+u§s+ﬂés+tﬁ.

Thus if ot 5_52 we find that (12) holds, i.e. A = xyT + yxT, with

‘/2 1 .
(33a) X = (g * g2 — GT)S + (%Jt and
(33b) L (- Vel - o g 4 ¢
y = T / .

In the case of (30) we find that (31) holds with

(34a,b) s = Aw, t = b,
(34c) £ = —g = B—Y2 ?
ay-8
(34d) r=(1+g—¢’)/s=1;°‘g,

and o = ¢;l =_(B§+]). Since (30) is only used when B8 > 0 and since the

positive definiteness of A insures o > 0, y >0, and ay > 82, we

have 1t > 0 and

() g% - or = LEEGm)  Zay - Blaty)
aB(ay-8")

b}

whence £2 > ot if and only if test (30b) does not select the SR1 update.
(Note that (32) and Lemma (3) imply the possibly surprising fact that the A
given by (31) with © # 0 and s, t linearly independent has one negative
and one positive eigenvalue if and only if £2 > otr.) Using (34) and (33),

it is thus easy to compute Davidon's OC update (30) in the form A = xyT + yxT.
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Some quasi-Newton methods, such as Powéll's [1970a,b] MINFA and
Dennis & Mei's [1975] MINOP (which, like Davidon's OCOPTR, uses the OC
update) require that both A and A™' be maintained. If the (direct)
DFP is used to update A , then the corresponding update for A_l
has the form of the (direct) BFGS, and vice versa. If the OC update is
used for A, then the corresponding update for A_l is also optimally

conditoned in the same sense, whence (using the above notation)

w A lb)(___ A lb T

FyRE-AD

_ T =1y a-loT
Flopl,w @ b)iAlb)

(a-B) - .
Bl o g+ Bel) ge B<§%
with  § = (7 P
8

otherwise [SR1].
B-v

Thus we may interchange o and vy in (34c,d), determine x and y by
N

(33) with s = A.lb and t =w, and campute A = A +xy + yx .

In the case of a general A as in (31), if A and A=A+ A are

nonsingular, then

_—l -1

A o=at ol s - - annla 1 syt T

e e YO N R e T e D

Cs e v 2 snet o ra e e T + o aTs’,

where 6§ = 1 + o(sia™ts) + t(tia 1) - (£2-0m)[(sia™ts) (1A t) - (sTA™0)?] +

-1
+ 28sTA T,

This may be expressed as Afl plus two rank 1 matrices by a device like (32).
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*®

Conclusion

In the common case where A and A are positive definite, it may seem

1

desirable to choose M = A"~ in (1) and express the update A=A+ A=A+ A, + A

1 2
in a form (with A, and 4, of rank 1) which minimizes ]]Alll + I]A2|| with

respect to the inner product norm (2). Such a norm seems quite in keeping with
Davidon's [1959, 1975] notion of a "variable metric" determined by the current

approximation A. It should select Aj = p.q? (37 = 1,2) which make smaller

173
changes to A 1in eigendirections corresponding to small eigenvalues in the
sense that I(erj)(quj)l is reduced for unit eigenvectors r,s of A
corresponding to small eigenvalues. Lemmas (19) and (25) establish the

remarkable fact that when A is indefinite (as is the case for what appear
T

to be the most frequently used updates), a choice of the form Al = xy- and p
’ Ay = yx' minimizes ||A1H + |18,]| no matter what inner product (1) defines

the norm (2). We have seen that such representations can be readily programmed.
In the opposite case where A is semidefinite, (32) shows how A may be
conveniently represented in the form #A = uuT + VVT; Lemmas (20) and (25)
show that any such choice of u and v minimizes ||Al|| + ||A2||. (Foot-
note: if o =1 =0 in (31) with s,t linearly independent, then A is
indefinite; thus if A has two eigenvalues of the same sign, then at least

one of o,t must be nonzero, and by possibly interchanging s and t we may

arrange that T # 0 and thus that (32) makes sense.)
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