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Abstract

Various quasi-Newton methods periodically add a symmetric "correction"

matrix of rank at most 2 to a matrix approximating some quantity A of
interest (such as the Hessian of an objective function). In this paper we

examine several ways to express a symmetric rank 2 matrix as the sum of

rank 1 matrices. We show that it is easy to compute rank 1 matrices

and such that + 2 and I + 2I I is minimized, where

H 1 I is any inner product norm. Such a representation recommends itself

for use in those computer programs that maintain A explicitly, since it

should reduce cancellation errors and/or iiiprove efficiency over other

representations. In the common case where is indefinite, a choice of

the form appears best. This case occurs for rank 2 quasi-

Newton updates L exactly when L may be obtained by syrmnetrizing some

rank 1 update; such popular updates as the IJFP, BFGS, PSB, and Davidon's

new optimally conditioned update fall into this category.

.
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1. Introduction
nxn

Various quasi-Newton methods n.intain an approximation A IR to

some nxn matrix of interest. In the case of unconstrained minimization,

for example, A might approxnate the Hessian of the objective function or

its inverse (see [Dennis a More, l97]). Such quasi-Newton methods

periodically determine a new approxima.tion A A + tx, which is required

to satisfy a "quasi-Newton equation" of the form Aw = b (i.e. Ew z b - Aw)

for certain w, b Rr determined by the method. Frequently A, A, and

hence i are required to be symmetric and is chosen to have rank at most 2.

In this case A and are also often required to be positive definite. It

may be desirable to maintain such matrices A in the factored form A LLT

and to explicitly update only the factor L: this assures that A has no

negative eigenvalues. Brodlie, Gourlay, a Greenstadt [1973] have shown

under these conditions that may be expressed as = i + T)A(I + T)
(for certain n-vectors p, q c ff) if and only if 1 - A may be expressed

in the form - which is possible for such popular quasi-Newton

updates as the BFGS and DFP; Davidon [1975] recommends that such a factored

representation be used with his optimally conditioned update. (See Davidon's

[1975] paper for another view of such factored representations.)

Despite the above, it may sometimes be desirable to maintain A explicitly.

Moreover, there exist situations in which the approximation A must be allowed

to be indefinite; this happens, for instance, in certain algorithms for solving

the nonlinear least squares problem, in which a quasi-Newton approximation

is made to only one paxl of the Hessian [Dennis, 1975]. Thus it is natural

to ask how symmetric matrices of rank 2 may be represented as
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sums of rank 1 matrices (outer products) and to compare such representations

with an eye toward efficiency and accuracy in computer .mplementations.

If has rank 1 and satisfies w z 0, then it is easily seen that

T T
w z 0 and . While the syrrunetric rank 1 update (SRi) can also

be written in any of the forms considered below for rank 2 updates, the
T

sinple representation A would appear to be the most efficient (andwz
accurate). (Of course, any of the standard, normally rank 2 updates may

degenerate to the SRI under certain conditions; in algorithms using such

updates, detecting degeneracy may be difficult and it may well be most

efficient to always use the rank 2 form of the update.) We therefore

consider below various ways to represent a symmetric, rank 2 matrix A

as the sum of two or three matrices of rank 1.

This paper is organized as follows. The next section presents some

background material. Section three considers the common case where A

has eigenvalues of opposite sign (i.e. is indefinite). Section four briefly
considers the semidefinite case (where A has two eigenvalues of the same

sign) and section five examines asymmetrict representations A =
A1

+
A2

with
A1, 4, A2, and 4 all distinct. Finally, section six discusses

applications to some quasi-Newton updates and section seven presents our conclusions.

2. Background

We shall have occasion below to refer to both the standard inner product

yTx and a possibly nonstandard one

(1)

defined for x,y 1R by a positive definite (hence synunetric) nxn matrix
nxn

M e . We shall also refer both to the corresponding inner product vector

norm I defined by
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(2) lxii lI<x,x>

arid to the matrix norm which this induces. Reasonable choices for M may

include I (the nxn identity matrix) and A1, if is used in the

update A = A + with A positive definite; we shall say more about the

choice of M in section 7.

