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1.   Introduction 

Interdependent security (IDS) games are social multi-player games with stochastic payoffs where 

each player must decide whether or not to mitigate his or her own risks.  More specifically, each player 

knows that even if she fully protects herself by investing in a risk-reducing measure, she may still be 

subject to indirect losses by being contaminated by one of the other players who chose not to invest in 

similar measures.  As Heal and Kunreuther (2005) have shown, there are a wide variety of problems that 

fit into the IDS framework ranging from investing in airline or port security, protecting oneself against 

disease through vaccinations, individual users incurring software security costs when connected to a 

network, and divisions of firms undertaking risk-reducing measures to avoid a catastrophic loss that 

could cause the entire firm to become insolvent or bankrupt.  

IDS problems can have multiple Nash equilibria or just a single Nash equilibrium depending on 

the tradeoffs between the marginal costs associated with investing in the protective measure and the 

marginal benefits from reducing direct and indirect losses (Kunreuther and Heal 2003).  This paper 

presents the results of controlled laboratory experiments involving two players in an IDS game where 

there is a single Nash equilibrium.  If both players invest in a risk-reducing measure, there is no chance 

that either will suffer a loss.  However, if either or both players do not invest in the protective measure, 

then there is some likelihood (hence the stochastic part) that both individuals will suffer a loss. 

Furthermore the dominant strategy for both players, if they are risk neutral, is not to invest in the 

protective measure even though had they taken this step, their expected values would have been higher 

than if they had not.  In this sense our IDS game can be viewed as a stochastic prisoner’s dilemma 

(SPD) game.  

 The prisoner’s dilemma problem is a paradigmatic example highlighting a broader class of 

problems that fall under the heading of social dilemmas.  In such situations each individual receives a 

higher payoff for making a socially defecting choice (e.g. polluting the environment) than for pursuing a 

socially cooperative choice no matter what the other individuals in society do.  Furthermore all 

individuals are better off if they all cooperate than if they all defect (Dawes 1980).  In his classic piece 

on the tragedy of the commons, Hardin (1968) showed that the failure of each individual to restrain 

themselves from utilizing a resource could lead to its depletion (e.g., a fish population or a forest from 

which timber is harvested) or global changes (e.g., climate change due to excessive greenhouse gas 

emissions). Interest in the tragedy of the commons dilemmas has grown steadily in the last fifty years 



 4

because social scientists have pointed out that many of the major problems facing society fall under this 

rubric.1     

Our interest in this research area is both substantive and methodological.  From a substantive 

perspective, we would like to compare the behavior of individuals in a standard deterministic prisoner’s 

dilemma (DPD) supergame of ten periods with their behavior in an SPD supergame based on an IDS 

model.  Is there more or less cooperation (investment in protection) in an SPD game versus a DPD game 

and what are the factors influencing the level of cooperation?  We are also interested in how feedback 

affects cooperation in a stochastic game in which each player is provided with information on the action 

of one’s counterpart and the payoffs for both players.  Specifically, we compare behavior in this full 

feedback stochastic game with behavior in a stochastic game where there is feedback on the payoffs for 

both players but not on the action of one’s counterpart.  In this partial feedback game, a player may or 

may not be able to infer her counterpart’s action based on the payoffs received by both players.   

From a methodological perspective, we utilize a Bayesian hierarchical model coupled with 

marginal analyses to understand more fully the factors that influence individuals to invest in protective 

measures over time and whether there are significant differences in behavior when payoffs are 

deterministic versus stochastic.  The use of a hierarchical model is important to properly account for the 

correlation among repeated decisions of the same player.  To the best of our knowledge this is the first 

time that Bayesian hierarchical methods have been applied to the analysis of repeated prisoner’s 

dilemma game experiments. 

 The remainder of the paper proceeds as follows.  The next section provides a brief summary of 

theoretical and empirical studies on prisoner’s and social dilemmas with a focus on recent experiments 

in a noisy or stochastic environment.  We then describe in Section 3 a general formulation for an 

interdependent security (IDS) two-player game, showing under what conditions it takes the form of a 

stochastic prisoner’s dilemma game.  After characterizing our experimental design for a set of controlled 

laboratory experiments (Section 4), we then specify a set of between treatment hypotheses and test them 

using regression analysis (Section 5).  In Section 6, we build a Bayesian hierarchical model that enables 

us to test hypotheses with respect to within-subject behavior.  Section 7 summarizes the findings, 

discusses their prescriptive implications and suggests areas for future research.  

 

                                                 
1 For an insightful set of recent research articles on social and commons dilemmas in the context of resource problems see  
Ostrom et al  (2002).  
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2.  Background on Deterministic and Stochastic Prisoner’s Dilemma Games  

Here we lay out a basic taxonomy that provides a general research prospectus for repeated, 

multi-player stochastic prisoner’s dilemma games.  In particular, we point out where previous research 

falls in this structure, what holes are remaining, and which ones are satisfied by this research.   

 To anticipate what will be discussed in the next subsections, we focus on multi-period games and 

extend this framework to address whether the outcomes are deterministic versus stochastic. This issue is 

not as simple as it might appear because there are many aspects of a supergame that might or might not 

be stochastic. We then address whether subjects have the ability to learn about their counterparts’ 

choices. 

 

Deterministic Multi-period Games and the Emergence of Cooperation 

We first consider deterministic prisoner’s dilemma (DPD) games.  In a single period DPD game, 

defecting is the only Nash equilibrium and experiments have shown that players learn to play this Nash 

equilibrium in a series of games in which a player is matched with a different player in each period (e.g., 

Cooper et al., 1996).  But in supergames, in which a player is matched with the same player for repeated 

periods, players learn to reciprocate cooperative behavior as they gain experience (Selten and Stoecker, 

1986; Andreoni and Miller, 1993; and Hauk and Nagel, 2001).  Cooperation tends to break down near 

the end of the supergame however.  In a tournament setting, Axelrod and Hamilton (1981) and Axelrod 

(1984) showed that the tit-for-tat (TFT) strategy generates a fair amount of cooperation and outperforms 

other strategies.2   

Kreps et al. (1982) have addressed the theoretical issue of whether it can be rational for players 

to cooperate in a finitely repeated game.  They show that information asymmetries can yield a 

significant amount of cooperation in a rational equilibrium.  Specifically, if each player perceives that 

there is some probability that the other player would like to cooperate for whatever reason and will play 

a strategy such as TFT that punishes her counterpart for not cooperating, then it will be optimal for both 

players to cooperate.   

