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Abstract

The prediction accuracy of six estimators of econometric models
are compared. Two of the estimators are ordinary least squares (OLS)
and full-information maximum likelihood (FIML). The other four
estimators are robust estimators in the sense that they give less weight
to large residuals. One of the four estimators is approximately
equivalent to the least-absolute-residual (LAR) estimator, one is a
combination of OLS for small residuals and LAR for large residuals,
one is an estimator proposed by John W. Tukey, and one is a combination
of FIML and LAR. All of the estimators account for first-order serial

‘ correlation of the error terms.

The main conclusion is that robust estimators appear quite
promising for the estimation of econcmetric models. Of the robust
estimators considered in the paper, the one based on minimizing the
sum of the absolute values of the residuals performed the best. The
FIML estimator and the combination of the FIML and LAR estimators also

appear promising.
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I. Introduction

Many recent studies of robust estimation techniques have been
Monte Carlo studies and have been concerned with estimating a small
number of parameters.1 The purpose of this paper is to examine the
usefulness of such techniques for the estimation of econometric models.
Six estimators are compared. Each estimator is first used to estimate
the stochastic equations of the model described in Fair [U]. Then for
each set of estimates, within-sample predictions (both static and
dynamic) of the endogenous variables are generated. The estimators are
compared in terms of the accuracy of the within-sample predictions. Some
outside-sample predictions are also analyzed.

The methodology of this paper is similar to the methodology in
Fair | 6], where ten estimators were compared. The study [ 6] dealt only
with the eight-equation linear subset of the model in [U], however,
while this paper considers the nonlinear part of the model as well. The
results in ‘L6] indicate that accounting for first-order serial

correlation of the error terms is quite important, and so all six

1
See, for example, the studies of Andrews et al. [2], Andrews
Ll], and Hughes L9].



estimators in this paper have been modified to account for first-order
serial correlation.2

Two of the six estimators are ordinary least squares (OLS) and
full-information maximum likelihood (FIML). The other four estimators
can be considered to be robust estimators in the sense that they give
less weight to large residuals. One of the four estimators is approximately
equivalent to the least-absolute-residual (LAR) estimator, one is a
combination of OLS for small residuals and LAR for large residuals, one
is an estimator proposed by John W. Tukey, and one is a combination of

FIML and LAR.

| The present model is both nonlinear in coefficients (after
adjusting for serial correlation) and nonlinear in variables, Consequently,
the standard way of obtaining LAR estimates of a linear model by converting
the problem to a linear programming problem could not be used in this
study, and the avallable programs for obtaining FIML estimates of a
linear model could not be used. The procedures that were employed

to obtaln these estimates are described in Sections III and IV.

IT. The Model
The model is described in [ 4] and will not be discussed in any
detail here, For present purposes, the monthly housing starts sector has

not been used, and housing starts have been taken to be exogenous. The

“To be consistent with the notation in [ 6], "AUTO1" should be
added to the name of each estimator, but since all estimators in this
paper are "AUTO1" estimators, this will not be done.




equations of the model are 1listed in Table 1. There are a few
differences between the equations in Table 1 and the equations in Table
11-4 in Lb], and these differences are discussed at the end of Table 1.
Durmmy variables D644t, D65lt, D704t, and D7llt have been added to the
CDt' Vt_Vt-l’ and‘Mt equations and dummy variables D701+t and D7llt have
been added to the IPt equation to account for the effects of the two
auto strikes. These four equations were the ones most affected by the
strikes. The sample period used for the estimation and simulation was
1960 IT - 1973 I, a total of 52 observations.

