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Abstract

This paper presents a means for detecting the presence of nulticollinearity

and for assessing the damage that such collinearity may cause estimated

coefficients in the standard linear regression model. The means of analysis

is the singular value decomposition, a nuTkerical analytic device that

directly Exposes th the conditioning of the data matrix X and the linear

dependencies that may exist among its coluTins. The same infonTation is

employed in the second part of the paper to detenriine the extent to .thich

each regression coefficient is being adversely affected by each linear

re3Ation among the colimins of X that lead to its ill conditioning.
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INODUCTION

There are three major questions related to the problem of mnJ.±icollinearity:

when does it exist? how much damage has it caused? and what, if anything, can

be done about it? Making use of a technique of numerical analysis, the singular-

va.lue decomposition, this paper suggests a means for answering the first two of

these questions that is devoid of the ad hoc quality of previous attempts.

Part 1 introduces the concept of the singular-value decomposition and applies it

to the determination of -the existence of linear dependencies among the columns

of any given data matrix X. An Appendix to Part 1 deals with the problems caused

by scalIng of the data matrix. Part 2 addresses the question of assessing the

damege caused by the presence of multicollinearity and applies the mderstanding

gained fran Part 1 toward an answer. Part 3 presents an assessment of several of

the techniques previously advanced in the literati.me fcr diagnosing collinearity

and, additionally, presents a fundamental critique against the use of non-

Baysian "ridge regression" as a means of corTecting the problems caused by

collinear data. While some contrived examples are provided for illustration,

a true study of the application of these techniques to economic data will be

the subject of a future paper.
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Part 1. The Singular-Value Decomposition and

The Detection of Linear Dependencies

1.1 The Singular-Value Decoirposition

We learn from the numerical analysts1 that any TcK matrix X, considered

here to be a matrix of T observations of K economic variates, nay be decomposed

as

X UEV' (1.1)

where U 'U V 'V 'K and E is diagonal with non-negative diagonal elenEnts

crk,k_l.K.
.

1 See, for exanpie, Golub (1969), Golub and Reinsch (1970), Hanson and Lawson
(1969), and Becker et al (1974).

2 This decomposition is efficiently and stably effected by a piogrern called
MINFIT [Golub and Reinsch (1970)].

In (1) U is DcK, E is KxK and V is KxK. Mteative fonTulations are also
possible and nay prove more suitable to other applications. Hence one may have

'IcK TxT Th.K ThK (1 la)x=u Vt

TxK Txr' ra' ri.K (1 ib)or V

there r p CX). In this latter fonnulation E is always of full rank, even if
X is not.

.
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The singular-value deccznposition is closely related to the familar concepts

of eigenvalues and eigenvectors, but its difference frau those concepts is inpor-

tant. The non-negative diagonal elements of E are called the singular values of

X, and these are also the non-negative square roots of the eigenvalues of X'X.

This is readily seen by noting

X'X vEu'UV' VE2V'. (1.2)

Recalling the orthononility of V, we note that V diagonalizes X' X, and

hence the diagonal elements of E2 must be the eigenvalues of the real synmetric

imatr'ix X'X.

Equally clear, the orthononnal colimins of V must be the eigenvectors of

X'X, and, as is similarly denonstra.ted, the columns of U must be the eigen-

vectors of XX'.

The singular -value decouosition does not, however, merely duplicate know-

ledge of the eigensystem of X'X, for the singular value decouosition applies

directly to the data matrix X, and not to the manent matrix X'X. The singular -

value deccnçosition thus leads to a means of detennining the linear dependencies,

if any, among the colnris of the data matrix X.

1.2 The Detennination of the Linear Dependencies of X.

Ass.une that X is rank deficient, i.e., p(X) r < K. Since U and V are

orthononral, and hence necessarily of full rank, we must have p (X) = p(E).

There wi.ll, therefore, be as meny zero elements along the diagonal of as the

nullity of X, and hence we may partition the singular-value decouosition in
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(1.1) as

11.o1x uEv' u (1.3)

where is r'w and nonsingular.

After postrrultip1ying (1.3) by V and further partitioning we obtain

x [V1 V2] = Eu1 u2]h1 (1.4)

where V1 is Kxr U1 is Thr'
V2 is Kx(K-r) U2 is Th(K-r).

(1.4) results in the to matrix equations

X V1 U1E11 (1.5)

and

x V2 = 0. (1.6)

Interest centers on (1.6), for it displays all of the linear dependencies

of X: the Kx(K-r) matrix V2 provides an orthonorinal basis for the nufl space

that is spanned by the columns of X.

Two problems arise in applying the exact algebra leading to (1.6) to real

data. First, how does one determine the rank of X, r, i.e•, how are the zeros

of E discovered? And second, how are the zeros of V2 discovered? Both of these

problems arise because computers use finite arithmstic, and only in very special

cases will "true" zeros be calculated as such. There are problems of both round-

ing er:ror and error in the representation of the data

1. Also sorrtimes called truncation error. However, this tern also applies to
the error introduced by truncating an infinite series after a finite number
of steps, and hence will not be enployed here.
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The importance of the first problem is obvious: only through a correct

determination of the zeros of E can we correctly assess how many linear depen-

dericies exist anng the columns of X. The importance of the second problem is

less obvious. But, in general, all elements of V2 will be calculated as non-

zeros, however small some may be relative to others. Since scaling of X will

alter these non-zero elements arbitrarily (a problem that is dealt with in

length in the appendix to this section), we may arrive at the conclusion that

many columi-is of X enter each linear dependency, whether or not this is true.

The economnetrician will rarely be satisfied with such an answer; he would like

to identify the zeros of V2 (or some manipulation of it) so that he can say

which variates do and which variates do not enter into a specific linear

relation. The next two sect ipns deal with these two problems in turn.
1.3 Determination of (X) r

The singular value decomposition presents a means for determining the

rank of the data matrix X. Referring to (1.1) and recalling that U and

V are orthogonal we see that has both the same norm and the same rank

as X. Since is diagonal, were there no problems of calculation introduced

by the impr'ecis ion of the computer, one need only determine the number of

nonzero elements of E to discover the rank of X. Unfortunately the task

is not quite so sinple, for the nonexact, finite arithmetic necessarily

employed by computers and the problems of rounding error will result in

nonzero elements of E when, under ideal conditions, they should be zero.

it is necessary, therefore, to find a means for determining when an element

of E is "small enough" to be considered zero, and hence evidence of X' s

being rank deficient.
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Proposed Alternatives. The singular value decomposition is useful

in this context of deteniiining rank because it preserves the norm of X

(i.e. column lengths). The singular values are in the same units as the

colins of X, and hence are measurably interpretable. Other suggested

means for detenTlining rank fail on this and other counts

The determinant of the matrix (if square - or X'X if not) clearly

faild, for a small determinant has little to do with the invertability

of a matrix. The matrix CIn has determinant c' which can be made arbitrarily

small, yet it is clear that aI has orthogonal colurrns and is always

invertable for

It is equally infeasible to obtain information on the invertability

(conditioning) of a matrix from the smallness of some of the diagonal elements

of a triangulation of the given matrix. This process is closely related

to the use of the determinant, since the determinant will be the product

of the diagonal elennts of the triangular factorization. Two exanples

from Golub and Reinsch (1970) and Wilkinson (1965) illustmte this point.
Consider

.501 —l

.502 —l

0 .599 —l

.60j
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and

Each of these matrices will be shown by the singular value decoirosition

to be quite ill-conditioned even though neither posses a snail diagonal

elennt.

