
NBER WORKING PAPER SERIES

Parametric Integer Programming:
The Right—Hand—Side Case

Roy E. Marsten*
Thomas L. Morin**

Working Paper No. 106

COMPUTER RESEARCH CENTER FOR ECONOMICS AND MANAGEMENT SCIENCE
National Bureau of Economic Research, Inc.

575 Technology Square
Cambridge, Massachusetts 02139

October 1975

Preliminary: not for quotation

NBER working papers are distributed informally and in limited numbers for
comments only. They should not be quoted without written permission.

This report has not undergone the review accorded official NBER publications;
in particular, it has not yet been submitted for approval by the Board of
Directors.

*NBER Computer Research Center and Sloan School of Management, Massachusetts
Institute of Technology. Research supported in part by NSF Grant GJ—1154X3
to the National Bureau of Economic Research, Inc.

**School of Industrial Engineering, Purdue University.

Abstract

A family of integer programs is considered whose right—hand—sides lie

on a given line segment L. This family is called a parametric integer

program(PIP). Solving a (PIP) means finding an optimal solution for every

program in the family. It is shown how a simple generalization of the

conventional branch—and—bound approach to integer programming makes

it possible to solve such a (PIP). The usual bounding test is extended

from a comparison of two point values to a comparison of two functions

defined on the line segment L. The method is illustrated on a small example

and computational results for some larger problems are reported.

Acknowledgement

The computer implementation of the algorithm reported here was done

by Lee Aurich and Nancy Kaplan.

Table of Contents

1. Introduction 1

2. A Prototype Branch—and—Bound Algorithm 2

3. The Optimal Return and Lower Bound Functions 5

Figure 1. Typical g(O) and LB(O) functions

Figure 2. Typical B(Q) and uB(0;*) functions

LI. The Upper Bound Functions 7

5. A Branch—and—Bound Algorithm for (PIP) 9

6. Example . . . 13

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Table 1. Computational Results for Three Test Problems

Table 2. The 5x30 Test Problem

Table 3. The g(O) function for a 10% Increase in b;
5x30 problem

• • . 17
17

18

19

19

20

20

21

• . . 21

REFERENCES 26

6a

6a

The optimal return function f(b)..

The parametric function g(O) . .

Branch—and—bound tree for the example

Bounding test for node 1

Bounding test for node 2

Bounding test for node 3

Bounding test for node 6 .

Bounding test for node 10 .

Bounding test for node 11 .

7. Computational Results 22

23

• . . 24

25

1. Introduction

The purpose of this paper is to show how a simple generalization of

the conventional branch—and—bound approach to integer programming makes

it possible to solve a parametric integer program. Following Nauss [6]

we shall call the family of programs

(P0) max r.x.
j=l

subject to

a. � b.+Od.
1 1

x, {O,l}
J

for a single parametric integer program (PIP). By "solving" (PIP)

we shall mean obtaining an optimal solution of (P0) for every for which

(P) is feasible. We assume that (P0) is feasible for at least one value of 0.

Parametric integer programming has only recently emerged as a topic

of research. The pioneering papers include Noltemeier [7], Roodman [9,10],

Piper and Zoltners [8], and Bowman [1]. Nauss [6] has reviewed this earlier

work and contributed many new results for parameterizations of the objective

function. The present paper, which has grown out of the authors' work on

synthesizing dynamic programming with branch—and—bound [3,4,5], is devoted

to the right—hand—side case.

—2—

In parametric linear programming, the first step is to solve (P0),

i.e. (P®) for 0=0. Then the direction vector d=(d1, ••• d) is specified

and the analysis is performed by driving 0 from 0 to 1. Critical values of

0 and new optimal solutions are identified one at a time as 0 increases.

In the procedure for parametric integer programming to be presented here,

the direction d must be specified in advance. The (PIP) is solved in one

branch—and—bound search. The usual bounding test is modified so that a

partial solution is eliminated only if none of its descendants is optimal

for any (P®), This means that some partial solutions must be

retained that could otherwise be eliminated if only (P0) were of interest.