We shall find it useful to classify rank 2 matrices b by the signs

of their nonzero eigenvalues. Hence we state:

(3) Liiuia If £ flXfl has rank 2, then may be expressed

in the form

T
(La)

1uu
-vv

(Lfb) uu +vv
(c) L_T +

where u and v are linearly independent, if and only if Lx has

[(a) one positive and one negative
(b) two positive eigenvalue(s).

(c) two negative

Hence may be expressed in exactly one of the forms (1+). It is possible

to choose u and v in () so that <u,v> 0.

Proof (Cf Leimia 1 of [Brodlie, Courlay, F, Greenstadt, 1973]): It is easily

seen that may be expressed in the form ('i) if and only if is

respectively (a) indefinite, (b) positive seinidefinite, or (c) negative

semidefinite.



It remains to show -that <u,v> 0 is possible. If L is any

rratrix (e.g., a Cholesky factor of N) such that N LTL and x,y are

(orthogonal) eigenvectors of

T T
1(a) xx -yy

LT such that LLT (b)
T +

T T
(c) —(xx +yy)

then () holds for u L1x and v Ly.U

In comparing expressions for I, we shall employ the following easily

proved lemma.

(5) Lenirna With t as above, if u and v span the coluiim space of /,

then there exist unique scalers ii, ', c ER such that
T T T T!iiuu +V\T\T +(uv +vu).U

S
3. Eigenvalues of Opposite Sign

As we shall see presently, many quasi-Newton updates generate a I with

one positive and one negative elgenvalue. Hence we shall first examine the

case where

T T(6) uu —vv

for some linearly independent u, v c ER". There are many ways to express

in the form (6), as the next lemma shows:

(7) Lemma If (6) holds, then

--T --T
(8) Luu —w

if and only if there exist S ER and 1 such that
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(9a) = (sec 0) u + (tan 0) v and

(9b) = (tan e) u + (sec e) v.

Proof: () If (6) and (8) hold, then u and v must be linear cornbina-

tions of u and v, say u au + v and V + (5v. Since

uu — vv (au + v)(au + v) — (yu + cSv)(yu + t5v)

2 2 T 2 2 T T T(a — y )uu — ((5 — )vv + (ct —yS)(uv + vu

lemma (5) implies

(lOa,b,c)
2

+ 2 (52 + and c (5y.

From (lOa,b) we have y avc and for the a1,o2 = 1

of appropriate sign. From (lOc) we obtain a13
a1a2

/)2 + a2 — 2 - 11, so

a + 1 and hence there exists 0 c R such that a = sec 0 and tan 0.

Inserrting these into the above expressions for y and (5 and using (lOc), we

obtain y a tan 0 and (5 = a sec 0, where a = 1, whence (9) follows.

((z) Conversely, if (6) and (9) hold, then it is easily verified that (8) also

holds. U

It seems to be fairly well )iown that a matrix of the form +

has one positive and one negative eigenvalue. We can, however, say more than

this:

(11) Lemma. If = E RnX has rank 2, then has one negative and

one positive eigenvalue if and only if

T T
(12) xy +yx

for some linearly independent x, y E FF'. Moreover, if (12) holds, then x

and y are essentially unique: if + then there exists T c IR,

T O such that either
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(x TX arid y y/t) or Cx ry arid y x/T).

Proof If L has eigenvalues of opposite sign, then by Lemma (3) there

exist linearly independent u, v c such that -

then (12) holds with

(1t1) xu+v and

lxiiy+ ilylix
Conversely, if (12) holds, then U

/2! lxi I I

ixiIy iiyix T T=
/2! lxii IlI - are such that uu - vv (and <u,v> 0),

whence has eigenvalues of opposite signs. Finally, if

T + T T + --T
then and must be linear combinations

of x and y, say x ax + 6y and y TX + 5y. From Lma (5) we obtain

ay = 0 and a + y 1, whence the essential uniqueness (13) follows. U

Generalizing Powell's [1970c] derivation of the "Powell-syimietric-Broyden" (PSB)

update, Dennis [1972] showed that a large family of symmetric rank 2 quasi-

Newton updates could be obtained by symiietrizing nonsymmetric rank 1 updates.

