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Abstract

The consistency and the asymptotic normality of the

maximum likelihood estintor in the general nonlinear

simultaneous equation model are proved. It is shown that

the proof depends on the assumption of normality unlike in

the linear simultaneous equation model. It is proved that

the maximum likelihood estimator is asymptotically more

efficient than the nonlinear three-stage least squares

estimator if the specification is correct, However, the

latter has the advantage of being consistent even when the

normality assumption is removed. Hausrnan' s instrumental-variable-

interpretation of the maximum likelihood estimator is extended to

the general nonlinear siiailtaneous equation liDdel.
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1. Introduction

In this paper we obtain the asymptotic properties of the maximum

likelihood estimator in the general nonlinear simultaneous equation

model and compares them with those of the nonlinear three-stage least

squares estimator. The main results of the paper are the following:

1) The proof of the consistency and the asymptotic normality

of the maximum likelihood estimator in the general nonlinear

simultaneous equation model crucially depends on the

assumption of normality of the error term unlike in the

linear case.

2) All the th±od-order derivatives can be asymptotically

ignored either in the iterative method for obtaining

the maxihjrn likelihood estimator or in the computation

of the asymptotic variarlce-covariance matrix.

3) The maximim likelihood estimator is asymptotically more

efficient than the nonlinear three-stage least squares

estimator.

L) Hausmari's iteration method for the computation of the

maximum likelihood estimator in the linear case

(see Hausman [1975]) is generalized to the nonlinear case

Unlike in the linear case, it does not produce an asymptotically

efficient second-round estimator even if the initial estimator

is consistent, but, like in the linear case, it illustrates

the similarity and the difference between the maximum likelihood

and the nonlinear three-stage least squares estimator.
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2. Model

We will consider the nonlinear simultaneous equation model defined

by the following system of n equations:

f1(y,x,a1) u., i1,2,.. . ,n (2.1)

where is a n-dimensional vector of endogenous variables, x a

vector of exogenous variables, and is a vector of unl<nown parameters.

Not all of the elements of vectors and x may actually appear in the

arguments of each Define a n-dimensional vector u as (uit ,u2, .

Then we assume {ut} is independently and identically distributed as

rruitivariate N(O,2). We assume that there are no constraints among CLs, but

the results we subsequently obtain are not affected by the removal of

this assumption as we will show at the end of Section 5. We assume either

that f1 defines a one-to-one mapping between y and Ut or that the researcher

can apriori specify a prticular root of y for a given value of u so

that the density of can be obtained by the usual way as the product

of the Jacobian arid the density of u. Finally we assume that all the partial

derivatives of f1 with respect to and y that appear in equation (3.5)
T

in Section 3 exist and are continuous and that -4 and f f't t

where f , are norisingular, These assumptions enable us to

define the maximum likelihood estimator. The other conditions needed

for the consistency and asymptotic normality of the maximum likelihood

estimator are given in Section 3.
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P 3. Maximum Likelihood Estimator

Because of the basic assumptions of Section 2, we can write the

logarithmic likelihood function as

T f T
L* - log + E log I -4i I - E f t (3.1)

t=l Yt ti

where we defined . ,f)' . Equating the partial derivatives

of L* with respect to to Zero, we obtain

a——- Ef f' (32)T tt
T

where we will abbreviate E as E from now on. Putting (3.2) into
t=1

(3.1) we obtain the concentrated likelihood function

L E log I II I - log IT E . (3.3)

We define a vector and a matrix

We will write the partial derivatives of L using these symbols below.

To avoid the excessive subscripts, we will omit the subscript t from f,

y, u, and g whenever they appear inside the suiunation. We have

E
3g1 - T E g. f'(Eff'):' (3.4)

act. 3u. 11 1

ag. ag. 1fi'- 1where we used = —4 I—,- and. wrote ( ) for the 1th column
au ay

of the inverse of the matrix within the bracket. We have
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E - T Z g.. f'(Eff')T13u. ij 11] 1

ag.
- - T (Eff') E g1 g

J 1 1]

(3.5)

+ T E g1 f'cEff'):' (ff')1 E fg
J I I

+ T(Eff) E g. f,(EffYa fg!1 1

where we used :: : [!1 and wrote C ) for the 1, th

element of the inverse of the matrix within the bracket.

We define the maximum likelihood estimator of a as a root of

equation 0. Given assumptions A through E in the appendix,

one of the roots is consistent and if we denote the consistent root by
I.'

a , we have

plim . (3.6)

The proof is given In the appendix. The above result is of course not

a surprising one. Our main reason for writing down the assumptions

explicitly Is that checking some of these conditions, especially B and

E, is instructive in our model: It will show that the consistency proof

depends crucially on the normaility assumption and that the terms

involving g in (i.l..5) can asymptotically be ignored. Also, it will aid

I
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us later when we compare the maximum likelthood estimator with the nonlinear

three-stage least squares estimator.