 

 

                                                 
2 A tit for tat strategy is one where a player cooperates on the first move and does whatever the other player does on every 
move thereafter. 
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Stochastic versus Deterministic Games 

In a paper closely related to our study, Bereby-Meyer and Roth (henceforth B&R) (2006) 

compared cooperation in a multi-period DPD to cooperation in a multi-period stochastic prisoner’s 

dilemma game in which the payoffs were random, but the expected payoffs were that of the DPD and 

the players learned the action that their counterparts took (i.e., there was full feedback).  Subjects played 

20 ten-period supergames and were informed of their own and their counterparts’ payoffs and actions 

after each period.  In the probabilistic conditions, the payoffs were determined by a binary lottery with a 

probability p of winning $1 and probability (1-p) of winning $0 with the value of p for each player 

depending on whether or not she and her partner cooperated.  The expected values in the probabilistic 

condition were set equal to those in the deterministic condition.3  B&R hypothesized that because the 

SPD provides only partial reinforcement for cooperating when one’s counterpart cooperates, players 

would learn to cooperate more slowly (if at all) in the SPD compared to the DPD.  B&R confirmed their 

hypothesis and showed that players’ decisions in the SPD at time t are affected by the lottery that 

determined their random playoff at time t-1 in addition to their counterpart’s action at time t-1.   

 

Partial Feedback versus Full Feedback 

 In the usual DPD and B&R’s SPD, players know what actions their counterparts have taken in 

previous rounds.  But in many real situations, decision makers are uncertain about their counterparts’ 

actions.  Motivated by this issue, Bendor et al. (1991) conducted a multi-period prisoner’s dilemma 

game tournament modeled after Axelrod (1984) but with random payoffs and where players only 

learned about their own payoff.  Players received no feedback regarding either their counterpart’s action 

or payoff.  Bendor et al. found that the TFT strategy, which outperformed other strategies in Axelrod’s 

DPD tournament, fared rather poorly in this SPD tournament with partial feedback.  Axelrod and Dion 

(1988) note that when there is uncertainty in outcomes, then cooperation may avoid unnecessary conflict 

but can invite exploitation.  Axelrod (1984) and Donninger (1986) also presented results of tournaments 

of SPDs with partial feedback, finding that TFT could still perform well if there is only a small amount 

of noise in the payoffs. 

 

                                                 
3 As a control case B&R designed a “deterministic plus sunspots” game in which payoffs were deterministic but players 
learned the outcome of two binary lotteries that did not influence the outcomes but had the same distributions as lotteries in 
the probabilistic condition. 
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 Bendor (1987, 1993), Molander (1985), and Mueller (1987) studied SPDs with partial feedback 

from a theoretical perspective.  Bendor (1993) showed that, although uncertainty about one’s 

counterpart’s actions hinders cooperation in some circumstances, there are other situations in which the 

uncertainty can enhance cooperation by allowing reciprocating but untrusting strategic players to begin 

cooperating because of unintended consequences.   

 

The Contributions of Our Experiments 

 Our experiments are the first that we know of to compare side-by-side a DPD multi-period game, 

an SPD with full feedback (SPD-FF) multi-period game and an SPD with partial feedback (SPD-PF) 

multi-period game.  Our SPD game with full feedback differs from B&R’s in two important respects.  

First, in our SPD, individuals face the possibility of a loss rather than a gain, and are provided with a 

given amount at the start of each supergame.  Second, in our SPD, the loss to both players is determined 

by the same lottery, whereas in B&R’s SPD, the two players’ outcomes are determined by independent 

lotteries.  The shared losses in our SPD, which are a feature of IDS games, may affect players’ 

psychological reaction to the outcome of the game and the other player’s action.  In our SPD game with 

partial feedback, players learn only their counterpart’s loss and not their counterpart’s action.  For some 

combinations of a player’s strategy and the losses of both players, it is possible to infer what actions 

one’s counterpart took; for other combinations, one is clueless.  To our knowledge, our experiments are 

the first to consider an SPD with partial feedback game among live players rather than a tournament 

with pre-entered strategies.  Furthermore, for the SPD-FF and SPD-PF games, we vary the probability of 

experiencing a loss so that we can decompose the direct effects of the existence of stochasticity from the 

magnitude of the likelihood of the event.  

 Our first goal is to compare the overall levels of cooperation (investment in protection) in the 

information conditions DPD, SPD-FF and SPD-PF.  We study this in Section 6.  Our second goal is to 

understand the source of any differences in cooperation between the three information conditions in 

terms of how players respond to different situations.  We study this in Section 7.  First, we describe the 

IDS paradigm, our experimental design and hypotheses.    

 

3.  IDS Games 

 To motivate our experiments in the context of interdependent security models we focus on an 

example of two identical individuals, A1 and A2, each maximizing her own expected value in a one-
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period model and having to choose whether to invest in a protective measure. Such an investment by 

individual i costs c and reduces the probability of experiencing a direct loss to 0.  Let p be the 

probability of a direct loss to an individual who does not invest in protection.  If an individual 

experiences a direct loss, there is some probability q≤ p that the other individual will also experience an 

indirect loss from this individual even if she has invested in protection. For example, an apartment 

owner who has invested in a sprinkler system to prevent fire damage may still suffer a loss indirectly 

from a neighboring unit that does not invest in this form of protection and experiences a fire. The direct 

or indirect loss to each player is L.4  

Let Y be the assets of each individual before she incurs any expenditures for protection or suffers 

any losses during the period.  Assume that each individual has two choices: invest in protection, I, or do 

not invest, NI, and makes her decision so as to maximize expected value.  The four possible expected 

outcomes from these decisions are depicted in Table 1:  

[INSERT TABLE 1 HERE] 

To illustrate the nature of the expected returns consider the upper left hand box where both 

individuals invest in security (I, I).  Then each individual incurs a cost of c and faces no possible losses 

so that each of their net returns is Y-c. If A1 invests and A2 does not, then this outcome is captured in the 

upper right hand box (I, NI).  Here A1 incurs an investment cost of c but there is still a chance q that a 

loss will occur to A2 so that A1's expected loss from damage from a negative externality is qL. The lower 

left box (NI, I) has payoffs which are just the mirror image of these.  

