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Abstract

This paper presents a means for detecting the presence of multicollinearity
and for assessing the damage that such collinearity may cause estimated
coefficients in the standard linear regression model. The means of analysis
is the singular value decomposition, a numerical analytic device that
directly exposes both the conditioning of the data matrix X and the linear
dependencies that may exist among its colums. The same information is
employed in the second part of the paper to determine the extent to which
each regression coefficient is being adversely affected by each linear

relation among the colums of X that lead to its ill conditioning.
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INTRODUCTION

There are three major questions related to the problem of multicollinearity :
when does it exist? how much damage has it caused? and what, if anything, can
be done about it? Making use of a technique of numerical analysis, the singular-
value decomposition, this paper suggests a means for answering the first two of
these questions that is devoid of the ad hoc quality of previous attempts.

Part 1 introduces the concept of the singular-value decomposition ahd applies it
to the determination of the existence of linear dependencies among the columns

of any given data matrix X. An Appendix to Part 1 deals with the problems caused
by scaling of the data matrix. Part 2 addresses the question of assessing the
damage caused by the presence of multicollinearity and applies the understanding
gained from Part 1 toward an answer. Part 3 presents an assessment of several of
the techniques previously advanced in the literature for diagnosing collinearity
and, additionally, presents a fundamental critique against the use of non-
Baysian "ridge regression" as a means of correcting the problems caused by
collinear data. While some contrived examples are provided for illustration,

a true stucliy of the application of these techniques to economic data will be

the subject of a future paper.



Part 1. The Singular-Value Decomposition and

The Detection of Linear Dependencies

1.1 The Singular-Value Decomposition

We learn from the numerical analysts® that any TxK matrix X, considered

here to be a matrix of T observations of K economic variates, may be decomposed

as
X = uzyv' (1.1)
where U'U = V'V = I}< and ¥ is diagonal with non-negative diagonal elements

Ok =1... K.2»3

! See, for example, Golub (1969), Golub and Reinsch (1970), Hanson and Lawson
(1969), and Becker et al (1974).

This decomposition is efficiently and stably effected by a program called
MINFIT [Golub and Reinsch (1970)].

3 In (1) Uis ™K, T is KxK and V is KxK. Alternmative formulations are also
possible and may prove more suitable to other applications. Hence one may have

>

TxK TxT TxK TxK
X =U ¢ V! (1.1a)

TxK Txr rxr rxK (1.1b)

or X = U 3§ V!

where r = p(X). In this latter formulation I is always of full rank, even if
X is not.




The singular-value decomposition is closely related to the familar concepts
of eigenvalues and eigenvectors, but its difference from those concepts is impor-

tant. The non-negative diagonal elements of I are called the singular values of

X, and these are also the non-negative square roots of the eigenvalues of X'X.

This is readily seen by noting
X'X = VEU'UEV' = VI?V'. (1.2)

Recalling the orthonormality of V, we note that V diagonalizes X'X, and
hence the diagonal elements of I* must be the eigenvalues of the real symmetric

matrix X'X.

Equally clear, the orthonormal columns of V must be the eigenvectors of
X'X, and, as is similarly demonstrated, the colums of U must be the eigen-

vectors of XX'.

The singular-value decomposition does not, however, merely duplicate know-
ledge of the eigensystem of X'X, for the singular value decomposi‘tionv applies
directly to the data matrix X, and not to the moment matrix X'X. The singular-
value decamposition thus leads to a means of determining the linear dependencies,

if any, among the colums of the data matrix X.

1.2 The Determination of the Linear Dependencies of X.

Assume that X is rank deficient, i.e., p(X) = r<K. Since U and V are
orthonormal, and hence necessarily of full rank, we must have p(X) = p(Z).
There will, therefore, be as many zero elements along the diagonal of I as the

nullity of X, and hence we may partition the singular-value decomposition in




(1.1) as

' %, O '
X = UZV = U 0 0 V' (1-3)

where I,, is rxr and nonsingular.

After postmultiplying (1.3) by V and further partitioning we obtain

= RE (1.4)
X [v, v,]=1[U, U,1,"" .
where V, is Kur U, is Txr

V, is Kx(K-r) U, is Tx(K~r).
(1.4) results in the two matrix equations

XV, =UZ, (1.5)

and

XV (1.6

2

1"
o

Interest centers on (1.6), for it displays all of the linear dependencies
of X: the Kx(K-r) matrix V, provides an orthonormal basis for the null space

that is spanned by the columns of X.

Two problems arise in applying the exact algebra leading to (1.6) to real
data. First, how does one determine the rank of X, r, i.e., how are the zeros
of I discovered? And second, how are the zeros of V 2 discovered? Both of these
problems arise because computers use finite arithmetic, and only in very special
cases will "true" zeros be calculated as such. There are problems of both round-

) . 1.
ing error and error in the representation of the data™*

1. Also sometimes called truncation error. However, this term also applies to ‘
the error introduced by truncating an infinite series after a finite number
of steps, and hence will not be employed here.




The importance of the first problem is obvious: only through a correct
determination of the zeros of I can we correctly assess how many linear depen-
dencies exist among the columns of X. The importance of the second problem is
less obvious. But, in general, all elements of V2 will be calculated as non-
zeros, however small some may be relative to others. Since scaling of X will
alter these non-zero elements arbitrarily (a problem that is dealt with in
length in the appendix to this section), we may arrive at the conclusion that
many colums of X enter each linear dependency, whether or not this is true.
The econometrician will rarely be satisfied with such an answer; he would like
to identify the zeros of V2 (or some manipulation of it) so that he can say
which variates do and which variates do not enter into a specific linear -

relation. The next two sections deal with these two problems in turn.

1.3 Determination of p(X) =

The singular value decamposition presents a means for determining the
rank of the data matrix X. Referring to (1.1) and recalling that U and
V are orthogonal we see that I has both the same norm and the same rank
as X. Since I is diagonal, were there no problems of calculation introduced
by the imprecision of the computer, one need only determine the number of
nonzero elements of I to discover the rank of X. Unfortunately the task
is not quite so simple, for the nonexact, finite arithmetic necessarily
employed by computers and the problems of rounding error will result in
nonzero elements of I when, under ideal conditions, they should be zero.
It is necessary, therefore, to find a means for detefmining when an element
of I is "small enough" to be considered zero, and hence evidence of X's

being rank deficient.




Proposed Alternatives. The singular value decomposition is useful
in this context of de;tennining rank because it preserves the norm of X
(i.e. column lengths). The singular values are in the same units as the
colums of X, and hence are measurably interpretable. Other suggested
means for determining rank fail on this and other counts ,

The determinant of the matrix (if square - or X'X if not) clearly
fails, for a small determinant has little to do with the invertability
of a matrix. The matrix ocIn has determinant o which can be made arbitrarily
small, yet it is clear that oI has orthogonal colums and is always
invertable for o#0.

It is equally infeasible to obtain information on the invertability

(conditioning) of a matrix from the smallness of some of the diagonal elements

of a triangulation of the given matrix. This process is closely related

to the use of the determinant, since the determinant will be the product

of the diagonal elements of the triangular factof;ization. “Two examples

from Golub and Reinsch (1970) and Wilkinson (1965) illustrate this point.

Consider
501 -1 ]
502 -1 0
0 .599 -1
- .60 |




T

and
— -1
1 -1 -1 -1
1 -1 -1
0
1
Py S

Each of these matrices will be shown by the singular value decomposition

to be quite ill-conditioned even though neither posses a small diagonal

element.