We will consider each of the assumptions in the appendix arid

indicate what conditions on the function f are implied by each. We

will not make a great effort to find the minimum set of assumptions needed

on f since that is not likely to be a useful exercise. As it was stated

earlier, assumptions B and E are most interesting to verify and we

will devote most of our time on their verification. But since assumption

C requires the greatest number of conditions on f, we will state a sweeping

set of conditions on f to make assumption C satisfied. After this is done,

only a small number of additional conditions is needed to satisfy the

remaining four assumptions. Thus we assume

Condition_1. The probability limit of T1 times every surimation that

occurs in the right-hand side of (3.5) is finite and is equal to the limit

of T1 tines its expectation. Moreover, the convergence is uniform in

a neighborhood of c. In addition, pm T1 ff' is nonsingular.

Note that the uniform boundedness of the third-order derivatives may

be substituted for assumption C.

Before proceeding further, we will prove the following important lenm

which will be frequently used.

Lenua. Suppose u1, u2,. . .u are jointly normal with mean 0 and h(u1 ,u2,.. .u)

is such that E h and E — are finite. Then, iu E a
Du. 1 i-i Du. 11

1 1

where a11 is the covariance between u1 and u..
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Proof. Replaceu.inhwith — u1+w. for i2,...,nandtreathas

a function of u1, w2, w3,..., w. Then, Ehu1 EE hu1 where

w (w2,. .. ,w). But using integration by parrts we have

Ehui I
hu1 du1

(3.7)

2 200dh- a1 [h]00 + 4 du1

where is the density of NC 0 ,a). But the first term of the rht-hand

side of (3.7) is zero because Eh is finite. Note p—
du1 il u1 a2

I
Therefore, taking the expectation of both sides of (3.7) with

respect to w, we get the desired result.

Now we will consider assumption B. Using (3L) we have

-k- -I- - g. u'

1T ct1 1
J

0 (3.8)

where a' is the th column of Q. We irranediately see that the mean

of the first term of the right-hand side of (3.8) is zero since g1

satisfies the condition of the lenana because of condition 1. Also

using the leimia we have
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ag.

plim - E g u' urn E E •-4 c (3.9)

since u} satisfies the conditions for a law of large numbers

because of conditon 1. Therefore, denoting the equivalence of the limit

distribution by the symbol j, we have

'
- il + i2 (3.10)

where

lag. .1

p. E !—-. - g. u' a'l (3.11)
ii L'i 1

ag.
p. = lim E F —-— E (uu' - c?)a' . (3.12)i2 u

Written thus, it is clear that a certain essential boundedness of g1

ag.
and is sufficient to let (3.10) follow a central limit theorem.

For exanle, the following condition is certainly sufficient:

3
Condition 2. Egl and E are uniformly bounded for all t,

it

ag.
where g. and it are evaluated at c.it au. oit
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I
Nextwe will verify assumption E, Ta)dng the probability limit

of T1 times (3.5) evaluated at c, we have

plim T' jr plim T1 E [: - g1 u' o]

g•- pun T ---J-
- o plim T

j 1
(3.13)

-l ji' . —l+ plan T g. ua a • plan T ug.1 J

+ a pun T1 E g1 u' • • plim T1 ug

I
Because of condition 1, we can replace plim in the right-hand side of

(3.13) with him E. But, then, the first term drops out provided g.
1]

satisfies the condition of the leia. So we impose

Condition_3. E g.. is finite, where g.. is evaluated at a— ijt ijt 0
Thus, either in performing Newton's iteration to obtain the rnaximiur likelihood

estinator or in Obtaining its asymptotic variance-covariance matrix

one need not compute g... Also we can apply the result of the lemma to

each term involving the product of u and g1. Thus we have

I



I

—9—

ag. g!
plim T1 - urn T1 E E —i

act.aco I . a.1 ct0
1

- Urn T1 E E g1
(3.1L)

1EE—-+ urn T1 E E • urn T
au5

au.
1

ag. ag!
+ a Liiii T1 E E —4 • Urn T1 E E

au au

1 1L I I 1
We must compare the above with urn T

EL
— I -- I
act1 jIo

We ijiipose

Condition . E ag1 g' 1 fite.
[3u.

j( Iit
I°J

Then, by the repeated application of the lemma, we have

r ag.
E' - g. u'

all [ - g' u' a]au. J

- 1—--—--u'a1—o g g

t ag. ag. .