Each stochastic equation of the model except the price equation
is assumed to have a first-order serially correlated error term. For
each of the six estimation techniques, first-order serial correlation
was handled by transforming each equation into one with a non-serially
correlated error term and then treating the resulting equation as
nonlinear in the coefficients. If, for example, the equation to be
estimated is:

(1) ¥y = by + bpxy + by g +uy,
where

& not being serially correlated, the equation can be written:

(3) yt = Oyt_l + bl(l"'O) + bz(xt_pxt_l) + b3(yt__l"oyt_2) + Et'

which is a standard nonlinear equation in the coefficients.
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Table 1. The Equations of the Model

Serial
Correlation
Stochastic Equations Parameter
(3.3) CDt = Bll + BlZGNP + B MOOD 1 + quMOODt_2 pl
+ BlSDBHHt + 816D651t + 817D7O‘+t + 618D711t
(3.7 QU = By @y *+ BppCly * B0y P
(3.11) CSt = B3lGNPt + 832C8t—l + 833MOODt_2 p3
(4.4) IPt = Bul + BHZGNPt + 843PE2t + BLMD7OL+t + BHSD7llt Py
(5.5) B{t = 851 + BSZGNPt + 853HSQ‘t + BSHHSQt—l + BSBHSQt-Z P
(6.15) V.-V, = By + Bg (CDL_1+CN, ) + Bo oV o
+ BBH(CDt—l CN o1 CD CN ) + B DGHH + 666D651t
+ 367D7O‘+t + 868D711t
1 20
(10.7) PD-FD_, = 8., + By Eﬁ.iEIGApzt_iﬂ

(9.8) loth--loth_l = Bgp t Bgt Tt 883(logM log L _ H )

81 -17t-1 Pg
+ 88u(log 1 loth_z) + 885(loth—loth l)

+ 886D644t + 887D651t + 888D7OHt + 889D711t

(3.10) D = Byy + Byt + By M o
LF
1t
(.11) P B1o,1 * Bio,ot 010
LF M 4MA_ +MCG, +AF
(9.12) —2& =g F Bt +B t t t ¢t o
' 5 11,1 T B11,0 11,3 PP 11

2t > 1t " 2t




- -

Table 1 (continued)

Identity Equations

Income
Identity GNPt = CDt + CNt + CSt + IPt + IHt + Vt—vt—l + EXt - II"IPt + Gt
*
(10.5) GAP2t = GNPRt - GNPRt_1 - (GNPt-GNPt_l)
GNPt—GGt
(10.8) GNPR't = 100 P—D_t_ + YG_t
(10.9) Yt = GNPRt - YAt - YGt
(9.2) MH =Ly
: tt  a,t
t
(9.9) Et = Mt + I"J'At + MCGt- Dt
Et
(9.14) UR, =1 -
t LE) (+LF,  -AF,



Table 1 (continued)

Definition of Symbols

CD, == Consumption expenditures for durable goods, SAAR
CN, = Consumption expenditures for nondurable goods, SAAR
CS, == Consumption expenditures for services, SAAR
tEX, == Exports of goods and services, SAAR
tG, = Government expenditures plus farm residential fixed investment, SAAR
GNP, == Gross National Product, SAAR
THSQ, = Quarterly nonfarm housing starts, seasonally adjusted at quarterly rates

in thousands of units

IH, = Nonfarm residential fixed investment, SAAR
tIMP, = Imports of goods and services, SAAR
1P, = Nonresidential fixed investment, SAAR
tMOOD, = Michigan Survey Research Center index of consumer sentiment in units
of 100
tPE2, = Two-quarter-ahead expectation of plant and equipment investment,
SAAR

V, — V.., = Change in total business inventories, SAAR

tAF, = Level of the armed forces in thousands
D, = Difference between the establishment employment data and household
survey employment data, seasonally adjusted in thousands of workers
E, = Total civilian employment, seasonally adjusted in thousands of workers
+GG, . = Govermnment output, SAAR
GNPR, = Gross National Product, seasonally adjusted at annual rates in billions of

1958 dollars
tGNPR? = Potential GNP, seasonally adjusted at annual rates in billions of 1958

dollars

LF,, = Level of the primary labor force (males 25-54), seasonally adjusted in
thousands