The Condition Number. A nans of determining the conditioning of a

matrix that avoids the pitfalls nntioned above is afforded by the singular

value decomposition. The notivation behind this technique derives from a

nore correct nEthod of determining whether an inverse of a given matrix

"blows up". As shall see it is reasonable to consider a matrix to be

ill-conditioned if its inverse is large in spectral norm' in corrarison

with the spectral norm of the given matrix itself. TO examples aid this

point. Consider first the matrix

A=I I

[clj.
Clearly as cx -'- 1, this matrix tends toward perfectly singularity. Also

the singular values of A are easily shown to be li-ct, and those of A1 are

(l+cx). Now as a + 1, the product I IAI I I IAH I

= urn (li-ct) (l_ci)Tl explodes,
(2+]

arid hence we conclude the norm of A is large relative to that of A. A is

ill-conditioned for small cx.

The spectral norm of A (a..), denoted IIAH, is siirply . , the
maximum singular value. 1]
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By way of contrast, consider the matrix, introduced above,

[aolBI I

There is some feeling that B becomes ill—conditioned as cx + 0. However,

I B I a and I BI I = a1, and the product I IBI I I 1B11 I a = 1 is

constant as a + 0. In this case, then, the norm of B' does not blow up

relative to that of B, arid B is well conditioned for all a.

The conditioning of any square matrix can be smmarized, then, by a condi-

tion number K (A) defined as the product of the maximal singular value of A
-ltimes the maximal singular value of A . This concept is readily extended

to a rectangular matrix and can be calculated without recourse to the inverse

matrix. From the singular value decomposition of X UEV', it is easily

shown that the generalized inverse of X is UEV', where + is the generalized

inverse of E and is simply E with its nonzero diagonal elements inverted.1

Hence the singular values of X are merely the inverses of those of X, and

the maximal sIngular value of X is the reciprocal of the minimum (nonzero)

singular value of X. We may therefore define the condition number. of X

as K(X) = 1Tax

The Use of The Condition Number in Determining Rank. We will now discuss

the sense in which the condition number has meaning as a measure of the ill-

conditioning of a matrix. This will further result in a meaningful criterion

for determining when a singular value is small enough (relative to to

provide evidence of a renk deficiency.

__ .
1. See Golub and Reinsch (1970) or Becker et al. (l97).
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Consider the linear system Xb a, and suppose the data are known

exactly, but stored in finite precision. It is shown in Stewart (1973) or

Hanson and Lawson (1969) that a change in the last digit of the elements of

X can result in a change in K (X) times as great in the solution b. That is,

if the machine zero is io-10, and K (X) is then a change in X in the
—10 L —6tenth decimal place can affect b in the 10 x 10 or 10 place. Clearly,

then, a condition number sufficiently large can wipe out all significance

to a solution to a linear system. Such u1d be the case if K were larger

-than the rd length of the machine.

In a least—squares problem, the solution to X' X bX'y, a similar result

holds, except that now a perturhation in X affects X'X as the square, and we

JTU.lst have the square of the condition number to be like the word length, or,

equivalently, the condition number like the square root of the word length.

Rather generelly, then, in the least-squares context, we would suppose

that any singular value, ak which, relative to -the was less than the

square root of the machine zero (the reciprocal of the word 1ength-about

2_26 for IBM 360/370 long precision) to be evidence of rank deficiency.

When there is Fuzziness in the Data. The determination of the rank of

the data matrix X is less straightforward when the data are known imprecisely-

with fuzziness. The analysis of the previous section is based on data known

exactly, and from it we learn that a perturbation in the last digit of the

data's word length can affect digits on the order of K(X) from the last in

the solution for b of a linear system. Thus if the word length is io8

K(X) is a change in the eighth digit of X can affect b in the 5th digit,

and a K(X) of io8 can remove all significance from b.
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When the data are fuzzy, further problems are encountered, because

relevant perturbations in the data now affect, not necessarily the last digit it

the word length, but possibly much higher order digits. Suppose again a

word length of io8 and a KCx) = 1O3 but the data are known only up to 1O3.

Now relevant perturbations of the data as stored in the computer are

108x105 1O3 times greater than perturbations of the last digit of the

word length. Hence the solution to the linear system will be known with

even less precision, and could1 be affected in the digits on the order of

KCX)X103. In this case that would be io6, leaving only the first two digits

to be known with any accuracy.

In the least—squares so1utions--as contrasted to the solution-to a

linear system used in the explanation above—the treatment of data fuzziness

is quite analogous. If the data in X are exact to, say, l0, then the data

of XIX are exact to 106. A word length of 108 now inplies that perturbations

of the order of 108x106 = 102 are now relavant, and these can in turn be

n.gnified in the least-squares solution by a factor K CX), the condition

number of X'X. Here, this would be C103)2xl02 108, and hence the solution

b rry have no definition at all with an 8 digit word length.

1. The word could is used because the figure is an upper bound telling the
worst possible story. It could be better in any given case.
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The preceding leads to the following suggestion for determining when

a singular value is small enough to be considered evidence of rank deficiency

when there is fuzziness in the data. Let w be the word length1, and f

be the fuzziness2 in the data matrix X -- f2. -t1iat of X'X. Then the foregoing

argues that we must have wf2K2(X) < w if the least squares solution is to

have any meaning (any stable digits) at all. That is we must have K(X) < f.
If the data are known up to 1O3, we can allow X to have K(X) = a max <

a

Hence any ak such that a max < lO (f) would indicate the possibility
ak

of rank deficiency.

1. w can be measured as lOs", where 2. is the number of digits carried by the
machine.

2. f can be measured as 10h, where h is the number of places known with
exactness.

3. Provided X'X is accumulated in double precesion relative to that of X.
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.
1.4 Determining the Structure of the Linear Dependencies Of X.

1.4.1 Defining the Structure

In this subsection we assume we have already detenmined the rank of

X as described in the previous subsection. Our interest here centers on deter-

mining which variates do and which do not enter any specific linear dependency.

It is this information that is meant by the term structure of the linear

dependency. It is not sufficient to examine the zero structure of V2 in (1.6)

to determine the structure of the linear dependencies, for clearly, for any

(k-r)2 nonsingular matrix A, (1.6) becomes

X VA 0, (1.7)

and we can alter the zero structure of these linear dependencies (given by the

zeros of the matrix V2A) arbitrarily. Father we must rework (1.6) into a form

that is invariant to linear transformations. This is accomplished by partition-

ing (1.6) to produce a "reduced form" as follows:

x V2
[xix2][2]=

0 , (1.8)

where X1 is T x (k-r) V21 is (k-r) x (k—r)

X2 is T xr V22 is r x (k-r)

and V21 is chosen to be nonsingular. Since V2, having orkhononnal columns, is

of full rank, such a nonsingular subrratrix must exist. Fran (1.8) we obtain

X -XV VXG (1.9)
1 2 22 21

where C -
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The structure of (1.9) is clearly invariant to linear transformations since

X V2A 0 :Lrrplies cx1x2[] A = 0 or X1 -X2V22A A1V = - X2G. The determina-

tion of the structure of the linear dependencies of X therefore is precisely

the determination of the zero structn?e of the matrix G. flom it we learTl which

colunuis of X2 are involved in linear relationships with the variates composing

the co1iiins of X1.

