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Abstract

This paper derives relationships between frequenéy-domain and
standard time-domain distributed-lag and autoregressive moving-
average models. These relations are well known in the literature
but are presented here in a pedogogic form in order to facilitate
interpretation of spectral and cross-spectral analyses. In addition,
the paper employs the conventions and discusses the estimation pro-
cedures used in TROLL. Some aspects of these estimation procedures

are new and have not been discussed in the literature.
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1. Introduction

Although there are many good reference works describing the details
of spectral analysis, these do not focus on the fundamental relation-
ships between spectral methods and such standard techniques as dis-
tributed lags, autoregressive processes or '"naive'" models. Granger
(6)* is perhaps the easiest to read, while Jenkins and Watts (10) is
the most comprehensive. Fishman (7) focuses on some econcmic esti-
mation problems and Dhrymes (3, 4) extends this direction with some-
what more mathematics. Hannan (8) gives a very rigorous treatment
of the whole area. Relatively short and simple early expositions
of the theory and practice are in Jenkins (9) and Parzen (13) with
a good application to econamics in Nerlove (12). The book which is
recommended as a companion to this system is Cooley, Lewis, and
Welch (1) which is more application oriented and which describes, in
Chapters 5 and 7, the basic concepts used in designing this system.
Also see Cooley, Lewis, and Welch (2). '

The purpose of the first section of this paper is to clarify
these relationships and thereby enable a user without substantial
knowledge of spectral theory to carefully and accurately interpret
spectral analyses in terms of concepts which are familiar. When
viewed in this way, spectral analysis provides a way of simply com-
paring a great many types of models so that the data can suggest
which is most appropriate.

The second section of the paper will discuss the estimation

procedure as implemented in the TROLL system from a conceptual

¥Parenthesized numerals refer to entries in the Reference section,
p. 23.



point of view. As the system uses the method of periodogram
averaging which has became popular since the rediscovery of the fast
Fourier transform, there are several issues which are not adequately
covered in the literature. Furthermore, a general understanding of
the estimation procedure is important for sensible interpretation
of the results.

- 2. The Spectrum

Many data series can be considered successive chance observations
over time called stochastic processes. Possibly, each cbservation
is independent of the preceeding ones. However, for most applica-
tions, there is some suspected dependence between the observations.
Both spectral analysis (frequency domain) and the more familiar time
domain analysis are ways to characterize this dependence. High
correlations between neighboring observations or seasonal components
might be important forms of this dependence. Once we have charac-
terized the stochastic process we may be able to forecast its values,
improve the efficiency of a regression where this is the distur-
bance, or infer some information about the economic model which
produced such a variable,

Both frequency domain and time domain analysis begin with
stochastic processes which are covariance stationary. This means
that the covariance between an observation now and one a few periods
later depends only on the time interval, not the dates themselves.
Mathematically this can be expressed as

(1) vy@) = E(xt+ - W (xt - u)

]
where vy is the autocovariance function and u is the mean. The
important assumption is that neither depend upon t. While this
assumption may seem strong, it is only because of this condition
that information from the past can be used to describe the present
or future behavior. ’

Many economic time series appear to violate this assumption,
particularly those with pronounced trends. It is generally possible,

however, to create an approximately stationary series by taking first




differences, or extracting a trend, thus leaving the series with a
constant mean of zero. There may also be trends in variance which
can often be removed by first taking logs of the series.

In the time damain the most common models are the autoregressive
moving average models (ARMA). These may be purely autoregressive,
purely moving average, or mixed.

A pth order autoregressive and a gqth order moving average are
shown in equations (2) and (3), respectively while (4) is an ARMA
(p,q).
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In these equations e is a series of independent randam variables

where e, is independent of x,_

the lag operator and A(L) and B(L) are polynomials. These classi-

: for all 7 greater than zero; L is

fications are not unique since one type of process can, in general,
be transformed into one of the others. Nevertheless, they provide
useful, simple models of time series which can be tested with data
or used for analysis.