The severity of the resulting computational burden depends on the magnitude

of d.

The organization of the paper is as follows. A prototype branch—

and—bound algorithm for (P0) is presented in Section 2.

The lower bound and upper bound functions are developed in Sections 3 and

4, respectively. The modified branch—and—bound algorithm for (PIP) is

given in Section 5 and applied to a sample problem in Section 6. Computational

experience with the algorithm is reported in Section 7.

2. A prototype branch—and—bound algorithm

We shall draw upon the framework and terminology of Geoffrion and

Marsten [2] to describe a simple linear programming based branch—and—bound

algorithm for (P0). Problem (P0) is separated, by fixing variables at zero

—3—

and one, into smaller candidate problems (CP)• Each candidate problem

has an associated set of fixed variables c J{l, ..., n} and partial

solution That is, (CP') is defined by the conditions x = for j

The current set of candidate problems is called the candidate list. If

any feasible solutions of (P0) are known, the best of these is called the

incumbent and its value denoted by LB. If we let J'= _q be the set of

"free" variables and

q= A.x
where A is the jth column of A, then a typical candidate problem may be

written as

(P) r.x + max rx.

subject to a. � b.—ij j 1 i
x• (O,1}J

An upper bound on the value of (CP) is obtained by solving its LP

relaxation (CP). It is also helpful to compute a lower bound on the value of

(CP)• This can be done by using a heuristic to find a feasible solution

of (CP)• This feasible solution, if it is better than the incumbent,

becomes the new incumbent. A prototype branch—and—bound algorithm may now

be described as follows.

—4—

.
Step 1. Place (P0) in the candidate list and set LB —

Step 2. If the candidate list is empty, stop. If there is an
incumbent, it is optimal for (P0). Otherwise (P0) is infeasible.

Step 3. Select a candidate problem and remove it from the candidate
list. Call it (P)

Step 4. Solve the linear program (CP). Let denote its optimal
value.

Step 5. If � LB, go to Step 2.

Step 6. If the optimal solution of (CP) is all integer, make this

solution the new incumbent, set LB and go to iep 2

Step 7. Use a heuristic to find a feasible solution of (P)• Let

denote its value. If > LB, then make this solution

the new incumbent and set LB =

Step 8. Separate (P) into two new candidate problems (P) and (P)

by choosing and setting = u{p}, 0, =1.

Place (P) and (P) in the candidate list and return to
Step 2.

A great many variations on this pattern are described in [2], but this

prototype will suffice for our purposes. Step 5 is the bounding test. If

this test is satisfied, then no descendant of is better than the incumbent.

Notice that the bounding test includes the case where (CP), and hence

(P), is infeasible since then = — . If (cP') does not have to be

separated at Step 8, then we say that it has been fathomed. This occurs

if (P) passes the bounding test or if (CP) has an all integer solution.

Step 7, the heuristic, is optional. Its purpose is to strengthen the bounding

test by improving the incumbent and increasing LB.

—5—

The modifications that must be made to this prototype algorithm to

solve (PIP) are confined to Steps 5, 6, and 7. The notion of the incumbent

must be generalized from a single value LB to a function LB(6) defined on

o The upper bound must also be expressed as a function of e:

The bounding test then becomes a comparison of two functions on the

interval rather than just a point comparison for 00.

3. The optimal return and lower bound functions.

In this section we shall investigate the behavior of the optimal

value of an integer program as a function of its right—hand—side. Let

the optimal return function

f(b.a) = max rx subject to Ax � b'

x {0,l}
be defined for b Rm. It is apparent that f(b) is nondecreasing in each

component of b. Let {Xk k E K} be the set of all feasible solutions of

(PIP), i.e. of all (F0) for For each k K, define the step function

rn k c'n ki r.x if b L A.x.
fk(b_) = j=l j=l

I — otherwise

for all V Rm.