The Condition Number. A means of determining the conditioning of a

matrix that avoids the pitfalls mentioned above is afforded by the singular
value decamposition. The motivation behind this technique derives from a
more correct method of determining whether an inverse of a given matrix
"blows up". As we shall see it is reasonable to consider a matrix to be
ill~-conditioned if its inverse is large in spectral norm® in comparison
with the spectral norm of the given matrix itself. Two examples aid this
point. Consider first the matrix
10
A=]
ol
Clearly as a = 1, this matrix tends toward perfectly singularity. Also
the singular values of A are easily shown to be 1lt+a, and those of A_l are
(l_ta-).-l. Now as a + 1, the product ||A]]| ||A-l|| = lim (1l+a) (l-a)'fl explodes,
‘and hence we conclude the norm of A-l is large relatz:i: to that of A. A is

ill-conditioned for small o.

1 The spectral norm of A = (a;.), denoted ||A]], is simply Opax the
maximum singular value. J :




—8-
By way of contrast, consider the matrix, introduced above,

o 0
0a
There is some feeling that B becomes ill-conditioned as a + 0. However,

I1BI] = o and ||B}]| = o™, and the product ||B]| [[BL|] = oo™

=1is
constant as @ - 0. In this case, then, the norm of B"l does not blow up
relative to that of B, and B is well conditioned for all a.

The conditioning of any square matrix can be summarized, then, by a condi-
tion number k(A) defined as the product of the maximal singular value of A
times the maximal singular value of A_l. This concept is readily extended
to a rectangular matrix and can be calculated without recourse to the inverse
matrix. From the singular value decomposition of X = UIV', it is easily
shown that the generalized inverse X' of X is U2+V' , where z+ is the generalized

inverse of ¥ and is simply I with its nonzero diagonal elements inverted. 1

+
Hence the singular values of X are merely the inverses of those of X, and
the maximal singular value of X1 is the reciprocal of the minimum (nonzero)

singular value of X. We may therefore define the condition number of X

Omax

g .
min

as k(X) =

The Use of The Condition Number in Determining Rank. We will now discuss

the sense in which the condition number has meaning as a measure of the ill-
conditioning of a matrix. This will further result in a meaningful criterion
for determining when a singular value is small enough (relative to Omax) to

provide evidence of a rank deficiency.

1. See Golub and Reinsch (1970) or Becker et al. (1974).




Consider the linear system Xb = a, and suppose the data are known
exactly, but stored in finite precision. It is shown in Stewart (1973) or
Hanson and Lawson (1969) that a change in the last digit of the elements of -
X can result in a change in ¢ (X) times as great in the solution b. That is,

10 and « ) is 10", then a change in X inm the

10

if the machine zero is 10
tenth decimal place can affect b in the 107 x 104 or 10—6 place. Clearly,
then, a condition number sufficiently large can wipe out all significance
to a solution to a linear system. Such would be the case if «k were larger
than the word length of the machine.

In a least-squares problem, the solution to X'X b=X'y, a similar result
holds, except that now a perturbation in X affects X'X as the square, and we
must have the square of the condition number to be like the word length, or,
equivalently, the condition number like the square root of the word length.

Rather generally, then, in the least-squares context, we would suppose
that any singular value, 0 which, relative to the O oy’ Was less than the
square root of the machine zero (the reciprocal of the word length-~about

2-26 for IBM 360/370 long precision) to be evidence of rank deficiency.

When there is Fuzziness in the Data. The determination of the rank of

the data matrix X is less straightforward when the data are known impreciselyes
with fuzziness. The analysis of the previous section is based on data known
exactly, and from it we learn that a perturbation in the last digit of'the
data's word length can affect digits on the order of «(X) from the last in

the solution for b of a linear system. Thus if the word length is 108 and

«(X) is 10°, a change in the eighth digit of X can affect b in the 5th digit,

and a x(X) of 108 can remove a1l significance from b.
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When the data are fuzzy, further problems are encountered, because .
relevant perturbations in the data now affect, not necessarily the last digit it

the word length, but possibly much higher order digits. Suppose again a

word length of 108 and a «k(X) = 103 but the data are known only up to 103.

Now relevant perturbations of the data as stored in the computer are

8 5

107x10 ° = 10° times greater than perturbations of the last digit of the

word length. Hence the solution to the linear system will be known with

even less precision, and could1 be affected in the digits on the order of

6

K(X)Xloa. In this case that would be 10°, leaving only the first two digits

to be known with any accuracy.
In the least=~squares solutions—as contrasted to the solution to a
linear system used in the explanation above-—the treatment of data fuzziness

is quite analogous. If the data in X are exact to, say, 103, then the data

of X'X are exact to 10%. A word length of 108 now implies that perturbations ‘

8 6

of the order of 10°x10 = = 102 are now relavant, and these can in turn be

2 .,
magnified in the least-squares solution by a factor k (X), the condition

8

number of X'X. Here, this would be (103)2,‘:102 = 10", and hence the solution

b may have no definition at all with an 8 digit word length.

1. The word could is used because the figure is an upper bound telling the .
worst possible story., It could be better in any given case.
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The preceding leads to the following suggestion for determining when
a singular value is small enough to be considered evidence of rank deficiency

when there is fuzziness in the data. Let w be the word length;, and f

2 3

be the fuzziness2 in the data matrix X -- £ that of X'X. ° Then the foregoing

argues that we must have wf—zxz(x) < w if the least squares solution is to

have any meaning (any stable digits) at all. That is we must have «k(X) < f.

If the data are known up to 103, we can allow X to have k(X) = % max < 108.

? min

Hence any o) such that ° max 5_103 (=f) would indicate the possibility
7k

of rank deficiencv.

1. w can be measured as 102, where % is the number of digits carried by the
machine.

2. f can be measured as th, where h is the number of places known with
exactness.

3. Provided X'X is accumulated in double precesion relative to that of X.
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1.4 Determining the Structure of the Linear Dependencies of X.

1.4.1 Defining the Structure

In this subsection we assume we have already determined the rank of
X as described in the previous subsection. Our interest here centers on deter-
mining which variates do and which do not enter any specific linear dependency.
Tt is this information that is meant by the term structure of the linear
dependency. It is not sufficient to examine the zero structure of V, in (1.6)
to determine the structure of the linear dependencies, for clearly, for any

(k-r)? nonsingular matrix A, (1.6) becomes
X V,A =0, | 1.7)

and we can alter the zero structure of these linear dependencies (given by the
zeros of the matrix V,A) arbitrarily. Rather we must rework (1.6) into a form
that is invariant to linear transformations. This is accomplished by partition-

ing (1.6) to produce a "reduced form" as follows:

XV, = [Xlxz]l:zz.j: 0, - a.s)

where X, is T x (k-r) V,, is (e=r) x (k=r)
X, is T X V,, is v x (k-v)
and V,, is chosen to be nonsingular. Since V,, having orthonormal colums, is

of full rank, such a nonsingular submatrix must exist. From (1.8) we obtain

- 1 =
X, == XZVZZV;1 =XG ‘ (1.9

- -1
where G = - V22V21.
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The structure of (1.9) is clearly invariant to linear trensformations since

X V,A = 0 implies [XIXZJE\;?il A= 0or X, = XVp,A A V31 = - X,6. The determina-
: 22

tion of the structure of the linear dependencies of X therefore is precisely
the determination of the zero structure of the matrix G. From it we learn which
colums of X, are involved in linear relationships with the variates composing

the colums of X1'

Unfortunately we cannot sirﬂply calculate G and look for its zeros, for,
as already mentioned, the finite arithmetic used in determining V,— now further
compounded by the calculations determing G as -szvgi —will not guarantee that

the zeros of G will indeed be calculated as zero.