Suppose that neither individual invests in protection (NI, NI) – the lower right hand box in Table 

1.  Then each has an expected return of Y- pL -(1-p)qL.  The expected losses can be characterized in the 

following manner.  The term pL reflects the expected cost of a direct loss.  The second term reflects the 

expected cost from an indirect loss originating from the other individual (qL) and is multiplied by (1-p) 

to reflect the assumption that a loss can only occur once.  In other words, the risk of contamination only 

matters to an individual when that individual does not experience a direct loss.  

Assuming each individual wants to maximize her expected returns, the conditions for her to 

invest in protection are that c<pL and c<p(1-q)L.  The first constraint is exactly what one would expect 

if the individual could not be contaminated by the other person.  Adding a second individual tightens the 

                                                 
4 We recognize that a more general formulation would allow for p, q, L, and Y to vary across players.  However, the general 
taxonomy and theory is not restricted by our simplifications.  Empirical findings under more general settings are an important 
area for future research. 
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constraint by reflecting the possibility of contamination should this person decide not to invest in 

protection.   The resulting Nash equilibrium (NE) for this IDS model can be determined as follows: 

 
• If   c<p(1-q)L   then (I, I)  is a NE 
• If   c>pL           then  (NI, NI)  is an NE 
• If    p(1-q)L <c< pL   then  both (I, I)  and  (NI, NI)  are NE 

 
An IDS game becomes an SPD game when pL + (1-p) qL> c >pL so that (NI, NI) is a dominant solution 

but both individuals would be better off if they had decided to invest in protection (I, I).  For the 

experiments described below, we set q = 1 so that if one individual suffers a loss, the other individual is 

certain to also experience this same loss.  We also choose values of p and L so the IDS game takes the 

form of an SPD game.    

 

4.  Experimental Design  

 The two-person experiments were carried out in the behavioral laboratory of a large, northeastern 

university using a web-based computer program. The pool of subjects recruited for the experiment 

consisted primarily of undergraduate students, though a small percentage of subjects were graduate 

students and students from other area colleges.  A more detailed demographic breakdown of the subject 

pool is given in Appendix A.  The studies were run with three different experimental conditions 

containing between three and seven pairs of subjects participating in specific sessions.  A session 

consisted of a set of supergames, each consisting of 10 periods.  The computer program randomly paired 

the subjects before the start of each supergame.   

A person played a 10-period supergame with his/her anonymous partner; and at the conclusion of 

the supergame the person was then told that she would be randomly paired before the start of the next 

supergame.  The number of supergames in each session ranged from three to ten depending on how long 

the session ran and how rapidly the pairs of players were able to complete each supergame.5  More than 

half the participants participated in exactly eight supergames.   

Each subject was given an initial surplus of 300 “talers” (described below) at the beginning of 

every supergame.  Before the experiment began, every subject was told that each supergame consisted 

of 10 periods. The number of supergames was not announced at the beginning of the experiment nor was 

the final supergame announced when it began.  Subjects were also told that at the end of the entire 

                                                 
5  It was necessary for all pairs to complete a 10-period game before one moved to the next game. 
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session, one supergame and one pair playing that supergame would be chosen at random, and each 

individual from the selected pair would receive the dollar equivalent of his/her final payoff from that 10 

period game.  The lucky pair received these payments in addition to the fixed fee of $8-$12 (depending 

on the length of the session) that each person received for participating in the experiment.   

The initial surplus and payoffs presented to the subjects during the experiment were in an 

artificial currency called “talers,” and these were converted to dollars (10 talers=$1) at the end of the 

experiment for the randomly selected lucky pair.  The average earnings per person from the game for the 

pairs chosen at random to receive their final payoff from a supergame was $25.55.  Screen shots of the 

instruction pages for all conditions, as well as decision and payoff screens, are presented in Appendix B.  

We next describe each of these experimental treatment conditions in detail. 

 

Information Condition 1:  Deterministic Prisoner’s Dilemma (DPD) Game  

Subjects in the DPD condition were presented the payoff matrix depicted in Appendix B (Figure 

B1).  In this condition, the cost of investing is c=12 talers.  A loss of L=10 talers (in addition to any 

investment costs) occurs for both players if exactly one player does not invest.  A loss of L=16 talers 

occurs for both players if both players do not invest.  Both individuals would be better off if they had 

each invested rather than not invested; however (NI, NI) is the Nash equilibrium. 

 

Information Condition 2: Stochastic Prisoner’s Dilemma Game with Full Feedback on Counterpart’s 

Decision (SPD-FF) 

The stochastic conditions replicated the effect of p (the probability of a negative random event 

each period as described in Table 1) by means of a random number. In order to understand the impact of 

the probability and magnitude of a loss on behavior in the SPD game, we ran sessions where p=.2, p=.4 

and p=.6.  The cost of investing in protection remained at c=12 for each of these cases; however the 

respective losses were set at L= 50, 25 and 19 so that the expected payoff matrices were essentially 

equivalent across the three experimental conditions.6  This was done so that we could isolate the impact 

of the change in loss probability on one’s decision to invest and not have it be confounded by the 

magnitude of the expected loss. 

                                                 
6 For  p=.2   the expected losses were:  I,I =(-12,-12)    NI, I = (-10, -22)  NI, NI = (-18, -18). For  p=.4   the expected losses 
were:  I,I =(-12,-12)    NI, I = (-10, -22)  NI, NI = (-16, -16). For  p=.6   the expected losses were:  I,I =(-12,-12)    NI, I = (-
11, -23)  NI, NI = (-16, -16). 
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The exact payoff matrix presented to subjects in the SPD-FF condition, sub-treatment p=0.2, is 

depicted in Appendix B (Figure B5); the payoff matrix for sub-treatment p=0.4 is depicted in (Figure 

B8); and the payoff matrix for sub-treatment p=0.6 is depicted in (Figure B9). 

At the end of each period t each player was told whether his/her counterpart had chosen I or NI 

(hence full feedback).  If either (or both) players had chosen NI, then the computer would draw a 

random number from 1 to 100 and highlight this number on a table on each subject’s screen indicating 

whether or not a loss had occurred. Each player was then shown his/her cumulative balance in talers and 

his/her counterpart’s cumulative balance for period t and all previous periods in the supergame (See the 

example in Appendix B). 