The optimal return function f(b') is the pointwise maximum of this finite

collection of nondecreasing step functions

f(b) = max {fk(b.) I k c K}

—6—

S
and is therefore itself a nondecreasing step function.

Now suppose that the solutions k K) are known, where K C K.

A lower approximation of f(b') may be constructed from these known solutions,

namely

= max {fk(b) k

Clearly f(b) is also a nondecreasing step function and is a lower bound

function for f(b), i.e. (b) � f(b) for all b_€Rm. The approximation

can be improved as new feasible solutions are discovered.

We are interested in a particular "slice" of f(b) and f(b): the

line segment b is the right—hand—side of (P0) and d is

the given direction vector. Define g(O)f(b+Od) and LB(O)=f(b+Od) for

Then g(e) and LB(e) are both step functions and LB(O) � g(O) for all

If d�O, then g(O) and LB(O) are both nondecreasing. (See Figure 1).

There is at least one optimal solution of (PIP) associated with each step

of g(O). Solving (PIP) is equivalent to constructing g(e) by finding at

least one x solution for each of its steps.

The procedure for constructing LB(O) from the known feasible solutions

is as follows. For each k E K define

mm {O � b + Od} (3.1)

= max {O I A.x � b + Od} (3.2)
j=l

where = = + if the indicated set is empty. Then

LBk(O)

={,

rx1 if (3.3)

— _ otherwise

0

—6 a—

Figure 1. Typical g(O) and LB(O) functions.

/ TJB1(O;*)

Figure 2. Typical UB(e) and UB(0;*) functions.

0

0 0 1

—7—

and

LB(0) = max{LBk(0) k i}. (3.4)

The solutions which determine LB(0) will be called the incumbents. Each one

is incumbent for a particular interval of 0.

• 4. The upper bound functions.

Consider a given partial solution In order to demonstrate

that no descendant of could be optimal for any (P0), we need an upper bound

on the return achieved by any descendant and this upper bound must depend

on 0. Such an upper bound can be obtained by introducing (Od) into the

relaxed candidate problem (CP). Define

= rx + max r•x.

subject to

a. •x � b.+ Od.—?
1J J 1 1 1

j E

J

so that UB(Q) = It is well known that UB(0) is concave and piecewise

linear on The function UB(0) could be obtained explicitly by

ordinary parametric linear programming. The computational burden involved

in doing this for every candidate problem Could be quite substantial, however.

Fortunately any dual feasible solution of (CP) can be used to construct

a linear upper bound function for UB(B) An optimal dual solution of

(CP), barring degeneracy, yields the first linear segment of UB(0)•

—8—

By linear programming duality we know that;

= rx + mm u.(b.+Od.—?) + v.
1=111 11 1

subject to u.a. + v. � r.
i=l J .1

U. � 0
1

V. � 0

For notational convenience we have included all of the v. variables,

even though v0 for in any optimal solution. Let denote the

dual feasible region

= (u,v)�0 ua1. + for

Since the primal variables are all bounded and at least one (P0) is

feasible, we may conclude that is non—empty. Let {(ut, and

{(y5, 8)55} denote the sets of extreme points and extreme rays,

respectively, of Taking e(l, ..., 1) we have

rx1 + + vte
J

for all t€T, with equality if (Ut, Vt) is optimal for the objective

function u(b+Od—) + ye. As a function of 0 then, the return achieved by

any descendant of is bounded above by:

= (utd)0 + [r.x + ut(b_) + vte]
J J

for any This is a linear function of U and,since u�O, it is

nondecreasing if d�0.

—9—

In the modified branch—and—bound algorithm for (PIP), linear

programming is applied to (CP) as usual. The functions UB(@;t) are

obtained at no extra cost. The function obtained from an optimal dual

solution will be denoted UBC1(S;*). Barring degeneracy, UB(;*) coincides

with the first linear segment of UB(0)• (See Figure 2). As in conventional

branch—and--bound, if the dual simplex method is used, then suboptimal dual

solutions can be used to perform additional weaker tests.

