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Abstract: "A Beta—Logistic Model for the Analysis of Sequential Labor

Force Participation by Married Women"

by

James J. Heckman
University of Chicago and NBER

and

Robert J. Willis
NBER and Stanford University

In this paper, we discuss statistical problems that arise in studying

sequences of quantal responses (e.g., labor force participation) in panel

data on heterogeneous populations (i.e., populations in which there is unobserved

variation in response probabilities). Assuming that response probabilities

are governed by a beta distribution, we derive a generalization of the cross—

section logit model to enable it to deal with sequences of discrete events in

panel data. This model is applied to panel data on labor force participation

of married women. One of our findings is that the distribution of participation

probabilities is U—shaped, indicating that most women have participation

probabilities near zero or one.
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INTRODUCTION

Many important aspects of household behavior involve choices among

discrete alternatives or decisions that lead to discrete outcomes. Re-

cognition of this fact has recently led to a considerable development of

statistical models appropriate to the analysis of such "quantal response"

problems in cross section data.1 Quantal response problems also arise in

the study of life cycle behavior with panel data. The timing or time path

of discrete events or decisions such as school leaving, labor force parti-

cipation, migration, marriage, divorce, births and death provide examples

of such problems. In this paper we argue that statistical models appropriate

in the analysis of quantal response problems in cross section data are less

useful in the analysis of panel data. We generalize the cross—section logit

model to enable it to deal with sequences of discrete events in panel data.

Our model is then applied to panel data on the labor force participation

of married women.

The basic reason that the conventional logit model is misleading in the

analysis of panel data stems from the so—called 'mover—stayer" or "hetero-

geneity" problem. In a pioneering paper, Blumen, Kogan and McCarthy (1955)

found that the conditional probability that a "representative" individual

moves from a given occupation decreases with the length of time he has stayed

in the occupation. They also found that individuals who changed occupations

most frequently in the past were more likely to change in the future. One

explanation for this phenomenon is that the population is heterogeneous in

the sense that some individuals have persistently higher propensities to

change occupation than do others. That is, some individuals are "movers"
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and others are "stayers". As time passes, stayers tend to become a larger

fraction of the sample remaining in a given occupation. Hence, a group's

conditional probability of changing occupations appears to decline with

duration of stay even if each individual's transition probability is con-

stant. Similar patterns are observed in data on the monthly probability

of conception, marital instability, geographic mobility and other types of

sequential quantal response.

Statistical models such as the logit model that may be appropriate

for the analysis of quantal response problems on cross—section data are

less appropriate in an analysis of sequential responses in panel data

from heterogeneous populations. We demonstrate below that the reason for

this inadequacy is that the conventional logit model estimates parameters

that generate the mean response probability conditional on the values of

exogenous variables, but gives no information about the higher moments of

the distribution of probabilities among individuals in the sample. Under

the heterogeneity hypothesis, however, it is the higher moments of the dis-

tribution of response probabilities that provide the observed patterns of

sequential response.

In this paper, we extend the conventional logit model to deal with

quantal response problems in panel data from heterogeneous populations and

apply our model to data on sequential labor force participation of married

women. Our interest in applying the model to labor force participation was

stimulated by Ben—Porath's (1973) observation that cross—section estimates

of labor force participation functions are inherently ambiguous with respect

to their implication for lifetime attachment to the labor force because a

sample mean conveys no information on higher moments of distribution.
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Consider the following example, due to Ben-Porath. Suppose that a

group of women are found to have an average yearly participation rate of

50 percent. At one extreme, this might be interpreted to imply that each

woman in a homogeneous population has a 50 percent chance of being in the

labor force in any given year, while at the other extreme, it might imply

that 50 percent of the women in a heterogeneous population always work and

50 percent never work. In the first case, each woman would be expected to

spend half of her married life in the labor force and half out of the labor

force and job turnover would be expected to be frequent, with an average job

duration of two years. In the second case, there is no turnover and current

information about work status is a perfect predictor of future work status.

There are, of course, an infinite number of intermediate possible interpreta-

tions of the cross—section participation rate.

In addition to their different implications for life cycle labor supply,

these two extreme interpretations have different implications for other aspects

of life cycle behavior as well. For example, in the homogeneous case, married

women and their employers have lower incentives to invest in human capital,

both general and specific, than men because of high job turnover and a smaller

amount of time in the labor force over the life cycle to capture returns on

investments. As the average level of female participation rises, investment

incentives increase. In the second case, however, the investment incentives

of married women who work are identical to those of men. If such

women can distinguish themselves to prospective employers, their wages should

be identical to those of men. Growth in average participation rates simply

increases the fraction of women who have these incentives. Put differently,
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relationships estimated on aggregated cross—section data for the Marshalijan

"representitive (or average) women" will have no relationship to the true

relationship for every individual in the case of a heterogeneous population

but may closely reflect the true relationship for all women in the case of a

homogeneous population.

The plan of the paper is as follows. In Section I, a simple model of

sequential labor force participation is presented. In Section II we show

that heterogeneity among women arises if there are unobserved permanent com-

ponents that affect the probabilities of participation and which persist

through time. The implications of these sources of heterogeneity for the

distribution of participation probabilities and for observed patterns of

sequential participation are explored. In Section III, we assume that par-

ticipation probabilities are governed by a beta distribution. Under a

plausible parameterization of this distribution, we derive a likelihood

function for sequential participation which reduces to the likeli-

hood function of the conventional logit model in the case of cross—section

data. For this reason, we call our model a "beta—logistic model". Empir-

ical estimates of the labor force participation model are presented and

analyzed in Section IV. Some remarks on the limitations of the beta—logis-

tic model and a summary conclude the paper.
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I. A Model of Sequential Labor Force Participation.

Labor force participation decisions are one aspect of the more general

problem of household allocation of time among competing market and non—

market uses (Becker, 1965). In each year of marriage, a woman must choose

how much time to allocate to market work and how much to allocate to house-

work, child care, leisure and other nonmarket uses. These time allocation

decisions are the outcome of the household's attempt to maximize a well—

behaved lifetime utility function defined for its time and goods consumption

constraints (see, e.g., Heckman, 1974, and Ghez and Becker, 1975).