LF,, = Level of the secondary labor force (all others over 16), scasonally adjusted

in thousands

M, .= Private nonfarm employment, seasonally adjusted in thousands of workers
tMA, = Agricultural employment, seasonally adjusted in thousands of workers
tMCG, = Civilian govarnment employment, seasonally adjusted in thousands of

workers

M, H, = Man-hour requirements in the private nonfarm sector, seasonally adjusted

in thousands of man-hours per week
tP,, = Noninstitutional population of males 25-54 in thousands
tP,, = Noninstitutionial population of all others over 16 in thousands

PD, = Private output deflator, seasonally adjusted in units of 100

UR, = Civilian unemployment rate, seasonally adjusted

Y, = Private nonfarm output, seasonally adjusted at annual rates in billions of

1958 dollars

t YA, = Agricultural output, seasonally adjusted at annual rates in billions of 1958
dollars

tYG, == Government output, seasonally adjusted at annual rates in billions of 1958
dollars

D644 = Dummy variable: 1 in 1964 IV, O otherwise

D651, = Dummy variable: 1 in 1965 I, 0 otherwise
D704 ¢ Dummy variable: 1 in 1970 IV, 0 otherwise
tD711¢ Dummy variable: 1 in 1971 I, 0 otherwise

Notes:  Exogenous variable.
SAAR = Seasonally adjusted at annual rates in billions of current dollars.




Table 1 (continued)

Differences between present model and model in Fair [4], Table 11-4

1.
2.

Housing starts (HSQ_t) €XOgenous .

Imports ( IMP_L_) €XOogenous .

Price equation (10.7) linear and length of lag is 20 rather than 8.
In equation (9.12), M, + MA_t+MCG_t replaces E,.
Strike dummy variables added to equations (3.3), (4.4), (6.5), and (9.8).



IIT. The Computation of the FIML Estimates

Write the gth equation of the model at time t as:

(4) ﬂg(ylt”"’ Yorr Xpgree 1 Xyy Bg) =

gt E%ii,...,G)

= ,ool,T) i
where the Yy are endogenous variables, the Xy, are predetermined variables,
% is a vector of unknown parameters, and ugt is an error term., The FIML

estimates of the unknown parameters in (4) are obtained by maximizing
T

1
(5 L=-3T log |9 + ) log |JJ
t=1
with respect to the unknown parameters,3 where
T og
= [ —'l . = —-g-— =
(6) S = (Sgh), Sgh - T tzzl ugtu-ht, Jt (ayht), g, h 1,.0., Ge.

If G-M of the G equations are identities, then S is MxM, but Jt remains
GxG.

There are a number of approaches that can be tried to maximize L.
The results in Fair [5] indicate that quite large unconstrained maximiza-
tion problems can be solved using algorithms that either do not require
derivatives or for which derivatives are obtained numerically. The
approach in L 5] is the approach taken in this paper. Three algorithms
were used: the 1964 algorithm of Powell [11], which does not require
any derivatives; a member of the class of gradient algorithms considered
by Huang [8], which requires first derivatives; and the quadratic
hill-climbing algorithm of Goldfeld, Quandt, and Trotter [7], which
requires both first and second derivatives. All derivatives were obtained
rnumerically. See LS] for more discussion of these algorithms and for

a discussion of the computation of numeric derivatives.

3See, for example, Chow LB].




The model in Table 1 decomposes naturally into two blocks: a
linear, simultaneous block and a nonlinear, recursive block. FIML
estimates were first obtained for the two blocks separately, using the
ordinary least squares estimates as starting points, which required
. estimating 38 and 23 coefficients, respectively. FIML estimates of all
61 coefficients were then obtained, using the FIML estimates of the two
blocks as starting points. In contrast to the work in L5], no systematic
attempt was made in this study to compare the various algorithms, and so
no results using alternative algorithms will be presented here. Powell's
no-derivative algorithm was usually used first to obtain an answer, and
then this answer was checked by starting the gradient and quadratic-hill-
climbing algorithms from the answer to see if a larger value of the
likelihood function could be found. In some cases a larger value was
found using the other two algorithms, and in some cases the quadratic-
hill-climbing algorithm found a larger value than did the gradient
algorithm. In general it app eared that the FIML computational problem
here was not as well behaved nor as robust to the use of different
algorithms as was the optimal control problem in [5].