If (CP) is infeasible, then the simplex method will terminate

with an extreme point (ut, vt) � 0 and an extreme ray (S z5) � 0,

such that

S q s
y (b—s) + z e < 0.

If y5d�O, then we may conclude that IJB(0) = — for all If ySd>O

then UB'(O) = — for 0O<O* and B(e) � UB'(O;t) for where

5 q 5
0* —y (b—s) — z e

Syd

5. A branch—and—bound algorithm for (PIP).

Now that the upper and lower bound functions have been derived,

the generalized bounding test may be stated. The partial solution does

not have a descendant that is batter than an incumbent jf

—10—

� LB(8) for all

or if

� LB(O) for all

for some This test is the basis for a modified branch—and—bound

algorithm that can solve (PIP).

Step 1. Place (P0) in the candidate list and set LB(O) = — for

Step 2. If the candidate list is empty, stop.
LB(0) = g(O) for

Step 3. Select a candidate problem and remove it from the candidate
list. Call it

Step 4. Solve (CP). If it is infeasible, obtain the appropriate

dual extreme point (u*, v*) and extreme ray (y*, z*).
Otherwise obtain an optimal dual solution (u*, v*).

Step 5. I. (CP) infeasible.

(a) y*d � 0. Go to Step 2.

(b) y*d > 0. Set 0* = [_y*(b_1)_z*e] / y*d.
If TJB(®;*) � LB(O) for all go to Step 2.

II. (CP) feasible.

If (Q;*) � LB(0) for all go to Step 2.

Step 6. If the optimal primal solution of (CP) is all integer,
use it to update LB(0).

Step 7. Use a heuristic to find feasible solutions of (CP) with
right—hand—side (b+Od) for several values of 0. Use these
feasible solutions to update LB(0).

Step 8. Separate (CP) into two new candidate problems (P) and

(P) by choosing and setting q = = u p}

=0, x' =1. Place (P) and (P) in the candidate

list and return to Step 2.

—11—

The validity of the generalized bounding test insures that art

optimal solution for every (P®), will be found by the search. At

worst, an optimal solution may not be discovered until the bottom of the

branch—and—bound tree is reached (F=J)• This guarantees that 12(0) will
coincide with g(0) by the time the algorithm is finished. It remains only

to show how the optimal solutions are identified.

Let {x'kc} be the set of incumbents whenthe algorithm

terminates. Let 0E[O,l] and suppose that (P®) is feasible, g(e) > —

From the construction of LB(0), (3.1) — (3.4), we know that there is some

kd such that

g(0) = LB(0)

=LBk(O)

k= rx>—
j=l

Furthermore, LBk(O) > — means that 0 �0� 0 , or equivalently that

A.x � b+Od.
j=l

Since is feasible for (P®) and its return is equal to g(0), it follows

that is optimal for (P®). To summarize, if k€ and 0€[O,1], then

optimal for (P®) if and only if

i) A.x' � b+Od
j=l

and ii) = g(0)
j=l

—12—

At Step 6, in contrast to the prototype algotithm, is not fathomed

when the optimal primal solution of (CP) is all integer. This is because

may have other descendants which are optimal for 0>0. The use of heuristics

at Step 7, while in principle optional, is an important part of the algorithm

since integer solutions of (CP) can only yield LB(0) = LB(0) for

The heuristics are needed to produce stronger values of LB(0) for 0 > 0.

As with the prototype algorithm, the above procedure will admit

considerable variation and refinement. If the dual simplex method is

used, then suboptimal dual solutions can be used to perform additional

bounding tests. Cutting planes can be generated for any candidate

problem to give stronger upper bound functions0 Parametric linear programming

can be used to generate more than the first segment of If a

candidate problem with an all —integer LP solution has to be separated at

Step 8, then the same LP solution is optimal for one of the two new

candidates and does not have to be recomputed. Extensive experimentation

will be required to determine the most effective computational tactics.

—13—

6. Example

In this section the algorithm will be applied to a simple example.

