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S
Abstract

The identifiability of redticed form econometric models with variable

coefficients is investigated using the control theoretic concepts of

uniform complete observability and uniform complete controllability.

First, a variant of the state space representation of the traditional

reduced form is introduced which transcribes the underlying non-

stationary estimation problem into one particularly suited to a Kalman

filtering solution. Using such a fornoilation, observability and con-

trollability can be called upon to obtain a necessary and sufficient

condition for identification of the specific parameterization. The

results so obtained are completely analogous to those already established

in the econometric literature, namely, that the parameters of the reduced

form are always identified subject to the absence of multicollinearity

(referred to as "persistent excitation" in the control literature). How-

ever, now the multicollinearity condition is seen to depend on the struc-

ture of the parameter variations as well as the statistical nature of

the explanatory variables. The verification of identifiability thus

reduces to a check for uniform complete observability which can always

be affected in econometric applications. Some consistency results are

also presented which derive from the above approach.
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1. Introduction

Identification is an issue which arises in connection with all parametric

statistical models. Simply stated, the issue is whether one can infer

from observed samples the existence of a unique underlying theoretical

structure. Econometricians have long concerned themselves with establish-

ing the conditions for the identifiability of structures whose parameters

are assned to be constant. In this paper we address the seemingly more

complex issue of the identifiability of structures when the parameters

themselves are varying systematically or stochastically over time. This

is a relevant problem because in recent years increasing attention has

been focused on the problem of estiuting time varying structures. Although

estimation methods have been suggested by several authors, little attention

has been paid to the space problem of identification or to the asymptotic theory

for these estimators. Many of the issues we address in this paper have

been investigated by others (Tse Anton [1972] arid Mehra [197L.] for

example) but the context, as we shall elaborate, is somewhat different.

The identification problem for the traditional linear econometric

model with uncor'related errors was first recognized by Koopnns and

Reiersol [1950] and solutions were provided by Koopmaris etal. [1950].

This theory was later extended arid elaborated upon by Fisher [1966]

in his comprehensive book on the subject. 'ID important papers by
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Hannan [1969, 1971] generalize the earlier theory to encompass models

with moving average error processes . Most of this prior theory

concentrates on conditions which guarantee unique solutions to the set

of equations which characterize the structural form parameters in tenns

of the reduced form parameters as manifest by HanrianTs solution.

Rothertherg [1971] takes a different approach in characterizing the

identifiability criteria in tenns of the information matrix of classical

mathematical statistics. Rothenberg' s approach has been nicely extended

to a more general representation by Boden [1973]. It is this latter

approach which is most appropriate to problems we are considering because

of its relative independence from concepts related to stationary

stochastic process theory.

The problem we are addressing can best be illustrated by considering

the state space representation of a model with stochastically varying

structure. We characterize the problem in tentis of a regression relation

(or observation equation) and a "state" equation which desibes the

evolution of the parameters over time:

(1.1) ytX8t+et

(1.2) t+l t +

The variables y and X represent the observables of the system, is a

(kxk) matrix thich governs the transitions of the k component parameter
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and e and Ut are independently and identically distributed random

variables with mean zero and covariance matrixes arid Q respectively.

Intuitively it is seen that identification is more conlex in this

context because the underlying theoretical structure is itself a stochastic

process. Since the process is also dependent upon initial conditions we

lTn.lst establish the conditions for the existence of a unique set of )cc(T+1)

parameter vectors. In fact, however, the problem is not as difficult as

it might appear because we have imposed additional structure on the problem

through equation (1.2). Nevertheless, the information matrix conditions

of Rothenberg arid Bowden must be amended to establish identification in

such a context.

The plan of the paper is as follows. In Section 2 we formulate the

p
general estimation problem for tine varying structures and present the

recursive (Kalman Filtering) solution. Our purpose here is partly peda-

gogical because, while the KaInan Filtering solution to the time varying

estimation problem has appeared elsewhere in the literature,2 it provides

a convenient vehicle for illustration of the identifiability conditions.

The third section of the paper introduces concepts of unifonn canplete

observability and uniform canpiete controllability and relates these to

the performance of the Kalman Filter.

In Section L the observability matrix arid controllability matrix

are related to the information matrix of the constant parameter case

considered by Rothenberg. In addition, these concepts are used to

derive sane interesting asyntotic results for the time varying problem.

The final section discusses the results and suggests directions for

further researoh.



.
2. The Estimation Theory for Time Varying Structures

In the introduction we represented the problem of time varying structures

in tenris of a single equation regression relationship and an equation

which characterizes the evolution of the parameters as a first order

Markov process. As a point of departure for this section let us consider

how we might generalize this representation. Ideally, we would like to

be able to consider general simultaneous equation regression relation-

ships. In practice, however, we mist restrict ourselves to the considera—

tion of reduced fonn relationships because the estimation theory for the

structural fonns of simultaneous equation systems has not yet been

developed.3 Consequently, the irost general regression structures we

can deal with are of the form

(2..l)
Ai(t)yt_i +....+A(t)Yt_+B0(t)Wt +.. ••+Bq(t)Wt_q

+ et

where is an Lxi column vector of outputs (endogenous variables),

are vectors of exogenous variables, and e is an Lxi vector of observa-

tion errors. This system of equations can be represented more compactly

as

(2.2) Xtt + e.