 

Information Condition 3: Stochastic Prisoner’s Dilemma Game with Partial Feedback on 

Counterpart’s Decision (SPD-PF) 

This game is identical to the SPD-FF game except that after each period t the random number 

generates an outcome even if both players invested in protection (i.e. (I,I)).  Each player is then told 

whether or not she suffered a loss but not what action her counterpart had taken.  Each player learns only 

her own cumulative balance in talers for period t and all the previous periods.  For some outcomes in 

period t it is possible for a player to determine what action her counterpart had taken that period.  For 

example, if Player 1 invests in protection (I) and suffers a loss, then she knows that Player 2 must not 

have invested (NI).  In other cases it is impossible for the other player to learn what her counterpart has 

done.  For example, if a green (no-loss) random number is drawn, then there is no loss whether or not 

either player invested in protection.  Table 2 summarizes the twelve combinations of investment-color 

configurations that could arise each period, and whether Player 1 can learn whether or not her 

counterpart has invested in that period (a symmetric table exists for Player 2).  

[INSERT TABLE 2 HERE] 

General Overview of the Data Collected for All Conditions 

Table 3 indicates the number of individuals who participated in experiments in each of the three 

treatment conditions and as a function of p for the SPD experiments. 

[INSERT TABLE 3 HERE] 

Although each individual played several supergames, every supergame played by a particular 

individual was within the same treatment condition. (e.g. SPD-FF, p=.4).  Thus for each subject there 

exists a vector of person-level covariate data about that subject (age, gender, race, etc.), plus a vector of 
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treatment-level covariate data for the subject (deterministic condition vs. stochastic full-feedback vs. 

stochastic partial-feedback, and p=0.2 vs. p=0.4 vs. p=0.6), plus a series of 10-period supergame 

vectors, each of which contain the data about (a) the decision the subject made in each period (I or NI), 

(b) the decision her counterpart made in each period (I or NI), (c) the color that appeared on the random-

number grid for that round (red, orange, or green), and (d) the number of points (talers) deducted from 

the subject’s account each period. In addition to these four decision-level pieces of information collected 

during the experiment, we also added a binary variable indicating whether or not the subject was able to 

learn the decision of her counterpart; this “learn” indicator can be calculated based on Table 2.  

 

5. Analyses of Between Treatment Hypotheses  

We first postulate between treatment hypotheses that can be tested with marginal analyses and 

simple regressions.  These include (a) how levels of investment differ between the DPD, SPD-FF and 

SPD-PF conditions and (b) how levels of investment differ as the probability of a negative random event 

(p) increases from 0.2 to 0.4 to 0.6.   

 

5.1  Specific Between-Treatment Hypotheses 

H1: The probability of investment will be greater in the DPD game than in either of the SPD games.   

Bereby-Meyer and Roth (2006), (B&R) found evidence that there was less cooperation in an 

SPD-FF game than in a DPD game.  They ascribe this finding to the fact that stochastic games 

only provide partial reinforcement for cooperation.  We expect to find a similar set of results. 

 

H2: The probability of investment will be greater in the SPD-FF game than in the SPD-PF game.   

We hypothesize that the lack of complete information in the SPD-PF game and hence the 

inability to learn what one’s counterpart has done in many scenarios (see Table 2) will limit the 

emergence of stable cooperation between the two players.  

 

H3: For either SPD-FF or SPD-PF, the probability of investment will be greater in the p=0.4 treatment 

than in the p=0.2 treatment, and will be greater in the p=0.6 treatment than in the p=0.4 treatment. 

As p increases, the likelihood that a non-investing subject will experience a loss increases.  There 

is considerable evidence from other studies that experiencing a loss increases the incentive to 

invest in protection. Kunreuther (2006) has shown that homeowners are likely to purchase 
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earthquake or flood insurance after a recent disaster even when they indicate that the probability 

has not increased (flood) or may even be lower in the immediate future (earthquake). Because 

subjects who do not invest in the previous period are more likely to experience a loss as p 

increases, this would lead them to invest in the next period, other things being equal. 

 

H4: In situations in which a subject’s counterpart invests and this can be learned by the subject, there is 

a higher proportion of investment in  the next round in the SPD-FF game than the SPD-PF game. 

In the SPD-FF game, a subject is explicitly told what his or her counterpart’s investment decision 

in the previous round was.  On the other hand, in the SPD-PF game, even when a subject can 

learn what his or her counterpart’s investment decision was, he or she needs to infer the decision 

rather than being explicitly told.  We hypothesize that the explicit learning of the SPD-FF 

compared to the implicit learning of the SPD-PF will make subjects more likely to reciprocate if 

their counterparts cooperate.  As shown in Table 2 a subject can only learn that his or her 

counterpart has invested in an SPD-PF game when the subject has not experienced a loss 

(Scenarios 1 and 8).  

 

5.2 Marginal  Analyses 

Before formally testing the between treatment hypotheses, we first explore the data at its 

marginal level.  Table 4 describes the proportion of times individuals invested in protection (cooperated) 

in the different conditions of our experiment.  Figure 1 displays these mean investment levels along with 

the .05 and .95 quantiles of the distribution of subject investment levels in a condition, where the subject 

investment level for a given subject is the proportion of times the subject invested across the subject’s 

supergames.  At a glance, the investment proportion tended to be highest in the DPD, with roughly 

similar investment proportions in SPD-FF and SPD-PF.  In the SPD conditions, the investment 

proportion increases with the probability of loss.  There is a substantial amount of heterogeneity of 

investment among different individuals within a given condition; for example for DPD, the .05 quantile 

of investment proportion is 0.10 and the .95 quantile of investment proportion is .95.  Although there is 

substantial heterogeneity among individuals within a condition, there are clear patterns of different mean 

investment levels across conditions. 

[INSERT TABLE 4 AND FIGURE 1 HERE] 
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We now explore how the probability of investing changes as the number of the supergame varies 

from 1 to 8 (few individuals played more than 8 supergames) for each of the information conditions.  