Given the assumption of maximizing behavior, the supply of labor for

each household member may be derived as a function of the household's prices,

wages, assets and other constraints. In particular, for horizon T an optimal

time path for the wife's hours of labor, h , t = l,...,T is associated with

the constrained utility maximization. The wife's optimal sequence of labor

force participation may be represented as the binary variable, y, where

* [1 if h*>O

if h=O
(1)

Following conventional labor supply theory, a woman's labor force par-

ticipation decision in year t depends on a comparison of the marginal bene-

fit and marginal cost of taking a job. Marginal benefit of an hour of work

is measured by the woman's market wage, w. The marginal opportunity cost

of the first hour of work is measured by the woman's shadow price of time,
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* *
evaluated at zero hours of work. Put differently, w is equal to the

subjective marginal rate of substitution between the woman's nonmarket time

and market goods when the woman spends all of her time in nonniarket activities;

If w exceeds w, the woman will take a job and if w exceeds she will

stay out of the labor force. Hence, we may express the optimal labor force

participation sequence as

* * t1 ,T

*lifw—w >0
where S(.1= t t

(2)

0 if w < 0

If we could observe both w and w, equation (2) could be tested direct-

ly. Unfortunately, this is not the case. The shadow price of time cannot be

observed and the market wage cannot be observed for women who do not work.

While it is possible to utilize sample information on working and non—working

women to form consistent estimates of functions determing w and w (see Heck—

man, 1974), we shall pursue a simpler "reduced form" approach by deriving a

labor force participation function in terms of observable variables and Un—

observed components that determine w and w.

The market wage a woman may command depends on many variables including

education, training, intelligence, motivation, local labor market conditions

and chance events. In a given body of data, let us assume that we observe

for the ith woman in year t a subset of these variables designated by the

vector z and that the remaining unobserved variables and chance events
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contribute a percentage amount to the woman's wage. We may then write her

wage function as

in w = f(zi) ÷ nit. (3)

A shadow price of time function is associated with the household's. con-

strained utility maximum. Thus, w may be written as a function of household

parameters such as assets, the husband's wage rate, market prices of goods,

the rate of interest, and expected values of future wage and prices. It is

also a function of other constraints reflecting past choices and chance events

including the number and age of children, etc.. Again, some of these variables

can be observed, but others, especially those reflecting a given household's

tastes, technology or expectations about the future are not observed. Thus,

in analogy with the market wage function, we shall write the shadow price

function of the ith woman in year t as

ln w = g(z) +

* *
where is a vector of observed variables and reflects the percentage

contribution to the shadow price of unobserved variables and chance events.

(Note that some variables in z and may also belong in and

The "reduced form" labor force participation function of the ith woman

in year t is obtained by substituting equations (3) and (4) into equation (2):

* *
. *

= 6(f(zj) — g(z1) + — (5)
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where, 5[] equals one if the expression in brackets is positive and equals

zero otherwise. Assuming that f(z1) — (z) is linear and suppressing the

subscript i, we may rewrite (5) in more compact notation as

y = &[x' - S] (6)

where is a column vector of coefficients, x is the column vector of observed

variables belonging to z1 or z_or both and St = —

The unobserved component St may be viewed as a random index function, so

that the probability that a woman worker works in year t is

Pr(y = 1) = Pr(x >
Se).

If S is from the logistic distribution, the probability in equation (7)

may be written as the ].ogit function

Pr(y = 1) = eXt = 1. (8)

l+eXt l-I-e

Similarly, we may think of the sequence of unobserved components S1, S2,..

,ST
a sequence of random index functions. For example, the probability

that a woman works for three years may be written as

Pr(y = 1, y2 = 1, y3 = 1) =
Pr(xj8 >S1, * '> S2. x8 > S3). (9)

If we assume that the S(t=l,2,3) are independently and identically dis-

tributed, then equation (9) may be written as
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Pr(y1 = 1, y = 1, y = 1) = Pr(x > S1)Pr(x > S2)Pr(z8 >
S3). (10)

Assuming that the St are independently, identically logistically dis-

tributed, (10) may be expressed simply as the product of three independent

logit functions. The parameters of these functions, the vector , could be

estimated by maximum likelihood methods from a single year of labor force

participation data. The predicted probability of working in each of the

three years would then be estimated by using the values of the x in each

year to evaluate (1 + eCt)l. If these probabilities are
w1, it2

and then

the probability of working in all three years is l23 The predicted prob-

abilities of other possible participation paths are, of course, equally easy

to compute.
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II. Heterogeneity and Its Implications

The assumption that the random indices S1, S2,... are statistically

independent makes little sense on theoretical grounds and implies patterns

of labor force participation that are dramatically different from observed

patterns. Turning first to empirical evidence, consider some data on labor

force participation paths for two years, 1967 and 1968, for a group of 1583

married women from the University of Michigan Panel Study of Income

Dynamics.2 In 1967, 41 percent of the women participated in the market.

Assuming independence, we would expect that (.41)2 = .168 of the women would

work in both 1967 and 1968 while, in the sample, 35 percent worked both

years. Similarly, assuming independence, we would expect (•59)2 = 0.348

of the women would not work in either year while, in the sample, 50 per cent

did not work in either year. Looking at these results another way, the

conditional probability of working in 1968 was 0.86 for those who worked

in 1967 and 0.15 for those who did not work in 1967, in contrast to a

probability of 0.41 that would be expected for both groups under the

independence assumption.

One possible explanation for the discrepancy between predicted and

observed behavior in this example is that our theoretical model of labor

force participation fails to specify the appropriate stochastic process

followed by each individual. For instance, the evidence that conditional

probabilities of work in 1968 depend on work status in 1967 might suggest

that each person in the sample follows a two—state Markov chain with transition

probabilities given by the observed conditional frequencies. While we cannot

rule out the possibility that individuals follow a stochastic process involving
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state dependendence, we pursue another approach in which individual trans-

ition probabilities are independent of initial state but aggregate transi—

3
tion probabilities are state dependent.