1.4.2 Determining the Zeros of G.

Two methods are suggested here for giving numerical specification to
the zeros of G.! The first is a linear-programming approach, the second a least-
squares approach. Both methods are based upon the following rationale. Linear
dependencies are exact only in perfect algebra. The econometrician has always
sought to extend this concept to one of "near dependency", a notion that has been
more intuitive than rigorous. In the previous section, however, we saw how
"nearness" could be given meaning in a realistic context both by the natural
fuzziness given by a "machine zero", and by the more usually encountered fuzziness
that results from data inaccuracies. This latter concept requires some discus-

sion.

1
The authors are greatly indebted to Gene Golub of Stanford University and
John Dennis of Cornell University for their contributions to these techniques.
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Observational Equivalerice

A published GNP figure of 1.054 trillion dollars is clearly not exact.
Indeed all additional information regarding digits beyond 10-3 have been sur-
pressed. The datum 1.054 is therefore observationally indistinguishable from
1.0542 or 1.0539. That is,there is some region of fuzziness such that, given
normal rounding procedures, any data point lying in that region is equally valid
for an entry into X. This concept of truncated data reporting is quite distiﬁct
from errors in observation. The latter would argue that one might not know for
sure the correctness of the data actually reported. Hence observations error
introduces yet another element of fuzziness into the degree of accuracy with
which one knows one's data.

In any event there is reason to suppose that there exists a matrix E,
determined by the investigator, that puts limits on the accuracy to which he
believes he knows his data. These limits may, for example, take the form that

3".

"colum 6 of X is known only up to 10~ Hence, any data matrix X such that

| X - X |<E is observationally equivalent to x.1 This notion of observational
equivalence (which could no doubt also be cast into a statistical framework)

is a data-analytic analogue to the identification problem. Given the fuzziness
in X, any results based on any X observationally equivalent to X must also be
indistinguishable within the degree of precision to which the data are known.
Hence the investigator must consider as observationally indistinguishable any

G resulting from the singular value decomposition of any appropriate X = Uzv'.

It is this notion of observational equivalence that is exploited to determine the

zeros of G.

' The notation [X| here is used to mean absolute value of a matrix, not the
determinant.
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Zero Enrichment

Given the data matrix X, we have from (1.9) that
X, - X,G = 0, (1.10)

and we proiaose to determine the zero structure of G by determining whether any
of its elements (or specific of its elements) are observationally indistinguish-
able from (equivalent to) zero. To do this we employ a numeric-analytical
analogue to hypothesis testing.! It is proposed that the investigator examine
the G determined by the singular value decomposition of X and specify which of
its elements he has reason to believe to be zero. This may be based upon

a priori considerations of which variates would not belong in certain linear
dependencies (hence implying the corresponding elements of G to be zero) or it
may be based on experience he has regarding which values of G that are calculated
to be small numerically are in fact zero. In any event the matrix G has, as a

matter of hypothesis, certain of its elements made to be zero. The resulting

zero enriched matrix is denoted G. In both of the following procedures a method

is presented to test the hypothesized zero enrichment by determining whether G
is observationally equivalent to G in the sense that G could indeed by calculated

as the G matrix for a data matrix X that is observationally equivalent to X.

Method 1: A Linear-Programming Approach

Llet A = (Gij) be a TxK matrix to be determined. X is the given TxK data

matrix and FE is the "limits" matrix defined above. G is the matrix defined in

'Again a statistical formulation of this procedure may well be possible, but is not
examined here.
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(1.9) by the singular value decamposition of X and for which (1.10) holds.
Partion A = [A,A,] to correspond to X, and X,. G is an hypothesised zero-
e.nriéhed matr*lx subject to test. We will say that G is observationally equi-
valent to G (and hence accept the hypothesised zero emrichment) if there exists

adl = [AIAz] such that G satisfies

X, +8) - (X, +4,) G =0 | (1.11)
and

|Al< E, (1.12)

i.e., if G can result from the singular-value decomposition of a data matrix
that is observationally equivalent to X.
The existence of such a A can be established from the feasibility of a

linear progrem. From (1.11) we have

Ay - 8,6 = = (X, - X,6) (1.13)
or

AMH = -XH (1.1%)

where H 4;é] .

Using the change of variable

®=A+E, (1.15)

the problem of finding a A that satisfies (1.14) subject to the inequalities

(1.12) is equivalent to finding the ¢ that satisfies

¢H = (E-X)H subject to (1.16)
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9<2E and (1.17)

%> Q.

The existence of such a ¢ = (¢ tk) is clearly established if there exists a
feasible solution to the contrived linear program

min 14 @1y = f:]i 943 [y » @ vector of n ones] (1.18)

subject to (1.16 and 1.17).

‘£

Tt is worth emphasizing that it is not necessary to solve the LP (1.18)
to accept the hypothesis of the zero enriched é, rather it is only required to

demonstrate the feasibility of the program.

Method 2: A Least-Squares (minimum norm) Approach

The LP given above will, even for moderate sized econamic problems, be
large. Even the demonstration of a feasible solution could prove costly, and,
‘hence, a second method appears worthy of consideration.

Our problem is to find a A satisfying (1.14) also obeys the inequalities
(1.12). Since H in (1.14) necessarily has full rank, we can find all A satisfy-
ing this relation without regard to (1.12) (in general there will be an infinity

of them) by considering all
A= - XHH | (1.19)

where H is any pseudoinverse of H. Among all these solutions, however, is one

with minimum norm (i.e., a A with minimm izjdlg-j ), which ig found by using the
b

generalized inverse H+, i.e.

A% = XHH . (1.20)

There is, of course, no guarantee that A* will satisfy (1.12) in all cases,

but there is reason to hope that its property of minimun norm will indeed also
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result in (1.12) as a practical matter. This second method of determining A,
then, is suffidient but not necessary to accept the zero emrichment hypothesis.
That is, a solution to (1.20) that also satisfies (1.12) accepts the observational
equivalence of G (the hypothesized zero enrichment), but a solution to (1.20)

that does not also satisfy (1.12) does not mean that a solution to the LP (1.18)
does not exist.! The advantage of this technique over the LP is that it is

quick and cheap to employ. If it works, no further effort is required. If it
doesn't, further investigation may be warranted. It will be a matter for

experience to determine just how well this short cut works in practice.

1. We are indebted to our colleague, Paul Holland, for highlighting these points. .
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APPENDIX TO SECTION 1. SCALING

The seemingly elaborate test procedures given in the previous section are
motivated by the fact that the elements of G are scale sensitive and can be
made arbitrarily small simply by a choice of scale. Determination of the zero
structure of G, therefore, requires some meaningful (not arbitrary) measure of
small, and this measure is afforded by the procedures outlined.

The purpose of this appendix is to demonstrate this problemful scale
sensitivity.

Let X be the data matrix in "original units", and let D = diag(ql ces dK)
be a scaling matrix (all di # 0). Call the scaled data matrix X = XD. Now

(using the notation of the text) the SVD of X is

X=UZV', implying X V, = 0 (1.21)
and that of X is
R=0% 9', implying X 62 = 0.