These analyses mimic many of those in B&R.  Figure 2 shows these probabilities for periods 1, 5, 8 and 

10 (beginning, middle, near-end, and end rounds).   

[INSERT FIGURE 2 HERE] 

For periods 1, 5 and 8, the probability of investing in the DPD goes up gradually as players gain 

experience with the supergames.  On the other hand, for the SPD-FF and the SPD-PF, the probability of 

investing goes down slightly as the players gain experience with the supergames.  This is a stronger 

effect of uncertainty hindering the evolution of cooperation than B&R found. In their experiments, 

cooperation increased more slowly in an SPD than a DPD but still increased in the SPD.  For period 10, 

the probability of investing is similar across all conditions.  Cooperation declines in the last period 

compared to other periods in the DPD game, presumably because there is no incentive to cooperate in 

the last period.   

 We next explore how the probabilities of investment change as the period increases from 1 to 10.  

For brevity, we show these probabilities in Figure 3 for the first and last supergames – 1 and 8.  

[INSERT FIGURE 3 HERE] 

For the DPD in supergame 1, investment generally declines gradually as the periods increase.  For the 

DPD in supergame 8, investment declines gradually from periods 1 to 8 and then declines sharply in 

periods 9 and 10.  This behavior of declining investment as a function of period mirrors the findings of 

Selten and Stoecker (1986), Andreoni and Miller (1993), Hauk and Nagel (2001) and B&R (2006).  For 

the SPDs in supergame 1, investment declines from period 1 to 3 and then stays relatively flat.  For the 

SPDs in supergame 8, investment generally declines gradually.  This is similar to B&R’s finding that in 

an SPD, investment declines gradually as the period increases. In other words there is less of a drop in 

investment from period 1 to period 10 for the SPD than the DPD game.   

 

5.3 Regression Analyses 

To more formally test the between treatment hypotheses H1-H4, we fit a regression of the 

proportion of times7 each subject invested as a function of the subject’s information condition (DPD, 

SPD-FF or SPD-PF), the subject’s probability of loss condition if in one of the stochastic information 

                                                 
7 We recognize that taking logit(proportion) would yield a dependent variable more in line with the assumption of ordinary 
regression, however, we wanted to provide exploratory results on the original scale.  Model-based analyses, presented at the 
end of Section 5 and in Section 6, are based on a logistic regression, more appropriate to the 0/1 nature of the data. 
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conditions SPD-FF or SPD-PF ((p=.2)*stochastic, (p=.4)*stochastic and (p=.6)*stochastic, where 

stochastic = 1 if in a stochastic condition and 0 otherwise) and interactions between the information 

condition and the probability of loss condition.  The interaction terms were not significant (p-value for 

F-test = 0.63) and hence were dropped from the regression.  Table 5 shows confidence intervals for a 

variety of interesting contrasts in the proportion of investment between conditions.   

[INSERT TABLE 5 HERE] 

 The data provide strong evidence for H1 – there is strong evidence (in Table 5, R1-R6) that there 

was a higher mean investment proportion in the deterministic information condition than in either of the 

two stochastic information conditions for each of the three probability of loss levels. There is 

substantially more investment in the DPD in some cases. For example, the estimated difference is 0.29 

between the DPD and (SPD-FF, p=.4) ( Table 5 R3) , and 0.25 between the DPD and (SPD-PF, p=.4), 

(Table 5 R4).   

The data do not support H2 – there was slightly less investment in the full feedback SPD than the 

partial feedback SPD, the estimated difference is 0.04 [95% credibility interval: (0.00, 0.09)]; the sign of 

the difference between full feedback and partial feedback SPD is the opposite of what we hypothesized 

in H2, albeit the effect is quite small.    

We now consider hypothesis H3 that subjects’ mean investment level increases as the probability 

of loss increases.  Comparing the probability of loss conditions among subjects playing a given SPD 

game, there was substantially more investment when the probability of loss was .6 than when it was .4 

or .2; the estimated difference in mean investment proportion is 0.16 for p=.6 compared to p=.2 (Table 5 

R8) and 0.12 for p=.6 compared to p=.4 (Table 5 R9), and both differences are statistically significant 

(p<0.05).  There was slightly more investment for p=.4 compared to p=.2 – the estimated difference is 

.05, but the difference is not statistically significant.  Thus, there is evidence for part of H3 that the 

subjects’ mean investment level increases as the probability of loss increases from p=.2 or p=.4 to p=.6, 

but there is no strong evidence that the mean investment level increases as p increases from .2 to .4.  

 We now consider hypothesis H4, i.e. that the explicit learning of the SPD-FF makes subjects 

more likely to reciprocate an investment by their counterpart than the implicit learning of the SPD-PF.  

Table 6 shows the probabilities of investment in the SPD-FF compared to the SPD-PF when the 

counterpart’s previous decision can be learned, broken down by the subject’s previous decision and the 

counterpart’s previous decision.  The first two rows of the table (Table 6 R1, R2) support hypothesis H4 
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in that there is a higher proportion of investment in the SPD-FF than in the SPD-PF when the 

counterpart’s previous decision to invest is learned.   

To gauge the statistical significance of these differences, we need to account for the fact that (1) 

the periods and supergames at which subjects face a situation such as  both players having invested in 

the previous round might differ in their distribution between the SPD-FF and the SPD-PF and (2) 

subjects contribute repeated investment decisions and these repeated investment decisions are likely to 

be correlated due to heterogeneity of investment propensity between subjects (see Figure 1 and Section 

7 for evidence of this).  To account for issue (1), we conducted a logistic regression analysis, regressing 

each investment decision (1 if invests, 0 if does not) as a dependent variable on dummy variables which 

encode the previous decision by the subject, the previous decision by the counterpart and whether the 

previous decision could be learned; interactions of these dummy variables with the subject’s information 

condition; the subject’s probability of loss condition; dummy variables for the periods; dummy variables 

for the supergame; interactions between the information condition and the period; interactions between 

the information condition and the supergame number; interactions between the probability of loss 

condition and the period; and interactions between the probability of loss conditions and the supergame.  

To account for issue (2) that subjects’ repeated observations are likely to be correlated, we use the 

generalized estimating equations (GEE) method of Liang and Zeger (1986) with a working 

independence hypothesis.  The inferences from a GEE analysis are asymptotically valid regardless of the 

true correlation among subjects’ repeated observations.   

