NBER WORKING PAPER SERIES

IMPLEMENTING AND DOCUMENTING
RANDCM NUMBER GENERATORS

David C. Hoaglin*

Working Paper No. 75

COMPUTER RESEARCH CENTER FOR ECONOMICS AND MANAGEMENT SCIENCE
National Bureau of Economic Research, Inc.
575 Technology Square
Cambridge, Massachusetts 02139

March 1975

Preliminary: not for quotation

NBER working papers are distributed informally and in limited
numbers for comments only. They should not be quoted without
written permission.

This report has not undergone the review accorded official NBER
publications; in particular, it has not yet been submitted for
approval by the Board of Directors.

*NBER Computer Research Center and Harvard University, Department
of Statistics. Research supported in part by National Science
Foundation Grant GJ-1154X3 to the National Bureau of Econamic
Research, Inc.

Abstract

As simulation and Monte Carlo continue to play an increasing role in statis-
tical research, careful attention must be given to problems which arise in
implementing and documenting collections of random number generators. This
paper examines the value of theoretical as well as empirical evidence in
establishing the quality of generators, the selection of generators to
comprise a good basic set, the techniques and efficiency of implementation,
and the extent of documentation. Illustrative examples are drawn from vari-

out current sources.

1. Introduction . .

2. Uniform Generators .

3. A Basic Library

4. Implementation . .
5. Documentation . .
6. Sumary . . .

References

Contents

IMPLEMENTING AND DOCUMENTING
RANDOM NUMBER GENERATORS

1. INTRODUCTION

Across the fields of statisties and computer
science, from theoretical to applied, simulation
and Monte Carlo continue to play a significant
role. The variety of clever applications is great,
but often it seems that the technical foundations
are shaky. The random-number generators, on which
this whole experimentation structure rests, are
still all too often incautiously selected, haphaz-
ardly implemented, and inadequately documented.
Taking examples from among the available genera-
tors, algorithms, routines, and libraries, the
balance of this paper examines prevailing prac-
tices in selecting, implementing, and documenting
random-number generators and offers some recommen-
dations.

First, however, we should look further at the
question of prevalence: How widely are simulation
and Monte Carlo used in statistical research? In
preparing a position paper on publication of
computation-based results [8] David Andrews and I
had occasion to go carefully through the 1973
volures of Biometrika and Journal of the American
Statistical Association, counting papers of vari-
ous kinds. We found that 20% of all papers in-
volved simulation results, and the individual per-
centages in the three bodies of papers (JASA
Applications, JASA Theory and Methods, and
Biometrika) departed surprisingly little from the
overall figure. FEven without comparable data for
the computer science literature, the overall con-
clusion is clear: simulation is an important com-
ponent in quite a lot of research.

2. UNIFORM GENERATORS

A source of uniform random numbers is at the heart
of almost all algorithms for generating non-
uniform distributions, so it deserves a lot of
attention and is the natural place to start. This
observation is hardly new, but in view of the
typical quality of.available generators it still
needs emphasis. For example, wherever there is a
computer with @ word size of 32 bits, one is likely
to find the poor generator RANDU [10] -- its per-
sistence has been remarkable. Of course, this
generator (along with most others in common use) is
multiplicative-corngruential, and all such genera-
tors are well-known to produce output sequences
which- have regular structure. Specifically, the
set of all n-tuples (X35 Xi41s+++s Xi+n-1) forms

a lattice in Euclidean n-space [13]. For some
high-accuracy multidimensional calculations this
type of defect may render all congruential genera-
tors undesirable. Various schemes for permuting,
randomly shuffling, or otherwise modifying the out-
put of such basic generators offer reasonable
improvement, but there is still much to be learned.

Returning now to the basic congruential generators,
we should be aware of one important argument in
their favor: they are the easiest to analyze
theoretically. As a result we can determine (over
the full period of the generator) several indica-
tive properties of these generators and thus have
a much clearer picture of what we can expect of
them and what we cannot. The lattice structure of
the generators provides the basis for the two most
widely used theoretical tests: the spectral test

-2 -

, 12] and the lattice test [2, 14]. Briefly,
2 gspectral test in n dimensions looks at (in a
indardized reciprocal scale) the distance
tween adjacent hyperplanes in the most widely
sarated family of hyperplanes in the lattice of
tuples produced by the generator. The lattice
5t looks at the length ratio of longest and
rtest sides in a reduced basis for the lattice
n-tuples. It is not surprising, then, that
:se two tests are rather closely related. Still,
may help our understanding to apply both tests
1 study the results in dimensions 2 through 6.
it actual test criteria should we use? in
1th's notation [12] for the spectral test we
leulate C for n=2,3,4,5,6 and reduire that all
:se values be at least 1 This is the more .
»ingent of the two criteria Knuth suggested, but
‘ent empirical experience [9] suggests that it
not unreasonably difficult to find multipliers
ich meet this requirement. For the lattice test
2 us use L, to denote the length ratio of long-
: side to shortest side. Marsaglia suggested
4] requiring L, < 2, and this seems sensible,
i1in for n=2,3,4,5,6. (Formulated in such simple
ms as "C, > 1" and "L, < 2", the lattice test
>ears to the more stringent of the two). Two
ints summarize this discussion of theoretical
sperties: these theoretical tests are much
‘ter for screening congruential generators than
2 known empirical tests, and no congruential
lerator should be put into use without passing
ml