It is not plausible to assume that the random index functions S1, S2,...

are independent. Recall that the S measure the impact on a woman's market

wage and shadow price of time of unobserved variables, as well as chance

events. It is reasonable to suppose that many of these unobserved variables

remain reasonably constant over time, but differ considerably among women.

For instance, among the factors determining a woman's market wage, variables

such as ability, motivation and labor market structure are likely to be

unmeasured and to remain essentially unchanged over time. Similarly, un-

measured factors which affect the shadow price of time such as the household's

wealth, its preference function and household technology tend to remain stable

over time. This implies that random sequence S1, S2,... will tend to be ser-

ially correlated rather than independent.

Following a convention in the analysis of covariance, we decompose the

S for the ith woman in year t into a "permanent component," , and a "trans-

itory component," U1. Thus, let

Sti = Ut1 + (11)

where U is a random variable with mean zero and variance and e is a

random variables with mean zero and variance . Suppressing the index i

f or notational, convenience, we assume that U are serially independent, and

independent of the c 80 that
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E(UU) = 0 t (12)

and

E(U) = 0 t = 1,2,.. ., (13)

Thus St is a random variable with mean

E(S) = 0 (14)

and

E(SS) = t # t

=ac+ tT (15)

Thus, the correlation coefficient between the S in any two years, p

is then defined as

2
a

2 2
• (16)

a +a
C U

If intercorrelation caused by persistent unobserved variables is

present, the probability that a woman works for three years cannot be

written as the product of the probabilities that she works in each year,

as it was in (9). However, conditional, on a given value of the permanent
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component, , we may write the probability statement for three years

of work as

Pr(x8 > S1, x13 > S2 x'3 > S3k)
(17)

3 —

= II Pr(x' > S Ic)t=l t

because, holding c fixed at c , the conditional values of the S

are independent. Allowing c to vary over the real line, we may write

the unconditional (or expected) probability of working three years as

'.3
J U Pt(x'8 > S Fc)h(c)dc—t=1 t t

where h(c) is the density function of c.4 Similar probability state-

ments may be written for other sequences of labor force participation.

We are now in a position to investigate the implications of serial

correlation caused by unobserved permanent components. For simplicity,

assume that we observe a sample of women in a stationary environment in

which the vector of exogenous variables, x , remains constant over time

so that x(3 = x8 = = x8 = x'8. This implies that the expected

participation rate in the sample,

= Pr(y = 1) = Pr(x'8> S) =

remains constant over time.
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One implication of correlation in the random sequence S1, Si,... due

to unobserved components is that participation probabilities differ among

women who are homogeneous in terms of their observed characteristics. To

see this, consider a sample of women who are observationally identical in

the sense that they share a common value of the vector of observed exogene—

ous variables, say, x = x. The probability density function of participa—

tin probabilities in the sample, f(Tr), may be written:

xy

f(r) Pr(x$ - c > Utc)h(c)
= I + Ie)h(c)d(U+ c) (19)

wriere h(c) is the probability density function of E and + EIC) is

the probability density function of S conditional on .

First consider the implications for the distribution of participation

probabilities in the two extreme cases of zero and perfect serial correla-

tion. Recall that the serial correlation coefficient is p =

If there are no permanent differences among women (i.e., = 0) so that

p = 0, equation (19) reduces to

xi 8
fir) = f (u)du . (20)

Since U1, U2 ... are independent, each woman in the sample has an identical

probability of participation in each year. At the other extreme, if there

are only permanent differences among women (i.e. = 0) so that P = 1,

equation (19) reduces to



15

f(it)= Pr('— > 0). (21)

In this case, the fraction of women for whom x$ — > 0 will always work,

while those for whom — 0 will never work.

We call populations characterized by zero serial correlation "homogene

ous" because, conditional on the observed characteristics measured by x, all

women in such populations have identical participation probabilities. In

effect, the only source of variation in participation for women in a homogene-

ous population is caused by transitory shifts in their budget constraints or

indifferences curves measured by Populations in which p is greater

than zero will be called "heterogeneous" because participation probabilities

differ among women who are observationally identical. As we have seen, perfect

serial correlation implies an extreme form of heterogeneity in which individual

women have either zero or unitary participation probabilities. In this case,

although each household's indifference curves and budget contraint remain

perfectly stable over time, there are unobserved differences in preferences

or constraints among observationally identical households. The correlation

coefficient is a measure of the relative importance of unmeasured permanent

and transitory differences in preferences and constraints among households.

In the general case, the distribution of probabilities depends on the

relative size of transitory variance (a) to the permanent component (a),

and on the value of 3. In the appendix, we demonstrate that if >

(p < 1/2), the density of the population probabilities is a unimodal distri-

bution while it is' "U shaped" if a < a . If 5 = 6 (p = 1/2) the densityu c U E

is eithr mono.-onically increasing or decreasing depending on whether or not
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_, _,
x8 is greater or less than zero. In the special case of x = 0, the density

is uniform over the unit interval. These cases are illustrated in Figure 1,

which graphs the density of probabilities against the probability for the

special case of x = 0.

We have shown that an observationally homogeneous group of women will

be heterogeneous in labor force participation probabilities if there are

wage unmeasured permanent differences among these women in either market

wage rates or shadow prices of time. The distribution of participation prob-

abilities depends on the relative importance of variation in permanent and

transitory components as measured by p, the relative importance of transitory

and permanent factors as measured by the serial correlation coefficient of

the random index functions S , S2,..., and by the mean participation prob-

ability, it. We now investigate the implications of heterogeneity for the

observed time path of labor force participation.