Unfoxkunately we cannot sinply calculate G and look for its zeros, for,

as already mentioned, the finite arit]-tic used in determining V2__ now further

compounded by the calculations determing G as -V22V —will not guarentee that

the zeros of G will indeed be calculated as zero.

l.Li.2 Determining the Zeros of G.

Io methods are suggested here for giving nmrica1 specification to

the zeros of C.' The first is a 1inear-proanming approach, the second a least-

squares approach. Both methods axe based upon the following rationale. Linear

dependencies are exact only in perfect algebra. The econoiztrician has always

sought to extend this concept to one of "near dependency", a notion that has been

more intuitive than rigorous. In the previous section, however, we saw how

"nearness" could be given rianing in a realistic contect both by the natural

fuzziness given by a "n iiine zero", and by the more usually encountered fuzziness

that results from data inaccuracies. This latter concept requires some discus-

sion.

1

The authors are greatly indebted to Gene Golub of Stanford University and
John Dennis of Cornell University for their contributiàns to these techniques.



ObservatIona1 Equivalence

A published GNP figure of 1.054 triflion dollars is clearly not exact.
Indeed all additional information regarding digits beyond 10 have been sur-
pressed. The datim 1.054 is therefore observationaiLy indistinguishable from

1.0542 or 1.0539. That is ,there is some region of fuzziness such that, given

noimai rounding procedures, any data point lying in that region is equally valid
for an entry into X. This concept of truncated data repoxing is quite distinct
from errors in observation. The latter would argue that one might not know for

sure the corl2ectness of the data actually reported. Hence observations error
introduces yet another element of fuzziness into the degree of accuracy with
which one knows one s data.

In any event there is reason to suppose that there exists a matrix E,

determined by the investigator, that puts limits on the accuracy to which he

believes he knows his data. These limits may, for exarrple, take the form that

"coluim 6 of X is known only up to 10". Hence, any data matrix X such that

I X - X E is observationally equivalent to This notion of observational

equivalence (which could no doubt also be cast into a statistical framework)

is a data-analytic analogue to the identification problem. Given the fuzziness

in X, any results based on any X observationally equivalent to X iraist also be

indistinguishable within the degree of precision to which the data are known.

Hence the investigator must consider as observationally indistinguishable any

V resulting from the singular value decouosition of any appropriate X = UEV'..

It is this notion of observational equivalence that is exploited to determine the
zeros of G.

1 The notation IXI here is used to mean absolute value of a matrix, not the
determinant.
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Zero Enrichment

Given the data matrix X, we have from (1.9) that

— XG 0, (1.10)

and we propose to determine the zero structure of G by determining whether any

of its elements (or specific of its elements) are observationally indistinguish-

able from (equivalent to) zero. To do thIs we employ a numeric-analytical

analogue to hypothesis testing.' It is proposed that the investigator examine

the G determined by the singular value decomposition of X and specify which of

its elements he has reason to believe to be zero. This may be based upon

a priori considerations of which variates uld not belong in certain linear

dependencies (hence inplying the corresponding elements of C to be zero) or it

may be based on experience he has regarding which values of G that are calculated

to be small numericafly are in fact zero. In any event the matrix C has, as a

rna-ter of hypothesis, certain of its elements made to be zero. The resulting

zero enriched matrix is denoted G. In lx)th of the following procedures a method

is presented to test the hypothesized zero enrichment by determining whether G

is observationally equivalent to G in the sense that G could indeed by calculated

as the G matrix for a data matrix X that is observationally equivalent to X.

Method 1: A Linear -Programming Approach

Let A (S) be a IK matrix to be detennined. X is the given 1d( data

matrix and E is the "limits" matrix defined above. C is the matrix defined in

1Again a statistical fornuilation of this procedure may well be possible, but is not
exaiBined here.
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(1.9) by the singular value decomposition of X and for which (1. 10) holds.

Partion A [Lt] to correspond to X1 and X2. G is an hypothesised zero-

enriched rr.trIx subject to test. We will say that G is observationally equi-

valent to G (arid hence accept the hypothesIsed zero enrichnnt) if there exists
a A [AA] such that G satisfies

(1.11)

and

jAIE, (1.12)

i.e., if can result from the singular-value decomposition of a data matrix

that is observationally equivalent to X.

The existence of such a A can be established from the feasibility of a
linear progiem. From (1.11) we have

A1 - = - (X1 -
X2G) (1.13)

or

AFT —XH (1.14)

JE1where H1j.
Using the change of variable

= A ÷ E, (1.15)

the problem of finding a A that satisfies (1.14) subject to the inequalities
(1.12) is equivalent to finding the that satisfies

(E-X)H subject to (1.16)
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j2E a (1.17)

The existence of such a ' (q) is clearly established if there exists a
feasible solution to the contrived linear pxoam

mm t K EE , a vector of n ones] (1.18)
tic

subject to (1.16 and 1.17).

It is rth errhasizing that it Is not necessary to solve the 12 (1.18)

to accept the hypothesis of the zero erxriched G, rather it is only required to

dnonstrate the feasibility of the program.

Method 2: A Least-Squares (minimum norm) Approach

The 12 given above will, even for moderate sized econcznic problems, be

large. Even the demonstration of a feasible solution could prove costly, and,

hence, a second method appears worthy of consideration.

Our problem is to find a satisfying (1. 14) also obeys the inequalities

(1.12). Since H in (1.14) necessarily has full rank, we can find all , satisfy-
ing this relation without regard to (1.12) (in general there will be an infinity

of them) by considering all

— XEIFI (1.19)

where H is any pseudoinverse of H. Among all these solutions, however, is one

with minimum norm (i.e., a E with minimum ), which is found by using the
genere1ized inverse H , i.e.

= (1.20)

There is, of coia'se, no guarantee that £ will satisfy (1.12) in all cases,

but there is reason to hope that its property of minimum normwill indeed also
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result in (1.12) as a px.ctica1 matter. This second method of determining t,,

then, is sufioient brt not necessary to accept the zero ern'ichnnt hypothesis.

That is, a solution to (1.20) that also satisfies (1.12) accepts the observational

equivalence of G (the hypothesized zero enrichment), but a solution to (1.20)

that does not also satisfj (1.12) does not mean that a solution to the 12 (1.18)

does not exi1 The advantage of this technique over the 12 is that it is

quick and cheap to employ. If it works, no further effort is required. If it

doesn't, further investigation iray be warranted. It will be a metter for

experience to determine just how well this short cut works in practice.

1. We are indebted to our colleague, Paul Holland, for highlighting these points.
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APPENDIX '10 SECUON 1. SCALING

The seemingly elaborate test procedures given in the previous section axe

nDtivated by the fact that the elements of G are scale sensitive and can be

made arbitrarily small sInly by a choice of scale. Detmination of the zero

structure of G, therefore, requires some meaningful (not arbitrary) measure of

snJl, and this measure is afforded by the procedures outlined.