Thus, given nonzero w, z c R, we may obtain a symmetric rank 2

which satisfies the quasi-Newton equation.

(15) Lwz

by starting with the rank 1 update 1 = zdT determined by some specified

d c Rn with dTw 1 and generating the sequence l' 2' ... in which

2j+l
+ and 2j+2 = 2j+l + (z -

21w)dT for j 0,1,2

Dennis [1972] has shown that lin Lj t, where
i+co .
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(16) zd + dzT - (zTw)ddT.

Such well }c-iown updates as the DFP and BPS have the form (16) for the properly

chosen d. The next lemma is of interest because it characterizes those rank 2

updates which may be expressed in the form (16), a form convenient for

certain proof techniques (see, e.g., [Broyden, Dennis, g More, 1973]):

(17) Leimmi: If i = £ has rank 2 and (15) holds, then may

be expressed in the form (16) with z and d linearly independent

if and only if t has eigenvalues of opposite sign.

Proof: If (16) holds, then (12) holds with x = d and y = z -

whence has eigenvalues of opposite sign by Lemma (11). Conversely, if

i has eigenvalues of opposite sign, then by Lemma (11) there exist x, y c

such that (12) holds. From (15) we have

(18) 0 z = w = (y w)x + (x w)y

and we may assume without loss of generality that xTw 0. Setting

x . T
d—--,wef1nddw=land(us1ng(18))

T + dzT - (zTw)ddT [(yTw)x + (xTw)y]+ + L [(yTw)x+ (xTw)y]T

- [2(x w)(y w)][—---][-----]
x1w x'w

T T= xy + yx .

From the above proof, we see that there are usuafly exactly two choices

T T
for d in (16), there being but one in the exceptional case where = zd + dz

(ie. where x w = 0 or y w 0 with x, y as in (12)).
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We have seen that there are various ways to express a syninetric

indefinite matrix of rank 2 as the sum of two or three rank 1 matrices.

For explicit floating point computations involving , it would appear more

efficient and probably more accurate (as there is less chance for roundoff

to occur) to use one of the forms (6) or (12) expressing +

as the sum of two rank 1 matrices and 2 Form (6) offers a one

dimensional family of possibilities, while (12) offers essentially just

one. To compare all these possibilities, it seems reasonable to examine

I lI + I2I , since minimizing this sum should hopefully tend to minimize

cancellation error in some sense. (We shall have more to say about the choice

of inner product norm (2) below.) Note that the vector and induced matrix

T
norms • are related by xy x y . Using Lerma (7) and the

connection (l'i.) between (6) and (12), it is easy to prove:

-- T T
(19) Lenma: If tuu —vv =uu -vv xy +yx,where u and

v are linearly independent with <u , 0, then

--T --T T T T T
lluu II + 11w I! lluu + lw II IIw II + I! II

= llu!12 + 11v112.

Thus, no matter what inner product norm is used to measure the

representations (6) and (12) as described above, form (12) rates exactly as

well as the best representation of form (6). (Note that the best representation

of form (6) depends heavily on the inner product <•,•>; indeed, given any u ,v

such that (6) holds, it is possible to find many inner products with respect to

which u and v are optimal in the above sense.)

.
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L. The Semidefirii-te Case

T nxnWe next briefly consider the case where the rank 2 matrix A A c

has -two eigenvalues of the same sign. Since the other case is similar, we assume

both nonzero eigenvalues are positive. Just as in the case of mixed signs,

there are many ways to express A =
A]

+
A2 as the sum of two symmetric rank 1

matrices. This time, however,
J A J + A J depends only on the inner

product norm and not on the particular choice of arid A2:

(20) Leimia: If u, v are linearly independent, then

T T -- --.T
(21) A=uu +ycj uu +ijr

if and only if there exist 0 c F. and a 1 such that

(22a) (cos 0)u — (sin 0)v and

(22b) a (sin 0)u + (cos 0)v.

Moreover, if L is any real matrix such that LTL = M (with M in (1)), then

(23) J I uu +
I I I + I I trace (LALT).