The reduced forms corresponding to the original and scaled data are therefore

-1 -1
Xy = X3 Va2 V21 = X3 G, G = =Va2 V23 (1.23a)

1l
Hi
1

~

and X1

A

X2 @,

~ Ay
= 5,, U3 (1.23b)

@>
1

A A Al
=Xy V22 V21

and the econometrician must insist that the zero structure of G be the same as

G, since arbitrary séaiing cannot affect the real linear dependencies.
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We will now show that with exact arithmetic, these zero structures are
indeed the same, but that they can be made to appear different due to finite
arithmetic, hence necessitating the test procedures of Section 1.4.2.

From X V, = 0 we may write

-1 =3 n1 — :
XDD'y =XD'V, = 0. (1.24)

Since p(§) = p(X), the null space of % must have the same dimension as X, ard
hence D! V, provides a basis (not orthonormal) for the null space of g.
Hence any orthonormal basis for this null space (such as \72) must be a non-

singular transformation of D !V,. Let this be

A - -1
A - Va1 D;! 0O Va1 D, V,,H
¥,=D'V,H or |, | = _, He (1.25)
V22 0 D2 V22 D2 VZZH

for H nonsingular.l :

Putting (1.25) into (1.23b) gives

A

Ry = X, Vaa V31 = =R, D3! Voo HH! V31 D,
= ~Xz Dp! Vp, V2i Dy = =X, D3' G Dy (1.26)
Comparing (1.26) with (1.23b) shows
G= Dz' 6 D,. (1.27)

1.1t is readily seen from X = [61.'62] Ell E;] [‘é:] that .{;2 can be any ortho-
normal basis for the null space of X. One can therefore derive at least one
such ¥, from Vs by taking the QR decomposition of D”!V, = Q R to produce
V, = Q = DIV,RL.
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Since D; and D; are both diagonal, we have éij = 0 if and only if gij = 0,
where G = (éij) and G = (gij). Hence, in exact arithmetic scaling does not
change the zero structure of G. However, in finite arithmetic it is clear that
any nonzero element of G may be made as small as desired in é by appropriate
scaling. A nonzero in G may therefore be a zero in ¢ and vice versa within the
limits of the machine's calculations.

The solution to this problem (that the determination of linear dependencies
may be scale-affected) is one of numerical analysis. Since there would be no
problem from scaling if we had exact calculations, we should analyze the data
matrix X in units chosen to allow for the numerically most stable calculations
in light of the finite arithmetic. Colum equilibration (scaling to produce
roughly equal column lengths) enjoys some usefulness in this context.k Conclusions
regarding the zero structure of Va2 should be based on a data matrix so scaled.
Then, should the user desire information on a differently scaled matrix, the
above determined V, with the zero structure imposed should provide the basis of
the transformed structure. That is, let X be the data scaled for numerical
accuracy, and let § = X D be the data scaled in terms of the user's preferences.
Then the zero structure of the G applicable to the data in X is determined by
analysis of (1.23a). Let G be the calculated matrix, and denote G with its
"zero" elements replaced by exact zeros by G*. Information on G* can then be

had by the analog to (1.27), namely
G* = D7'G*D,. (1.28)

Clearly &* will have the same zero structure, invariant to scale.

1. See Van der Sluis (1969) and (1970).




—29-

Part 2. An Assessment of the Damage Caused by. Linear Dependencies

In this part we address the second major question set out in the opening
paragraph, namely, how much damage is caused to the regression estimates due to
the presence of linear dependencies (near dependencies) in the data matrix. It
is well known that any such damage manifests itself in unstable regression
coefficients and in inflated sampling variances. But it has not been possible
quickly to determine whether the size of any specific sampling variance was
large because of collinear data or because of inherent noise (arising, for
example, because the given variate does not belong in the hypothesized relation-
ship). The former problem is potentially correctable through additional informa-
tion that might take the form of new noncollinear data, a prior distribution
for the regression parameters, or outside estimates for specific coefficients.
The analysis presented here helps to determine whether collinear data is in fact
a cause of inflated sampling variance, and further it helps to highlight which
regression estimates are being most adversely affected - thereby keying where
corrective measures are most profitably employed.

In Section 1, the decomposition of the sampling variance that forms the
basis of the analysis is presented. Section 2 presents a theoretical result that
helps to interpret possible outcomes of the decomposition. Section 3 examines
the procedures suggested in Section 1 for assessing the damage caused to regres-

sion estimates from the use of collinear! data.

! Tt should be highlighted that the term collinear here means rank deficient
in the sense of Part 1 and does not mean the existence of an_exact linear
dependency; nor, obviously is it the common but loose usage 1n econometrics.
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2.1 The Basic Decomposition of the Variance of b.

The singular value decomposition of a data matrix X, as we saw in Part 1
of this paper produces a set of singular values that can be associated with
potential linear dependencies in the data. The word "potential" is used because
(as per Section 1.3) it must first be determined, through machine and data con-
siderations, which singular vaiues are small, and for each of these there is a
linear dependency to be identified. As any one singular value, then, gets
small relative to O nax? there is a near dependency to be associated with that
singular value.

The basis for the analysis presented here is the decomposition of the
variances of the regression coefficients into components that are associated

with the singular values of X and hence are directly related to the specific

linear dependencies possesed by X. A derivation of this variance decomposition
using eigensystems of X'X due to Silvey (1969) is given in Johnston (1972), but
we rederive the result here using the singular-value decompostion to highlight
the correspondence of the components to the singular values, and hence the
linear dependencies, of X (not of the moment matrix X'X).

The variance-covariance matrix of the least squares estimator b = (X'X)™ X'y

is, of course,

Var (b) = o*(X'X)7! (2.1)
where o? is the common variance of the components of the T disturbances € in

Vv = XBre. Making use of the singular value decomposition of X

TxK TxK KxK KxK :
X = U I V' with Z=diag(01..0}8,andv=(vij) (2.2)




Ol

we may rewrite (2.1) as (recalling U'U = I)
Var(b) = o2 Vz-2y! (2.3)

or, for the k~th component of b,

, V"2 .
var(b, ) = g2 ) X (2.4)
i o

e N

(2.4), it will be noticed, decomposes var(bk) into a sum of components each
containing the square of one of the singular values, Gj' We recall from Section

1.3 how, for each linear dependency of X, some Gj becomes small. Since these Gj

are in the denominator in (2.4), other things equal, those components of var(bk)
associated with a linear dependency (with small cj) will be large relative to

the other components. This suggests, then, that an unusually high proportion of
the variance of one or more coefficients concentrated in components associated

with a specific singular value gives evidence that the corresponding linear
dependency may be causing problems. This suggestion is pursued in Section 2.3 after
some interpretive considerations are developed in Section 2.2.

It is a relatively easy matter to display these proportions for all var(bk)

so that the investigator can tell at a glance where problems may be arising

Define

2
Vk' X

”kg“_c?L > M= I My k=1..K (2.5)
J J=1

and

g

¢kj"‘nk k,j=1 K

Then all information is summarized by the tables




' and

Associated with

Q
[

Q
N

~25a

Variance-Components Table
(all entries X 02)

Components of
var(bl) var(b,) R var(bK)
"1 "1 SRS el
", L .. Ko
n n . n
1K 2K T KK

(2.6a)
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Variance-proportions table

Components of
var(by) var(bp) ... var(by

0, $11 12 . ¢ 1K€

G, (',).21 (',)22 e ¢2K
: (2.6b)
3
=
3]
2 ¢ ¢ ¢
< o9 Ki Ks KK

An example of these tables is given in Sections 2.2.4 and 2.3.3 below.