The purpose of this appendix is to deuonslte this probletnful scale

sensitivity.
Let X be the data matrix in "original units", arid let D =

diag(d1
... d

be a scaling matrix (all d1 0). Call the scaled data matrix Xi). Now

(using the notation of the text) the SVD of X is

XUZV',inplyingXV2=O (1.21)

and that of X is

A A A A A
XUEV', implyingXV2 0.

The reduced fonns corresponding to the original and scaled data are therefore

_i — —i
—X2 V22 V21 = X2 G, G —V22 V21 (1.23a)

and A_i A A A A A_ (1 23b)X1 —X2 V22 V2i X2 G, G = —V22 Vi

arid the econometrician must insist that the zero structure of G be the same as

G, since arbitrary scaling cannot affect the real linear dependencies.
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.
We will now show that with exact arithmetic, these zero structures are

indeed the same, but that they can be made to appear different due to finite

arithmetic, hence necessitating the test procedures of Section 1.4.2.

From X V2 0 we may write

X D D1 V EXD' V 0.
2 2 (1.24)

A A
Since p (X) p CX), the null space of X must have the same dimension as X, arid

hence D1 V2 provides a basis (not orhonormal) for the null space of 2.

Hence any orrthonounal basis for thIs null space (such as V2) must be a non-

singular transformtian of D'V2. Let this be

A 1V21 rD1 o] rv211
V2ED'V2H orI,I I _II (1.25)

1
LVzJ [E D1LV2J .for H nonsa.ngular.

Putting (1.25) into (l.23b) gives

A A A A A — — —

—X2 V22 vJ = —X2 D V22 H H V2 D
= X2 D1 V22 V D1 = X2 D1 G D1 (1.26)

Comparing (1.26) with (1.2 3b) shows

G D' G D1. (1.27)

A 1 lvii A
1.It is reacti,ly seen froni X [U1 U2] f LJ that V2 can be any ortho-

normal basis for the null space of X. One can therefore derive at least one
such V2 from V2 by taking the QR decoosition of DV2 = Q R to produce

Q D'V2R'. .
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Since D2 and D1 are both diagonal, we have 0 if and only if g1 0,

where G (g) and G (g). Hence, in exact arithmetic scaling does not

change the zero structure of G. However in finite arithmetic it is clear that

any nonzero element of G rray be irade as small as desired in G by appropriate

scaling. A nonzero in G nay therefore be a zero in G arid vice versa within the

limiits of the machine' s calculations.

The solution to this problem (that the determination of linear dependencies

nay be scale—affected) is one of numrical analysis. Since there would be no

problem from scaling if we had exact calculations, we should analyze the data

matrix x in units chosen to allow for the rn.mierically most stable calculations

in light of the finite arithmetic. Column equilibration (scaling to produce

roughly equal column lengths) enjoys some usefulness in this context. Conclusions

regarding the zero structure of V2 should be based on a data matrix so scaled.

Then, should the user desire infoniation on a differently scaled matrix, the

aixve detenTdned V2 with the zero structe imposed should provide the basis of

the transfo±'med structure. That is, let X be the data scaled for numerical

accuracy, and let X = X D be the data scaled in tenris of the user' s preferences.

Then the zero structure of the G applicable to the data in X is determined by

analysis of (1.23a). Let G be the calculated matrix, and denote G with its

"zero" elements replaced by exact zeros by G*. Infonnation on can then be

had by the analog to (1.27), namely

G* D1G*D. (1.28)

Clearly * will have the same zero structure, invariant to scale.

1. See Van der Sluis (1969) and (1970).
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Part 2. An Assessment o the Dàe Caused by Linear tpendencies

In this part we address the second njor question set out in the opening

paragraph, namely, how much damage is caused to the regression estiiiiates due to

the presence of linear dependencies (near dependencies) in the data matrix. It

is well known that any such dage manifests itself in mstable regression

coefficients and in inflated sampling variances. But it has not been possible

quickly to deteunine whether the size of any specific sanpling variance was

large because of collinear data or because of inherent noise (arising, for

example, because the given variate does not belong in the hypothesized relation-

ship). The former problem is potentially corctable through additional informa-

tion that mIght take the form of new noncollinear data, a prior distribution

'or the regssion parameters, or outside estintes for specific coefficients.

The analysis presented here helps to determine whether collinear data is in fact

a cause of inflated sampling variance, and further it helps to highlight which

regression estima,tes are being nDst adversely affected - thereby keying where

corTective measures are nvist profitably employed.

In Section 1, the decomposition of the sampling variance that forms the

basis of the analysis is presented. Section 2 presents a theoretical result that

helps to interpret possible outcomes of the decomposition. Section 3 examines

the procedures suggested in Section 1 for assessing the danage caused to regres-

sion estimates from the use of collinear1 data.

1 It should be highlighted that the term collinear here means rank deficient
in the sense of Part 1 and does not mean the existence of an exact linear
dependency; nor, obviously is it the common but loose usage in econanetrics.
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2.1 The Basic Decomposition of the Variance of bb.

The singular value deconposition of a data matrix X, as we saw in Part 1

of this paper produces a set of singular values that can be associated with

potential linear dependencies in the data. The rd "potential" is used because

(as per SectIon 1.3) it must first be deternined, through machine and data con-

siderations, which sIngular values are small, and for each of these there is a

linear dependency to be identified. As any one singular value, then, gets

snail relative to there is a near dependency to be associated with that

singular value.

The basis for the analysis presented here is the deconposition of the

variances of the regression coefficients into cononents that are associated

with the singular values of X and hence are directly related to the specific

linear dependencies possesed by X. A derivation of this variance decorrosition

using eigensysterns of X'X due to Silvey (1969) is given in Johnston (1972), but

we rederive the result here using the singular-value decompostion to highlight

the correspondence of the components to the singular values, and hence the

linear dependencies, of X (not of the niount matrix X'X).

The variance-covariance matrix of the least squares estimator b (X'XY'X'y

is, of course,

Var (b) a(X'X)1 (2.1)

where a2 is the corrupn variance of the conponents of the T disturbances c in

y x $fc. Making use of the singular value decomposition of X

K TXK d( d(
X U E VT with diag (a .. a1?, and V(v1) (2.2)
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.
we may rewrite (2.1) as (recalling U'U I)

Var(b) (2.3)

or, for the )c-th component of b,

var(bk)
a2 E . (2.4)

(2. LI.), it will be noticed, decomposes var(bk) into a sum of components each

containing the square of one of the singular values, a. We recall from Section

1.3 how, for each linear dependency of X, some a becomes small. Since these
are In the denominator in (2.4), other things equal, those components of var(b)

associated with a linear dependency (with small a) will be large relative to

the other components. This suggests, then, that an unusually high proportion of

the variance of one or irore coefficients concentrated in components associated

with a specific singular value gives evidence that the corresponding linear

dependency may be causing problems. This suggestion is pursued in Section 2.3 after

some interpretive considerations are developed in Section 2.2.

It is a relatively easy matter to display these proportions for all var(b)
so that the investigator can tell at a glance where problems may be arising

Define

v. K

1kj a ' 1k kj
k 1 .. K (2.5)

and

k,j1...K.
Then all infonnation is sunlii3rized by th tables
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Variance-Components Table

(all entries x 2)

Components of

var(b1) var(b2)
. var(b)

1111 k1

11 n
12 22 2

.
r .