Proof: The equivalence of (21) and (22) follows fran reasoning similar to

that in the proof of Lenina (7). From (22) we obtain

(2k) lIuuTIl + livvTIl = + ITII 11u112 + Hv112.

Let x and y be eigenvectors of LALT (such tiat xTy 0), scaled so that

LALT T + yyT: then u = Lx and v = Ly have <u,v> 0 and satisfy

(21), and ul
2

+
I vi

2
xTx + yTy = ace (LALT), whence (23) follows

form (2'+). U
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5. Asymmetric Representations S
Heretofore we have considered expressing symmetric rank 2 matrices

A as the sum + A2 of ran)<: 1 matrices which either are synuiietric or

else satisfy 4 . These expressions require only two vectors to express

both and A2 in outer product form. There also exist choices for A1

and A2 which neither are syliulietric nor satisfy 4 = A. Indeed, we may

state:

n
(L5) Lemma: If u, v c ffR are linearly independent and c 1, then

T T T T
(26) A uu + w pq + rs

if and only if there exist 0, r £ ff. such that either

T T T T
(27a) pq = pq arid rs rs or

T T T T
(27b) pq = rs and rs = pq , where

(27c) ([cos OJu — G[sin 0]v)([cos 0 — T sin OJu — [sin 0 + t cos

and

(27d) ([sin 0 + T cos 0]u + cicos 0 - T sin e]v)([sin 0]u + [cos O]v)T.

Moreover, if <u,v> 0 and (27) holds, then

(28) + lirsTil ujj + Ivl2,

with equality in (28) if and only if T 0.

Proof: The proof of (26)(27) is similar to that of Lerrnia (7). To

show (28), consider (o,t) E J Pq''J + J J rs"i J, where p, q, r, s are given
2

by (27). It is straightforward to verify that - (0,0) 0 and Ce ,) > 0
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for all c ff, whence c (0, r) (0,0), with equality only for T = 0.

But '(e,0) I ui 12 + lvi
2 for all 0 .

If T 0 and a = 1 in (27), then and rsT are both symmetric

and (27) reduces to the expression described in Lenina (20). On the other hand,

if t 0 but a = -1, then (26) becomes

(29) ([cos 0]u + [sin 0]v)([cos 0]u — [sin O]v)T +

+ ([sin 0]u — [cos O]v)([sin 0]u + [cos 0]v)

which involves four pairwise independent vectors unless 0 is an integral

multiple of rr/L. For 0 an integral multiple of irI2, (29) reduces to (6),

and for 0 an odd multiple of ff/L, (29) reduces to (12). Other choices of

0 apparently boast no practical advantages.

6. Application to Quasi-Newton Updates

As previously remarked, it may improve efficiency and reduce some cancel-

lation errors to express rank 2 quasi-Newton updates A A + t as the si.nn

= + 2 of two rank 1 matrices. This is readily done for soma of the popular

updates. For example, the direct DFP and inverse BFGS formulae satisfy the

T T T- . - zb +bz (zw)bbquasi-Newton equation Aw b by choosing A A +
T

-
T 2bw (bw)

- T T bwhere z b - Aw; in this case A = A + xy + yx for x =
T and

bw
T T

y z - (-)_-- = (1 -. )b - Aw. The direct PSB update,
bw 2bw

T T T T— 1w +wz (zw)ww . . .A = A + - , is readily expressed in a similar form.
ww (w'wY
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And the inverse DFP and direct BFGS updates, A A + - (Aw)(Aw)T , •
bw wAw

are already expressed as the sum of two rank 1 matrices, though they may also

be expressed in the form A A + + with x b + (w )l/2AW and
rT '1/2 \wAw
fbw\

b—--T) Aw
\W ,q ; the latter form permits the calculation of at least the

2b w
diagonal elements of A A - A with a smaller bound on the absolute error.

For more information on the various updates, see [Dennis a Mor, l97] and

the references cited therein.