2.2 An Interpretive Consideration: Orthogonality and the Zero Structure of V.

It will be necessary to gain much practical experience with the decomposition
(2.4) before reasonable guidelines can be established for its use as a diagnostic

tool. There is, however, one immediate consideration that can be given a
2
K3
no difference to Var(bk) if the corresponding Oj are very small, i.e., the

coefficient will be immune from collinearity associated with those particular

rigorous foundation, namely, that if in (2.4) some v. . are zero, then it makes

singular values. This section examines the conditions under which certain of
the Vij will be zero (or small relative to the corresponding oj) and hence
develops conditions under which certain regression coefficients need not be
adversely affected by the presence of multicollinear data. We can anticipate
this result by reca.lli,ng‘ the well known fact that the addition to a regression
equation of a variate that is orthogonal to all previous variates will not affect
the regression calculations based only on the original variates. Clearly then,

it should also not affect any regression calculations to add a set of variates
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that are orthogonal to all previous variates ~ whether or not this additional
set itself contains with it a perfectly.collinear relationship.

Indeed, through a series of telescoping theorems of increasing generality,
we arrive at sufficient condition on X (and its singular values) under which
orthogonal partitions of X imply specific Vij 's to be zero in the singular
value decomposition of X. These are approximate conditions, then, under which
regression estimates may possibly be salvaged even in the presence of strongly
collinear data. Special computational algorithms are required to exploit this
possibility, however, for most regression programs are incapable of dealing with
collinear data no matter how it occurs, and hence can make no attempt to identify
and salvage any coefficients that need not be adversely affected.?

In the rest of this section four theorems are proved that show the condi-
tions under which orthogonal blocks in the data matrix X imply specific vij 's
to be zero.? The reader not interested in the proofs to these theorems is

advised to read Theorems 2 and 4 for gist and continue to the next section.

2.2.1 The Zero Structure of V when X has Orthogonal Parts

Let us begin with a TxK data matrix X partitioned into two ortho-
gonal blocks X; (TxK;) and X, (TxK;) with X;'X2 = 0. In this case we can determine

the singular values of X by determining them separately for X; and X2+ Indeed

7\ se’{: of calculations that proceed correctly in the presence of perfectly
collinear data are given in Belsley (1974). These algorithms form the basis
of the NBER Computer Research Center's GREMLIN system - a comprehensive package

for es}’t(:]'mating simuiltaneous systems available through the Center's time sharing
network.

2Tt should be emphasized that these are sufficient, but not necessary conditions.
Indeed there may well be other conditions leading to v..'s being zero - and
these too would lead to coefficients isolated from colldear relationships.
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the SVD of X is

X=uzVv

while those of X; and X, are

X, =U; Z,V§ where UlU, = V]V, = IK1 D
X, = U, %,V U, = ViV, = T E, =
It is clear that the matrix V derived from (§T8) as

B
-

is orthogonal and has the property of diagonalizing X'X

~ - Vl' 0 X1'X1 0
V'(X'X)V = 0 Vz 0 lexz

Hence the matrix

~ I3 0
$ =
0 o

(50 )

must be the matrix of singular values of X.

Since these values are unique they must be the same elements as I in

(2.7) - although the order is not unique.

We have shown

diag. matrix

diag. matrix

2.7

(2.8)

(2.9)

(2.10)

(2.11)
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Theorem 1.
Let X = (X;X,) with X{X, = 0. Then the singular values of X may be

determined directly from the separate SVD of Xi = UiZiV!, i=1,2.
1

This result can be used to show that orthogonality among sets of columns of X
implies a certain zero structure on the elements of V in (2.7), and hence on
certain relevant vij in the numerator of the variance decomposition (2.4). We

begin with
Theorem 2.

Let X = [X%% 1 with X/X, = 0. ﬂmuifﬂmsM@hrwmms%' 7
: L 0]

X are distinct, the matrix V in the SVD of X = UIV' has the form 30 vl o
[l
L ZJ

where V. is K.xK..
1 1 1
Proof': The SVD of X. is as in (2.8), and because of Theorem 1, we

can write 3 as

5, 0
|
!
Now X{Xl 0
t - - 2.0t
(X'X) = 0 X3X, vIv
v, o
and one V that clearly works is V = 0 vl e But since the columns
Y2

of the Vi are the eigenvectors of XiXi, the distinctness of the singular

values guarantees the uniqueness of the Vi (up to permutations and a
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multiplier of modulus 1). Hence V is unique up to permutations within its
first K, columns and its last K, colums - which clearly will not alter the

zero structure
QED

The condition in Theorem 2 that the singular values be distinct is over-
strong for the purpose at hand. Problems in guaranteeing the desired zero struc-
ture occur only when there are multiple roots in common between Z;_énd z,, overlap

of roots. The following example demonstrates this. Let

1
B 0o !'o o0 3 0+0 O
_ o 1 .0 o = [0 1.0 _0
x-[x1x2]_ 0o 0 1 o so that X'X 0" 0170
0 0 '0 Y2 0 0. 0 2
The matrix
[1 010 o]
o_i_:_l_o
ve |_ Y22
0 .:__L;L_ 0
Y2 12
0o o0'o 1__{

is easily shown to be orthogonal and diagonalize X'X, but it clearly does not
possess the desired zero structure. Even here, however, there is a V matrix

that does possess the desired structure, namely V=I, but such a structure is

not guaranteed.
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If, however, there are multiple roots that do not overlap X, and X, (are
not in common to I; and Z,) the desired zero structure is assured. This is

seen by assuming otherwise, i.e., assume

Vi oy

V* = 11 12
| v %

VZ 1 VZ 2

in any other orthogonal V such that X'X = V*ZZV’;‘. Since the I, and I, have no
overlap, the non-uniqueness of V* (beyond permutations of colums) can occur
only up to linear combinations with its first K, colums and within its last
K, colums. Linear combinations across these two sets of colums are not

possible. But we already know that[v1 is a basis for the range space of the

0
first K, colums, andl: z] a basis for the last K colums. Hence any permis-

s:.ble linear combinations must preserve the zero structure. We have proved

'Theorem 3.

If in Theorem 2 Z, and I, have no values in common (however great the
multiplicities within each), then V in the SVD of X retains the zero structure
shown there.

The assumptions behind Theorem 3 are too strong, but they may be weakened

to produce a useful result, namely.

Theorem 4.

Let X = [X)X,] with X]X, = 0 and let 0, be the kth singular value of X,
(kth element of Z,). Then, if Ty is distiﬁct from all other ¢ (in both I,
and £,), regardless of any othér multiplicities or overlaps, V = (vij) in the

SVD of X has the property that
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Vj’K1+k =0 for j=1, ..., K,

i.e., the first K, elements of the K, +k colum of V are zero.