In order to illustrate all of the different cases that can arise, the

parameterization will be done over a relatively large interval. The test

problem is

max lOx1 +
15x2

+
lOx3

+
5x4

subject to

2x1 + 3x2 + 5x3 + 1x4 � 4 + 04

4x1
+

2x2
+ 1x3 + lx4 � 4 + 04

E {O,l}

Thus b(4,4), d=(4,4) and increasing 0 from zero to one amounts to doubling

the right—hand—side. A picture of the optimal return function f(b) is

given in Figure 3. The dashed line indicates the line segment of interest:

b+Od It is clear from this picture that three optimal solutions

must be found, with values of 20, 25, and 30. These solutions are (0,1,0,1),

(1,1,0,0), and (1,1,0,1) respectively. The g(0) function, shown in Figure 4, is

2O for0� 0<1/2
g(0) = 25 for 1/2 � 0 < 3/4

130 for 3/4 � 0 � 1.

The optimal LP solution of (F0) is x=(l/2,l,O,0), u=(5,O), v=(O)

with value UB°=20. The rounded down solution has value 15 and is feasible

for e�0; the rounded up solution has value 25 and is feasible for 0�1/2.

—14—

This provides an initial lower bound function:

LB(O) =
ç15

for 0 0 < 1/2

125 for 1/2 � 0 � 1.

The complete branch—and—bound tree is displayed in Figure 5. The nodes

will be discussed in the order in which they were created.

Node 1. LP solution: x(O,l,O,l), u(5,O), 'v(0), UB20. 1B1(0;*)=208+20.

The LP solution is all integer and is feasible for 0�0. Therefore the lower

bound function may be improved:

LB(0) =
120

for 0 � 0 < 1/2

125 for 1/2 � 0 � 1.

The bounding test for node 1 is shown in Figure 6. Node 1 is not fathomed.

Node 2. LP solution: x(l,0,O,O), u(0,lO), v(O), 13B2(0;*)400+lO.

The bounding test, shown in Figure 7, is not successful. Notice that if we

were only interested in solving (P0) we would be finished. Node 1 has an

all integer solution with value 20 and node 2 has upper bound UB2=lO<20L3(0).

Node 3. LP solution: x=(0,0,315,l), u=(2,O), (0,0,0,3), =ll.

IJB3(0;*)80+1l. The bounding test, shown in Figure 8, is successful and

node 3 is fathomed.

Node 4. Same as node 1, since optimal LP solution at node 1 has x2 = 1.

flex, Same as node 2, since optimal LP solution at node 2 has = 0.

—15—

Node 6. LP is infeasible.. The dual extreme point is u=(0,lO), v=(0) and

the extreme ray is y=(O,l), z(0). The critical value of U is (—y(b—6)—ze.)/yd=l/2.

Thus 6(U). — for 0�O<l/2 and UB6(e;*)=400+5 for The bounding

test is shown in Figure 9.

Node 7. Same as nodes 1 and 4, since optimal LP solution for node 4 has x30.

Node 8. LP is infeasible. The dual extreme point is u=(5,0), v='(O) and

the extreme ray is y(l,0), z=(0). The critical value of U is (—y(b—8)—ze)/yd=l,

so TJB8(U) = — on and node 8 is fathomed.

Node 9. Same as nodes 2 and 5, since optimal LP solution for node 5 has x3=O.

Node 10. LP is infeasible. The dual extreme point is u(5,0), v=(0) and

the extreme ray is y(l,O), z=(0). The critical value of U is (—y(b—°)—ze)/yd=3/4.

Thus UB10(U) — for 0�U<3/4 and UB(U;*)=20U+5 for Node 10 is

therefore fathomed. See Figure 10.

Node 11. LP is infeasible. The dual extreme point is u(0,5), v(0) and

the extreme ray is y(O,l), z(0). The critical value of U is (y(b_L)—ze)/ydl/2.

Thus UB11(U) = — for 0�U<l/2 and 1JB11(U;*)=20U+15 for Node 11 is

not fathomed. See Figure 11.