The present approach to obtaining the FIML estimates has the
advantage of requiring little human effort. Given that algorithm
and numeric-derivative programs are available, one needs only to write
a simple program to compute the value of L for a given vector of
coefficients. In the present case Jt can be factored into two parts:
one that is a function of some of the coefficients but not of time and
one that is a function of time but not of any coefficients. Consequently,

the determinant of J has to be computed only once per evaluation of L
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rather than the T times required for the more general case. The more
general case can be handled by the present.approach, however, since all
the more general case does is increase the computer time required per
evaluation of L. The extra programming effort required for the more

general case is quite small.

IV. The Computation of the Robust Estimates

Least-absolute-residual (LAR) estimates of equation (4) are
obtained by minimizing

= 1

M e= 1 by

with respect to the unknown parameters. Since in the present case ugt

is a nonlinear function of the unknown parameters because of the serial

correlation assumption, Q cannot be minimized through the solution of a
linear programming problem. An attempt was made in this study to minimize
Q by using the approach and algorithms discussed in Section IIT, but this
attempt failed. The aigorithms were nof in general successful in finding
global optima. Often they converged to different answers for different
starting points, and many times different algorithms converged to different
answers from the same starting point.

LAR estiﬁates can, however, be obtained, at least approximately,
by converting the problem to a weighted—least—squares problem. Rewrite

Q as:
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The problem of minimizing Q in (8) is merely a weighted-least-squares
problem if the denominator is known. An iterative procedure can thus

be used to minimize Q. Initial estimates of the residuals are first
obtained, say by ordinary least squares, and are then used as weights to
obtain new estimates of the parameters and residuals by weighted least
squares. These new residual estimates are then used as new weights to
obtain new parameter and residual estimates, and so on. In the present
case, unweighted ordinary-least-squares estimates were used to begin

the iteration, and the program was allowed to iterate four times thereafter.
The estimates usually changed only slightly after the first or second
weighted-least-squares estimates (the first or second iteration following
the initial ordinary-least-squares estimates). The problem of zero
residual estimates (making weighted-least-squares estimates on the next
iteration impossible to obtain) was avoided by setting residual estimates
less than a small number e in absolute value equal toe . For present
purposes, ¢ was taken to be ,00001,

Both the unweighted- and weighted-least-squares problems in the
present case are nonlinear problems, and the estimates had to be obtained
by a nonlinear technique. The degree of nonlinearity, however, is not
great, being due only to the presence of the serial correlation parameter,
and hence the problems could be easily solved using standard algorithms.u
Because the program was allowed only four iterations and because of

the € treatment of very small residuals, the estimates obtained by the

The algorithm used in this case is the algorithm programmed into
TROLL at the Computer Research Center of the National Bureau of Economic
Research. This same algorithm was also used in the computation of the
WLS-IT and WLS-TIT estimates described below.
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above procedure are not exactly LAR estimates, but for practical purposes
they should be quite close. This estimator will be called WLS-I.

The second weighted-least-squares estimator considered is a
combination of OLS for small residuals and LAR for large residuals, For
if

this estimator the denominator in (8) was still taken to be hlgt'

|u,s| 2k, but was taken to be k if |u__| <k. The value of k was
Bt — gt

taken to be a robust estimate of the standard error of the regression,
namely h/.6745, where m 1is the median of the absolute value of the
estimated residuals.5 The WLS-I estimates were used as starting
points, and the program was allowed to run for four iterations. The

’ median of the absolute value of the residual estimates was reestimated

at each iteration, and the value of k was changed from iteration to

iteration. This estimator will be called WLS-IT.