We also want to consider generalizations of the process which governs

the evolution of the parameters. Our original characterization of the

S
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parameter evolution as a first order Markov process, or, more generally,

as an autoregressive or iroving average process of low order has consider-

able appeal. Not only is it a convenient characterization but it is a
natural one in a time series context in that such processes can capture

well the evolution of the parameters.4

In many instances, however, one might expect to observe variation

that is systematic but non-stochastic, or variation that is purely random.

To include these possibilities we modify our state equation to the form

(2.3)

which admits variation of all three types. If u is equal to zero then

the variation is purely systematic. Thus, if the parameters follow a

time trer1, a sinusoidal pattern, or are correlated with exogenous vari-

ables it can be represented in this fashion. Similar models have been

considered by Beisley [1973]. If z is a unit vector and is non-

zero then the formulation is equivalent to the random coefficients model

considered by Swainy [1970] and others where the parameters are regarded

as random drawings from a multivariate distribution with mean vector r

in the above representation. Although this is not properly a state space

formulation it can still be handled within this framework. Thus, the

evolution of the state of the system represented by equation (2.3) is a

general one which encompasses many possibilities.5 In any given context
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prior restrictions will be placed on and r (and also the covariarice

of the Ut) by one' s view of the particular problem.

Models like the one described by equation (2.2) and (2.3) have been

extensively explored in the engineering literature following the work

of Kalman £1960] and Ka.linan and Bucy £1961]. The first recoition of

the applicability of state space representations andKan filtering

solutions to the problem of estimating econanetric relationships with

tine varying structure was by Rosenberg [1968]. Other approaches to

estimating models similar to the one described above have been suggested

by Cooley and Prescott [1973] and Sarris £1973]. Here, however, we shall

briefly review only the optii.l recursive estimation method because it

is the most convenient for establishing the identifiability criteria.

We begin by assuming that e and u from equations (2.2) arid (2.3)

are uncorrelated Gausáian sequences with

E[e] 0 E[u] 0

E[ee'] R61 E[u1u']
=

Q61

where Q arid R are at least positive semi definite matrices arid 6 is the

Kronecker delta. The estimation problem is to obtain estimates of the

based on the observations [y1 If we let bt,t* be an estimate of

based on observations [y1 *] where tt and define the error

covariance matrix of the estimated coefficients as

(2.4)

then the solution is easily obtained when ' , Q, R and r are known.

The form of the solution is known as the KaJirian filter and is represented



—7—

as

(2.5)
bt+i,t

+ r

(2.6) b+i,+i bt,t + kt t
(2.)

(2.8) St X Pt,t—i Xt' + R

(29) K -Pt_ t/t_lxt

(2.10) Ptit ' + Q

(2.11) Pt,t (I_KXt) i—i.

Although the Kaan Filter has appeared many other places in the

literature a brief interpretation may be useful. Equation (2.5) represents

the one step ahead prediction of the parameters based on observations

through period t when t = t-l. The quantity which is called the

"innovations" series, is obviously the one period prediction error for

the The quantity Kt is called the gain of the Kalman Filter and S

is the covariance matrix of the innovations. In this light it is easy

to see that the gain of filter is simply the:optimal prediction corTection

factor.

It is obvious that 8, P0,0, Q and R will not be known in nst appli-

cations. The log likelihood of the system represented by (2.5) - (2.11),

however, is (see Mehra [1972]);
T

(2.12)
L(0,P010,e) .i½ 1[logISI +
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where S. is the covariance matrix of the irmovations and 0 (R ,Q. r,
Thus, estimation proceeds by selecting initial values of B, F0,0, e

and using the equations of the KaJ.inan Filter to define the likelihoxl

function. This process proceeds iteratively and is known in the engineer-

ing literature as "tuning the filter". The engineering literature,

however, has not in general been sensitive to problems of estimating

the initial state vector B. Most of the literature assi.mies that

has a proper prior distribution fnich eliminates the problem. That

this is seldom the case, however, is not a serious problem in dealing

with real time systems with many observations (as is the case in nest

engineering applications) because it is easily shown that under the

appropriate conditions7 the discrete Kalmari filter is asymptotically

stable and the effects of the initial conditions are ultimately forgotten

(see Jazwinski [1970, pp. 240-243]). In econanetrics, however, the

situation is somewhat different in that we do not deal with real time

systems, our observation intervals are often relatively short, and we

are often primarily interested in how the structure of the system evolves

over time. For all of these reasons it is particularly important to be

sensitive to the starting problems. The first correct solution to the

starting problems was proposed by Rosenberg [1968] and later generalized

by him [1973b]. The solution involves concentration of the likelihood

function with respect to the initial parameter vector ,. This permits

maxinu.un likelihood estimation of conditional on R, Q, 4 and F. The

recursive equations for 8 are8

.
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(2.13) I

(2.1LI) =

(2.15) —

(2.16) Ii (Xt,i)' S' (X

(2.17) ht (X St'

T T
(2.18) (z H1 E h

0 t-]. t t1 t

where iç, and St are as defined in equations (2.5 - 2.11). The matrix

1 then is simply a function of the transition natrix which extrapolates

the initial parameter vector into the future.

Given an estiixate of the initial parameter vector, say estination

of any realization bt,t is straightforward given equations (2.5 - 2.11).

It is worth noting that, in econometric applications, we will be most

interested in obtaining smoothed estimates of given realizations of the

parameter trajectory (Bt/T), that is, estimates which use all of the

infontation in the sample. Smoothing equations are presented in Meditch

[1969].