In a heterogeneous population, it is important to distinguish a model

of the behavior of individuals from a model of the average behavior of a

group of individuals. For Instance, our model of labor force participation

behavior implies that the probability that a woman works in a given year is

independent of her prior work experience. However, In a heterogeneous (but

observationally identical) group of women, average behavior appears to con-

tradict this model. In a heterogeneous population the conditional probability

of remaining in a given state tends to increase, the longer the group has been

in that state.5 Thus, the conditional probability that a "representativet'

woman works appears in increase the longer she continues working. Similarly,

the longer a representative woman has been Out of the labor force, the more

likely she is to stay out in a given year. A corollary of rising conditional
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probabilities of remaining in a given state is apparent state dependence

of participation probabilities. That is, of otherwise identical women,

those women who worked in year t—l are more likely to work in year t

than are those women who did not work in year

The reason for the apparent contradiction between individual and average

behavior in a heterogeneous population is due to a selection process. As

time goes on, the women who have the highest (lowest) participation probabili-

ties are most likely to be found in the subsample of continuous workers (non—

workers). Accordingly, as the sample composition of the group of working

women changes, the conditional probability of participation (nonparticipation)

appears to rise. Similarly, apparent state dependence in participation prob-

abilities arises because the probability that an "average" individual will

occupy a given state depends on his transition probability. Note that the

line of causation here is just the reverse of that postulated in Markov chain

models in which the transition probability is assumed to depend on the state

an individual occupies.7
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III. The Beta—Logistic Model

One way to deal with heterogeneity empirically is to assume a

functional form for the distribution of participation probabilities

and estimate the parameters of this distribution from panel data.8

The beta distribution with the probability density function

= 1(1_)b1 O<ir<l, a,b>O (22)

where

B(a,b) = f a_l(l_)b_ld = r(a)r(b) (23)

is an attractive choice of functional form for several reasons.9 First, as is

appropriate for a distribution of probabilities, the range of the beta

distribution lies in the unit interval. Second, the distribution has only

two parameters, a and b . Third, the shape of the distribution is flexible.

It is unimodal if a > 1 and b > 1 , U—shaped if a < 1 and b < 1,

uniform is a = b = 1 and J—shaped if a > 1 and b < 1 or a < 1 and

b > 1 . As we demonstrated in the previous section, all of these are possible

shapes of the distribution of participation probabilities°

We now derive the expected probability of any participation path under

the assumption that the yearly participation probability, it , has a beta

distribution. If it were a constant, the probability that a woman works

j years and does not work k years out of a total of n = j + k years is
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p(j,n) (;) J(l_)IC , j = 0,1...; k = n—j

Now letting ir be a random variable with the p.d.f. in (22), the

expected probability of working j out of n years is

1,
E(p(j,n)) = f fl J(l_)kf(ll.)d0

=

(
f(l..ir)d (24)

= n B(a+j,b+k)
j B(a,b)

— r(÷b) r(a÷j)r(b+k)
j r(a)r(b) r(a+b+j-fk)

The properties of the model are easily derived from equation (24)

using the recurrence relationship r(x+l) = xr(x) . The mean participation

rate in any year is

EEp(1,l)J , (25)

with variance,

2 aba =
(a-fb)'(a+b+l) , (26)

which is a decreasing function of a and b . The apparent state dependence

induced by heterogeneity may be seen by comparing the conditional probability

of working in year t of women who worked in year t—l with that of
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women who did not work in t—l:

* * * * a+l a 1=
a+b+l

—
a+b+l

=
a+b-l-1 (27)

This difference ranges from zero under homogeneity (i.e. - 0 as

a,b + holding a/(a+b) constant) to unity under extreme heterogeneity

(i.e. ci2 + 0 as a,b + 0 holding a/(a+b) constant). It uiay also be

shown that the conditional probability of working rises as the duration

of time in the labor force increases. Thus,

* * (j=t n=t) a+t—l
Pr(y=lIyi=l

=
p(yt—l, nt—l)

=
a+b+t—l (28)

which is a positive monotonic function of t that approaches unity as t

approaches infinity. A similar expression may be derived showing that

the conditional probability of not working increases with the duration of

time out of the labor force.

The model of equation (24) would be appropriate if the only factors

causing differences in labor force participation among women were unobserved.

However, we argue that the theory of labor supply suggests that

a number of variables such as wife's education, the number and ages of

children, husband's income influence participation and are typically observable.

If there were a limited number of such variables, it would be possible to

partition a sample to allow separate estimation of the parameters of the

distribution of participation probabilities for groups of women with different

values of the exogenous variables. However, if there are many exogenous
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variables or many values of a given set of variables, partitioning may be impractical.

An alternative approach that we pursue here is o postulate that

the parameters a and b are functions of the vector of exogenous

variable, x, as follows:

xt cta=e
(29)

x'Bb=e

where c and 8 are column vectors of coefficients. This parameterization

assures the non—negativity of a and b, as is required in (22).

The mean probability of participation, obtained by substituting (29) into

(25), is

E[p(14)] = e+ eX' 1+ —x'(a—8)
(30)

Note the (30) is nothing more than a logit function with coefficient

vector y= —8 . With cross—section data (i.e. data on participation for

only one year), 8 and ci. cannot be identified separately. Hence, the

ordinary logit function can be used only to predict the mean participation

rate in a population conditional on the x's, but cannot determine the higher

moments of the distribution of participation probabilities. However, with

participation data on the same individuals for two or more years both and

11
8 can be identified.
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IV. Empirical Results

In this section, we present estimates of the model of sequential labor

force participation of married women presented in section I based on data

from the University of Michigan Panel Study of Income Dynamics, 1968_1972)2

Our sample consists of 1583 white women who were continuously married to the

same husband during the five—year period of observation, 1967—1971. In

each year, we define a woman to have participated in the labor force if the

respondent answered affirmatively the question: "Did your wife do any work

for money last year?" This measure differs from the usual census in two

respects: (1) we treat women who experience only unemployment as nonparticipants

(2) the time frame is a year rather than the usual Census week.

Over the five—year period of observation, a woman may have followed any

of 32 ( 2) possible participation paths. Assuming that participation

probabilities among women follow a beta distribution, equation (24) in

Section III implies that the contribution to sample likelihood of a woman

who works j(0, 1, ..., 5) years and does not work k = n—j years (n1,. . . ,5) is

B(a + j, b + k) F(a + b) rCa + 1) r(b + k) 31
a,

rCa) r(b) rCa + b + j + k)

where a = and b = eXB. Given a vector of independent variables,

x', the coefficient vectors, c and , are estimated by maximum likelihood.