Node 12. LP is infeasible. The dual extreme point is u=(5,0), v=(0) and

the extreme ray is y(1,0), z=(0). The critical value of U is (—y(b-2)—ze)/yd1

Therefore 12(U) = — for and node 12 is fathomed.

—16—

S

Nodes 13—18 are all at the bottom level of the search tree. The

solution for node 18, (1,1,0,1), has value 30 and is feasible for O�3/4.

The lower bound function may be improved by redefining LB(O)30 for

LB(O) now coincides with g(O) on The algorithm terminates since the

candidate list is empty.

The amount of extra computation required to solve (PIP), as compared

to (P0), depends on the length of the interval of parameterization. When

this interval is small, the burden imposed by parameterization may be

slight or even negligible. When it is large, however, as illustrated in

this example, the burden can be quite substantial.

8

7

6

5

4

3

2

1

0

0 1/4 1/2 3/4

Figure 4. The parametric function g(O).

—17—

1 2 3 4 5 6 7 8 b1

Figure 3. The optimal return function f(b).

30

25

20

15

10

5

1

—18—

Figure 5. Branch—and--bound tree for the example.

=1

x21

x30 x3= 1 x3= 0 x3= 1

x4=O x4O x40 x4= 1

Figure 7. Bounding test for node 2.

—19—

30

25

20

15

10

5

0

1/4 1/2 3/4 1

Figure 6. Bounding test for node 1.

1/4 1/2 3/4 1

30

25

20

15

10

5

—20—

LB (6)

30

25

20

15

10

5

0

1/4 1/2 3/4

Figure 8. Bounding test for node 3.

406+5, 0�1/2

0

1/4 1/2 3/4

Figure 9. Bounding test for node 6.

1

30

25

20

15

10

5

0

Figure 10.

—21—

Bounding test for node 10.

Figure 11. Bounding test for node 11.

1/4 1/2 3/4 1

200+15, 0�1/2

0
1/4 1/2 3/4 1

—22--

7. Computational Results

The ideas presented above were tested by incorporating them into a

branch—and—bound computer code [3J. The results for three test problems are

presented in Table 1. In each run the direction vector d was taken as some

percentage of the right—hand—side b. For example, if d5%b, then (PIP) has

right—hand—sides b+O(.05)b for The column headed "solutions" gives

the number of optimal solutions found, or equivalently the number of steps

of the g(O) function. "Heuristic" is the number of (evenly spaced) e values

for which the heuristic is applied at Step 7. The problems are of the capital

budgeting type and the heuristic employed is that of Toyoda [11]. "Pivots"

is the total number of linear programming pivots and "time" is the total

solution time in seconds on an IBM 370/168.

These results illustrate quite clearly how the computational burden

increases as the interval of parameterization is lengthened. In order to

facilitate comparison with our results by other researchers we have included

the data for the 5x30 problem as Table 2 and the corresponding g(O) function

for a 10% increase in b as Table 3.

—23—

Table 1. Computational Results for three test problems.

m n d

5 15

solutions heuristic pivots time

0 1 1 39 .239

.05b 4 10 62 .541

.lOb 5 10 91 .815

.15b 7 10 124 1.044

.20b 8 10 130 1.170

.25b 10 10 171 1.534

.50b 16 20 315 3.162

5 30 0 1 1 153 1.605

.05b 10 10 479 7.280

.lOb 26 10 1958 24.040

10 28 0 1 1 67 1.073

.05b 16 10 181 4.192

.lOb 29 20 637 11.970

.15b 42 20 1586 29.204

—24—

Table 2. The 5x30 test problem.

a. a a. a. a. c.ij zj 4J 5J 3

188 91 20 86 164 936
92 179 99 97 98 695

6 146 95 42 2 390
80 155 95 90 165 1152
91 102 84 101 140 980
44 112 136 3 106 1000