]
- -

au au Bu.
L

(3.15)

ag. ag1
au.

J 1

Therefore, from (3.11) and (3.15) we have
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9g. 3g!
Em E p.1 p.1 Em T1 E --

(3.16)

+ urn T1 E g g!

We have

E (uu' — Y o (uu' — )lJ + 9,. (3.17)

where is a n-dimensional vector with 1 in the th place and

0 elsewhere. Therefore, from (3.12) and (3.17) we have

[Continued on page U]

I
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Urn E p2 p.2 a' Em T1 E E • Em T1 E E

(3.18)

ag. ag!
+ Em T E • Em T E Eau. au.

J 1

By the application of the leiima we have

rag. . 1
E - g1 u' a' a (uu' -

J (3.19)
ag. ag.-a'E-—-au' au. 1

J

Therefore from (3.11), (3.12), and (3.19) we have

Urn E p11 p.2 - a' urn T1 E E • lin T1 E E

(3.20)

- Em T1 E E • Urn T1 E E

Similarly we have

• rag.
E(uu' - Q) a' - g u'

a' a'
- a1 2 E •cj•ii £. E . (3.21)
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I
Therefore we have

liin E p.2 p1 urn E p.1 p2 . (3.22)

Finally, assumption E follows from (3.10), (3, l'4), (3 .16), (3 .18), (3.20),

and (3.22).

This leaves assiunptions A and D. Assumption A requires only one

additional condition:

Condition 5. plim T1 E log I ITI I
exists in a neighborhood of

a0.

As we will show in Section 5, assumption D is implied by

3f. af.

Condition_6. him T E E is finite and nonsingular

for every i.

To sum up, conditions 1 through 6 imply assumptions A through E in the

appendix.

Note that the proof of both consistency and asymptotic normality

crucially depends on the normality assumption unlike in the linear case

where the maximum likelihood estiiitor can be easily shown to be consistent

for general specifications on the error term, This fact increases the

usefulness of such an estimator as the nonlinear two-stage or three-stage

least squares estimator which has been shown to be consistent for general

specifications on the error term.
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4. Iterative Methods

Consider the class of gradient nthods of iteration defined by

'S A

2
Ct1

where a1 is an initial estimator and A is some matrix which may be stochastic.

Using a Taylor expansion of . around ct, the true value, we have
Ct1

fran (4.1)

V (a2-a0)
- A +

[i
- A 1o (4.2)

* A
where cz lies between c and a0. Suppose that a1 is a consistent estima.tor

of such that P (ct1-ct0) has a proper limit distribution. It is apparent

from (4.2) that the asymptotic distribution of the second-round estimator

does not depend upon the asymptotic distribution of the first-round estimator

if and only if

2

plirn T A = plim T' . (4.3)
a0

Moreover, it is apparent fran (4.2) that in this case the limit distribution

of ,7' (ct2-ct0) is the same as that of the maximum li]elihood estimator. We

will call the gradient method satisfying (4.3) the efficient Newton iteration.
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Next consider the iteration that can be derived from the equation

obtained by putting (3.4) equal to zero. We can rewrite the equation as

r1 g. 1 -l
LT

---- • F' - G!

j

F(T F'F). 0 (4.'.i)

where F' is the nxT na-trix whose i, tth element is f±(y,x,c±) and

• • th ___________is the matrix whose t column is — . Define
cti

— T E —4- • F7 (4.5)1 1

and

0 . . 0

o Gt
2

0

Also define f as the (nxT)-dinensional vector obtained by stacking the

columns of F. Then, all the n equations in (4.4) for i1,2,...,n

can be combined as

G(cr'®I) f 0 (4.7)
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where we have written Q for f1F'F. Expanding f(a1) in a Taylor series

nd ct we finally obtain the iteration

a2 a1 — ['(c'Qi) GY' G'(cr'QI) f (L.8)

where

0 . . 0

o

(g)
o G

n

arid every variable in the right-hand side of (.8) is evaluated at

ct. Equation (.8) is the generalization of the formula expounded by

Hausmari E1975] for the linear case. Note that (-k8) belongs to the

class of iteration defined by (.1) with A [G'(QØI)Gi

By the application of the lenuiia we can easily show

plim T' G(c2I) G - a' lirn T1 E E g1g

(L.10)

-1 ag. -1+ a' lim T E • . lijn T E
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By comparing (3.14) with (4.10) we see that condition (4.3) is violated.