Proof Beyond permutationss,the K, +kth colum of V is uniquely determined up
to a linear compination of the eigenvectors associated with the value _G;k'
Since this value is assumed distinct, there is only a one dimensional space
associated with it, and we know that this space is spanned by the 1<1+kth

colum of V = [’1 j, which clearly has the required zero.
: 0 Vv

2.2.2 Nearcollinearity Nullified By Near Orthogonality

Theorem 4 has the generality required to analyze the variance

decomposition (2.4). Let us assume, in the extreme, that X has two orthogonal

parts X; and X, and that X, is well conditioned but X, is i1l conditioned.
This means that the elements of I, are roughly of the same magnitude but that
there are some elements of I ) that are relatively small. Break up the sum

(2.4) into its fiprst K1 terms and it last K, terms as

2 2
ve. Kl Vi Kz \V/ .
var(h) = I =L = 3 oy g Tkakerd (2.12)
j=1 o? j=1 ij j=1 .cgj.
j .

The i1l conditioning of X means that some 0,, will be small - indeed zero
]
if X, is perfectly collinear. lLet this sz be OZP. ‘Now Theorem U4 guarantees

that for k = 1 ... K;, = 0, and hence the term

2
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for k =1 ... Ki. That is, var(bk) is unaffected by near collinearity: for
k=1...K. These estimates are salvaged in the presence of collinearity due
to orthogonality of Xi from X2. Of greater generality, however, one clearly
need not assume X; strictly orthogonal to Xa. Since the Vij's are continuous
functions of the colums of X, as the blocks of X become more nearly orthogonal
(their inner products get closer to zero) the relevant elements of V also go to
zero in the limit. Hence some vij can be small if the data are pleasantly well
behaved. That is, the adverse effects of near collinearity in one block of
data, X2 (as measured by some small 023's) can be mitigated in the estimates of
the coefficients corresponding to another block of data, X1, as these two blocks

are the more nearly orthogonal (as measured by small vﬁj's, k = K41 ... K).

2.2.3 An Example
An example of the preceding result is useful here. We will consider
the matrix
-74 80 18 <56 -112
_ 4 -89 21, 52 104
TR LD R i uom  ver (2.13)

3 8 -7,-13276 -26552
4 =12 4: 8421 16842

This matrix, essentially due to Bauer (1971), has the property that its fifth
colum is exactly twice its fourth, and both of these are orthogonal to the
first three colums. That is, X, is singular and X}X,= 0.

The preceding theorems tell us the following about the £ and V
matrices that result from the singular value decomposition of X: unless there

are mulfiplicities of roots (which, as a practical matter will occur with
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probability zero), 1) one of the singular values associated with X2 will be zero :
(i.e., within the machine tolerance of zero), and 2) in V {g:l Vli] s, V. =0
12
1 2

Va2
and V21 = 0.

Application of the program MINFIT! to obtain the singular value decomposition

of X results in:

(2.14)

0.547864D 00 -.625347D 00 0.5556850 00: 0.148362D -18 -.543183D -1u

-.835930D 00 0.383313D 00 0.392800D 00/ 0.215618D -19 -.470435D -14
1

0.326342D -01 0.679715D 00 0.732750D 00 0.158113D -18 -.7294439D -14

-.642653D -15 -.216297D -15 0.913326D —14: -.447214D 00 0.894427D 00
0.321423D -15 0.108174D =15 =.456672D -14; -.894427D 00 ~-.4u47214D 00

and the following diagonal elements of I

0.170701D 03
o, = 0.605332D 02

Q
P
1

oy = 0.760190D 01 (2.15)
o, = 0.363684D 05
os = 0.131159D -11 .

A glance at V verifies that the off-diagonal block partitions are indeed

14

small - all of the magnitude of 10 - or smaller - and well within the effective

zero of the computational precision.? Only somewhat less obvious is that one of

the o, associated with X, is zero. Actually os is of the order of 10_11, and

'Golub and Reinsch (1970), and Becker, et al.(1974),
2107'dn the TBM 67 in double precision.
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would seem to be non-zero, but the relevant comparison! is the order of magnitude
of the scale-free value _%%_ , which, in this case, is 10~'°. ‘The practical
results are thus in fullcgggérd with theory, and we can now examine the effects
of the perfectly collinear data matrix on the estimated variances of the regres-
sion parameters b = X)Xy,

It is clear that any problem in the calculation of Var(bk) in (2.4) for
this particular case will arise becéuse of the very small 0,. However, 0Og,
small as it is, is several orders of magnitude larger than its corresponding
Vi3 for i=1, 2, 3. Hence the contributions of the Z%f__components to calcula-
tions of Var(b,), Var(b,) and Var(b,) in (2.4) will be small. That is, the
presence of pure multicollinearity will not significantly upset the precision
with which we can estimate the coefficients of other variates provided these
other variates are reasonably isolated from the offending collinear variables
through near orthogonality.

To demonstrate this point, we calculate the relative components of var(b¥)
by means of (2.4). 2

5
Var(b*l)=o r 13 =

o .
3
_2 . 2
o? (.0010 + .0107 + .5343 + 0.0 + .0017) 107 = o° (.5488 x 107 ). (2.16)

It is clear from (2.4) that the component of var(bf) affected adversely

V2

by the collinearity, namely , is small (.0017 x 10~%) relative to the total

s

. o
Iprofessor Golub Shows  any o) having the property that Gﬁax < Ve,

where ¢ is the effective machine zero, is considered evidenice of rank deficiency.
[Golub and Reinsch (1970)].
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(.5488 x 10—2). Indeed, it is only through the finite arithmetic of the machine
that this term has any definition, for it, in theory, is an undetermined ratio
of zeros. In practice, there is reason to cast out this component in actual

calculations of var(b¥).

The preceding is in stark contrast to the calculation of var(bf) or var(b?),
for these are the variances of coefficients that correspond to variables involved

in the singularity of X. Indeed

5 v2,
var(b¥) = 0?2 £ "3 =02 (0.0 + 0.0 + 0.0 + .0000 + 1.1626 x 102*)*,
=1 2 v
J _ (2.17)

This variance is obviously huge and completely dominated by the last term

and its role in causing the singularity of X.

2.3 Assessing the Damage Caused by Collinear Data.

2.3.1 At Least Two Variates Mhsf Be Involved

The theorems and example of the preceding section help to put
meaning to the variance components and proportions summarized in tables like
(2.6 a and b). At first it might seem that the concentration of the variance
of any one regression coefficient (var(bk)) in any one of its compoents
¢ j = 1 ... k) signals the fact that multicollinearity may be causing

X3 &)
problems. But it is clear from Theorem 4 that if collinearity (ill conditioning)

'The difference between 0.0 and .0000 in these expressions is designed to
differentiate between a number within the machine's zero (0.0), and a nonzero
number with highly negatlve exponent (.0000). The 0.0's in (2. 17) for example,
are of the order of 10~3° » while the .0000 is of the order 10-10
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is causing problems, more than one variance must be adversely affected by
variance components associated with a single singular value. This is seen
from the following example.

Suppose the data matrix X consists of K mutually orthogonal colums, and
the singular values satisfy the conditions of Theorem 4 (as they will withl

probability 1). Theorem 4 immediately implies that the V matrix of the singular
value decomposition of X is of the form!

0 VKK

Hence only the Vi3 terms in (2.5) will be non-zero, and (2.6b) will take the form

Proportions in

var var
by

g% o1{1 0

7 8 !

£

4% Gk_i iJ_.