There are two ways that H4 can be examined:  when both the subject and counterpart previously 

invested and the counterpart’s previous investment decision could be learned (H4A) and when the 

subject did not invest in the previous period but the counterpart did and the counterpart’s previous 

investment decision could be learned (H4B).  To test H4A for a given period and supergame, we want to 

determine whether the log odds ratios for investing in SPD-FF compared to SPD-PF is greater than 0.  

More specifically we want to determine whether a linear combination of these log odds ratios that puts 

equal weight on each period/supergame combination is greater than 0.  The p-value for this test is 

<0.0001 and a 95% confidence interval for this linear combination of odds ratios is (0.48, 0.88); thus, 

there is strong support for hypothesis H4A.  Similarly, to test H4B for a given period and supergame, we 

want to determine whether the log odds ratio for investing in SPD-FF compared to SPD-PF is greater 

than 0.  The p-value for the test that is analogous to our test of H4A is 0.006 and a 95% confidence 
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interval for the linear combination of odds ratios is (0.10, 0.64); thus, there is strong support for 

hypothesis H4B.   

As mentioned in the discussion of hypothesis H4, the distinction between the different ways of 

learning in the SPD-FF versus the SPD-PF when the counterpart chooses not to invest, is confounded by 

the fact that the subject always experiences a loss when he or she learns that the counterpart did not 

invest in the SPD-PF.  Nevertheless, it is of interest to compare SPD-FF and SPD-PF for these 

situations.  When one could learn that the counterpart chose not to invest in the previous period and 

when the subject also chose not to invest in the previous period, then there was a higher level of 

investment in the SPD-PF than the SPD-FF (Table 5 R4) and this was statistically significant at the 0.05 

level in the GEE analysis.  But when the subject chose to invest in the previous round, there was a 

higher level of investment in the SPD-FF than the SPD-PF analysis (Table 5 R3), although this 

difference was not statistically significant at the 0.05 level.    

We note that applying a similar GEE analysis to that used to test H4 to H1-H3 produces the same 

conclusions as above; there is strong evidence for H1 and part of H3 but not for H2. 

[INSERT TABLE 6 HERE] 

 In summary, we found that investment levels were significantly lower in both the SPDs than the 

DPD.  Investment levels were comparable in the full feedback and partial feedback SPD.  Investment 

levels for the SPDs increased as the probability of loss increased from .2 to .4 to .6, with the sharpest 

increase occurring from .4 to .6.  Subjects were more likely to reciprocate investments by their 

counterparts in the SPD-FF when subjects explicitly learn their counterpart’s investment decision than in 

the SPD-PF, even when subjects implicitly learned that their counterparts invested.    

 

6. Bayesian Analyses of Within Treatment Hypotheses  

 In order to gain further insight into the reasons for the differences in investment across the 

treatment conditions, we formulated a set of within treatment hypotheses that could be tested using 

Bayesian analyses.  

 

6.1 Specific Hypotheses 

H5: There will be substantial variability between subjects in their tendency to invest, holding other 

factors fixed.   
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This hypothesis characterizes how subjects within the same experimental treatment differ 

between each other in their aggregate investment levels, holding other factors fixed. It is 

supported by the findings of Andreoni and Miller (1993) who showed that some individuals were 

naturally cooperative even if they knew their counterpart was non-cooperative while others were 

non-cooperative even if they were aware their counterpart was cooperative.   

 

The next set of hypotheses examine within-subject comparisons on how individuals change their 

investment levels over time with regards to (a) their decision to invest or not invest in the previous 

period, (b) their counterpart’s decision to invest or not invest in the previous period (when this can be 

learned), and (c) the interaction between investment decisions in the previous period and whether or not 

an individual experienced a loss in the previous period.  

 

H6: In all three information conditions, subjects will tend to maintain the same investment behavior 

over time, holding their counterparts’ decisions fixed.  

There is a large body of empirical and experimental evidence suggesting that individuals 

maintain the status quo even though they may be able to improve their expected profits by 

modifying their behavior (Samuelson and Zeckhauser, 1988; Kahneman, Knetsch and Thaler 

1991). 

  

H7: In all three information conditions, a subject will be more likely to invest if he/she learns that 

his/her counterpart invested in the previous period.   

In spite of people’s tendency to persist in their actions (as stated in H6), there is evidence that 

people can learn to cooperate in repeated prisoner’s dilemma games (Axelrod, 1984).  A 

theoretical model as to how cooperation can emerge in repeated prisoner’s dilemma games was 

presented by Kreps et al (1982).  Such cooperation is expected to emerge here. 

 

H8: If a subject experienced a loss in the previous period, he or she will be more likely to invest in the 

current period than if he or she had not experienced a loss in the previous period, holding all other 

conditions fixed.   

We can further divide H8 into four (interaction) sub-hypotheses. 
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H8A: In the SPD-FF, when a subject invested in the previous period and his or her counterpart did not 

invest in the previous period, then the subject will be more likely to invest in the current period if he or 

she experienced a loss in the previous period than if he or she did not experience a loss. 

 

H8B: In the SPD-FF, when a subject did not invest in the previous period and his or her counterpart 

invested in the previous period, then the subject will be more likely to invest in the current period if he 

or she experienced a loss in the previous period than if he or she did not experience a loss. 

 

H8C: In the SPD-FF, when a subject did not invest in the previous period and his or her counterpart 

also did not invest in the previous period, then the subject will be more likely to invest in the current 

period if he or she experienced a loss in the previous period than if he or she did not experience a loss. 

 

H8D: In the SPD-PF, when a subject did not invest and could not learn his or her counterpart’s 

investment decision in the previous period, then the subject is more likely to invest if he or she 

experienced a loss than if he or she did not experience a loss.   

The reasoning behind Hypothesis H8 was discussed in the context of H3. There is considerable 

evidence from other studies that experiencing a loss increases the incentive to invest in 

protection.  Note that the situation described in H8D is the only situation in the SPD-PF when a 

subject’s response to a loss holding all other conditions fixed can be studied (see Table 2).8  

 

H9: If a subject did not invest in the previous period, experiencing a loss (compared to not experiencing 

a loss) will have a bigger effect on the odds of a subject investing if the subject’s counterpart invested in 

the previous period compared to if the subject’s counterpart did not invest in the previous period. 