The third weighted-least-squares estimator considered weights

each residual a56

2
2
1 - (-2 if lz| <k
Ky -k

and 0 otherwise, where

_ Vgt
z._

ol

/

5See Andrews et al. L 2] for a use of this estimator,

6The weights used for this estimator are to be compared to I/hl |
for the WLS-I estimator and l/hlgt |or 1/k for the WLS-IT estimator. ©
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This estimator is attributed to John W. Tukey by Andrews | 1]. Values
for k, of both 6 and 9 have been proposed, and the value of 6 was used
for this study. The value of k2 was taken to be ﬁ/.6745, where again
m is the median of the absolute value of the residuals. The WLS-I
estimates were used as starting points, and the program was allowed to
run for four iterations. The value of k2 was changed from iteration to
iteration., This estimator will be called WLS-III.
All three of the weighted-least-squares estimators in this section

are single-equation estimators and do not take into account the problems

associated with estimating systems of equations.

V. The Combination of the FIML and Robust Estimators

Considering robust estimators as weighted-least-squares estimators,
it is quite straightforward to combine the FIML and robust estimators,
Consider, for example, the WLS-I estimator, which in the single-equation

case weights each residual by 1/ I‘%t

+ The natural extension to the

FIML case is to consider maximizing

T
(9) r=-3Tlog ls*| + ] 1ogl,| ,
t=1

where

T
(10) 5= (ory s s =% [ EEERE g pon g,

and where Jt is the same as in (6). Given an initial set of residual
estimates to be used as weights, L* can be maximized with respect to
the unknown parameters. In the maximization process each residual

1s weighted by one over the square root of the absolute value of the initial
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residual estimate. Weighting schemes other than the one used for WLS-I

could also be proposed, which would merely change the computation of
s;h in (10).
For purposes here only the WLS-I weighting scheme was combined
with FIML., The weights were taken from the WLS-I residual estimates,
with residual estimates of less than .00001 being set egual to .00001.
Given the weights, L* was maximized using the same algorithms that were
used to maximize L. The experience maximizing L* using the algorithms
was similar to the experience maximizing L, although the problem of
maximizing L* seemed slightly more difficult. Because of cost considerations,
‘no iterations on the weights were performed. In other words, L* was

only maximized once, and the new residual estimates from this solution

were not used to construct new weights to be used for a second maximization,

and so on. This estimator will be called FIMIWLS-I.

VI, Within-Sample Comparison of the Six Sets of Estimates

In Table 2 the six sets of estimates are presented for each of
the eleven stochastic equations. The two sets of FIML estimates tend to
differ more from the other four sets of estimates than the other four
sets of estimates differ from each other. 1In particular, this is true
for the coefficient estimates of the inventory equation and for the
estimate of the constant term, 871, in the price equation. There were
no important cases of sign reversals among the different estimates
of the same parameter. The only sign reversals occurred for P,

and for two dummy-variable coefficients, 867 and 889'




Coefficient
1o B,
2. 312
3. ng
b By
5. %5
6. By
7o By
8. By
9. Py
10, B,
1. &,
12. gy,
13. 0o
14, §31
15, &,
16, §33
17. Py
18, B,
19. 8,
20, B,
2L 8y,
22, 8,
23. py

Six Sets of Coefficient Estimates of the

OLS

-37.66
.1158
.0900
1437
-2,236
2,459
-6.369
1.068
.5832

.05815
7792

.04802
-.1195

03584
.8891
-.02338
. 2694

-10.32
07964
4707
-3.908
-1, 947
.8514
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Table 2