The independent variables, their mean values and the estimatedvalues

of c and are presented in Table 1. Since the likelihood function in (31)

assumes that each individual has a constant participation probability over

time, the values of the independent variables pertain to 1967, the initial year

of observation. This is not a problem for variables such as education which
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remain constant over time, but is an undesirable restriction of the

model for time—varying variables such as income and the number and age of

13
children.

As discussed in Section I, we take a "reduced form" approach to the

estimation of the labor force participation function in terms of variables

that determine the market wage (w) and/or the shadow price of time (). For

instance, the wife's education is known to be positively related to her market

wage, and therefore, is expected to have a positive effect on her probability

of labor force participation.'4 The presence of children, especially young

children, tends to increase the shadow price of time, thereby reducing the

participation probability. Similarly, increases in family income (excluding

wife's income) raises and reduces partipation. Finally, the wage of unskilled

labor measures the cost of substitutes for the wife's housework and is expected

to have a negative effect on participation.

Maximum likelihood estimates of the coefficient vectors, o and , of

equation (31) together with associated asymptotic normal statistics are present-

ed in columns (2) and (3) of Table 1. Of the sixteen parameter estimates,

eleven are statistically significant at conventional levels (i.e., "t" > 1.9).

The only variable that fails to have any appreciable effect on participation

is husband's education. The other variables have effects on mean yearly par-

ticipation in the hypothesized directions. To see this, recall that and B

are related to the parameters of the "cross—section" logistic function

= E[p(1,l)]
l+e '
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Table 1: Maximum Likelihood Estimates of B(a,b)

(1) (2) (3) (4)

Mean
=

(ct—8.)ir(l—7r)Variable

Intercept —2.50 —1.73
(6.2)* (4.2)

Wifets education 11.32 .078 —.0810 .0385

(2.4) (2.4)

# children ever born 2.75 .057 .0611 —.0010
(1.5) (1.6)

# children not living .85 —.200 —.117 —.0200
at home (3.5) (2.0)

# children less than 6 .49 .177 .552 —.0907
(1.9) (5.9)

Wage of unskilled labor 1.86 .054 .290 —.0571
in county (0.4) (2.1)

Family income excluding .8111 —.272 .252 —.0657
wife ($10,000) (2.1) (2.0)

Husband's education 11.46 .0211 .029 —.0002
(0.8) (1.0)

*
Asymptotic "t" in parentheses
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by the relationship y = — . Using this relationship we have evaluated

the partial effect of each exogenous variable on mean yearly participation

at the sample mean,

1T(l,0) = ( — )(l —

where is the mean participation rate in the sample and ct. and are the

coefficients associated with the th independent variable, x. These effects

are presented in column (4) of Table 1. As expected, wife's education has a

strong positive effect on participation while children (especially young

children), the county unskilled wage rate, and family income have negative

effects on participation.

The empirical results indicate the presence of a considerable hetero-

geneity. To show this, we evaluate the parameters of the beta distribution

using mean values of the exogeneous variables to conclude that a = eX = 0.232

andb = e = 0.294 which Implies that the distribution of participation

probabilities for women with "average" characteristics Is U—shaped. That is,

in a hypothetical population with a mean participation rate of .44, relatively

few women have a probability, of participation near the mean. This conclusion

is essentially unaltered when we evaluate ai = eX1 and b eXi for each of

the I = l,...,N women in the sample. About 96 percent of the women have values

of a and b less than unity. Thus, it appears that the distribution of partici-

pation probabilities is U—shaped for women of almost all socio—economic charac-

teristics.

The total variance in participation probabilities across women in the sam-

ple is the sum of the variance in probabilities caused by differences in
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measured characteristics and the variance caused by unmeasured permanent com-

ponents. To see this, let

iT1

= E(ii.) + v1

where ir is the participation probability of the ith woman, E(Tri) eX1/

XjcL x43 .(e + e i. ) is her expected probability based on the estimated coefficient

vectors, c. and , and her measured characteristics,
x1,

and vi is a component

due to permanent effects. The total variance in ir may be defined as

— ii) E[E(lri) — it] + Ev.

N
=

N N

The variance in the predicted probabilities, Var[E(rr)] = [E(ir.) — ir]2/N is
0.016. The variance of the unobserved component, Var(Vi) = Ev./N, which is

obtained from direct application of equation (26), is 0.1489. Hence, an esti-

mated for our model is

Var[E(ir )}I = 0.097
Var[E(iti)] + Var(v1)

This implies that over ninety percent of the total variation in participation

probabilities in the sample is due to unmeasured permanent components. Put

differently, the empirical distribution of expected probabilities based on

measured characteristics is unimodal, with most women having expect probabilities

near the mean for all women. In contrast, as we have seen, the distribution

of actual participation probabilities, holding measured characteristics constant,

is U—Shaped.
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The high degree of heterogeneity in participation probabilities that is

indicated by the small estimated values of the parameters a and b implies a

correspondingly high degree of selection of women into "working" and

"non—working" categories according to their participation probabilities.

Thus, the predicted conditional participation probability in year tof a

woman with average values of the exogenous variables who worked in year t—l

is (a + l)/(a + b +l)=0.82, while the conditional participation probability

of a woman who did not work in year t—l is a/(a + b ÷ 1) = 0.15.

These estimates imply that knowledge of a woman's current work status

is of considerable value in predicting the amount of time she is likely to

spend in the labor force in the future. For instance, the estimates imply

that a woman with average characteristics who is currently working will spend

about eight out of every ten years in the labor force while a woman who is

not currently working would be expected to spend only about one and one—half

years out of ten at work. The accuracy of such predictions can be checked

in the data for the four year period from 1968 to 1971 for women whose work

status is known in 1967. The predicted mean years of work during this period

for women who worked in 1967 is 4 x 0.81 = 3.24 years, and the actual average

years worked is 3.19. Of the women who did not work in 1967, the predicted

mean years worked is 4 x 0.15 = 0.60 years and the actual value is 0.89 years.