© While V has been made diagonal here, Theorem 4 insists only that it have one
non-zero element in each row and colum. V is unique only up to column permuta-
tions and a multiplier of modules 1. Thls of course, does not affect the cal-
culations of (2.4) or (2.5) since the o2 permute in a compensating manner and
since the v, i3 .'s are squared and unique Jdesplte the multiplier of modulus 1.
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It is clear that a high proportion of each variance associated with a single
singular value is hardly indicative of multicollinearity,for the variance
proportions here are for an ideally conditioned, orthogonal data matrix.
Indeed, problems can arise only when a single singular value °j is associated
with a large proportion of the variance of two or more coefficients. This
simply reflects the fact that there musf be two or more columns of X involved
in any linear dependency.

We know by Theorem 4 that each of the columns, k, of V involved in such
a linear dependency must necessarily have a nonzero v, . associated with the

k3

small singular value oj. The ratio of these ij to the small oj must, there-

fore, loom large in the calculation of the variances var (bk) by (2.4) for

those coefficients corresponding to the collinear (nearly collinear) variates.

If, for example, in a case of K = 5, colums 4 and 5 are collinear and all
other colums are mutually orthogonal we would expect a variance-proportions

table like (2.6b) that has the form, say

Proporations in

var var var var Vai"
(b,) (b,) (b,) (b,) (b))

Q

w
IO o O o l--‘1
o o o LB o
o O LB O O
o R o o o

Associated with
singular value
Q
£

0
0
0

.9

5

Here o, plays a large role in both var(bu) and var(bs).
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2.3.2 Variance Proportions: Necessary but not Sufficient

We have learned from the foregoing that near collinearity (ill
conditioning) will manifest itself as high proportions for two or more variances
in components associated with a single singular value.l Unfortunately, for the
purposes of testing, the converse does not hold; such a pattern of high pro-
portions need not imply the existence of collinearity. Whereas several variances
may have most of their weight in a component associated with the same singular
value, the overall magnitude of the variance may be pleasantly low--near collin-
earity, if it exists at all, causes no problem. The variance proportions table,
then, is merely a quick means of telling whether collinearity may be problemful,
but once the pattern of high proportions is detected, one must turn to the actual
variance components in Table (2.6a) to tell whether the overall levels are high.
An example will serve to make this clear.

Let us return to the modified Bauer matrix of Section 2.2.3. This five
column matrix, we recall, has the property that column 4 is exactly twice
colum 5, and these two columns are orthogonal to columns 1, 2 and 3. We would
fully expect that the small singular value o ( = .1312 x 1ﬁll)associated with

5

the linear dependency X, = .5X5 would dominate several variances--at least

y
var(bu) and var(bs). The variance proportions table (2.6b) for the modified

Bauer matrix is given below in Table 1, and a glance at the bottom row verifies

that o. does indeed account for the entirety of these two variances (the first

5
three variances are isolated from this relationship by the orthogonality of the

first three columns of X from the last two).

1. It should be noted in passing that the existence of collineayity in X may
not produce practically harmful problems in estimates of a linear model
relating y to X, as iny = Xg+e. Such problems also depend upon the size
of s> (which also enters in Var (b)). This point is dealt with below in

greater detail in section 2.3.4.
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TABLE 1

Variance Proportions - Modified Bauer Matrix

Var(bl) Var(b,) Var(b,) Var(bu) Var(bg)
9 .002 .003 .000 .000 .000
9 .018 .015 .013 .000 .000
o3 .976 .972 ‘ .983 .000 .000
9 .000 .000 .000 .000 .000
Og .003 .005 .003 1.000 1.000

A somewhat unexpected pattern, however, is also apparent: The single
singular value 0, accounts for 97% or more of var(bl), var(bz) and var(bs).
It may well be the case that a second linear relationship among the columns

of X, one associated with a5 is accounting for these high proportions. But

two facts would tend to discount this possibility. First, the three columns

X15 X2 and X3 that could be involved in such a relationshipl (Xu and X5 are

orthogonal) are reasonably well conditioned; and second, in spite of the con-
centrated variance proportions, the overall magnitudes of var(bl), var(bz) and

var(bs) are small. This latter fact is seen from the actual variance components

for the modified Bauer matrix given in Table 2.

1

l']?‘r*om Theorem 1 we know that the singular values for the matrix X, which is

comprised of the first three columns of the modified Bauerlnatrl% X are pre-

cisely the same as oy, op and o3 for the modified Bauer matrix itself. Hence,

the condition number of Xy is K(X ) =0 et = .171 x 10° = 22.5, a number
: .76 x 10

o_.
- : min
quite low relative to most matrices of economic data.
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TABLE 2

Variance - Components

Modified Bauer Matrix

2

X O

Var(bl) Var(bz) Var(b3) Var(bu) Var(bs)

oy .103x 107 Lmox107% .36 x 1077 .2 x 107 354 x 1070
oy 107 x 1073 w0l x 107% 126 x 1070 128 x 107 Ls19 x 107
oy 534 x 1072 .267 x 1072 .929 x 1072 .1uk x 1072° .36 x 1070
o o166 x 107 3s1x 10 e x 207 L1s1x 107 Leow x 1070
os 72 x107% 128 x 107 309 x 207t ues x 10 116 x 107
Sum=.5u8 x 1072 .275 x 102 .ou5 x 1072 .ues x 102 .116 x 10%°

In order to get the actual variances and variance components, each of the
2
figures of Table 2 must be multiplied by o , the variance of the error term in
the linear model y = Xg + e¢. But, at least on a relative basis, it is clear

that the high proportions associated with os are reflecting massive sizes for

24, while those associated with o3

2 -
reflect smaller variances on the order of ¢ x 10 2.

2
var(bu) and var(bs)—on the order of ¢ x 10
Whether this latter

2
figure is small in fact depends, of course, on the size of o .

2.3.3 A Suggested Test for Harmful Collinearity

High variance proportions, then, in themselves are not sufficient
to reveal the existence of harmful collinearity--for, as the preceding example
shows, the high proportions may not be associated with a singular value that
has been determined to be small enough (in the sense of Section 1.3) to indicate

rank deficiency. Such is the case with the high proportions associated with o3.
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5
o , however, has been determined to be associated with a linear dependency,

and its high variance proportions indicate collinearity to be harmful.
It is suggested here, then, that an appropriate means for detecting
harmful collinearity is the doubie condition of
1) high variance proportions for two or more variances associated with
2) a single singular value determined by the methods of Section 1.3 to

be small and hence evidence of rank deficiency.

2.3.4 Multicollinearity as a Practical Problem

Whether multicollinearity turns out to be a problem of practical
consequence is a different question from that addressed above. It will be noted
that the test for harmful collinearity suggested above wholly ignores the error
variance 02 that also enters the relation Var(b) =02(XtX)_l. Indeed, . the
terms cancel from the variance proportions ¢ij of (2.6b), but they are a factor
in each of the entries of (2.6a). It is possible, then, that collinearity
resulting in high variance proportions ¢ij’ and indeed high components n;. can

J
be mitigated by Tow 02, for, from (2.4) and (2.5), var(bk) = oznk where
My =j§1“jk' In such a case, the actual variances may be small enough to allow
acceptance of all desired tests of hypothesis, in spite of the fact that the
precision of the least squares estimates would be better in the absence of ill-

conditioned data. In other words, the presence of multicollinearity as deter-

mined here, need not be problemful as a practical matter.} The test suggested

! Another view of this point is useful. It will be noted that the entire
analysis of collinearity presented here is based on the data matrix X in
the linear regression model y = X8 + € and no where requires knowledge of vy.
This is because ill conditioning, and the instability of calculations and
estimates that result from it, has only to do with X, and one would be
better off with a nicely conditioned X matrix whether or not the ill con-
ditioning is bad enough to cause practical problems. It is the latter
point that depends upon y, for only through the introduction of y can 02
be estimated in order to determine if the overall levels of the estimated
variances are too high for conducting desired hypothesis tests. If they
are, and 111 conditioning can be determined as a problem, then corrective
action is worthwhile.
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here, however, highlights when estimated variances are being adversely affected
(whether to a point of being problemful or not), and hence indicates when and

where such variances could be improved should the need arise through the intro-
duction of additional information that "breaks up" the ill conditioning. This

point will be discussed further in Part 3.
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Part 3. Some General Considerations on Multicollinearity

and Its Corrections

It is not the purpose of this paper to suggest an answer to the third ques-
tion raised in its introduction: that dealing with corrective measures. However,
some general remarks on multicollinearity and its correction seem called for.
Section 1 of this third part examines other tests for multicollinearity that
have been proposed. Section 2 discusses corrective procedures and presents a funda-

mental criticism of the use of non-Bayesian ridge regression as a means of correction.