The spectrum provides another way of characterizing time series.
In this case we think of a series as being made up of a great num-
ber of sine and cosine waves of different frequencies which have just
the right (random) amplitudes to make up the original series. Thus
the list of how much of each frequency component was necessary is
also a full description of the time series. The spectrum is a plot
of the squared amplitude of each campecnent against the frequency of

that component. It is continuous and always greater than zero as

long as we have no deterministic elements (that is no exactly repeat-
ing components, or components which can be predicted exactly on the
basis of the past).



Although this seems like an unusual way to think of a stochastic pro-
cess, it is very general since any covariance stationary process can
be uniquely described in this fashion.

The spectral density function is defined as the Fourier trans-

form of the autocovariance function

o © .
(5) £(8) = v(0) + 2 T y(e) cos (2mBe) = T y(sde 2T p<p<a
. =1 g == ' |
when 7 = v=-1 , e’l’e = cos(B) + 7 sin(®), and the last equality follows

from y(g) = y(-g). There are several important features of this
definition. First, although we have used complex notation, the
spectrum is real valued since all the imaginary sine terms cancel
exactly. Second, since the cosine is symmetric £(8) = £(1-8), only
the frequencies fram 0 to 1/2 are needed to describe the spectrum.
Third, if we integrate equation (5) from 0 to 1, we will find that
the area under the spectrum is equal to y(0), the variance. We can
show that the spectrum is a decomposition of the variance into the
camponents contributed by each frequency. Fourth, since f is
measured in cycles per period, it appears that we have no camponent
from less than one cycle ever'y two periods, (the Nyquist frequency).
The reason for this becomes clear upon reflection. When we observe
monthly data, weekly fluctuations will be undistinguishable fram
longer oscillations which have the same value at the moment the
observation is taken. The weekly camponent will therefore be counted
with these lower frequencies.

The important implication of the definition, which we will not
prove, is that each spectral point can be interpreted as the variance
of the component with that frequency so that the spectrum is always
positive. It is not difficult to give an intuitive proof that the
value of the spectrum at each frequency is just the squared amplitude
of a sine wave of that frequency and therefore non-negative, but the
basic theorem, called the spectral representation theorem, is quite
difficult. From this result we have the standard interpretation of
the spectrum, as a decomposition of the variance by frequency.




To clarify the interpretation of a spectrum and help with the
notion of frequency camponents, let us interpret the spectrum in
Figure 1 which has been estimated from quarterly data.

log £(8) l

FIGURE 1. TYPICAL SPECTRUM

We only look at the first half of the spectrum and therefore the
highest frequency oscillation we can distinguish is 0.5 cycle per
period. At this frequency, it takes two quarters to complete a
cycle so there are two cycles per year. There is a peak at 0.25
cycles which corresponds to a four-quarter, or annual cycle. This
is most likely a seasonal component. Similarly, the peak at 0.5
also probably indicates a seasonal component since it has an even
nunber of cycles per year. The peak at 0.1 corresponds to a two
and a half year oscillation. This might be a business cycle and
therefore economically interesting if it is significantly above its
neighboring points. Generally, economic time series show behavior
" much like that of Figure 1.
In this paper we wish to emphasize the relationship between these
concepts of frequency damain analysis and the more conventional time
domain analysis. The first order serial correlation coefficient is

easily calculated in the time damain and is generally large and

BE positive for economic time series. We can translate this finding

into the frequency domain as well. If we multiply the spectrum by



cos(2m8) and integrate, we obtain from equation (5) just y(1), the
first order serial covariance. Roughly, this amounts to multiplying
low frequencies by a positive number, high frequencies by a negative
nurber, and adding. If the result is positive, there is positive

first order serial correlation. Thus data series with generally
downward sloping spectra have positive first order serial correlation
while those with upward sloping spectra have negative serial correla-

~ tion. Very important is the observation that spectra which are roughly
symnetric about 0.25 will show no first order serial correlation.

A useful application of this analysis is found in interpretation
of regression results. The assumption of no serial correlation in
the disturbance is equivalent to the assumption that its spectrum is
constant. The Durbin-Watson statistic gives us a test against the
- possibility that there is first order serial correlation. However,
we now recognize this as a test against a general slope of the spec-
trum of the disturbance, whereas we would like to test against all
forms of variation. In particulér, notice that if the seasonality
in Figure 1 were more severe, the spectrum might easily have no first
order serial correlation but be far from constant. Durbin (5) formu-
lated such a test based upon the spectrum of the residuals which is
easily computed within TROLL. In general, examination of the resi-
dual spectrum gives very useful information about the validity of
the regression assumptions.