This review of estimation methods for time varying structures high-

lights one of the important features that is useful in the discussion of

the identifiability of such structures. It is that estimation that is a

two-step procedure. In the first step the initial parameter vector

and the unknown covariance elements are estimated. The second step

consists of estimating realizations of the parameter process (bt,t or

bt,T) conditional on the estimates obtained in the first step. Thus,
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estimation of the paranter trajectories is essentially an empirical

Bayesian procedure. Consequently, the identifiability criteria for

such structures may be viewed as having two parts. The first, which

obviously is the crucial part, establishes conditions for the existence

of a unique underlying initial parameter vector. The second part simply

involves the conditions for the existence of a trajectory conditional

on b0
As we shall see &thsequently there is a direct, but by no nans

simple, relationship between the classical identifiability criteria

for constant parameter models and the identiabiity criteria for models

with time varying structure. Before deriving this relationship, however,

we introduce some concepts from the control theory literature which will

be useful in the subsequent analysis.
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3. Observabiity and Controllability

3.1 Definitions

The concepts which we shall find useful in studying the identifiability

of time varying structures have evolved in the control theory literature

from an essentially different, but parallel set of concerns. The rapid

development of optimal control theory in the early l96OTs led to a

concern for the qualitative aspects of the optimal control problem.

Naturally, of first concern were questions regarding the existence and

uniqueness of optimal controls. This led to the consideration of whether

or not it was possible to arbitrarily alter the state of a model solely

by iwilpulation of the instrtmients (inputs). If a model possessed this

I
ability it was said to be carlete1y controllable, i.e., there existed

a coupling between the inputs and all of the states. In relation to the

usual state space fonn representation9

(3.1) t + G x
=Htt+Dtxt,

the concept of controllability can be captured in the following definition:10

Definition 1. The model (3.1) is said to be uniformly completely

controllable with, respect to the input x, if and only if there
exists an integer N>0 and constants c1,c2>O such that11

(3.2) 0 <
c11 j C(t,t—N) . cI

for all t �.. N, where the controllability matrix C(t1,t0) is defined by
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ti—i I .
(3.3) C(t t ) E •(t ,t) G G (t ,r).1,0 rt 1 it 1

Uniforn complete controllability (UCC) implies two things. First,

when the lower positive bound, c11, obtains, every nxde of the dynamic

ndel for will be excited by x•12 In other words, if x is inter-
preted as a stochastic process, then a random component will enter every

element of thus insuring that some uncertainty is present in each

state. This characteristic is important when specializing these concepts

to the estimation problem, and will be treated again below. Second,

when the finite upper bound, c21, exists and x. is given a stochastic

interpretation, then the effects of this random input on will remain

bounded in a mean-square sense. This implication also has an important

role to play in the TVP estition problem, and will be nore thoroughly

discussed below.

A second qualitative consideration arose from the feedback nature

of many optimal control schemes. Since a feedback control required the

state for its implementation, and normally only the endogerous variables

(outputs) were available for measurement, it became increaingly important

to ascertain whether information about the state of the system could be

extracted solely from observations made on the outputs. If a nodel

possessed this characteristic it was said to be observable, i.e., there

existed a coupling between all of the states arid the outputs. In relation

to the representation (3.1), the concept of observabiity is best desThed

13
by the following definition:

.
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Definition 2. The model (3.1) is said to be uniformly completely

observable if, and only if, there exist an integer N>O and con-

stants C1, c2>0 such that,

(3.) 0 < cI �. O(t,t—N) . c21

for all t �. N, where the observability matrix O(t,t0) is defined

by

.tl
(3.5)

O(t1,t0) rt0 '(r,t1)H' H(T,ti).

Uniform complete observa.biity (UCO) implies that given enough

observations t-N L t t} it is possible to solve exactly for

In its original (purely deterministic) sense, with x. interpreted as a

known function of time, this ability to recover also implies the

exact recovery of t-N• In fact, for a linear deterministic system

such as (3.1), the observability of the state at any one time t implies

the observability at any other time.16 When a stochastic environment

is encountered such that x is random or measurement errors are present,

then cannot be determined exactly fran a finite set of observations.

However, uniform complete observability will be useful in that it

can establish the possibility of estimating exactly given an infinite

set of data. This is akin to consistency so that observability has an

important role to play in estimation.
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Observa.biity, Controllability, and Estimation

In order to establish the usefulness of UCO arid UCC, they must be related

to estimation and identification. To this end, two leimas a-re presented

which explicitly display the fundamental role played by these concepts.

But before this is done, the definitions given previously are specialized

to TVP estimation probleiuts characterized by (2.2) - (2.3).

Definition 3. The model (2.2) - (2.3) is said to be ihiifonnly

completely controllable with respect to the noise, u., if and

only if there exists an integer N>O and constarrts c1, cf 0 such

that (3.2) holds for all tN, where the controllability matrix is

now defined as

ti-i t -i—i
(3.6) C(t,,t) t1t—l3I( 1

.. v

where G Q½16

Definition L• The model (2.2) - (2.3) is said to be uriifonrCLy

completely observable if and only if there exist an integer N>0

and constants c1, c2 such that (3. ti.) obtains, where the observa-

biity matrix is now defined as

t1 -r-t —

1,0 t—t )'X'X
—o

These are simply re-statements of Definitions 1 and 2 with the special

stnictW'e imposed by (2.2) - (2.3) taken into account.