Thus we conclude that the asymptotic distribution of the second-round

estimator in this iteration depends on the asymptottic distribution of the

initial estimator and is not asymptotically efficient. Note that the

result is not changed if [Gi(Q'®I)G] is used instead because its

probability limit can be shown to be equal to (4.10). Note also that in

the linear case the sum of the first term and the third term of the

right-hand side of (3.14) is zero so that conditon (4.3) gets satisfied.

Although (4.8) nay not be a good method of iteration, it does serve

a useful pedagogical purpose as Hausman's linear case does, for it demonstrates

a certain similarity between the maximim likelihood estimator and the nonlinear

three-stage least squares estimator.
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5. NonLinear Three-Stage Least Squares Estintor

Jorgenson arid Laffont [l97Ll] defined the nonlinear three-stage

least squares esthnator (henceforth to be abbreviated as NL3S) arid proved

its consistency and asymptotitc noniiality, extending the result of Amemiya

[1974] obtained for the nonlinear two-stage least squares estimator.

They defined the NL3S as the value of a that minimizes

f(a)'[c21Q X(x'x) X']f(a) (5.1)

A

where c is some consistent est:iinate of 2 and X is a matrix of exogenous

variables which may not coincide with the exogenous variables that appear

originally in the arguments of f. Its asymptotic variarice-covariance

matrix is given by

-i-i

p1iinT X(X'X)
x'] aoj

. (5.2)

In this paper we will define the NL3S more generally as the value of

a that minimizes f' A f where A could take any one of the following three

forms:

A1 = A S1(SS1Y' S A4 , (5.3)

A _-
A — A
2

— 2'2 2' 2 (5.4)
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and

A3 = s3(S3 A s3Y- S A (5.5)

where S1, S2, and S3 are matrices of at least asymptotically

nonstochas-tic variables and A = Q 0 I. The asymptotic variarice-covariance

matrix is given by

r 1-i
plim T1 -- A b-., . (5.6)

L a0 aoj

All the three formulations are equivalent in the sense that

A1, A2, and A3 can be made equal by appropriately choosing

Si, S2, and S3. If we take

X0. .0
Ox

123
:

0 X

all the three are reduced to the Jorgenson-Laffont NL3S. It is apparent

from (5.6) that for all A1, 11, 2, 3, its lower bound is equal to
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r
L
limTE (crl® I) (5.7)

A A

The lower-bound is attained when S E - , S E1 2

arid S3 = E , , where we are iixlicitly assuming that the a

that appears in E .-, must be estimated consistently. We will call the

resulting NL3S estimator where any of these optimal S's is used as the

best nonlinear three-stage least squares estimator (abbreviated as BNL3S).
af

This is often not a practical estimator because E is usually difficult

to obtain in explicit form, but the consideration of BML3S is theoretically

useful as it provides something to aim at.

One can also attain the lower bound (5.7) using the Jorgenson-Laffont

NL3S, but that is possible if and only if the space spanned by the column

vectors of X contains the union of the spaces spanned by the column
f.

vectors of E for i 1, 2,.. . ,n. This necessitates including many
i a

columns in X, which is likely to increase the finite sample variance of

the estimator although it has no affect asymptotically. This is the

disadvantage of the Jorgenson-Laffont definition compared to the definition

of this paper.

We will next show that the BNL3S is asymptotically less efficient

than the maximum likelihood estixtor. Using the lemma we have
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1

1a1'uE}
aEg;Eg . (5.8)

EfL

— - g. U aU. 11

Similarly we have

g.

EEg..ua1[
=-a Eg Eg' . (5.9)-g u?a

We have

E(E g1 u' a' a1 u E g1) a'1 E g. E g' . (5.10)ii
We obviously have

ENuu' - Q)a' ai' u E g.] 0 (5.11)

and

ECE g1 u' a' a1(uu' - Q)] 0 . (5.12)

Therefore, from (3.10), (3.11), (3.12), and. (5.8) through (5.12) we have

him E(p.1 + p12
- —-— E g. • u' a')(p' + pt - ——a u E g4)

j1 j2/ J

(5.13)

limT_1E 1I-a 1imTEg1Eg'
I iI
L

'I
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The first term of the right-hand side of (5.13) is the ijth block

of the inverse of the asyirptotic variarice-covariance matrix of the maximum

likelihood estimator and the second term is that of the BNL3S as it is

evident from (5.7). But the matrix whose i-jth block is given in the

left-hand side of (5.13) is clearly nonnegative definite. Moreover,

since the matrix is nonzero with probability one in general, we conclude

that the BNL3S is asymptotically less efficient than the rrximum

likelihood estimator.

Although the NL3S is asymptotically less efficient than the maximum

likelihood estimator, it is more robust against non-normality because it is

consistent provided the error term has mean zero and certain higher-order

finite moments whereas the concistency of the maximum likelihood estimator

in the nonlinear model depends crucially on the normality assumption as

we have seen in Section 3 above.