Davidon's [1975] optilly conditioned (OC) update is not so easy to

express as the sum of two rank 1 matrices. In this case

(30a) A
bbT - (Aw)(Aw)T + - Awb -

5 a 5 a

T T T-lwhere awAw, 5wb, ybA b, and

I if S <
2 crl-y

ay—5

(30b)

S

L
13—a otherwise [SR1]

If S -- , then Davidon' s DC update reduces to the symmetric rank 1

(SR1) update discussed in the introduction. The other case is more complex,

but we may approach it in the following general way.

Suppose s, t and

(31) A aT + TT + (stT + tT

with a, 't, E R and T 0. Then

.
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(32) (OT)T + s + t)( s + t)T.

Thus if ot we find that (12) holds, i.e. + with

(33a) x (
+

÷ ()t and

(33b) y
— T) + .

In the case of (30) we find that (31) holds with

(3a,b) s Aw, t b,

(3c) = = ____

(34d) T (1 +
1 a

Since (30) is only used when > 0 and since the

positive definiteness of A insures o > 0, y > 0, and > 2 we

have 't > and

(3e) 2 — _ 1 2cty — (a+y)
act-y— )

whence 2 > cit if and only if test (30b) does not select the SRi update.

(Note that (32) and Lemma (3) imply the possibly surprising fact that the

given by (31) with T 0 and s, t linearly independent has one negative

and one positive eigenvalue if arid only 2 > at.) Using (314) and (33),
T Tit is thus easy to compute vidon s OC update (30) in the form xy + yx
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Some quasi-Newton methods, such as Powell's [l970a,b] MINFA and

Dennis F Mel's [1975] MINOP (which, like Davidon's OCOPTR, uses the OC

update) require that both A and A1 be maintained. If the (direct)

—l
DFP is used to update A , then the corresponding update for A

has the form of the (direct) BFGS, and vice versa. If the OC update is

used for A, then the corresponding update for A is also optimally

conditoned in the same sense, whence (using the above notation)

A1 = A1 + - (Ab)(A) + (W - A)(W - A)T
Y I I

I (c—) 3(a—I) . 2a''
— j ay +

with =

I _L- otherwise [SRi].

Thus we may interchange a and y in (3'4c ,d), detennine x and y by
_•-i -1 T T(33) with s A and t = w, and cute A A + +

In the case of a general Li as in (31), if A and A = A + Li are

nonsingular, then

A A - 6[G - (2_ r)(tTA_lt)] (A_ls)(As)T -

- 61[ - (2 a)(5TA_ls)] (Alt)(Alt)T -

- 1[ + (2_ oT)(5TA_lt)] [(Als)(Alt)T + (A_lt)(As)T],

where 6 1 + a(sTAs) + T(tTAt) - (2_T)[(sTA_ls)(tTA_lt) - (5TA_lt)2] +

T -1
+ 2(s A t).

This may be expressed as A1 plus two rank 1 matrices by a device like (32).

.
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7. Conclusion

In the common case where A and are positive definite, it may seem

desirable to choose M A1 in (1) and express the update A = A + A + +

in a form (with and 2 of rank 1) which minimizes
J

+ with

respect to the inner product norm (2). Such a norm seems quite in keeping with

Davidon's 11959, 1975] notion of a "variable metric" determined by the current

approxima±ion A. It should select L. pqT (j 1,2) which make smaller

changes to A in eigendirections corresponding to small eigenvalues in the

sense that I (r'p ) (5Tq•) is reduced for unit eigenvectors r ,s of A

corresponding to small eigenvalues. Lemmas (19) and (25) establish the

remarkable fact that when is indefinite (as is the case for what appear

to be the nst frequently used updates), a choice of the form l T and
minimizes llJ I + I A21 no matter what inner product (1) defines

the norm (2). We have seen that such representations can be readily programmed.

In the opposite case where i is semidefinite, (32) shows how Li may be

conveniently represented in the form uuT + Lemmas (20) and (25)

show that any such choice of u and v minimizes
Li1! I

+
I 2' (Foot-

note: if a = 0 in (31) with s,t linearly independent, then Li is

indefinite; thus if Li has two eigenvalues of the same sign, then at least

one of a,m must be nonzero, and by possibly interchanging s and t we may

arrange that T 0 and thus that (32) makes sense.)
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