3.1 Other Tests for Multicollinearity

3.1.1 Simple Correlations

The use of simple, pairwise correlations as a means of showing the
presence of multicollinearity has been so basically discredited that it seems
hardly necessary to mention it. However, the technique appears to flair up anew
with some regularity, and seems to require constant care to keep it extinguished.
In favor of the procedure,it must be said that the existence of two variates
with correlation +1 is a clear iﬁdication of multicollinearity and therefore it
would seem that "high" correlation would be problemful. But a correlation of .9
need not result in any real problem of estimation. The test is, therefore,
without proﬁer interpretation, for there is no well defined notion of "high".
Conversely, low correlations are no indication of the absence of multicollinearity,
for three or more variates may be perfectly collinear but have low pairwise
correlations. Examination of the correlation matrix, therefore, offers, at

worst, erroneous and, at best, misleading information.
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3.1.2 The Determinant of X'X

Another discredited test for multicollinearity is the value of
det X'X. Since X singular implies det X'X = 0, the motivation is clearly that
low det X'X indicates near singularity. The problem with this notion comes from
the fact that nonsingularity-singularity is not a continum. This is readily
seen by considering the obviously nonsingular mn matrix A = aIn for e>0. Clearly
the determinant of A (= o) may be made as small as desired by choosing o

sufficiently small, but equally clearly A is always perfectly invertable.

3.1.3 Method of Farrar and Glauber

Farrar and Glauber (1967) suggest'detenmining the presence of multi-
collinearity based upon a statistical test of the hypothesis that the columns of X
are in fact orthogonal. A rejection of the hypothesis leads to the alternative
hypothesis that the columns of X are nonorthogonal, and hence collinear. There
are several weaknesses with this approach, both theoretical and applied.

1) The Farrar and Glauber approach is based on the assumption that
the X data resulted fram some stochastic process whose orthogonality is subject
to test. If the X data are properly assumed as nonstochastic, however, (as they
are in the classicial linear model) the Farrar-Glauber analysis is irrelevant.

2) If the X data are assumed stochastic, the previous consideration
does not apply, but it is still doubtful that the Farrar-Glauber technique is proper.
To see this sne must realize that multicollinearity is a condition when scme
linear cambination of the data are observationally indistinguishable from zero,

and as such multicollinearity is seen to be a special case of the identification
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problem. As is well known, identification is a problem logically preceding, and
not a part of, the statistical problem of estimation. Multicollinearity, then,

is not an estimation problem and is not properly treated as such.

3) As a practical matter the test against the null hypothesis of
orthogonality seems to lack power; that is, it indicates nonorthogonality
very often when there is no real problem (all coefficients are alive, well and
with strong t's). This practical problem is not surprising in light of the
general inappropriateness of the technique. Haitovsky (1968) attempts to over-
came this practical problem of Farrar and Glauber by making the test against the
null hypothesis of singularity. Haitovsky's procedure, however, falls prey to

the same criticisms advanced above.

3.2 Coerrective Measures

3.2.1 The Introduction of Identifying Information

The recognition above that multicollinearity is an identification
problem has implications not only for the proper way to test for it, but also
for the proper way to correct it. A multicollinear data set results in an
unidentified equation. As is well known!, it requires the addition of new,
independent information to identify an unidentified equation. As we shall see
below, the use of ridge regression as has been suggested by some fails to add
identifying information and, indeed, fails to remove the estimation problem that

results from collinear data. Two methods have been suggested, however, that can

1 See Fisher (1966).
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properly introduce additional information, and hence stand as appropriate correc-
tive measures. These are the time-honored methods of using outside estimates
(such as cambining estimates of coefficients in a time-series equation previously
estimated from cross-sectional data), and the method of using a Bayesian prior
for the coefficients. The former method has the practical weakness that it is
very difficult to find "outside" conditions that are appropriate to obtain
estimates for the given situation. A marginal propensity to consume, for
example, determined from cross-sectional budget studies has dubious relevance

to a time-series estimated consumption function. The second method, proposed

in Zellner (1971) and lLeamer (1873), has much promise.

3.2.2 The Failure of Ridge

Attempts have been made recently to utilize ridge regréssion to miti-
gate the effects of mul'l:icollinearity.1 Short of a means of caombining this
procedure with some method of bringing in legitimate identifying J'_nfor'ma't:ion,2
hov}ever, this method is doomed to failure--merely substituting collinearity in
the data for a degenerate distribution of the estimated coefficients.

We begin with the usual normal equations for least squares
(3.1) X'X b = X'y
and we assume X to be rank deficient. The suggested ridge solution is to create
an invertable matrix by constructing and solving the ridge equation
(3.2) (X'X + kQ)b* = X'y

where Q is same positive definite matrix--often taken as I, and b* is the ridge

! See, for example, Bushnell and Huettner (1973), Hoerl and Kennard (1870).
2 Such, for example, as is done by Holland (1973) in which he combines ridge
with a Bayesian prior.
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estimator. k and Q are taken so that (X'X + k)™t " does exist--and the pre- ‘
sumption is that b* is now solvable and uniquely so as
(3.3) b* = (X'X + kQ)'lX'y
Unfortunately, this trick does not solve the problem for it is readily shown
that Var(b*) is singular, i.e., b* has a degenerate distribution and is no more
amenable to proper hypothesis testing than is the nonuniquely defined OLS esti~
mator b from (3.1).
To see this, note that, since X is rank deficient, there exists a non-

trivial vy # 0 such that Xy = 0. Hence (3.2) becomes

(3.4) (X'X + kQ)b* = X'y = 0
or

(3.5) C'b* = 0

where C' = (X' + kQ)

Clearly C depends only on X (k fixed), and hence remains fixed in repeated
samplings. (3.5) therefore implies a fixed linear restriction on the ridge
estimates b*, and renders them degenerately distributed.l

This exercise serves to highlight the point made above regarding the need
for identifying information. In multicollinearity, as strongly as anywhere else;
you cannot get something for nothing. There is something about multicollinearity
that brings out the alchemist in econometricians, but there is no way one can
squeeze, stamp or club more out of the data than was there in the first place.

If several variates are all giving the same information, you cannot make them
speak differently simply by looking at them from a different angle. Only through
the addition of new, independent identifying information can the confounded effects

of collinear data be undone.

1. Again, combining ridge with a Bayesian prior as in Holland (1973) solves .
this problem.
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