The fit of the estimated model may be examined by comparing the sample

frequencies of possible labor force participation paths from 1967 to 1971

with the predicted probability of each path both of which are presented in

Table 2. The actual frequencies are the numbers above each horizontal line.in the
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tree diagram. The first page of the table displays the possible paths of

the 42.6 percent of the women who were working in the initial year, 1967,

and the second page gives the paths of the 57.4 percent of the women who

did not work in 1967. The upper branch from each node (labeled "1")

indicates "work" and the lower branch (labeled "0") indicates "not work".

For example, 36.6 percent of the women worked in 1967 and 1968, 26.9 percent

worked in all five years and 35.3 percent did not work in any of the five

years.

The predicted probabilities of each participation path in Table 2

were computed for each woman in the sample by evaluating

B(a. + ib + k)
pj(i, n) =

B(a. b)

where a = eXj, b1 = eXi, 4 is the vector of exogenous variables for

the jth woman, and n=j+k = 1,...,5. The mean and standard deviation (in

parentheses) of the predicted probabilities are presented below each hori-

zontal line in the tree diagram. Visual inspection of Table 2 suggests

fairly close agreement between actual and predicted participation prob-

abilities, especially for continuous participation and continuous non-

participation. The latter probabilities, extracted from Table 2, are tab-

ulated for convenience in Table 3.. However, on the basis of the chi—square

statistics presented in Table 4, the hypothesis that the observed participation

frequencies were generated by the beta—logistic model must be rejected for

all but the first year.

Another way of examining the fit of the model is to compare the pre-

dicted and actual distributions of years worked by women in the sample.

These distributions, based on information in Table 2, are presented in Table 5.

Both the predicted and actual distributions are concentrated in the continuous
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Table 3

1967 1968 1969 1970 1971

Probability of working until Actual .426 .366 .333 .293 .267
year t

Predicted .446 .364 .324 .299 .282

Probability of not working Actual .574 .479 .413 .375 .353
until year t

Predicted .554 .472 .429 .401 .381

Table 4: Test of Goodness of Fit for Table 2

Number of years 1 2 3 4 5

X2 2.56 12.79 74.66 222.23 506.38

d.f.

3.84

7;82

14;06 25.00 43.77

Table 5. Actual and Predicted Distributions of years worked from 1967 to 1971

Years Worked Percent of Sample

Actual Predicted

5 .269 .282

4 .100 .090

3 .099 .070

2 .081 .080

1 .097 .100

0 .353 .381

Mean 2.300 2.240

25.1
= 11.07
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work and continuous non—work categories with the remaining portion of

both distributions nearly uniformly distributed across one to four years

of work experience. Again, however, a chi—square test indicates that the

discrepancy between predicted and actual years worked is statistically

significant.

Both a priori considerations and evidence of systematic patterns in the

deviations between actual and predicted participation probabilities indicate

that the beta—logistic model fails to capture all the forces that generate the

observed pattern of sequential labor force participation. In the economic

theory of labor force participation presented earlier, we assumed that a woman

would work if her market wage exceeded her shadow price of time, and, otherwise,

that she would not work. This theory leads us to formulate the statistical

model of participation at the individual level as a Bernoulli process in which

the probability that a woman works in year t is independent of her labor

force status in the previous year.

It is more realistic to assume that there are transactions costs in

taking a job that result from the costs of search incurred by the job seeker

and fixed hiring costs incurred by the employer. To the extent that such

costs exist, the condition that the market wage exceed the shadow price of

time becomes a necessary but not sufficient condition for a woman who is out

of the labor force to take a job. In particular, the woman (and her pro-

spective employers) must expect that the total benefits of taking the job

will exceed these fixed costs. This total condition is more likely to be

fulfilled, the greater Is the excess of the market wage above the shadow

price of time because, the greater the excess, the longer hours per year

and the greater number of years the woman will expect to work given that she

takes a job. Once a job has been taken, however, these fixed costs are

sunk and the condition for remaining on the job is simply that the market
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wage exceeds the shadow price of time4 Hence, the existence of trans-

actions costs leads us to expect that a given woman is more likely to parti-

cipate in year t if she worked in year t—l than if she did not work in year

t—l. This, in turn, implies that there may exist true state dependence in

Individual labor force behavior in addition to the apparent state dependence

caused by selection in a heterogeneous population.

Although it is not easy to modify the beta—logistic model to allow

direct estimation of the extent of true state dependence, an informal test

for its presence is available. Let be the predicted conditional

probability of working in year t + n given that a woman worked in year t.

Similarly, let q(n) be the predicted conditional probability that a woman

works in year t + n given that she did not work in year t. The predicted

n—step transition matrix is then

(n) = ((n) —

— (n)

Since the hypothesis underrying the beta—logistic model is that each woman

in a heterogeneous population follows a Bernoulli process, it is obvious

that = (2) = (n) and that (l) = (2) = = so that

constant with respect to fl.15 Using the predicted probabilities from

Table 2,

/816 .184

(n) =

\l48 .852

Empirical n—step transition matrices, T'(n = 1, ..., 4) computed

from the observed probability in Table 2 are given in Table 6.
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Table 6. Observed n—step Transition Matrices

1967—68 1967—69 1967—70 1967—71

T' T2 T3 T4

(859

l66

.l4l'\

.834)

(838

233

.164"\

.767)

(765

.249

.237"\

.747,)

(739

247

.263

.749
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It can be seen that, contrary to the constancy of implied by the beta—

logistic model, the value of decreases and the value of q increases

systematically as n increases.

One explanation for such a pattern is that the true process

at the individual level is Markovian rather than Bsrnoulli. If there

were no heterogeneity, the observed probabilities p = .859 andl—q .834

would be consistent estimates of the diagonal elements in the Markov trans-

ition matrix T = Given the assumption that the true process is a

homogeneous Markov chain with transition matrix T, the n—step transition

matrix is T(n) = Ttl.