49 . (2.6a)
C)0
C))

aK 1K 2K KK



—26—

Variance—proportions table

Coriponents of

var(b1) var(b2) ... var(b<)

11 12 •..

21 22

(2.6b)

I

.

An example of these tables is given in Sections 2.2.4 and 2.3.3 below.

2.2 An Interpretive Consideration: Ozkhogonality and the Zero Structure of V.

It will be necessary -to gain much practical experience with the decouçosition

(2.4) before reasonable guidelines can be established for its use as a diagnostic

tool. There is, however, one uiimediate consideration that can be given a

rigorous foundation, namely, that If in (2.4) some v, are zero, then it makes

no difference to var (1) If the corTespondlng are very small, i.e •, the

coefficient will be inirmne from collinearity associated with those particular

singular values. This section examines the conditions under which certain of

the v1 will be zero (or small relative to the corresponding a) and hence

develops conditions under which certain regression coefficients need not be

adversely affected by the presence of multicollinear data. We can anticipate

this result by recalling the well known fact that the addition to a regression

equation of a variate that is orthogonal to all previous variates will not affect

the regression calculations based only on the original variates. Clearly then,

it should also not affect any regressIon calculations to add a set of variates
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that are orthogonal to all previous vai,tes whether or not this additjonal

set itself contains with it a perfectly -colliriear relationship.

Indeed, through a series of telescoping theorems of increasing generality,

we arrive at sufficient condition on X (and its singular values) under which

orthogonal partitions of X ixrly specific V..' s to be zero in the singular

value decomposition of X. These are approxinate conditions, then, under which

regression estin.tes may possibly be salvaged even in the presence of strongly

collinear data. Special computational algorithms are required to exploit this

possibility, however, for mDst reession proanis are incapable of dealing with

collinear data no matter how it occurs, and hence can make no attempt to identify

and salvage any coefficients that need not be adversely affected.1

In the rest of this section four theorems axe proved that show the condi-

tions under which orthogonal blocks In the data matrix X imply specific v.. 's

to be zero •2 The reader not interested In the proofs to these theorems is

advised to read Theorems 2 and L for gist and continue to the next section.

2.2.1 The Zero Structure of V when X hs Orthogonal Parts

Let us begin with a Th}( data matrix X partitioned into two ortho-

gonaJ. blocks X1 ('IK1) and X2 (K2) with X1'X2 0. In this case we can determine

the singular values of X by determining them separately for X1 and X2 Indeedx

1A set of calculations that proceed correctly in the presence of perfectly
collmear data axe given in Belsley (l97'). These algorithms form the basis
of the NBER Computer Research Center's GREMLIN system - a comprehensive package
for esta.nating sinLiltaneous systems available through the Center's time sharingnetwork.

21t should be emphasized that these are sufficient, but not necessary conditions.
Indeed there may well be other conditions leading to v. . 's being zero - and) these too would lead to coefficients isolated fran col±?tear relationships.
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.
the SVD of X is

XUEV' (2.7)

while those of X1 and X2 are

X1 U1 E VI where UU1 VV 'K E1 = diag. matrix
1

(2.8)
-

U2 EV2 U2U2 - V2V2 I< E2 matrix

It is clear that the matrix V derived from (2.8) as

rv1 0-1
I (2.9)
10 V2

is orthogonal and has the property of diagonalizing X' X

- /v' o\ /'x 0 '\ Iv 0
'\ /E 0

V'(X'X)V (\Q1 v2J (01

1

xx2) [o v2)
=

(o z2 j
(2.10)

Hence the matrix

-. o
= (2.11)
0 E2)

must be the matrix of singular values of X.

Since these values are unique they mist be the same e1nents as E in

(2.7) - although the order is not unique. We have shown
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Theorem 1.

Let X (X1 X2) with X X2 0. Then the singular values of X niy be

determined directly from the separate SVD of X. U.E.V!, il,2.1 3-3-i

This result can be used to show that orthogonality anong sets of columns of X

implies a certain zero structure on the elennts of V in (2.7), and hence on

certain relevant v.. in the numerator of the variance decomposition (2 .14)• We

begin with

Theoren 2.

Let X [X1 X2] with X' X2 0. Then, if the singular values of
[viol

X are distinct, the natrix V in the SVD of X = UEV' has the form
L V2Jwhere V. is K.xlK..1 ii

Proof: The SVD of X. is as in (2.8), and because of Theorem 1, we

Cdfl write E as

Now
0

(X'X) ( T< I = vv
22) - ol

and one V that clearly works is V
1 . But since the columns0

V2j
of the V. are the eigenvectors of the distinctness of the singular

values guarentees the uniqueness of the V1 (up to permutations arid a
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multiplier of nDdulus 1). Hence V is unique up to permutations within its

first K1 coluns and its last K2 colunu-is - which clearly will not alter the

zero structure

QED

The condition in Theorem 2 that the singular values be distinct is over.-

strong for the purpose at hand. Problems in guarenteeing the desired zero struc—

ture occ.xr only when there are multiple roots in camion between E 1and Z2' overlap

of roots. The following exairple demons-b:'ates this. Let

r
x [X1X2] I : I that x'x = -— --:— . -

Lo o:o [jo ooJ
The matrix

1 0 0 ol
o

V=
o --L of

0 ooj
is easily shown to be orthogonal arid diagonalize X'X, but it clearly does not

possess the desired zero structure. Even here, however, there is a V matrix

-that does possess the desired structure, namely V=I, but such a structure is

not guarenteed.
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If, however, there are multiple roots tha.t do not overlap X1 and X2 (are

not in conun to and E2) the desired zero structure is assured. This is

seen by assinnIng otherwise, i.e., assume

[vi' v*1
v — 121[v vj

in any other orthogonal V such that x' x v* 2 Since the and E2 have no

overlap, the non-uniqueness of V (beyond permutations of columns) can occur

only up to linear combinations with its first K1 columns and within its last

K2 columns. Linear combinations aoss these two sets of columns are not

possible. But we already know that["] is a basis for the renge space of the
rol LOJ

first '<1 columns, and[j a. basis for the last K2 columns. Hence any permis-

sible linear combinations must preserve the zero structure. We have proved

Theorem 3.

If in Theorem 2 and 2 have no values in connon (however eat the

multiplicities within each), then V in the SVD of X retains the zero structure

shown there.

The assi..uitions behind Theorem 3 are too s-txong, but they nay be weakened

to produce a useful result, nanely.

Theorem 4.

Let X [x1x2] with XX2 = 0 and let be the ]<±h singular value of

(kth element of E2). Then, 2k is distinct fixm all other (in both

arid E2), regardless of any other multiplicities or overlaps, V = (v) in the

SVD of X has the property that
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V,K+k_ P for jl, ...,
1

i.e •, the ffrst K1 elements of the K1 +k column of V are zero.

Proof Beyond permutations ,the K1+]<±h column of V is uniquely determined up

to a linear combination of the eigenvectors associated with the value

Since this value is assumed distinct, there is only a one dimensional space

associated with It, and we know that this space is spanned by the K1+kth

column of V = J
V1 0 , which clearly has the required zero.

L0YzJ

2.2.2 Nearcollinearity Nullified By Near Orthogonality

Theorem 4 has the generality required to analyze the variance

decomposition (2. Li). Let us assume, in the eth'eme, that X has two oikhogonal

parts X1 and X2 and that X1 is well conditioned but X2 is ill conditioned.