The 1link between time domain and frequency damain is campleted
by a derivation of the spectrum corresponding to the ARMA models of
equations (2)-(4). The basic result is‘quite simple but will be
established in the appendix.

LEMMA 1: 1f x is a stochastic process generated by the model

A(L)mt = B(L) e,

where e, is a series of independent identically distributed random
variables with variance 02, and the polynomial 4A(L) has all roots

outside the unit circle, then the spectrum of x is given by

(8) £,(8) = 02|B(z)|2/|A(z)|2, g = o(-2T18)

Notice that z is a camplex function of 6.




Several examples should help to illustrate the usefulness of
this result. First, notice that the spectrum of the very simple
(white noise) process which has no time dependence, is just a con-
stant. It has equal contributions from all frequencies.

Now consider the first order moving average process with para-

meter p, x, = e, + pe

f . From equation (6) the spectrum of z is

t-1°

£,.(8) =|1 + pe'zm’elzc2 = {1+ p2 + 2p cos(278)} o?

Evaluating this for 6 in the range (0j), gives a smooth spectrum
which begins at (1 + p)2 and ends at (1 - p)2. If p is positive,
this has the typical spectral shape which is common to most economic
time series, and which implies a positive serial correlation coeffi-
cient, p/(l+p2). The first order autoregressive case is very simi-
lar but gives a somewhat steeper spectrum at low frequencies.

A very simple autoregressive model which captures the behavior
of purely seascnal stochastic processes for monthly data is

= +
T TPTi10 T 6

From equation (6) the spectrum of this seasonal process is given by

—2uﬂie|2

Fe(0) = °2/|1‘Pe = 02/(l+p2 - 2p cos(2um8))

which is plotted in Figure 2. There are peaks at all the harmonic
frequencies: 6 = 1/12, 2/12, 3/12, /12, 5/12, 6/12, and all are
equally important.

1
l-pz
1
l+pz
0 .25 50

FIGURE 2. SPECTRUM OF PURE SEASONAL



3. The Cross Spectrum

The techniques used above can also be used to describe the relations
between two jointly covariance-stationary time series. Both the indi-
vidual behavior and the interrelations can be decamposed into basic
sinusoidal elements.

First, we define the cross covariance function which is a
direct analogue of the autocovariance function. For two series with

mean zero this is simply defined as:

(7) ny(s) = E( )

Treg Yt

Again, notice that it does not depend on t. The cross spectrum is

similarly defined as:

=]

(8) £, (8) = ,F, v, (e)e72T0

Because ny is no longer symmetric the cross spectrum is not a real
valued function of 8 but rather a camplex valued function.

Although the cross spectrum summarizes all the information we
need, we cannot plot it directly.‘ Instead, we commonly look at what
are called "coherence squared",."gain" (or "transfer'"), and "phase".
We will define these measures here and give a rather extended inter-
pretation below, connecting these concepts with the ideas of dis-
tributed lag regression models. ‘

The coherence squared (COH) is like a correlation coefficient

and is defined as:
_ 2 ,
(9) COH(B) = |fxy<e)| /fx(e)fy(e)

which is clearly between 0 and 1.
The gain (G) indicates how much the spectrum of x has been ampli-
fied to approximate that camponent of y. It is therefore like a

regression coefficient.
= 6 6
(10) nyce) |fxy( )I/fx( )

This expression can clearly never be negative. However, if it is
small, it indicates that at frequency 6, x has little effect on y.




The phase (PH) is a measure of the timing between the series.
It is measured in the fractions of a cycle that y lags =x.