Using T = T1 from Table 6,

7.646 .354
T4= T4 = 1

4l6 .584

We note that the predicted rate of decrease in (n) and rate of increase in

q(n) according to the homogeneous Markov chain hypothesis is much faster

than the empirical rates of change in and q(1in Table 6. As is well

known, this is symptomatic of heterogeneity in Markov chains (see Blumen,

Kogan and McCarthy, 1955 or Goodman, 1961) caused by the tendency of those

with high probabilities of entering a given state (i.e. work or not work)

being observed in that state in the initial period. The rates of change

(n) (n)
of p and q are not significantly reduced when variation in individual

transition probabilities resulting from variations in observed independent

16
variables (i.e. the variables listed in Table 1) are taken into account.

Hence, it appears that the data on sequential labor force participation

reveal the coexistence of state dependence and heterogeneity caused by

unobserved permanent differences among women.
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Concluding Remarks

The main lesson of this paper is that a complete study of quantal response

problems in panel data requires that explicit attention be given to the

distribution of response probabilities in a sample, not just the

mean response probability. Heterogeneity in responses will be present if

all sources of persistent variation in the determinants of behavior cannot

be held constant by the introduction of exogenous variables. Since exo-

genous variables in cross—section studies typically "explain" only a small

fraction of the total variance in behavior, it is clear that there is plenty of

scope for individuals to be persistently different from one another. How-

ever, it is obvious that "permanent" and "transitory" components of unex-

plained variance cannot be distinguished in a single cross—section. Hence,

it is neither necessary nor possible to deal with the entire distribution

of response probabilities in cross—section data; only the mean probability

is of interest.

In panel data, however, the existence of unobserved permanent components

of variance leads to serially correlated responses, a distribution of response

probabilities with positive variance, and associated phenomena such as ap-

parent state dependence and apparent time trends in response probabilities.

In the paper, we assume that each individual has constant, state—independent

response probabilities over time and that the distribution of response prob-

abilities across individuals is a beta distribution. Given a particular

parameterization of the exogenous variables, this model teduces to a

conventioual univariate or multivariate logistic model in the case of

cross—section data. Accordingly, we have called this the beta—logistic

model.
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In our empirical application of the model to panel data on labor force

participation by married women we found evidence of aonsiderable heterogeneity.

According to parameter estimates, the distribution of participation prob-

abilities is U—shaped. Thus, loosely speaking, there tend to be two groups

of women in the sample: "workers" whose participation probabilites are near

unity and "non—workers" whose participation probabilities are near zero.

Relatively few women in the sample have probabilities near the mean parti-

cipation rate of 40 per cent.

In terms of the economic theory underlying the statistical model, this

finding implies that unexplained variation in the budget constraints and in-

difference curves of individual women displays a high degree of stability

over time. The empirical results also suggest that sample selection by

work status is an important phenomenon. Those women who are working in a given

year have a predicted participation probability of about .82 while those

who are not working have a predicted probability of .15. In effect, the

sample of currently working women is largely composed of "workers" and the

sample of non—working women is largely composed of "non—workers." An impli-

cation of this is that knowledge of current work status is of considerable

utility in predicting a woman's future labor force behavior.

Certain limitations of the beta—logistic model should be recognized

explicitly in judging our empirical results, their implications, and the

usefulness of the model in analyzing other types of quantal response problems.

The two most important limitations are 1) the assumption that individual

reponse probabilities are constant through time and 2) that response probabilities

are independent of the current or past states occupied by an individual.
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Clearly, in the case of labor force participation, some of the significant

determinants of participation such as number and age of children, family

income and so on do, in fact, vary over time. The beta—logistic model does

not allow for the effects of such variation and is, therefore, misspecified.

Analysis of the participation data also suggests the existence of true state

dependence in addition to apparent state dependence caused by heterogeneity.

Again, this indicates that the beta—logistic model is not a completely cor-

rect specification of the stochastic process generating the data. Despite

these limitations, the empirical fit of the model appears to be quite good.

Thus, we have some confidence that a major component of observed variation

in sequential labor force participation rates is the result of heterogeneity.
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FOOTNOTES

1See Daniel McFadden (1974) — for a survey of developments in this field

and references to the literature.

2We shall describe this sample more fully later.

3A. priori reasons for expecting state dependence and evidence for its

existence are discussed below in Section IV.

4See Kiefer and Wolfowitz (1956) and Maritz (1970).

5See Hedkiuan and Willis (1975) for a prodf of this result. The result

itself has a long history.

6
Given the result that conditional probabilities of remaining in a given

state increase, the proof of this proposition is quite simple. In an observa—

tionally homogeneous group of women with a constant xt, the average probability

of participation in year t—l is and the probability of nonparticipation is

1—it. Of those women who worked in the t—1, the conditional probability of

working in year t is > . Of those women who did not work in year t—1, the

conditional probability of not working in year t is l—rr > 1 — ii. Hence,

B
and > it so that >

70f course both lines of causation may be present in a given situation.

If they are, an appropriate model might be, say, a Markov chain in which

individuals have different transition probabilities. Stayer—mover models

originated by Blumen, Kogan and McCarthy (1955) and elaborated by Goodman

(1961) Spillernian (1972) and others represent attempts to deal with hetero-

geneity in Markov chains. Apparently, however, these writers have not

noticed that the iarkovian (i.e., state dependent) appearance of their data

may itself arise from heterogeneity.
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8 alternative method pursued in Heckman and Willis (1975) is to assume,

as we did for illustrative purposes in the previous section of this paper, that

U and c are normally distributed. In this approach, the probability of a

sequence of events is represented as a bivariate normal distribution with a con-

stant correlation coefficient p = + o2).

9The beta distribution is widely used as a "mixing distribution". (See,

for example, Johnson and Kotz, 1969, pp. 78—79 and Sheps and Menken, 1973.)