FIML

-32.59
1135
1413
. 0564
-2.144
2,302
-6.756
2,543
3162

. 04085
.8522
02771
-.2716

.02802
9186
-.02074
.1293

-9.54
07734
L4942
-3.844
-2,218
.8650

Model
Method

WLS-I  FIMIWLS-I  WLS-II  WLS-III
-36.33 -33.43 -37.03 -35.96
1134 1134 .1140 1141
.0900 .0354 +1099 .1050
.1502 . 1682 1345 .1251
-2.359 -1.943 -2.366 -2.324
2.308 2,827 2.384 2,441
-5.869 -5.829 -6.315 -6.389
2,045 2,101 1.345 1.186
. 5638 5462 . 5216 .5568
.04809 04866 .05145 .05362
.8169 8146 .8053 7972
04608 . 04635 04515 « 04504
-.2379 -.2556 -.2187 -.1739
.03708 .03504 .03579 .03727
. 8843 .8919 .8885 .8829
-.02402 -,02347 -.02214 -.02241
.0286 -.0560 « 2044 3216
-8.62 -8.59 -11.21 -12.20
.07395 .07603 07350 07412
5163 4968 . 5685 . 5804
-4,517 -4,322 -4,151 -3.898
-2.618 -2.777 -2,292 -1,791
. 8458 8345 .8825 . 8983
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Table 2 (continued)

Coefficient OLS FIML WLS-I FIMLWLS-IT WLS-IT WLS-III
2k, 851 -20,71 -28.23 -15.57 ~30.38 -16.32 -18.16
25, 852 .03339 04249 .02705 .02690 .02833 .03108
26, 853 .07631 .06178 .07854 .08202 .07836 .07612
27, By, 07416 .07379 .08242 .08271 .08208 .07856
28. 355 L0344k .02583 .03548 .03650 03460 .03386
29. o 9427 .9616 9260 L9942 L9149 .9278
30, By -29.40 -65.08 -30.79 -60.32 -33.15 -30.95
31. B L4081 «5755 .3984 . 5461 L4045 4279
32, By -.3139 -.4090 -.3047 - 4104 -.3069 -.3372
33, By, .3736 .1786 3345 .3299 .3353 .3188
34, Bs -2.435 -1.695 -2.000 -2.966 -2,182 -2.203
35. By o L.96k 3.975 4,998 5.439 b, 8u2 4. 784
36. Br -1.825 .397 -1.712 -1.446 -1.623 -1.485
37. ‘%8 5.219 2.998 4,705 5.559 4,853 4,912
38. P . 9683 .9029 L9493 .9191 «9533 L9648
39. By 1.361 1,220 1.365 1.156 1.366 1.364
4. B, -.02508 -,02503  -,02510 -.02208 -.02484 -.02510
Bl By -. 4629 -. 5425 -.4127 -.4929 - 4660 -.4605
b2, B, .00007157 .00007172 .00007650 00007202  ,00007685 .00007216
43, B3 -.1267 -.1485 -.1127 -.1351 -.1275 -.1261
Wi gy, .07038 .03545 .10200 05477 .08091 07566
b5, B 5 1751 . 2605 . 2064 .2312 L1664 .1729
b, By .00202 .00315 .00197 .00212 .00169 .00191
L7, B .00154 .00111 .00123 .00036 .00152 .00155
48.  gag -.00290 -.00161 -.00319 -.00173 -.00341 -.00309
49, B39 .00365 -.00034 .00233 .00199 .00370 .00365
50. og .2648 .3089 .2073 3684 2552 . 2495




Coefficient
51 Bgy
52, By,
53. 893
54, 09
5 B0,
6. #.
57, plO
58. 801
9. &
60, 811'3
61,

P11
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Table 2 (continued)