1 -Im(f_ (8))
(11) PH(8) = 5, arctan|e= (0
xy
where Im and Re are the imaginary and real parts of the cross spec-
, ~ trun® There is a natural ambiguity about the phase since adding or
subtracting 1 whole cycle from an angle will not change its tangent.
Thus the phase is known only up to adding or subtracting an integer
and therefore even the lead-lag relation is not known for sure. The
plot of the phase is designed to emphasize this fact. It is possi-
ble to cambine the phase and the gain in a simple expreésion

-2TLPH(6)
(12) f&y(e)/f;(e) = ny(e)e
Two other potentially useful measures of the cross spectrum are

its amplitude, which is merely its absolute value, and its time lag.
The latter describes the phase in terms of the number of periods y
lags « rather than the fraction of a cycle. Although this seems like
a useful measure, the natural ambiguity of the phase also makes the
time lag ambiguous and difficult to interpret. This may not be the
case at low frequencies, where these difficulties are less likely
to be important.

" A natural and very general way for econamists to think about the
relations between two time series is in terms of a bivariate distri-
buted lag model, such as

(13) = T w, tu .
Ye i=p Tt %t

This is often rewritten in terms of the lag operator L as

—p .
) y, = I ijJx tu, = w(Da u,

jgp? 7
where we have, for generality, allowed for leads as well as lags and
N interpreted It as a lead operator. Using the same techniques required

for equations (5) and (6), we can establish frequency domain inter-

pretations of equation (14),

¥The appropriate quadrant for PH is chosen on the basis of the signs
of the real and imaginary compcnents of the cross spectrum.
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LEMMA 2: If y is generated by a distributed lag model
y =w(l) x+u
where x and u are uncorrelated covariance stationary processes, then
-1
(15) f&y(e) = w(z ) f;(e), and

(16) £, () = |u(2) |7, (8) + £, (8)

where z = e(-2ﬂ$e).

We notice from (16) that the variance of y is broken into two
parts; one which is the variation due to x modified by the lag dis-
tribution and the other due to the disturbance. From (15) we see
that f&y/fx is an estimator of w(z) which is just a function of the
lag coefficients. In fact, it is the Fourier transform of the lag
distribution; and therefore, once w(z) is known, all the lag coef-
ficients can be found by merely taking the inverse Fourier transform.
This is the basis of a very useful type of distributed lag estima-
tion which is often called Hannan's inefficient method.®* This is
available in TROLL. |

Suppose that we now consider running a regression of one com-
ponent of y against the same frequency component of xz. The regression
coefficient would be the ratioc of the covariance of x and y to the
variance of z. In our notaticn this would be Jjust f;y(e)/fx(e). The
R-squared of this regression is one minus the unexplained variance
over the total variance. Substituting this into'equation (3) we see
that the coherence squared is just the R-squared of this regression.
Similarly, fram equation (12) we see a very intimate relation between
this regression and the gain and phase estimators. Let us explore
this further. '

If the model is (1) really a static model, which means that only

w. is non-zero, or (2) a very simple dynamic model (often called a

0
delay model), in which only one wj is non-zero, then

(17 wiz™h = wje*Q"ieJ

¥Tt is inefficient because it does not use the properties of the dis-
turbance to construct an estimator with the smallest possible variance.
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and therefore the gain should be constant and equal to wj. For more
camplicated models we would not expect the gain to be constant. At
low frequencies, z is close to unity and therefore the gain should
be close to the long run multiplier. At other frequencies the gain
is the effective multiplier which a sine wave of that frequency
would experience.

In the figures at the end of this paper, the gain for several
common simple distributed lag models are computed and plotted. Two
basic patterns appear. When the gain is a declining function of
frequency, the lag distribution tends to emphasize low frequencies
and eliminate, or smooth out, higher frequencies. This is the
typical pattern for moving average type of lag distributions. The
other pattern emphasizes high frequencies and it arises from lag
distributions which depend on the rate of change of the right hand
variable such as first differences or accelerator models. Of course
many more complicated models are possible, yielding a great vafie*cy
-------- of patterns. '

The phase estimator incorpcrates all the information about
leads and lags. If the model is a static model, there should be no
phase shift. If there is a simple delay, the phase is just a
straight line with slope equal to the number of periods of the delay.
For more complicated models, the slope of the phase near zero frequency
can be shown to be equal to the average or mean lag of the lag dis-
tribution (as long as the gain is non-zero). For several examples
of this see the figures at the end of the chapter. Notice the dashed
lines which indicate the ambiguity between leads and lags. This is
in exactly the same form as the computer printout.