This means that the elements of are roighly of the same magnitude but that

there are some elements of E2 that are relatively small. Break up the sum

(2.4) into its first K1 terms and it last K2 terms as

K v2. K1 v2. 1<2 v
var(bk) = E _!a E isa. + ic,Ki+j (2.12)

j=l cr2 j=l 2 jl ...
1 2J

The ill conditioning of X means that some a2 will be small - indeed zero
J

if X2 Is perfectly collinear. Let thas be 2p Now Theorem 4 guarantees

that for k 1 ... K,., v2 = 0, and hence the term
k,K1-I-p

2

K +p
21
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for k 1 ... K1.. That is, var(bk) is unaffected by near collinearity for

k 1 ... K . These estin.tes are salvaged in the presence of collinearity due

to orthogonàlity of Xi from X2. Of eater generality, however, one clearly

need not assume X1 strictly orthogonal to X2. Since the V.. 's are continuous

functions of the óoluiins of X, as the blocks of X become more nearly orthogonal

(their :inner' products get closer to zero) the relevant elements of V also go to

zero in the Limit. Hence some v can be snafl if the data axe pleasantly well

behaved. That Is, the adverse effects of near collinearity in one block of

data, X2 (as measured by sane small Ozj's) can be mitigated in the estimates of

the coefficients corresponding to another block of data, Xi, as these two blocks

are the more nearly orthogonal (as measured by small V]'S, k K1+l ... K).

2.2.3 An Examle

An exanple of the preceding result is useful here. We wifl consider

the matrix

—71.1. 80 18' —56 —112
14 —69 21: 52 1014

X = 66 —72 —5' 7614 1528
—12 66 —30 '4096 8192 (2.13)

3 8 —7—13276 —26552
4 —12 4 8421 16842

This matrix, essentially due to Bauer (1971), has the property that its fifth

column is exactly twice its fourth, and both of these are orthogonal to the

first three columns. That is, X2 is singular and XIX2Z 0.

The preceding theorems tell us the following about the and V

matrices that result from the singular value deconosition of X: unless there

are mnmltiplicities of roots (which, as a practical matter will occur with
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probability zero), 1) one of the singular values associated with X2 will be zero

(i.e., within the machine toler8nce of zero), and 2) in V 12 v 0

IYzi v2j 12

and V21 0.

Application of the progrmn NINZLT1 to obtain the singular value decomposition

of X results in:

0.170701D 03

a2 = 0.605332D 02

a3 = 0.760190D 01

= 0.36368L1.D 05

a5 = 0.l3ll59D —11

(2 iLl.)

.

A glance at V verifies that the off-diagonal block pardtions are indeed
small — all of the magnitude of 10 or smaller - arid well within the effective
zero of the computational prei

2 Only somewhat less obvious is that one of

the a associated with x2 is zero. Actually a5 is of the order of iO_11, and

1Golub and Reinsch (1970), and Becker, et a]-. (1974).
210 n the IBM 67 in double precision.

0.54786Ll.D 00 —.625347D 00 0.5556850 00' 0.148362D —18 —.543l83D —14

—.835930D 00 0.383313D 00 0.392800D 001 0.2l56l8D —19 —.470435D

0.3263Ll.2D —01 0.6797l5D 00 0.732750D 001 0.l58ll3D —18 —.729449D —14

—.642653D

0.321L1.23D

—15

—15

—.216297D

0.108174D

—15

—15

0.913326D

-.456672D —14'
I

—.'t47214D

—.894427D

00

00

0.894427D

—.447214D
00
00

arid the following diagonal elennts of E .
(2.15)
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would seem to be non-zero, but the relevant conparison1 is the order of magnitude

of the scale-free value k , which, in this case, is 10_i 6 The practical
umax

results are thus in full accord with theory, and we can now exantine the effects

of the perfectly collinear data matrix on the estimated variances of the regres-

sion paranters b = (X'X)1X'y.

It is clear that any problem in the calculation of Var(bk) in (2.4) for

this particular case will arise because of the very small (1g. However, (15,

small as it is, is several orders of magnitude larger than its corvesponding
v2

v.. for i1, 2, 3. Hence the contributions of the i.5 corronents to calcula-

tions of Var(b1), Var(b2) and Var(b3) in (2.4) will be small. That is, the

presence of ptu'e rrnilticollinearity will not significantly upset the precision

with which we can estinate the coefficients of other variates provided these

other variates are reasonably isolated from the offending collinear variables

through near orthogonality.

To denonstrate this point, we calculate the relative cononents of var( b)

by maans of (2.4). 2
25 V

Var(b*1) c E 1jjl 2

2 2 _2
ci (.0010 + .0107 + .5343 + 0.0 + .0017) 10 = a (.5488 x 10 ). (2.16)

It is clear from (2.4) that the cononent of var(b) affected adversely
2

by the collinearity, nanly - , is small (.0017 x 10 ) relative to the total

5

Professor Golub shows any k having the property that I jT,
where c is the effective machine zero, is considered evidence of rank deficiency.
[Golub arid Reinsch (1970)].
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(.51488 x 102). Indeed, it is only through the finite arithmetic of the machine

that this term has any definition, for it, in theory, is an i.n-ideterrnined ratio

of zeros. In practice, there is reason to cast out this component in actual

calculations of var(b).

The preceding is in stark contrast to the calculation of var(b) or var(b),

for these are the variances of coefficients that correspond to variables involved

in the singularity of X. Indeed

5 v2

var(b*) c2 5j cy2 (0.0 + 0.0 + 0.0 + .0000 + 1.1626 x 1023)1.

jl 2
(2.17)

This variance is obviously huge and completely dominated by the last tern

and its role in causing the singularity of X.

2.3 Assessing the Damage Caused by Collinear Data.

2.3.1 At Least Two Variates I&.st Be Involved

The theorems and example of the preceding section help to put

the variance components and proportions suumarized in tables like

b). At first it might seem that the concentration of the variance

regression coefficient (var(bK)) in any one of its compoents

k) signals the fact that multicollinearity may be causing

But it is clear from Theorem 14 that if collinearity (ill conditioning)

The difference between 0.0 and .0000 in these expressions is designed to
differentiate between a number within the machine's zero (0.0), and a nonzero
number with highly negative exponent (.0000). The 0.0 's in (2.17), for example,
are of the order of io° , while the .0000 is of the order 10'°.

meaning to

(2.6 a and

of any one

kj (j 1

problems.
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is causing problems, nre than one variance must be adversely affected by

variance components associated with a single singular value. This is seen

from the following example.

Suppose the data matrix X consists of K mutually orthogonal coli.mnis, and

the singular values satisfy the conditions of Theorem '-I. (as they will with

probability 1). Theorem 4 immediately implies that the V matrix of the singular

valua decomposition of X is of the form'

F" I

I
22 0

v=

L
Hence only the terms in (2.5) will be non-zero, and (2. 6b) will take the form

Proportions in
var var
(b1) (I)

1

'
.j
•U) k 0 1

1
While V has been made diagonal here, Theorem 4 insists only that it have one
non-zero eleiient in each row and column. V is unique only up to column pennuta-
tions and a multiplier of nodules 1. This, of course, does not affect the cal-
culations of (2 .it) or (2.5) since the cr permute in a compensating nnner and
since the vj 5 are squared arid unique despite the multiplier of modulus 1.
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It is clear that a high proportion of each variance associated with a single

singular value is hardly indicative of multicollinearity, for the variance

proportions here are for an ideally conditioned, orthogonal data matrix.