OLS FIML
-16974,  -18809.
-126,2  -142.9
4884 .5383
L6768 .5910
1.001 1.000
-.0004472 -,0004416
.7883 «7703

. 2679 .2368
.0008282 ,0008153
.2401 .2933

. 8642 8U467

Method
WLS-I FIMIWLS-ITI  WLS-IT WLS-III
-17808. -18859. 17494,  -17496
-136.1 -144,2 -137.3 -135.7
5137 . 5400 . 5104 .5085
6418 6175 6226 .6352
.999 1.000 1.000 1.003
-.0004261 -.0004343 -.0004394 -,0004681
. 7835 .8007 7779 . 7883
. 2697 2540 .2503 . 2621
.0009257  .0008304 .0009424 , 0009060
.2239 . 2654 2524 .2382
.8371 .8778 Bu462 .8597
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The root mean square errors and mean absolute errors for six
variables are presented in Table 3 for each of the six estimators. The
six variables are GNP in current dollars (GNPt), the private output
deflator (PDt)' GNP in constant dollars (GNPRt), private nonfarm employ-
ment (Mt)' the difference between establishment employment data and
household survey employment data (Dt), and the level of the secondary
labor force (LFZt). The errors for the six variables are not independent
of one another in the sense that, for example, large errors in predicting
GNPt are likely to lead to large errors in predicting the other variables.,
GNPt is determined in the linear, simultaneous-equations block of the
model, and the other variables are determined in the nonlinear, recursive
block. The five variables presented in Table 3 from the recursive block
are the five most important variables in the block. The estimates of
the serial correlation coefficients were used in the generation of the
predictions from the model.

The results in Table 3 are fairly self-explanatory. Consider
GNPt first. OLS is obviously the worst, being last on all grounds except
the one- and two-quarter-shead predictions, where it is better than
FIMIWLS-I. WLS-I is better than WLS-IT and WLS-III for the three-quarter-
ahead predictions and beyond, beating them on all counts, although not
by much for the three-quarter-ahead prediction. For the one- and two-
quarter-shead predictions, the results are close. FIML does well for all
but the simulation over the entire period, where it falls down somewhat.
FIMIWLS-I is the best for the simulation over the entire period, but is
not particularly good for the other predictions.

Consider PDt next. The two FIML estimators are the worst, which

1s caused in large part by the different estimates of the constant term
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in the PDt equation. The results for the other four estimators are
quite close except for the simulation over the entire period, where the
ranking is WLS-I, WLS-II, WLS-IIT, and OLS. This ranking is the same
as that for GNPt for the simulation over the entire period, which is
explained by the fact that for the simulation over the entire period the
perdictions of GNPt have an important effect on the predictions of PDt.

For GNPRt, OLS is again the worst, being last on all grounds.
WLS-I is better than WLS-II and WLS-III on all grounds. FIML does better
than WLS-I for the one-and two-quarter-ahead predictions, even considering
the poorer FIML predictions of PDt,which are used in the computation of
the predictions of GNPRt, but the opposite is true for the three-quarter-
ahead predictions and beyond. FIMLWLS-I is the best for the two-through
five-quarter-ahead predictions, but falls down slightly for the other two.

For Mt' the results are fairly close except for the simulation
over the entire period, where the RMSE ranking is WLS-I, WLS-II, WLS-III,
OLS, FIMLWLS-I, and FIML, and the MAE ranking is WLS-I, WLS-II, FILMWLS-I,
FIML, WLS~-III, and OLS. For Dt' WLS-I does consistently well, but the
results are again fairly close except for the simulation over the entire
period. For LF2t' the FIML estimators get worse as the period ahead
lengthens. For the simulation over the entire period, OLS is best by a
slight amount.

The following is a tentative list of conclusions drawn from
the results in Table 3.

l. WLS-I appears better than WLS-II and WLS-III, and all three
appear better than OLS. 1In this regard it is interesting to note that
it is not just the treatment of large residuals that appears important,

since WLS-II, which is a combination of OLS for small residuals and WLS-I
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for large residuals, does not do as well as WLS-I. The different treatment
of small residuals by WLS-I compared with OLS appears also to be of importance.

2. For the predictions of GNPt, FIML is obviously better than
OLS, which is the same conclusion reached in [ 6]. For the other variables,
which are not determined simultaneously, FIML is not always better. 1In
other words, more gain appears likely from using FIML over OLS when the
model is simultaneous than when it is recursive.

3. Among WLS-I, FIML, and FIMLWLS-I there is no obvious winner
since the rankings differ depending on the variable predicted and the number
of periods ahead for which the prediction is made. Overall, however, WLS-I
probably has an edge, éspecially if emphasis is put on the results for the
variables in the recursive block, where FIML and FIMLWLS-I do not in general
do particularly well, Given the success of WLS-I, it may be of interest in
future work to examine the performance of the combination of two-stage
least squares and WLS-I.