The following lemma exhibits the existence of a priori bounds on

in terms of C(t ,t-N) and a slightly modified O(t ,t-N). Proof of
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this 1euua is omit-ted since it iiay be found in Jazwins]d [1970, Chapt. 7,

pp. 23L1_239], Aoki [1967, Chpt. 6, Pp. 214-221], Bucy andJoseph [1968.

Chapt. 6, pp. 70—71] or McGarty [1974, Appendix C, pp. 363—377].

Lemt. 1. Let the system (2.2) - (2.3) be unifonmly ccmpletely

observable and uniformly cou1ete1y controllable, aixi let P010D,

then is uniformly bounded for all t�N according to

(3.8) 0 < tOR(t,t_ + C(t,t-N)] iPt/t O(t,t-N) + C(t,t-N)<

where

t
(3.9) 0 (t,t—N) E (t_t)? XRX t—tR t-N=T t T

Thus UCC and UCO are seen to guarantee a meaningful problem in the sense

that a positive definite is assured for every -t�N. Upon examination,

(3.8) reveals that UCO is crucial in establishing a finite upper bound,

while UCC is vital in establishing a positive definite lower bound

(since [0R+C]_l [C0R+I:r'C).

The UCC condition of Lerxma 1 is somewhat restrictive in that there

are three important cases in econometrics where UCC fails to obtain:

(1) constant parameter estination; (2) purely deterministic (or systematic)

parameter estimation; arid (3) a mixture of systematic and stochastic

parameter variation. In the first two instances Q.O forces C(t,t-N)0,

whereas in the third instance Q�O together with certain can lead to

C(t,t-N)�.). In these circumstances no positive definite lower bound

exists by the hypotheses of Leimia 1. Fortunately this dilemma

can be easily overcome by a slight nodification of Lemma. 1:
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___ .Lemma 2. Let the system (2.2) - (2.3) be UCO but not necessarily

UCC, GG'.O arid P010>O, then is uniformly bounded for all

t. N according to

(3.10) 0 < i O(t,t-N) + C(t,t-N)< .

The key requirement of this lemma is that P0,0>O. If estimation is
initiated with a proper prior on then will be positive definite

whether or not con-bollabiity obtains. It appears quite reasonable
in paractice to expect P,>0 when estimating constant or nonstochastic

parameters, otherwise the nonstochastic elements of uld be Imown

exactly at t=o and it uld be senseless to attempt to estimate them

Note, however, that even when sane elements are nonstochastic (GG' M)),

may be such that C(t,t-N) is positive definite for saie t. This situa-
tion uld be a manifestation of the controllability property as discussed

after (3.2): Namely, that the particular structure in would eventually

result in the "scattering" or distribution of randanness due to u
working its way through the system into all the components of

Eventually all of the elements of the parameter vector would contain

sane uncertainty so that must be satisfied.

The results contained in Lemmas 1 and 2 should not be interpreted

as restricted solely to the Kalmari filter method of parameter estimation.

The Kalrnan Filter is a mber of the BLUE class so that any and all esti-

mators that are BLUE must yield the same matrix. Thus the bounds
presented above remain independent of the estimation method. Indeed,

both O(t,t-N) and C(t,t-N) are defined indeendentlv of the estimator. .
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3.3 Observaiility, Controllability, and Identification

The main import of Lemrr.s 1 and 2 is the unifonn boundedness f

its definiteness, ar its invertibiity. Whenever < i<'
exists and is positive definite. This is extremely important because

it is intuitively clear that uncertainty (as represented by Pt,t) and
information are inversely proportional. Thus in obtaining a priori

conditions which guarantee the positive definiteness pf P1,' it is
possible to insure, a priori, the identifiability of the parameters.

The relationship between observabiity, controllability, and identif 1-

ability can be put on a irore rigorous footing by examining the special

case of systematic parameter variation.

Consider the identification problem associated with the estimation

in (2.2) - (2.3) given only Y } when QO and RI.

The classical approach to the identification problem would be to view

as the only vector to be estimated so that afl identification questions

focus on it and neglect the rest of the parameter (vector) trajectory.

With this interpretation, identification would be determined by examination

of the singularity of the Fisher Information Matrix or the definiteness

of the Hessian of the Information Integral.17 In the present situation

both approaches are equivalent because the relevant probability densities

are continuous in 8.. Therefore the Information Matrix,

(3.11) l(t,t—N) -E{— £n p (Yt;bt) • £n p (Yt; bt)}J't t b=a
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is conscted directly. m (2 .2) - (2.3) it is that the

sequence tN'• } are independent, Gaussian, and have mean Xtbt

and variance-covariance I. Thus,

b ) = N/21 - exp {-½ty -x b ]'[y —X b ]}T., T
(211) det2(I)

T I T I I I
t

p(Ytjbt) N p(y1;b1)

t

R.np(Y;b) t-N £n p(y;b)

t t-1

£n p(yT;T,t)bt_ J=1(J)J)

t t—1

const.—½ I_N 1_X1tt)bt+Xt1t i+i)rz]

.t-1 .
xEyX1(Tt)bt+X11(t ,j+1)rz.]

where the last line follows from the constraints placed on the parameter

evolution, (2.3). The differentiatin of the above expression with to

bt is now straightforward,

£n p(Y.b) = (t,t)X'CyX1(t ,t)bt

+

.
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Insertion of this expression into (3.11) yields

i(t,t-N) =

xT_tNE] 'X(T ,t)} Ibt
t

= — j
T-t-N

xX(T,t)] I

bt t

t

(3.12) = — '(t,t)X'X T,t)T I

-t-1

where [.]