Indeed, problems can arise only when a single singular value is associated

with a large proportion of the variance Df two or more coefficients. This

sisnply reflects the fact that there must be two or more columns of X involved

in any linear dependency.

We know by Theorem that each of the columns, k, of V involved in such

a linear dependency must necessarily have a nonzero Vkj associated with the

small singular value a. The ratio of these vkj to the small must, there-

fore, loom large in the calculation of the variances var (bk) by (2J) for

those coefficients corresponding to the collinear (nearly collinear) variates.

If, for example, in a case of K = 5, columns L and 5 are collinear and all

other columns are mutually orthogonal we would expect a variance-proportions

table like (2. 6b) that has the form, say

Proporations in
var var var var var
(b1) (b2) (b3) (bk) (b5)

F

2l0 1 0 0

c3Jo 0 1 0

•3F cijo 0 0 1
•9J

0 0 0

Here cL plays a large role in both var(b1) and var(b5)
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2.3.2 Variance Proportions : Necessary but not Sufficient

We have learned from the foregoing that near collinearity (ill

conditioning) will manifest itself as high proportions for two or more variances

in components associated with a single singular value . Unfortunately, for the

purposes of testing, the converse does not hold; such a pattern of high pro-

portions need not imply the existence of collinearity. Whereas several variances

may have most of their weight in a component associated with the same singular

value, the overall magnitude of the variance may be pleasantly low--near collirt-

earity, if it exists at all, causes no problem. The variance proportions table,

then, is merely a quick means of telling whether collinearity may be problemful,

but once the pattern of high proportions is detected, one must turn to the actual

variance components in Table (2.6a) to tell whether the overall levels are high.

An example will serve to make this clear.

Let us return to the ndified Bauer matrix of Section 2.2.3. This five

column matrix, we recall, has the property that column 4 is exactly twice

column 5, and these two coluna-is are orthogonal to columns 1, 2 and 3. We would

fully expect that the siiall singular value ( .1312 x 1&)associated with

the linear dependency X1 .
5X5

would daninate several variances--at least

var(b) arid var (b5). The variance proportions table (2 .6b) for the modified

Bauer matrix is given below in Table 1, and a glance at the bottom row verifies

that (35 does indeed account for the entirety of these two variances (the first

three variances are isolated fran this relationship by the orthogonality of the

first three columns of X from the last two).

1. It should be noted in passing that the existence of collinearity in X may
not produce practically hannful problems in estates of a linear model
relating y to X, as in y X+c. Such problems also depend upon the size
of (which also enters in Var (b)). This point is dealt with below in
greater detail in section 2.3..
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TABLE 1

Variance Proportions - Modified Bauer Matrix

Var(b1) Var(b2) Var(b3) Var(b) Var(b5)

.002 .009 .000 .000 .000

.019 .015 .013 .000 .000

(13
.976 .972 .983 .000 .000

.000 .000 .000 .000 .000

(15
.003 .005 .003 1.000 1.000

A somewhat unexpected pattern, however, is also apparent: The single

singular value (13 accounts for 97% or more of var(b1), var(b2) and var(b3).

It may well be the case that a second linear relationship among the cohnns

of X, one associated with (13 is accounting for these high proportLons. But

two facts would tend to discount this possibility. First, the three columns

X1, X2 and
that could be involved in such a relationship1 (X and

X5
are

orthogonal) are reasonably well conditioned; and second, in spite of the con-

centrated variance proportions, the overall magnitudes of var(b1), var(b2) and

var (b3) are small. This latter fact is seen fran the actual variance components

for the modified Bauer matrix given in Table 2.

1.

Prom Theorem 1 we know that the singular values for the matrix X1 which is
comprised of the first three columns of the rnodifed Bauer matrix X are pre-
cisely the same as o, 2 and a for the modified Baier 9triX itself. Hence,
the condition number of X1 is K(X1) .171 x 10 22.5, a number

.76 xlO
mm

quite low relative to most matrices of economic data.



TABLE 2

Variance - Components

Modified Bauer Matrix
2xa

Var (b1)

a .103 x l0
a2 .107 x

a3 .534 X ia2

a, .166 x i046

a5 .172 x l0
Sum =.548 x io_2

Var(b2)

.240 x 10
.401 x l0
.267 io2

.351 x io_48

.129 x

.275 x io_2

Var(b3)
.366 x

.126 x l0

.929

.189 x

.309 x l0

.945 io2

Var(b4)

.142 x

.128 x

.144 io_29

.151 x l0

.465 x

.465 io24

Var (b5)

.354 x

.319 x

.361 x i030

.604 x 10
.116 i024

.116 io24

get the actual variances and variance components, each of the
2

2 must be rruitiplied by a , the variance of the error term in

the linear model y X + e. But, at least on a relative basis, it is clear

that the high proportions associated with a5 are reflecting massive sizes for
2 24

var(b4) and var(b5)-on the order of a x 10 , while tl-se associated with a3

2 —2
reflect smaller variances on the order of a x 10 . Whether this latter

2

figure is small in fact depends, of course, on the size of a

2.3.3 A Suggested Test for Harmful Collinearity

High variance proportions, then, in themselves are not sufficient

to reveal the existence of harmful ôbllinearity--for, as the preceding example

shows, the high proportions may not be associated with a singular value that

has been determined to be small enough (in the sense of Section 1.3) to indicate

rank deficiency. Such is the case with the high proportions associated with a .

In order to

figures of Table
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a , however, has been determined to be associated with a linear dependency,

arid its high variance proportions indicate collinearity to be harmful.

It is suggested here, then, that an appropriate means for detecting

harmful collinearity is the double condition of

1) high variance proportions for two or more variances associated with

2) a single singular value determined by the methods of Section 1.3 to

be small and hence evidence of rank deficiency.

2.3. Multicollineari-ty as a Practical Problem

Whether multicollinearity turns out to be a problem of practical

consequence is a different question from that addressed above. It will be noted

that the test for harmful collinearity suggested above wholly ignores the error
2 2, 1variance a that also enters the relation Var(b) =a (X XY . Indeed, the

terms cancel from the variance proportions of (2 . 6b), but they are a factor

in each of the entries of (2.6a). It is possible, then, that collinearity

resulting in high variance proportions 4, and indeed high components can
2 2

be rratigated by low a , for, from (2.14) and (2.5), var (bk) a k where
K

k j1jk In such a case, the actual variances may be small enough to allow

acceptance of all desired tests of hypothesis, in spite of the fact that the

precision of the least squares estimates would be better in the absence of ill-

conditioned data. In other words, the presence of multicollinearity as deter-

mined here, need not be problemful as a practical matter.1 The test suggested

1 Another view of this point is useful. It will be noted that the entire
analysis of collinearity presented here is based on the data matrix X in
the linear regression model y X + c and no where requires knowledge of y.
This is because ill conditioning, and the instability of calculations arid
estimates that result from it, has only to do with X, and one would be
better off with a nicely conditioned X matrix whether or not the ill con-
ditioning is bad enough to cause practical problems. It is the latter
point that depends upon y, for only through the introduction of y can a2
be estimated in order to determine if the overall levels of the estimated

variances are too high for conducting desired hypothesis tests. If they
are, and ill conditioning can be determined as a problem, then corrective
action is rthwhile.



here, however, highlights when estimated variances are being adversely affected

(whether to a point of being problemful or not), and hence indicates when and

where such variances could be improved should the need arise through the intro-

duàtion of additional inforution that "breaks up" the ill conditioning. This

point will be discussed further in Part 3.
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Part 3. Some General Considerations on Multicollinearity

and Its Corrections

It is not the purpose of this paper to suggest an answer to the third ques-

tion raised in its introduction: that dealing with corrective measures. However,

some general remarks on multicollinearity and its correction seem called for.