The series of gain and phase plots (called Bode plots) presented
at the end of this paper will never be exactly the same as any estimated
from data. Nevertheless, there may be one close enough that it is
possible to infer a form of time domain lag distribution. If not,
two facilities are available. First, the definitions of gain and
phase imply that if the lag distribution is a product of two lag

—— distributions, the composite gain will be the product of the indivi-

dual gains and the composite phase will be the sum of the two phases.
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Second, you can construct any other diagram for comparison by means
of a TROLL program. Thus by trial and error it may be possible to
understand what type of lag distribution would have a spectrum simi-
lar to that estimated. Similarly, it is possible to know what gains
and phase are implied by a particular lag distribution.

4. Spectrum Estimation

There are several distinct methods for estimating spectra and cross-
spectra. The advantages and disadvantages of each have been exten-
sively discussed. In particular, see Cooley, Lewis, and Welch (1)
and Parzen (14). Since the rediscovery of the fast Fourier transform,
computational considerations suggest that periodogram averaging may
be the most efficient method for spectrum estimation. In addition,
it is conceptually simplest and leads to great versatility in the
estimation procedures. Finally, the usefulness of the periodogram
in regression and various test procedures makes.it sensible to com-
pute this as a first step. See also Jones (11) and Tick (15).

The periodogram is defined as the square of the absolute value
of the Fourier transform of the series at each frequency, all divided
by m, the number of observations. The formula for the periodogram
is

i

m=1
(18) I (8.) = p)
Sx g m

x
t:O. ¢

where 6j=j/m and j=0,1,2, ..., m. This quantity is an estimator of

-2nit6.|2
e Jd

the spectrum, but it is not a very good cne. The expected value of
the periodogram is |

m=-1 .
5 (m-mv ) Y(v)e-zﬂtvej

(19) E(I (8.)) =
x J zemtl

Tor large values of m this estimator is an unbiased estimator of the
spectrum, since y(v) is small for large v. Unfortunately, however,
it is not a consistent estimator since the variance does not decrease
as the sample approaches infinity. In fact, the spectral estimator
at each frequency is approximately proportional to a chi squared
random variable with two degrees of freedom, regardless of the number
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of observations. An intuitive explanation for this unusual circum-
stance is that as the sample becames larger, more and more frequency
points are estimated rather than cbtaining better estimates of a
fixed number of parameters. This explahation also suggests the solu-
tion. Since neighboring points are independent (if the original
series was normal), the average of a few should give a better esti-

mate of the spectrum in that neighborhood (assuming that it is not

changing too rapidly). Thus we must use smoothing procedures to
obtain consistent spectrum estimators. '

5. Smoothing Windows and Confidence Intervals

Two averaging or smoothing procedures, called "windows", are currently
available in this system. A rectangular moving average gives the
minimum variance for smoothing over a flat spectrum using only a
certain nurber of points. However, when there are peaks in the
spectrum, the rectangular window will lead to considerable bias and
broadening of the peaks. An alternative window is a triangular
window which gives the spectrum a much smoother appearance and is
probably better at describing the shape of peaks.

Clearly, the width of the window is an important parameter in
the estimation. The wider the window, the smaller is the variance
of the resulting estimatej yet, the wider the window, the more seri-
ous may be the bias of smoothing over non-smooth portions of the
spectrum. Two measwres of width are used to describe the windows in
the TROLL spectral package, the bandwidth and the range. The band-
width is the half-power width of the window. It is measured in
frequency units, i.e., it is a fractional number of cycles per period.
If, for example, the bandwidth is specified as 0.1, there will be
five separate "bands" since the frequencies range from 0 to 0.5.

For many purposes, spectral estimates separated by more than one
bandwidth are considered to be independent.

The second measure is the range. This is merely the number of
spectral points used in each moving average; it therefore gives the

 separation between which two points are known to be completely
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independent. If the effective sample is 200 observations (implying
100 points in the spectrum) and the range is 20, there will be five
separate window widths in the estimation. A sensible value for the
range 1is vm, where m is the nurber of observations.