The quantity inside the brackets, [•], is just the observation error,

e, and E{ete} I. Thus the inforntion matrix and the observability

matrix are identical 18 It is clear that this result also holds for

the constant parameter case ( = I, Q 0, and rz = 0). When the observa-

tion errors are contemporaneously correlated, R I, then it is easily

shown that

t
(3.13) I(t,t—N) ) *'(t,t)XRX (T,t)

t—tlN T I

OR(t,t

In realistic applications there are measurement errors in every element

of y so that R arid are full rank, positive definite matrices. Thus
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it is easy to see that for any variance-covariance matrix R > 0, the

condition of uniform complete observability is both necessary arid

sufficient for classical identification to obtain. These observations

can be surrmarized by the following theorem:

Theorem 1. The TVP iodel (2.2) - (2.3) with Q 0, (rnstochastic

parameter variation, is completely identified) if arid only if it

is uniformly completely observable.

The feeling -that UCO and identifiability were in€mately related has

now been borne out; in the case of systematic parameter, identifiability

arid observability are equivalent.

.

•:
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Li.. EconOmetric Identification and Cons istency

The results of the previous section are well Icriown in the engineering

literature although they have not, to the best of our kricledge been

der±red elsewhere in the context of the tine varying parameter estiniat ion

problem. Most important, hcx.ever is the fact that the equivalence of the

observability and the information matrix reinforces the generic link

between the econometric identification problem and the properties of the

iKalman Filter. This link provides some insight as to h the criteria for

the identification of tine varting models differ from those of the constant

param€ter problem. In addition, we can more easily explore some of the

asymptotic properties of tine varying parameter estimators.

4.1 Identification of Constant and Systematically Varying Parameterizations

The constant parameter model is obtained from the general representation

(2.2)—(2.3)byspecifying=I,r OandQOsothat

(4.1) 8t+l

yt=xt8t+t

This model is identified if and only if

t
([1.2) c1, I < O(t, t—n) X'XT < c I

Tt-fl

is satisfied for some
c1, C2, N > 0 and every t > N. Since does not change

it is obvious that t = T and N = T and that (4.2) is simply the well kncwn

rmilticollinearity condition or the requirement in the engineering literature

that there be "persistently exciting inputs"( Astrom and Bthlin [1966]).

The systematically varying model is obtained fran (2.2)-(2.3) by specifying

Q 0 so that
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= +
TZ.

Xft1 +

where is a non-singular transition matrix, and rz may or may not be

zero. Theorem 1 states that this model is identified if and only if

t
c11 < 0 (t1t—N) (Tt)..)( x(T_t) < cITt—N T T

is satisfied from some c1, c2, N > 0 and t > N. The implication of systematic

parameter variation is ncw clear. Since we have imposed additional structure

on the oblem by specification of the parameter transition process, identifi-

cation is no larger solely dependent or the properties of the exogenous

variables, it nai also depends on the specified from of the parameter variation.

It is worth exploring hcw the specification of the parameter process can

alter the standard conditions for identification. To illustrate this let us

replace the suniition in (4.4) by a matrix inner product:

0(t,t-N) L'L

where,

L [(_N) XN' (l_N) XN+l (fl) X1 X ]

o (t,t-N) will be positive definite if L is of full rank. But, since is

nonsingular, the rank of L is equivalent to the rank of

(.5) [XN XN+l I(Nly (Ny.x
19

In the constant parameter case identification was concerned only with

the linear independence of the columns of the various {Xt(t_N < r < t) }. Now,

hcever, consideration must be given to the linear independence of the columns

of XT under the nonsingular transformation T-t
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One of the consequences of Theorem 1 arid the above observations is

that the effects of imilticollineari-ty may be nei.rtralized by specification

of a time-varying structure. Consider the foUing idealized example of

the nest extremxe form of multicoflinearity where an explanator is proportional

to another:

X Exit x2] = axi]
Under the assumption of constant parterization the observability criterion
(4.2) reduces to a test of the renk of L where

xl,t

IL,t
obviously rank L 1. NCM asstnne that I, i.e.

ab
=1

d

The rank test nc must be applied to L' where,

l,t-N+i + Xl,t_N+l ,

If a d and b 0, c = 0 it is quite possible to find two linearly independent

columus fran anong just the first two in L. Therefore, the imposition of

additional prior information in the form of , may serve to identify an otherwise

unidentified imodel. It must be reirembered, hcwever, that the converse is also

possible, narrely a certain specification of when coupled with a linearly inde-

pendent set {Xt; 1 < t < T} may be unidentified. Finally, note that the

specification of any diagonally structured will play a benign role in regard

to multicollineari-ty problenE and identification.

l,t-N
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As mentioned in Section 2, the econarietric time-varying estimation

problem is characterized by a two-step plx)cedure, the first step dealing

with the estimation of the unkncMn initial parameter vector , and the

second step dealing with the estimation of the trajectory starting from

Ncw that time-variation has been introduced (> t3 it is of interest

to ask whether identification of for some t implies identification of

Do separate identification problems arise for each 0 < t < T? If is

identified for some t via satisfaction of (4 •4), then can always be recovered

by solving (4.3a) backwards using as a terminal condition. The identifi-

given that of can also be deduced from a rederivation of either

the observability or classical information matrix in the special case where

is to be estimated instead of given data over 0 < t < T:

O(T,O) = TOT XT
T—t

or
T T 1 T

I(T,0) E ( _T)_ X 'R x —T

T0 T T

Since i(T,0) will be full rank if O(T,0) is, identification of reduces once

again to a rank test on O(T,0). But the observability matrix can be written as,

o(T,o) = M M

where -

(4.6) M = [X x1.. i(N).)( ]

Canparison with (4.5) reveals that the two criteria are identical. Thus, the

identification of the initial paremeter vector, , and the identification of

are synonarrous. .
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2 Identification of Stod'.astically Vaxying Models

The introduction of stochastic paranter variation sonEwhat canplicates the

derivation of identifiability conditions. The canplication is due to the

presence of u in (2 •3) which leads to a correlated error structure in the

observation equation (2.2). This invalidates the construction used for
-t

Theorem 1 because na
p(Yt; bt)

II
p(y,; bt),

and a new expression raist

be derived for the Fisher Information matrix under these circumstances.

The fully stochastic nature of the rrdel yields an equivalent observation

equation, pareneterized in of the foUing form

x [(,t) + E (ti+l)rz + E '(T,j+l)G u] +
3=1: jt

('.1.7)

X (r,t)t + X, E (r,j+l)rz. + liTj0
where is normally distributed with zero msan and variance-covariance matrix

given by

nj
(4.8) . E {ip} R61.

+ X. [I (m,k+l) QY(m,k+l)] X1k=t

and m1 min(k ,j). Thus the msasurennt errors, are no longer white --

each is a nving-average process of order t.20 In order to simplify the

derivation, T is n replaced by y., where
t1 21

y —
XT

E (t j+l)rz.T
j=O

'

Thus the nodel (2.2)-(2.3) can n be written as

(4.9) y1 = XT '1(T,t) +

Both and yare equivalent with regard to the identification problem for
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The complicated expression for the sequential correlation of the

(LI,, 8), no longer permits the recursive developnnt for the joint

density required in the construction of I (t, t-N). Therefore the joint

process is formad directly, i.e

(4.10) Yt=Zbt+11t

where
- _.I- L

11
- -

i

Z - [x c(0,t) x(1,t)'1- -

The combined error vector still has zero maan but the associated variance-

covariance matrix 2 is tR, x t9,

• •ot
10 ll• • -

: • ji
to ti tt

The joint process Y is normally distributed so that

p( ;bt) (211)tl/2 eJ2
exp {-

[Yt_Ztbt]iT'[t-Ztbt] }

" Jn(2TE)- th det() - u

(4.11) _ 2.n p(•;.) z [Yt—Ztbt]

Substitution of (4.11) into the definition (3.11) yields the result

I (t ,t-M) .-Z. T' z I

bt
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x0(O ,t)

r (4.12) l(t,tN) — [(O,t)x Y(i,t) Xr... x.J x(l,t)

xt

In order to have identified, (4.12) must be a negative definite matrix.

Since 2 is a variance—cova.rjance matrix of a nonsingular stochastic process

it is always positive definite, thus identification will obtain if and only if

C'(O,t)x I c(1,t)x

is full rank. But this is just the observabiity condition once again! Thus

Theorem 2. The fully stochastic TVP model (2.2)- (2.3), i.e. with

Q > 0, is completely identified at t if and only if it is uniformly

completely observable at time t.

Note that with Q 0, 2 reduces to a block diagonal matrix in so that
(4.12) can then be written as (3.13).

The identifiability of an empirically determined prior b0 can be inves-

tigated using Theorem 2 with t = 0. In this case, given data up through tine

t, the identifiability (observability) criterion reduces to a test for the full
rank of

—I —, I
[x0 , c1 x11.. .. ,( ) x]

But this is just (1(o ,-t)) Z so once again, the identifiability of f implies
the identifiability of for any 0 < T < t. This is the sane result as

obtained in the systematic variation case, although not so obvious.
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It was noted in section 2 that estimation is a two—step procedure

where the first step is the estimation of and the covariance Structures

and the subsequent step the determination of particular realizations

conditional on b . As the above result indicates, hever, the identifi-0

cation of these realizations is a trivial matter, given b0, because the

state equation is an identifying function in the sense of Kadane [1974].

4 • 3 Consistency in Time-Varying Panmeter Estimation

The usefullness of the concepts of observability and controllability is not

confined to questions of identification in time-varying models. The consistency

of the Kalrnn filter estimates can also be examined using these concepts. In

fact, unifonn complete observabii-ty and controllability, together with Lemma 1,

permit an almost trivial treatment.

Constant Parameter's. Considering the behavior of the estimates based

on all of the observations, Lemma 1 yields,

(4.13) 0 < < O(t,0)22

where t > N. Na it is possible to express °R as the sum,

(4.14) OR(t,0) OR,0) + OR(2N, +

Given uniform complete observability, OR(t,0) become the sum of positive

definite matrices so OR(t,O) ÷ 0 as t + . Thus (4.13) implies that

uniform complete observability insures ÷ 0 as t -' , i.e. consistency.

stematic Parameter Variat ion. The sa upper bound exhibited in (4.13)

holds, but (4.14) must be replaced by

(4.15) 0 (t,o) (_ty [0 (N,0) + 0 (2N,N) +
Nt

R R R
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since, in general I. Uniform complete observability still guaxntees

that the sum within the brackets gra.s without bound, but n there can exist

c sucii tiiat N-t + 0 as t . Thus it is nq possible for and k1 °R'
Nk—N) to interact in such a way that ('+ .15) has a finite limit. More must be

said of the structure of before ( •13) can be used to establish consistency.