A necessary arid sufficient condition for the matrix to be inverted

in (5.7) to be nonsingular is easily seen to be condition 6

of Section 3. In the linear case this condition implies the usual rank

condition of identifiability for each equation. However in the nonlinear

case the above condition is likely to be met even if all the exogenous

variables appear in each f1 provided f1 is sufficiently nonlinear.

Because of (5.13), condition 6 implies assumption D of the appendix.

The Gauss-Newton iteration to obtain the BNL3S can be written as

a2 a1 — [G' (cr1-s I) GJ G' (clØ I) f (5.15)
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I
where

G' 0 . . 0
1

o (5.16)

o n

arid

E G! (5.17)1 1

Equation (5.15) differs from (Li..8) only in the respective "instrumental

variables" used defined by (5.17) and (Lf.5) respectively. Intuitively

speaking, . catches more of the essentially nonstochastic part of

than G. does. Note that by a Taylor expansion we have

Cut) g (0) + u . (5.18)

But (14.5) can be written as

1 ____(ut) g + T au . ut . (5.19)

The similarity between (5.18) and (5.19) provides some justification of

as the alternative instrumental variable. The that appears

in 1(o) must be consistently estimated. The resulting NL3S is

I
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asymptotically less efficient than the BNL3S but is much nore practical.

An even nore practical choice of the instniment is to use

where; is calculated simply as the predictor of y obtained by the

linear least squares regression of y on all the exogenous variables.

A definite comparison between this choice and the use of g (0) can not

be easily made.

So far in this paper we have assumed that there are no constraints

among als. The removal of this assrtion, however, causes no difficult

problem. If there are constx.ints anong ct.js, we can express each a1
parametically as a1() where the number of elennts in is fewer than

those in c (aj c,. . . , cc1)'. Thus, one can simply premultiply the inverse

of the asymptotic variance—covariance matrix of the maximum likelihood

estimator or the NL3S by and postmultiply by . Hence, all the

results of the paper hold.
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6. Conclusions

We have proved that the maximum likelihood estimator is asymptotically

more efficient than the nonlinear three-stage least squares estimator.

However we have also shown that the consistency of the maximum likelihood

estimator depends on the assumption of normality whereas that of the

nonlinear three-stage least squares is not. This fact increase the

attractiveness of the latter. The following are some important topics

for further research:

1) Evaluate the degree of the relative inefficiency of the best

nonlinear three-stage least squares estimator as compared to

the maximum likelihood in specific models.

2) Evaluate the degree of the realtive inefficiency of several versions

of the computationally practical nonlinear three-stage least

squares estimator as compared to the best nonlinear three-stage

least squares estimator in specific models

3) Is there an estiirtor, possibly even better than the best

nonlinear three-stage least squares estimator, which is

computationally simpler than the maximum likelihhod estimator?

Can that estimator remain consistent when the normality

assumption is removed?
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APPENDIX

Assumpitons

We nake -the following assumptions in additon to the basic assumptions

of the model stated in Section 2.

A. plirn (a) exists in a neighborhood of

B. —-- - N in T1 E '

/T

_____C. plim f exists in a neighborhood of ct0

and the convergence is uniform in the neighborhood.

D. plim T' is negative definite.
a0

E. him T1 E

—

. - pin T'
a a a
0 0 0

Theorem. Under the basic assumptions of the model stated in Section 2 and

assumptions A through E above, a root of the equation O is consistent

and the consistent root a satisfies (a-a0)
Nf_

pin T [a
ao])
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Proof. Expanding T1 L(ct) in a Taylor series around the true value

we have

T1 (a) f' + f1 (a
a0)

2
(A.l)

1 -l (aa)
2 o aa o

aT

where lies between a and a(). Taking the probability limit of both sides

of (A.l) and using assumptions A, B, and C, we have

plim T1 L(a) plim T1 L(a0)

2
(A.2)

1 .+-(a-a) plT
aT

Since is continuous by a basic assumption stated in Section 2,

assumption C implies that plim T1 is continuous in a neighborhood of

a0. Therefore, by CD), the second tern of the right-hand side of (A.1)

—l
is negative for all a in a neighborhood of a0. Therefore, pin T L(a)

attains a local rrximum at a0. This implies that a root of equation

0 is consistent. The asmptotic normality follows easily from

assumptions B through E using the Taylor expansion

I
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a2i+ ** (c — c) (A.3)
c. cx

where a is the consistent root and lies between a

and noting the left-hand side of (A. 3) is zero by the definition
A

of a.