3. A BASIC LIBRARY
:'s twrn now to what we can do with a carefully
)sen uniform generator. What other generators
nld we put with it to form a serviceable set
> most simulation purposes? We should not have
*h difficulty agreeing on a basic library, and
reasonable 1ist should look much like this:

Continuous distributions
Uniform (0,1)
Gaussian (0,1)
Exponential
Gamma (and x%)

Beta (and F)
Student's t

Discrete distributions

Uniform
Binomial
Poisson

umber of other distributions may suggest them-
ves for specific applications, but any reason-
e library should support those in the basic
it.

* each non-uniform distribution we of course
it to use exact and efficient algorithms and
vid such methods as inverse c.d.f. approximations

and the Central Limit Theorem. Clever exact
methods for the Gaussian and the exponential have
been available for about ten years, but until
recently the situation for the general case in
most of the other distribution families was not so
encouraging. Fortunately a number of new algo-
rithms have appeared during the last year or so to
improve matters. The work of Dieter and Ahrens
(for example, [1, 6]) is particularly noteworthy
here; their acceptance-rejection methods for the
gamma distribution and the beta distribution [6]
have the attractive property of requiring nearly
constant time regardless of the parameter(s) of
the distribution.
4. TIMPLEMENTATION
Now how should we go about implementing our chosen
random-number generators? The range of issues
here is quite broad -~- from choosing the level of
programming language:to being careful, in an
assembly-language uniform generator, not to throw
away significant bits when converting the result
to floating-point. Let's look at some of the
questions from the top down.

1. What should the generator return? For most
applications the convenient form of output is a
vector of random numbers, and this means we will
be producing subroutines instead of functions. In
some cases a function might be better, but we
would want to balance this against the overhead
(both in programming effort and storage space) of
adding the function form to the library.

2. How should calling sequences (parameter lists)
be structured? To Integrate the routines as a
Tibrary, we would put the common parameters first,
as in

RANDOM (X, N, [other parameters]).

3. How should we organize the way in which non-
uniform generators use a basic uniform generatcr
or generators? Here 1t is likely to be cleaner if
eac% routine which requires a source of uniform
random numbers actually incorporates its own.

This would consume little space and eliminate con-
siderable subroutine linkage, especially in the
more complicated rejection algorithms. By remov-
ing "side-effect" interactions among different non-
uniform generators it should make complex simula-

‘tion programs easier to debug.

4, How should we handle starting values? In
order to reproduce results the user must be able
to set the starting value(s) (usually for the
basic uniform generator(s)) and recover the
current value at any point in the sequence. For
the user who wants a "random" start we can provide
a routine which uses the system clock or some
other such source.

5. In what language should we program the genera-
tors? This question may receive more varied
answers than the previous ones. Many generators,
especially uniform ones, have in the past been
coded in assembly language because the result runs

-3 -

faster and because most higher-level languages
don't have the primitives for the operations in-
volved. Now, however, it seems preferable to use
higher-level languages (such as FORTRAN or PL/I)
as much as possible. For one thing, this is the
only sensible way to approach portability from one
line of computers to another, and having machine-
independent generators will facilitate replication
of simulation studies, something we have largely
neglected. Another important consideration is the
correctness of the implementation: assembly-
language generators are likely to have more bugs,
and those bugs will be harder to isolate. One
IBM/360 assembler implementation of Marsaglia's
re¢tangle-wedge-tail algorithm for the Gaussian
distribution [4] provides a good example. Because
the programmer misused one of the machine instruc-
tions, the generator produced an excessive number
of deviates with large magnitude (like 5 and 6!).
It's reasonable to admit that one can gain a good
deal of speed in most random-number generators by
coding them in assembly language, but the conclu-
sion has to be that we should never start at that
level. Program the generator in a higher-level
language and debug it thoroughly so that there
will be a well-understood version to compare the
assembly-language one against.

6. What should we do about testing? The simple
answer, of course, 1s "Be thorough'. This is old
advice, but many generators seem not to get a very
extensive workout. For example, apparently the
only test applied to the Gaussian generator [u]
mentioned previously was a chi-squared test based
on dividing the real line into 20 intervals of
equal probability content. Since each tail lies
entirely within one of these intervals, there was
no check on the tail part of the algorithm. A
simple probability plot would have exposed the
problem almost immediately. This example suggests
a natural strategy: the testing should be
designed to cover each segment of a complicated
algorithm (in addition to the performance of the
whole). This is valuable when the implementation
is in a higher-level language, and it is vital
when assembly language is involved. Testing also
should reveal something about the comparative
speed of the algorithm because this is often a
more complicated question than theoretical calcu-
lations (of such things as the average number of
uniform deviates used in a rejection algorithm)
can answer. For example, W. M. Gentleman told me
recently that on a Honeywell 6000-series computer
the Gaussian algorithm of Brent [3] runs about 35%
slower than the 1964 algorithm of Marsaglia and
Bray [15]. Information like this is machine-
dependent but still quite useful.