A simple sufficient condition resulting in consistent filtered estimates is

that only with eigenvalues on or within the unit circle be considered in

specifying the ixodel structure. For such , N-t (t > N) is an unstable

matrix so all three factors in (.l5) grow without bound as t ÷. If = I
then the above problem reduces to that of the constant paranter case, even

though rz 0.
Stochastic Parameter Variation. In the general stochastic case the upper

bound fran Lemma 1 must include C(t,0):

('4.16 0 < < O (t,o) + C(t,0)

Since Q 0 implies CC t ,0) 0, uniform complete observabiity with an

appropriately chosen (i.e., ot,0) -'- 0 as t cc) is no longer sufficient

to guaxntee consistency. Moreover, reference to (2.10) reveals that 0

for any t so long as Q 0. Thus at each thservation can never be zero

because /t—l is never zero. The best that can be hoped for is that sane

finite limiting distribution exist for and -to achieve this ( • 16) suggests

that be specified such that C Ct ,0) - ct < as t - 00• In turn, the definition

of C Ct, 0) reveals that, in order to obtain an a. pk..Lo finite distribution

on must be a stable matrix (i.e., all ei-ievalues within the unit circle).

However, it should be noted that this is not necessary--it only iJ1lies that the

bounding technique stemming fran Lemma 1 loses its usefulness in such situations.
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Thus, the stability of is again only a sufficient condition for the

boundness of the variance-covariance matrix of the estimated coefficients.

Whether one should consider unstable transition matrices would appear to

depend on the properties of the inputs (the xt), because the observability

of the system will depend upon these properties. If the system is observable

then it is not clear that one should attach too much importance to the

consistency property. In such instances, it seems that it is more inortant

to worry about whether an estitor is efficient. Cooley and Prescott [1972]

have shn that estimators with = I will be efficient.

The inability of the filter to produce consistent paremster estimates

under stochastic variation suggests that the optimal "smoother" estimates

might be a better alteniativeJ5 HcMever this is not the case; inconsistency

still persists so long as Q 0. This claim can best be substantiated by

viewing the optimal smoother as a conilination of two optimal filters, one

run forward in time from t=0 to t, and the other run backwards in ti fran

tT to t, (See Fraser and Potter [1969]).

The smoothed estimation error variance-covariance matrix is given by

1D -rD1 -
t/T - Lt/t t/t

where denotes the forward filter variance-covariance matrix and

denotes the backward filter variance-covariance matrix. As T + oo only

will change since only it depends on T. By increasing the data length, T,

it might be hoped that the solution for could be initialized far enough

into the futiule such that Pt,t+ 0. But this can never happen. So long as

Q 0, the matrix Ricatti solution to the backward filter can never degenerate

to zero, no matter hcw long in the filter its solution is initialized (Potter

[1965]. Thus and t/T> 0 for all T + . Neither filtering or smoothing

can yield consistent paremeter estimates under stochastic parameter variation.
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5. SuirmEry and Conclusions

In the foregoing sections we have used the equivalence of the concepts

of observability in control theory and information in statistics to

establish the conditions for the identifiability of time varying struc-

tures in econometrics. Our intent has been to shed further light on

the properties of time varying parameter estimation methods that have

been introduced into econometrics in recent years. Several interesting

albit possibly obvious, conclusions emerge; the requirements for

identification in time varying riodels are not in principle irore stringent

than in the classical constant parameter case and may be less so because

of the additional structte imposed on the problem. The identifiability

criteria arid the asymptotic properties of the estimators suggest that it

may not always make sense to consider processes with unstable transition

structures. This latter caveat is not completely clear, however, because we

have concentrated throughout on sufficient conditions for identification.

Finally, the estimators for models subject to stochastic parameter varia-

tion will not be consistent in the usual sense. It has been shown, however,

that a sufficient condition for them to have stable asymptotic distribu—

tioris is that the transition matrix be stable (have eigenvalues within

the unit circle). It should be noted that in the econometric environment

where all observed data is to be processed "off-line" (i.e. in batch imde),

it is always possible to verify the conditions for observabiity and

controllability.
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In the develornt of the results in this paper it has been

assumed throughout that , is known. It should be obvious that there

is a deeper issue of identifiability that should be dealt with and

that is the identifiability of when it is unknown as it is in most

applications. This is indeed a more complex problem which requires

further investigation. It appears at the present tine that a fruitful

approach to the problem is to concentrate on the connection between

specification errors in and the serial correlation properties of

the innovations proce s (the estimated residuals). In this approach

one is essentially searching for the structure that is empirically best.

This can be thought of as a generalization of the Box-Jen]dns approach

to modelling. Similar approaches have been taken in the engineering

literature to studying the sensitivity of the Kalman Filter. See for

example Mebra [1970], Bzer and McDaniel [1972], Martin and Stubberud

[19714].

Finally, all of the current discussion has been confirmed to the

reduced form models. A more difficult problem would be to look at the

identification of tine varying structural models. Before this can be

done, however, the estimation methods must be extended to structural form

models.