4. For the one-quarter-ahead (static) predictions, the results
are all fairly close, which means that if one is only interested in static
predictions, the choice of an estimator is not too important (assuming
the estimator accounts for first-order serial correlation). For dynamic

predictions the choice is important, and a conclusion reached in [ 6]

7One obvious way to combine two-stage least squares and WLS-I
is simply to run first-stage regressions in the usual way and use the
fitted values of the endogenous variables from these regressions in
place of the actual values of the right-hand-side endogenous variables
in the present procedure of obtaining WLS-I estimates.
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is also relevant here, namely that more work ought to be done on
developing estimators that take into account the fact that values of

the lagged endogenous variables are not known after the one-period-ahead

predictions.

It should finally be noted that predictions were also generated
based on WLS-I estimates obtained after the first iteration from ordinary
least squares (rather than after the fourth iteration as above). The
results were better than the OLS results, but not as good as the WLS-I
results based on four iterations. Iterating more than once clearly

improved the prediction accuracy of the estimator.

VII. Outside-Sample Comparisons of OLS and WLS-I Estimates

In order to see if the superiority of WLS-I over OLS also held
up for outside-sample predictions, the model was reestimated by
WLS-I and OLS only through 1968 IV. Predictions for the 1969 I - 1973 T
period were then generated based on these two sets of estimates. In
Table 4, error measures for the simulation over the entire prediction
period (17 observations) are presented for fifteen variasbles. For
GNPt, WLS-I outperforms OLS. Of the six components of GNPt, WLS-I is
better for three. Of the other eight variables, which are determined
in the recursive block, WLS-I is better for all but two (Mt and URt)'
Overall, WLS-I appears to outperform OLS,8 although the superiority

of WLS-T here does not appear as pronounced as it was for the within-

8This conclusion is consistent with the results of Meyer and
Glauber [10], who found the LAR estimator to be an improvement over
ordinary least squares in terms of out side-sample, single-equation
prediction accuracy.
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Table 4. Outside-Sample Prediction Errors
for Fifteen Variables.

Estimation Period:

Prediction Pericd:

1960 II - 1968 IV
1969 I - 1973 I

(Error measures for the simulation over
the entire prediction period only)

Mean Absolute Errors

Root Mean Square Errors

RMSE =
wiE =
RMSE

oLs  WLS-I
13.48 9.84
4.63 3.94
11.24 8.27
2.13 2.32
2.89 3.36
5.91 6.14
6.80 6.84
0.85 0.82
8.23 7.46
421, L68,
500, 376.
729. 696.
260. 240.
2276, 2230.
.0163 L0164

10.76
3.71
9.55
1.80
2.43
bLs
6.08
0.72
6.64
355.
43,
565.
229,

2109.

.0149

3.15
7.10
1.97
2,83
4,65
6.08
0.69
5.81
429,
322,
536.
207,
2067,

.0150
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sample comparisons. This same conclusion also emerged from examining
the predictions for the 1969 I - 1973 I period in more detail (e.g., by
the number of periods ahead predicted) and from examining predictions
for the 1970 ITI - 1973 I period based on estimates through 1970 II.
All of the outside-sample comparisons are, of course, based on only a
small number of different periods predicted and so must be

interpreted with some caution.

VIII. Conclusion

The main conclusion of this paper is that robust estimators
appear quite promising for the estimation of econometric models. Of
the robust estimators considered in this paper, the one based on minimizing
the sum of the absclute values of the residuals performed the best.

The FIML estimator and the combination of the FIML and least-absolute-
residual estimators also appear promising, at least for simultaneous
equations models.

The same caveats discussed in [6] regarding the methodology of
that study are also relevant here. The comparisons in this paper are
based only on the criterion of prediction accuracy, and the model used
for the comparisons has some special features that are not characteristic
of other models. Whether the conclusions reached in ‘L6] and in this
paper hold for other models is an open question . and the conclusions are

merely put forth as indicating what might be the case for such models.
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