'°It is important to emphasize, however, that if U and c are assumed to

be normally distributed the resulting distribution of participation probabilities

is not a beta distribution. (See the Appendix for a derivation of the distrib-

ution under these assumptions.) Thus, if the assumption that U and are

normally distributed is maintained, the beta distribution may be regarded as an

approximation to the true distribution of participation probabilities. Alter-

natively, it may be assumed that the distribution of U and c are such as to

lead to a beta distribution of participation probabilities. Unfortunately, we

have been unable to find functional forms for the distributions of U and c

that lead to this result.

11
This model may be readily generalized to extend the multinomial multi—

variate logistic model discussed by Goodman (1970) and Nerlove and Press (1973)

to panel data on heterogeneous populations. This generalization and other metho-

dological issues related to quantal response problems in panel data are

discussed in a forthcoming paper by the authors. Essentially, the beta density

is replaced by the Diricheler density, with a parametization identical with that

suggested in equation 29 in the text. Note further that it is straightforward

to prove concavity of the likelihood function and to prove asymptotic normality

of the estimates. See Heckman and Willis (1976).

five—year panel survey included about 2000 families from the 1967

Survey of Economic Opportunity and an additional 3000 families from a cross—
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section of dwellings in the U.S. It contains information on a wide variety

of demographic, social and economic variables on families and individuals

over the period 1967—71. A detailed description of the data is contained in

Morgan, et. al. (1974).

13We defer discussion of this and other limitations of the model to the

concluding section of the paper.

may be the case that education also affects the wife's productivity

in home production. However, even if it does, it is uncertain whether the

shadow price of time is increased, decreased or left unchanged by an increase

in education. For example, if education increases the productivity of time

and goods in household production by the same proportion and the income elasti-

cities of demand for goods and leisure are unitary, education has no effect on

the shadow price of time.

15Using equation (47)

'(n)
"'+n = 1 = 1) a + 1

P a+b+l= 1)

which is independent of n. Similarly, = a/(a + b + 1) is independent

of n.

16The adjustment referred to follows the suggestion of Spillerman (1972),

Hall (1973) and Boskin and Nold (1974) who use the independent variables to

estimate regression or logit functions of the form p9 f(x) + u and

= g(x) + v which are used to predict the transition probabilities of each

individual in the sample. Then the predicted n—step transition matrix is simply

1
N

T = T, the mean of the individual n—step matrices. From our previous

discussion, it is clear that this procedure will solve the heterogeneity problem

only if u and v are not serially correlated. This will be the case only when

the set of independent variables, x, include all persistent determinants of
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labor force participation. The failure of the adjustment to substantially modify

the predictions of the homogeneous Markov model indicates that most hetero-

geneity is the result of unobserved components. This is consistent with our

finding reported earlier that the measured variables account for less than 10%

of the total variance in participation probabilities.
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APPENDIX

For convenience, define Z as random variable

Z = — — b

where E = —c in the text, and b is the value of the regression function x'

at some artibrary point. U and c' are each normally distributed with mean

zero and variances a2 and cr2, respectively. In this notation, a woman

works if Z <

For given c' and b, the probability (with respect to U) that a woman

works is

Pr(Z < 0) Pr(—- < c'+b = ir(c',b) = F(c+l)

Where F(x) is the cumulative univariate normal

F(x) et/2 dt

We seek to derive and characterize the distribution of ir(c,b). Note that

o rr(c,b) 1.

With respect to the distribution of e', the cumulative distribution of

rr(c',b) is

G(j) = Prob ,((c',b) < j) = Prob t(F(Ca < j) = Probc,(ca+b <
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Since the distribution of is univariate normal,
a,

C

F(j) = F(—-- F(j) -

Thus if. a = a , and b=O,u c

G(j) = j

so that the distribution of participation probabilities is uniform with median

and mean identical at 1/2.

In the general case, the median is the value of j such that

1/2 = F(_a_ F(j) —

F, (1/2) = 0 = —u-— F1(j) —a, a,
£ C

so that the median j is

= F(—)mc
U

The larger b, or the smaller the variance in the transitory component, the

larger the median.

The density of j exists and is given by

a a a
F'(—F1(j) — .1.)

G'(j) = —s-— F'(—— F1(j) — k...) (F(j))' =
—1

C

a, a, a, a, F'(F (j))



Since F(x) is normal,

and
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aU -
G' (j) = g(j) = — exp

1/2 [c '(i))2 - (-i-- F(j) - J?_)21
a, a, a,
C C C -J

a'U'in g(j) = ink—) + 1/2
a,
C

so that

(A—i)

a
= in(—--) + 1/2

C'

g'1) — 2

g(j) F' (F (j))

[(F_(i)2 — (.—-- F(j) — b)21
a, a, JC C

a 2ba
÷ (F(j))2 (1 - (

U - ___
L C

) (a,) F 1(i)]
I a, a

LF1

a a ,,— u 2)÷b(u)LJ(i) (i—(--——) a a, jC U C

The term in the denominator is never negative.

Suppose that b=O so that the median is j = 1/2 and the density posesses

a unique critical point at the median if a a,. Since F1(j) = '—F(ij)
the density g(j) is symmetric around J 1/2, so that the median, mean and the

critical point coincide. If transitory variance exceed permanent variance

(a > a,), the critical point is the mode (i.e., the distribution is "humped"),

while if the opposite case is obtained., the density if "U—shaped". These cases

are illustrated in Figure 1 in the text.

In the general case, the critical point is given by

= F

2)
C,
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for a a ,. No critical point exists for a = aU U C

In the special case a = a,, inspection of equation (A—i) reveals that

if b > 0 (so that the median is greater than 1/2) the density g(j) begins at

the origin and is monotonically increasing in j. While if b < 0 it is mono—

tonically decreasing in j with the density becoming zero at j1.

In the general case with a a, and bO, the distribution is "U—shaped"

(or twisted "U—shape") as long as and is "humped" as long as a > a.

If b < 0, and a > a, the median is less than 1/2 while the mode (or critical

point) exceeds 1/2. Similarly, if b > 0 and a > a the mode is less than 1/2

while the median exceeds 1/2. In the other cases, the critical value may lie to

the left or the right of the sample median.