.
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FOOTNOTES

1. For an interesting interpretation arid presentation of Flannants results
see Preston and Wall [197'-i-].

2. See Rosenberg [1968, 1973b], Pagan [1975], Sarris [1973].

3. The authors are currently wrking on the derivation of the appropriate
recursive estination procedures for structural form relations.. The reasons for expecting stochastic time variation have been extensively
explored elsewhere. See for example Cooley [1971], Cooley arid Prescott

[1973], Lucas [1973] and Rosenberg [1968].

5. For an excellent survey of generic relations among models with non-

constant coefficients see Rosenberg [l973a].

6. An exception is Aoki [1967] who did not, however, solve the problem

corTectly.

7. The conditions are that the system is uniformly completely observable

and uniformly completely controllable. These concepts are explained
in the next section.

8. This is a compact representation of the equations in Rosenberg [197 3&.

9. The relationship between the state space representation and the other
more traditional forms of econometric model representation is not too
difficult to establish. For a simple translation from the reduced form
see Chow [197 2a], and from the structural form see Pindyck [1973].
For the purpose of -this paper, asstme is a lad vector of states for

each t, x an nxl vector of exogenous variables, and y is an 2xl vector

of endogenous variables. The first of equations (3.1) is a dynamic

relationship which possesses a solution (see for example Oga [1967],

DeRusso et al. [1965], or Meditch [1969]) of the form

tI-I
+ tl,T+l)GTxT

relating the state at tt1 to the state at tt0 given the value of the

exogenous variables over the interval [t0 ,t1-i]. The matrix (t ,t0)
is called the fundamental matrix and is nonsingular, satisfying
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(t+l,t0) Ft >(t,t0) ; t0,t0) = I

(t ,T) (t ,t). For the time varying system of (3.1),

=
Ft Fti...F.

For the time-invariant structure of (1.2) or (2.3) it is easily
seen that (t T) t-t• The solution of the state equation as

given atove plays a vital role in the drivation of the concepts
of controllability and observability.

10. The derivation of the controllability criterion contained in the
following definition is beyond the scope of this paper. The
interested reader may consult any number of introductory texts
uch as Zadeh and Desoer [1963; pp. 505-509] for an excellent development.
It should be noted that there are many definitions of controllability,
each with its own subtle twist (see Rosenbrock [1970], Chpt. 5 g 6).

The choice of uniform complete controllability in this rk is
principally motivated by its use in discussing the qualitative
aspects of the Kalman filter.

11. Let x by any arbitrary pxl vector and A any pxp matrix. Then
xl A < I is taken to mean x x'x x'Ax . 8x'x where I is the
pxp identity matrix.

12. A complete treatment of the modal interpretation of controllability
is beyond the scope of this paper. The reader is referred to DeRusso,
et al. [1965, pp. 34I+_3L1.9 and pp. 429_L.3l], Ogata [1967, pp. t2'i.—L25],
arid Ka1an, Ho, and Narendra [1962].

13. Comments similar to those contained in Foothote 10 apply here: there
are several definitions of observabiity, but only the one most use-
ful with respect to time-varying parameter estimation and identifica-
tion has been employed.

111. Since Ht is generally some time-varying matrix constructed of known
time functions other than explanatory variables, the control litera-
ture emphasises how "controllability and observability are quantities
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exhibited by the system and not the data". This is clearly not the
case with the Kalman filter representation of the TVP estimation
problem ..then replaces Ht. The strict intrinsic interpretation
of controllability does, hoWever, remain valid since the data never
enters into the definition of Ft or Gt.

15. The correct criterion for establishing the ability to determine
instead of tN uld involve O(t-N,t). But this can be obtained
from 0(t ,t-N) merely by exchanging the arguments in in (3.5),
i.e. by employing t1,t). Since ' is nonsingular and

,r), this can always be done.

16. Since Q is a variance-covariance matrix, it is symmetric and at least

positive semi-definite. If it is positive definite it is always

possible to find a. unique factorizat ion Q Q( Q)'. Then (2.3) is
equivalent to

t + Gp
- N(O,I)

If, say, k,1 of the 8's are to be systematically varying, i.e. no

stochastic omponents due to any elemerrt of
p.r,

then Q can only be

positive semi-definite. A re-ordering of equations could then be
employed to obtain

La oj
where Q1 is a k1xk1 positive definite matrix. The unique factorization
of Q1 could then be effected and employed in the first k1 rows of
G with the last k—k1 rows being replaced by a null matrix.

17. See Rothenberg [1971] and Boen [1973].

18. This result is well ]<nown in the control literature, having been first
stated by Kallman and Bucy [1960] and rrore recently by Jazwinski [1970].

19. An examination of the rank of L is preferred over that of L because
no inverse of is involved, making conputation that nuch less
demanding.
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20. Note, however, that with QEO, p reduces to c and the previous

development of the Information Ma±rix (Section 3) applies. The

interested reader is referred to SarTis [1973] and Cooper [1973]
who also use this method to reduce the TVP model to a standard
reession model format.

21. This transformation can always be effected since it is assumed
that rz is ]iiown exactly.

22. The exact relationship P /0 +
OR(t,O) holds in this case.

However, in order to dispense with any consideration of the effects
of the prior distribution, the relationship written as OR(t ,O).
See Jazwinski [1970, p. 231 — 236].

23. Both Jazwinski [1970, pp. 236] and Aoki [1967, pp. 215] note this,

arid state a sufficient condition which guarantees consistency: If

I I (t ,0) ÷ 0 faster than I t Ct,0) I
-'. then obviously + 0.

.
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