Section 1 of this third part examines other tests for multicollinearity that

have been proposed. Section 2 discusses corrective procedures and presents a funda-

mental criticism of the use of non—Bayesian ridge regression as a means of correction.

3.1 Other Tests for Multicollinearity

3.1.1 Simple Correlations

The use of simple, pairwise correlations as a means of showing the

presence of multicollinearity has been so basically discredited that it seems

hardly necessary to mention it. However, the technique appears to flair up anew

with some regularity, and seems to require constant care to keep it extinguished.

In favor of the procedure,it must be said that the existence of two variates

with correlation +1 is a clear indication of multicollinearity and therefore it
would seem that "high" correlation would be problemful. But a correlation of .9

need not result in any real problem of estimation. The test is, therefore,

without proper interpretation, for there is no well defined notion of "high".

Conversely, low correlations are no indication of the absence of multicollinearity,

for three or more variates may be perfectly collinear but have low pairwise

correlations. Examination of the correlation matrix, therefore, offers, at

worst, erroneous and, at best, misleading information.
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3.1.2 The Determinant of X' X

Another discredited test for multicollinearity is the value of

det XtX. Since X singular inplies det X'X 0, the motivation is clearly that

low det X 'X indicates near singularity. The problem with this notion comes from

the fact that nonsingularity-singularity is not a contini.mi. This is readily

seen by considering the obviously nonsingular nm matrix A aI for U>0. Clearly
the determinant of A ( c11) may be made as small as desired by choosing c

sufficiently snail, but equally clearly A is always perfectly invertable.

3 •1.3 Method of Farrar and Glauber

Farrar and Glauber (1967) suggest determining the presence of multi-

collinearity based upon a statistical test of the hypothesis that the columns of X

are in fact orthogonal. A rejection of the hypothesis leads to the alternative

hypothesis that the columns of X are nonorthogonal, arid hence collinear. There

are several weaic-iesses with this approach, both theoretical and applied.

1) Th€. FarTar and Glauber approach is based on the assumption that

the X data resulted fran sane stochastic process whose orthogonality is subject

to test. If the X data are properly assumed as nonstochastic, however, (as they

are in the classicial linear model) the Farrar-Glauber analysis is irrelevant.

2) If the X data are assumed stochastic, the previous consideration

does not apply, but it is still doubtful that the Farrar-Glauber technique is proper.

To see this one must realize ti-at multicollinearity is a condition when sdme

linear canbina-tion of the data are observationally indistinguishable from zero,

and as such multicollinearity is seen to be a special case of the identification



problem. As is well )<nown, identification is a problem logically preceding, arid

not a part of, the statistical problem of estimation. Multicollinearity, then,

is not an estimation problem and is not properly treated as such.

3) As a practical matter the test against the null hypothesis of

orthogonality seems to lack power; that is, it indicates nonorthogonality

very often when there is no real problem (all coefficients are alive, well arid

with strong t's). This practica1 problem is not surprising in light of the

general inappropriateness of the technique. Haitovsky (1968) attempts to over-

cane this practical problem of Far'rar and Glauber by making the test against the

null hypothesis of singularity. Haitovsky' s procedure, however, falls prey to

the same criticisms advanced above.

3.2 Crrective Measures

3.2.1 The Introduction of Identifying Information

The recognition above that multicollinearii:y is an identification

problem has implications not only for the proper way to test for it, but also

for the proper way to correct it. A multicollinear data set results in an

unidentified equation. As is well known1, it requires the addition of new,

independent information to identify an unidentified equation. As we shall see

below, the use of ridge regression as has been suggested by some fails to add

identifying information and, indeed, fails to remove the estimation problem that

results from colliriear data. Two methods have been suggested, however, that can

1 See Fisher (1966).
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properly introduce additional information, and hence stand as appropriate correc-

tive measures. These are the time-honored methods of using outside estimates

(such as cathining estimates of coefficients in a time-series equation previously

estimated from cross-sectional data), and the method of using a Bayesian prior

for the coefficients. The former method has the practical weaa'iess that it is

very difficult to find "outside" conditions that are appropriate to obtain

estimates for the given situation. A marginal propensity to consume, for

example, determined from cross-sectional budget studies has dubious relevance

to a time-series estimated consumption function. The second method, proposed

in Zeilner (1971) and Learner (1973), has much promise.

3.2.2 The Failure of Ridge

Attempts have been irade recently to utilize ridge regression to miti-

gate the effects of multicollinearity) Short of a meanìs of combining this

procedure with some method of bringing in legitimate identifying information ,2

however, this method is doard to failure--merely substituting collinearity in

the data for a degenerate distribution of the estimated coefficients.

We begin with the usual normal equations for least squares

(3.1) X'X b X'y

and we assume X to be rank deficient. The suggested ridge solution is to create

an invertable matrix by constructing and solving the ridge equation

(3.2) (X'X + k)b* X'y

where Q is some positive definite matrix--often taken as I, and b* is the ridge

1 See, for example, Bushnell and Huettner (1973), Hoerl and Kennard (1970).
2 Such, for example, as is done by Holland (1973) in which he caribines ridge

with a Bayesian prior.



estimator. k arid Q are taken so that (X'X + kQYa does exist---arid the pre-

sumption is that b* is now solvable and uniquely so as

(3.3) b (X'X + kQ)X'y

Unfortunately, this trick does not solve the problem for it is readily shown

that Var(b*) is singular, i.e., b* has a degenerate distribution arid is no more

amenable to proper hypothesis testing than is the nonuniquely defined OLS esti-

niator b from (3.1).

To see this, note that, since X is rank deficient, there exists a non-

trivial y 0 such that Xy 0. Hence (3.2) becomes

(3.') (X'X + kQ)b* Xy 0

or

(3.5) C'b* 0

where C' (X'X + kQ)

Clearly C depends only on X (k fixed), arid hence remains fixed in repeated

samplings. (3.5) therefore implies a fixed linear restriction on the ridge

estimates b*, and renders them degenerately distributed.1

This exercise serves to highlight the point made above regarding the need

for identifying information. In multicollinearity, as strongly as anywhere else,

you cannot get something for nothing. There is something about rnulticollinearity

that brings out the alchemist in econometric:Lans, but there is no way one can

squeeze, stamp or club more out of the data than was there in the first place.

If several variates are all giving the same information, yoi cannot make them

speak differently simply by looking at them from a different angle. Only through

the addition of new, independent identifying information can the confounded effects

of collinear data be undone.

1. Again, combining ridge with a Bayesian prior as in Holland (1973) solves

this problem.
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