We hypothesize that a subject experiencing a loss is likely to feel more regret if she did not 

invest in the previous period and this was the sole cause of the loss compared to the situation 

where she did not invest in the previous period but her counterpart was partially responsible for 

the loss.  Note that H9 can only be tested in the SPD-FF. 

 

 

                                                 
8 In Table 2 Scenarios 7 and 10 are the two cases where a subject has not invested in the previous period, experiences a loss 
and cannot learn what her counterpart has done. These two scenarios can be compared with Scenarios 9 and 12 where the 
individual has not invested, not suffered a loss and has no idea what her counterpart has done. 
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6.2    A Bayesian Hierarchical Model for Individual Investment Decisions 

To examine these hypotheses we build a Bayesian hierarchical model for how subjects make 

investment decisions as a function of their previous experience and the treatment condition they are in.9  

The following notation characterizes a model of individual (investment) choice: 

 

Let  1, ,i I= K   index subjects participating in the experiment (I = 936); 
 
        t= 1…..T    index periods in a supergame (T=10); 
 

1, ,r R= K     index the round of the supergame played in one participant session   (e.g., r=1,…,8)  
with differing opponents; 

 
g = the information condition associated with the game [1 = deterministic prisoner’s dilemma 
(DPD), 2 = stochastic prisoner’s dilemma with full feedback (SPD-FF), 3 = stochastic prisoner’s 
dilemma with partial feedback (SPD-PF)]; and  
 

1, ,z Z= K index the probability of loss level (z=1, p=0.2); (z=2, p=0.4); (z=3,  p=0.6).   
The outcomes of the experiments are characterized as follows: 
   

Yitrgz = 1 if participant i in period t of supergame r in information condition g and in probability 
of loss level z chooses to invest in protection; 0 otherwise. 

 
Litrgz = 1 if participant i in period t of supergame r in information condition g and in probability 
of loss level z experiences a stochastic loss; 0 otherwise. 
 
Mitrgz = 1 if participant i in period t of supergame r in information condition g and in probability 
of loss level z could have learned his or her counterpart’s choice and 0 otherwise. 

 
Yitrgz

c= 1 if the counterpart c of participant i in period t of supergame r in information condition g 
and in probability of loss level z chooses to invest and 0 otherwise. 

 
6.3   Analyzing the Prisoner’s Dilemma Games using the Bayesian Model  

We model the probability of investing in protection in period t as a function of a set of 

independent variables that includes: (i) one’s loss experience in period t-1, (ii) one’s own behavior in  

                                                 
9 We recognize that a more general modeling framework would look at the entire path of investment decisions an individual 
participant made within a supergame. There is some empirical basis for focusing on just the previous round’s decision. In 
examining  experiments on coordination games, Crawford (1995) and Crawford and Broseta (1998) found that that in making 
a decision in period t there was a much higher weight placed on the decision in period t-1 than in periods  t-j; j>2.  Bostian, 
Holt and Smith (2007) obtained a similar result for laboratory experiments on the newsvendor problem. It is important to note 
that our Bayesian modeling framework is completely general and could easily incorporate decisions over a more complex set 
of past variables. 
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period t-1, (iii) whether one can learn whether one’s counterpart has invested in period t-1, (iv) the 

decision made by one’s counterpart  c in period t-1 if it can be learned, all varying by the different 

information conditions g, supergames r,  and probability of loss conditions  z.  More formally we are 

interested in estimating the parameters of the following general model 

 
Probability(Yitrgz = 1) =  f (Lit-1rgz, Mit-1rgz, Yit-1rgz , Yit-1rgz

c)    (1) 
 

We can examine the relative importance of the variables specified in (1) using the data from our 

experiments and “running that data” through the lens of a Bayesian hierarchical model.  The coefficients 

associated with each of the variables are modeled as differing from subject-to-subject (reflecting 

heterogeneity, e.g. some subjects are more or less influenced by their counterpart’s choices), and are 

assumed to be drawn from a multivariate normal distribution with general covariance matrix.  By 

allowing for a covariance matrix among the individual-level parameters,10 we can further assess, 

whether an individual who is influenced more by his or her counterpart’s non-investment decision is 

also more likely to invest following a loss.  Furthermore, we also model the expected value of a 

subject’s coefficients as a function of both person-level covariates such as age, gender, race, and 

undergraduate major and treatment-level covariates such as the probability of a loss, z,  and whether the 

subject is playing a DPD, SPD-FF or SPD-PF game, g.  In this manner, we can answer the question of 

‘why’ certain individuals respond in the way they do (based on individual-level characteristics) and 

maybe more importantly, as a function of the treatments (probability and information condition, and 

their interaction) that are imposed upon them.   

Before laying out the model, we note two important advantages of building a Bayesian 

hierarchical model for our data: (1) we can properly account for the fact that players are observed 

multiple times and (2) we can control for confounding variables in assessing the importance of certain 

factors on investment decisions.  As an example, a marginal analysis might show that subjects are more 

likely to invest after having invested in the previous round.  However, suppose that investment 

propensity declines as the period in the game increases.  Then, the effect of period is confounded with 

the effect of previous investment decisions.  Our Bayesian hierarchical model enables us to assess the 

effect of previous investment decisions, holding the period fixed.  A good discussion of the value of 

Bayesian hierarchical models is provided by Gelman, Carlin, Stern and Rubin (2004). 