5. DOCUMENTATICON

Finally we come to documentation -- the most
important step in making a generator or library
accessible to users. Here the procedure is
straightforward, but lapses are frequent enough
to demand a brief discussion. There are two basic
aspects: use of the generator and its "pedigree".

Documentation describing use is what every program-
mer will read immediately, and it should start with
a precise statement of what the generator is and
what it produces. (It may be that this goes with-
out saying, but an earlier (1 July 1973) edition of
the IMSL Library 1 Manual [11] did not tell what
congruential generator was implemented in the sub-
routine GGUl; it was necessary to read the assembly
code [7]. Fortunately this is no longer true in
the latest edition.) Other essential details for
use are the calling sequence or parameter list,
restrictions on parameters (for example, the start-
ing value), what other generators are used, and
the default initialization.

To establish a generator's "pedigree'", supporting ,
documentation should report the specific algorithm
(with information on its efficiency), relevant
theoretical properties (especially for uniform
generators, including any embedded in a non-uniform
one), the sources of any previous implementations
on which the present one is based, and the results
of testing. Together, these should give the user
an adequately detailed picture of the generator.

6. SUMMARY

This paper has briefly endeavored to give an up-to-
date consumer's view of random-number generators.
Specific recommendations cover uniform generators,
the composition of a basic library, and principles
of implementation and documentation. While a
nunber of actual examples indicate that currently
available generators and libraries often fall short
of the best that we know how to do, it is reassur-

‘ing to note that most of the tools needed for sub-

stantial improvement are ready to hand. We should
now expect (and perhaps demand) the gap between
possibility and practice to close rapidly.

REFERENCES

[1] J. H. Ahrens and U. Dieter, "Computer Methods
for Sampling from Gamma, Beta, Poisson, and
Binamial Distributions," Computing 12 (1974),
223-246.

[2] W. A. Beyer, R. B. Roof, and Dorothy
Williamson, "The lLattice Structure of Multi-
plicative Congruential Pseudo-Random Vectors,"
‘Mathematics of Computation 25 (April 1971),
345-363. -

[3] Richard P. Brent, "Algorithm 488: A Gaussian
Pseudo-Randam Number Generator," Communica-
tions of the ACM 17, 12 (December 1974, 704~

(4] Lovick Edward Camnon III, "Pseudo Random
Number Generators for Statistical Applica-
tions," Technical Report 69, Department of
Statisties and Camputer Sciences, University
of Georgia, August 1971.

(5] R. R. Coveyou and R. D. MacPherson, "Fourier
Analysis of Uniform Random Number Generators,"

Journal of the Association for Computing
Machinery 1F (1367), 100-119.

[6] U. Dieter and J. H. Ahrens, "Acceptance-
rejection Techniques for Sampling from the
Gamma and Beta Distributions," Technical
Report 83, Department of Statistics, Stanford
University, May 29, 1974,

[7)] David C. Hoaglin, "Scme Remarks on the IMSL
Random Number Generator GGULl," unpublished.

[8] David C. Hoaglin and David F. Andrews, "The
Reporting of Computation-based Results in
* Statistics." In revision for The American
Statistician. -

[¢] David C. Hoaglin and Gordon Sande, "A Study
of Multipliers for Pseudo-Random Number
Generators with Modulus 231-1." Presented at
Joint Statistical Meetings, St. louis,
Missouri, August 1974.

[10] IBM Corporation, System/360 Scientific Sub-
routine Package (360A-CM-03X) Version III,
Programmer's Manual. H20-0205-3, 1968.

[11] International Mathematical and Statistical

Libraries, Inc., The IMSL Library 1 Reference
Manual, Edition u, 1975. (FORIRAN IV, S/370-

(12] D. E. Knuth, The Art of Computer Programming,
Volume 2: Seminumerical Algoritnms. Addison-
Wesley, 1969.

[13] G. Marsaglia, "Regularities in Congruential
Random Number Generators,'" Numerische Mathe-
matik 16 (1970), 8-10.

[14] G. Marsaglia, "The Structure of Linear Congru-
ential Sequences," Applications of Number
Theory to Numerical Analysis (S. K. Zaremba,
editor), 249-285. Academic Press, 1973.

[15] G. Marsaglia and T. A. Bray, "A Convenient
Method for Generating Normal Variables,"
SIAM Review 6, 3 (July 1964), 260-26k.