108 126 166 101 88 815
166 21 13 34 68 109
171 39 20 25 84 807
64 67 124 72 131 156
97 29 42 96 55 548
35 55 58 36 11 335
51 72 43 3 17 316
98 17 43 88 4 528
36 0 44 97 47 36
70 42 2 77 45 573
27 15 88 50 11 38
94 64 55 14 77 3
68 53 68 77 36 800
13 30 22 88 49 392

13.2 2.8 6.8 11.3 2.9 92
15.1 15.0 8.3 13.8 11.7 4

3.3 2.6 8.9 4.5 19.2 29
7.4 3.5 3.1 17.1 18.1 81
7.0 17.0 16.5 11.8 3.8 2

1.2 3.5 2.2 17.1 18.0 40
7.0 5.1 9.7 19.1 8.8 17

17.0 16.2 4.7 5.0 3.9 16
13.8 13.2 1.8 10.2 16.9 30
9.4 13.9 11.0 3.6 13.8 118

b = 800 800 700 700 800

—25—

Table 3. The g(O) function for a 10% increase in b; 5x30 problem.

0 g) 0 g(0) 8 g(0)

0.0 7515 .44166 7806 .74142 7947

.02750 7578 .52499 7822 .74714 7957

.09666 7607 .59000 7839 .78499 7987

.15428 7612 .64250 7849 .81285 8009

.16875 7633 .64285 7850 .84428 8049

.17125 7696 .65571 7891 .89124 8060

.20374 7725 .68500 7913 .93832 8079

.33625 7726 .70833 7931 .96666 8112

.36666 7777 .71750 7942

—26—

REFERENCES

-i.. BOWMAN, V.J., "The Structure of Integer Programs under the Hermitian
Normal Form," Operations Research, Vol. 22 No.5 (Sept-Oct), 1974,
pp. 1067-1080.

2 GEOFFRION, A.M. and MARSTEN, R.E., "Integer Programming Algorithms: A
Framework and State—of-the-Art-Survey," Management Science,
Vol. 18 (1972), pp. 465—491.

3. MARSTEN, R.E. and MORIN, T.L.,
" A Hybrid Approach to Discrete Mathematical

Programming," Sloan School of Management, MIT, Cambridge, Mass. July, 1975.

4. MORIN, T.L. and MARSTEN, R.E., "An Algorithm for Nonlinear Knapsack

Problems," Technical Report No. 95, Operations Research Center,
Massachusetts Institute of Technology, Cambridge, Mass., May, 1974.

5. MORIN, T.L. and MARSTEN, R.E., "Branch and Bound Strategies for

Dynamic Programming," WP75O-74, Sloan School of Management,

MIT, Cambridge, Mass., November, 1974.

6. NAUSS, R.M., "Parametric Integer PrograniTling," Ph.D Dissertation,
University of California, Los Angeles, January, 1975.

7. NOLTEMEIER, H., "Sensitivitalsanalyse bei disketen linèaren
Optimierungsporblemen," in M. Beckman and H.P. Kunzi (eds),
Lecture Notes in Operations Research and Mathematical Systems, #30,
Springer-Verlag, New York, 1970.

8. PIPER, C.J. and ZOLTNERS, A.A., "Implicit Enumeration Based Algorithms
for Postoptiniizing Zero-One Programs," Management Sciences Research
Report, No. 313, Graduate School of Industrial Administration, Carnegie-
Mellon University, March, 1973.

9. ROODMAN, G.M., "Postoptimality Analysis in Zero—One Programming by
Implicit Enumeration," Naval Research Logistics Quarterly, Vol. 19,
1972, pp.435—447.

10. ROODMAN, G.M., "Postoptimality Analysis in Integer Programming by Implicit
Enumeration: The Mixed Integer Case," The Amos Tuck School of
Business Administration, Dartmouth College, October, 1973.

11. TOYODA, Y., "A Simplified Algorithm for Obtaining Approximate Solutions to
Zero—One Programming Problems," Management Science, Vol.21, 1975,
pp. 1417—1427.