Near the endpoints of the spectrum, the smoothing procedures
must be modified. The choice followed here is to decrease the range
so that the window does not overlap the endpoints. Because the vari-
ance increases as the window becames narrower, the variance increases
markedly at very low or very high frequencies and one must be very
cautious in interpreting low frequency peaks or troughs. The user
who wishes to construct his own window or to modify the endpoint
procedure can easily do so within the structure of the system.

The resulting spectral estimator is approximately proportional
to another chi squared random variable, this time with more degrees

of freedom. The equivalent degrees of freedom are just equal to -
(20) E.D.F. = B*m

where B is the bandwidth. This allows us to compute a confidence
interval for the spectrum. On the spectral plot a 95% confidence
interval is given for each frequency separately.

Estimates of the cross spectrum are accomplished in exactly
the same manner. The finite Fourier transform of one series is mul-
tiplied times the camplex conjugate of the Fourier transform of the
other to form the cross periodogram. The real and camplex parts of
this are then smoothed individually, just as for the periodogram.
The sampling distributions for the various measures derived fram the
cross spectrum also depend only on the equivalent degrees of freedom
of the estimate. With the coherence plot, the critical point for a
5% test of the hypothesis of zero coherence is given. Approximate
50% confidence intervals for the gain are plotted with the output.
These depend on the sample coherence; where the coherence is small,

the confidence interval is large.

6. Prewhitening and Fourier Transforms

When using a wide window, peaks tend to be spread out. For many

series we know a priori where these peaks will be, either because
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the series is ‘ty'pical in having strong low frequencies or because it
has important seasonality. In these cases '"prewhitening" is often
recamended. This amounts to dividing the raw periodogram by the
expected or typical shape, smoothing this "prewhitened" periodogram
which no longer has the large peaks, and then "recoloring" by multi-
plying by the typical spectral shape. A seasonal and non-seasonal
version of the prewhitening filter are available, but the user can
"easily construct his own. Prewhitening can be done in connection
with either spectrum or cross spectrum estimatiocn. o
A second characteristic which is likely to make the smoothing
procedure badly biased in cross spectral estimation is misalignment
of the series. When one series lags another by several .periods,
there is a peak in the cross covariance function which is not at
zero. This leads to a regular oscillation in the amplitude of the
cross periodogram. Smoothing this will obscure this particular
bit of information as well as distorting other results. The
"""" recammended procedure is to first divide the cross periodogram by
an aligning series, smooth the cross periodogram, and then remultiply
it by the aligning series. The program to construct the alignment
series first camputes the inverse Fourier transform of the cross
periodogram which is exactly the cross covariance function. This
could have been camputed from the data directly, but such a method
is apparently inferior to the camputation of Fourier and inverse
Fourier transforms. Searching the crossv covariance function for the
maximum yields the information needed to construct the alignment
series. If this procedure were applied to the estimate of the
: | spectrum or a cross spectrum which was already aligned, the maximum
covariance would be the zeroth estimate and thus the alignment series
would be unity and would have no effect.

The Fourier transform algorithm used in these camputations is
the Cooley-Tukey fast Fourier transform. In its basic form it expects
a series with 2" elements and thus each series is padded out to this

length with zeros. The nurber of spectral points estimated is there-
fore 271 which are evenly spaced between the frequencies 0 and



16

1/2 cycle per basic time unit of the data. If the user wishes to
construct the spectrum at particular points or wishes not to pad
with zeros, he is provided an option of choosing another integer, r,
so that the series is padded to §=2%r. Choosing r=3, for example,
would insure factors of 12 which would be required in order to have
exact seasonal points with monthly data. If unspecified by the user,
r receives the default value of 1.*

7. Cases of Interest

1. Simple Static Model PH
w(L) = wo f=======-
w(z™ 1Y = w,
G(8) = wo 5
PH(B) = 0
G
———
]
Wo
!
= 6 e

®A1] output and statistics are corrected so that they depend on m,
not N.
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2. Simple Delay PH
, 1 L\
w(e) w, I ~
N J » \
w(z™1) = w .e-2m,76 ~ .
J
\\
) ~
PH(B) = -6 N
~
G .
W
]
% ) -1F
3. One Period lLag PH
w(L) = wotw1lL wo sw1>0 1 F\‘:: ~ /
- 210
wiz 1)=wo+u)16 m \\\\-,/
~
G(8) = vwd+wi+2w wecos2m8 \\
3
_ w18in278 ) \
PH(®) = arctan(- Wo+w,c0s2mH
G
* 6
; | wotw) |
C % W1<Wo
i o W1cwW
| wo=wy | 0
6 =1}
" 1




4, Geometric Lag

WD) = ooy = wo (Tl ’Li+...)

w1l
0§y1<1

-1y _ Wo
wiz °) = —— pnig

1-w,e

G(8) = wov/1Hwi-2w,cos2md

PH(B) = arctan(;w1sin2w6 )
1-wicos2mo

1-W1

_Wo
THwy

5. Tirst Differences

w(L) = wo-wL wo w1>0

w(z'l) = wo-MJezwte

G(8) = vwi+wi-wow1cos2m

= arctan ( ¥1sin2mé
PH(8) = arctan wo—w10052w6)

Wotw;

|W0-W1 |
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Wo=Wy

o WocW)
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2Wo g

Four Period Differences

w(L) = wo(l-L")
w(Z1) = 1 (1-e5"0)

G(B) = wy v2-2cos(8mH)

~-sin8mH

Pi(e) = arctan( oggrs

=%

13

/I




20

APPENDIX
LEMMA A.1: If x is a stochastic process generated by the model
A(L) x, = B(L) e,

where e . is a series of independent identically distributed random
variables with variance 62, and 4(L) has all roots outside the unit
circle, then the spectrum of x is given by

£, (8) = 0%|B(2)|?/]4(2)]?

where z = e(-2m6)

Proof: Consider the moving average process

b
x, = . e
t jzod
where the e are all independent. Then
q q
v(¢) =Ex, x =E I b,e,. . Lbye ,
t+s" 't j=o‘7ts‘7k‘ok t-k .

where the expectation on the right only has non-zero values where
k = 8-j and 0 < k < q. Therefore for ¢ > &8 > 0

S
- 2
v(8) = o jio bj bs-j

for 0 otherwise. The spectrum of x is defined using equation
(5) and the symmetry of y by

[« o] q _
FO) = 1 v(a)2® = 1 () Z%+z7% + y()
S=—00 s:l
q s - . q
=03 I b.b__.(z"+27°) +0® I b2
g=1 5=0 J sz=0 9 |
which can be written
q . q - q
F8) =02 T bl % bkzk-‘ozlz ik
750 J k=0 J=0 4%

; There is nothing in this proof which requires that q be finite. There-
fore, since every stable ARMA process has a (possibly infinite dimen-
sional) moving average representation, the result is true for any

ARMA process.
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LEMMA A.2: If y is generated by a distributed lag model
y =w(l) x+ u
where x and u are uncorrelated covariance stationary processes, then

_ -1
fxy(e) = w(z ™) fx(e)

and
fy(e) = |w(z)]|? £,(8) + f ()

where z = e(2‘rn6)

Proof:

Without loss of generality take both x and y to have mean zero

Yoy (s) = Ex,,_ Y,

t+s
. - E?",j“’t-j‘”ﬁs BTty
Yoy (8) = Tw.y(s+s)
7
- s -
fay(e) —SE-OO'Ya‘y(s)z . fzoj'Y(s+j)28+Jz J
s J s
= Sw.z Yf (6)
. J x
J
£ (8) = wzhr (8
xy LA
And
‘ Yy(s) = Eyt+syt
= E(ZwJ.xt+s_j + ut+s)(zwk‘rt-k + ut)

Yy(s) T Iw .wkyx(s-j+k) + Yu(s)

ik’
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8
fy (8) EYy (8)z

8

LLTw .z;)kym(s-.ﬁk)zs-‘j+kz-kz‘7 + ZYu(s)zs
8jk J : 8

J -k
ijz L, 2 fx(e) +fu(6)

fy(s) lw(z)|? £(0) + f, (6).
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