                                                 
10   Since the model is Bayesian, we put a prior on the covariance matrix of the multivariate normal distribution; the prior is 
reasonably noninformative. 
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In particular, we model the log odds of the probability of a participant investing (i.e., logit(Pitrgz) 

= ln(Pitrgz /(1- Pitrgz))) as a function of fixed and random effects as follows11:  

 

Term  Explanation Random/Fixed 
logit(Pitrgz) = 

1iβ + Participant-level propensity Random 

δt + Varying propensity by period Fixed 

tgκ + 
Interactions between period and information 
condition Fixed 

γr + Varying propensity by supergame Fixed 

rgκ + 
Interactions between supergame and information 
condition Fixed 

2 *iβ Yit-1,rgz +   Effect of subject’s own decision in previous period Random 

3 *iβ Mi,t-1,rgz * 
        Yi t-1,rgz

c + 
Effect of counterpart investing in previous period 
when subject is able to learn this Random 

4 *iβ Mi,t-1,rgz *Yi,t-1,rgz * 
         Yit-1,rgz

c + 

Interaction between subject’s decision and 
counterpart’s decision when subject is able to learn 
counterpart’s decision 

Random 

5iβ *Lit-1,rgz* 
      *(1- Yi,t-1,rgz)+ 

Effect of experiencing a loss when subject did not 
invest in a previous round Random 

6iβ *Lit-1,rgz* 
      *Yi,t-1,rgz + 

Effect of experiencing a loss when subject did invest 
in a previous round Random 

7iβ *Lit-1,rgz* 
      *(1- Yi,t-1,rgz)* 
       Yit-1,rgz

c * Mi,t-1,rgz+ 

Interaction between experiencing a loss, subject’s 
investment decision and counterpart’s investment 
decision for when subject is able to learn 
counterpart’s decision 

Random 

ψ * 1iβ *Period 1 dummy 
Additional effect of participant level propensity in 
period 1 to account for there being no Yi(t-1)rgz in 
period 1 

Fixed 

 

                                                 
11 Those effects that are individual-specific, as is standard, are modeled as random effects. 
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The random effects 1 2 3 4 5 6 7( , , , , , , )i i i i i i iβ β β β β β β are modeled as coming from a multivariate 
normal distribution with a mean that depends linearly on the following observed covariates:  

 
(1) person-level covariates: age, gender, race, dummy variable for undergraduate, dummy variable for 
business major and interaction between business major and undergraduate, 
  
(2) treatment-level covariates: information condition (dummy variables for deterministic condition and 
stochastic partial feedback condition), probability of a loss level (dummy variables for p=0.2 and p=0.6) 
and interactions between the information condition and the probability of a loss level (dummy variables 
for the combinations of deterministic condition and p=.2, deterministic condition and p=.6, stochastic 
partial feedback condition and p=.2 and stochastic partial feedback condition and p=.6). 
 
In other words,  

0 1 2 3 4

5 6

7

( | , , ) age gender race (  is undergraduate)

                       (  is business major) (  is undergraduate and business major)

                       ( Determi

ij j j i j i j i j

j j

j

E i g z I i

I i I i

I g

β π π π π π

π π

π

= + + + + +

+ +

= 8

9j 10,j 11,j 12,j

13,j 14,j

nistic(Det)) ( Stochastic Partial Feedback (SPF))

                       ( 0.2) ( 0.6) ( Det, 0.2) ( SPF, 0.2)

                       ( Det, 0.6) ( SPF,

j I g

I z I z I g z I g z

I g z I g

π

π π π π

π π

+ = +

= + = + = = + = = +

= = + = 0.6)                                                 (2)z =

   

where I(x) = 1 if condition x is true, 0 otherwise.  We note, as previously mentioned, the “scientific 
importance” of equation (2) as it allows us to answer ‘whys’, i.e. what is the impact of the treatment on 
people’s investment propensities. 
 

We put the following prior distribution on the parameters.  For the period and supergame round 

effects, we used independent standard normal priors.  For the covariance matrix of 

1 2 3 4 5 6 7( , , , , , , )i i i i i i iβ β β β β β β , we used an inverse Wishart prior with 7 degrees of freedom and scale 

matrix 710* I , where 7I denotes the 7x7 identity matrix.  For the coefficients on the covariates that 

affect the mean of 1 2 3 4 5 6 7( , , , , , , )i i i i i i iβ β β β β β β , we used independent standard normals.   

 
We used the WinBUGS software (http://www.mrc-bsu.cam.ac.uk/bugs/) to obtain draws from 

the posterior distribution using Markov chain Monte Carlo (MCMC).  We ran three chains of 25,000 

draws each, taking the first 20,000 draws of each chain as burn-in and the last 5,000 draws of each chain 

as draws from the posterior distribution.  We assessed convergence of the MCMC chains using Gelman-

Rubin’s (1992) potential scale reduction statistic. The code and further computation details are available 

from the authors upon request. 
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6.4  Experimental Findings     

We now use the Bayesian hierarchical model to test H5 through H9.  For each of the hypotheses, 

we indicate the coefficient in the logit model that is used to test whether or not the experimental data 

provide support for it, holding all the other factors fixed.  It is through the direct mapping of parameters 

to hypotheses that inference under the Bayesian model is made straightforward.   

 
6.4.1 Testing H5  

  In our model, the parameter 1iβ  measures subject i’s propensity to invest.  H5 says that there is 

substantial variability in 1iβ .  The posterior mean of the standard deviation of 1iβ  is 0.79 with a 95% 

credibility interval of (0.67, 0.92).  This means that if we consider two subjects, subject 1 with 1iβ  one 

standard deviation above the mean and subject 2 with 1iβ  one standard deviation below the mean, then 

when all previous investments, losses and learning are held fixed, the odds ratio for subject 1 to invest 

compared to subject 2 to invest is estimated to be exp(2*0.79)=4.85, a large effect.  Thus, there is strong 

support for H5 – some individuals are much more likely to invest than others, holding other factors 

fixed. 

 
6.4.2  Testing H6  

The parameter 2iβ  measures persistence since it reflects the effect on investment in period t of 

having invested in period t-1, holding other factors fixed.  We have thus hypothesized that the mean of 

2iβ  is positive.  We indeed find that there is strong evidence that the mean of 2iβ differs between the 

information conditions.  The posterior median (across subjects) for the mean of 2iβ across the 

information conditions is 2.05 with a 95% credibility interval of (1.83, 2.25).12  This means that for the 

average subject, the odds ratio for the subject to invest if he or she invested in the previous round 

compared to if he or she did not invest, holding all other factors fixed, is estimated to be exp(2.05)=7.78 

with a 95% credibility interval of (exp(1.83), exp(2.25))=(6.23,9.49).  Thus, there is strong evidence for 

H2 that there is persistence in investment behavior in all three information conditions.   

 
 
                                                 
12 The mean of 2iβ across the information conditions is based on the covariate distribution in Appendix A and assumes the 
subjects are equally distributed across the information conditions and probability of loss conditions.  For all subsequent 
means of random coefficients, we use the covariate distribution in Appendix A and assume the subjects are equally 
distributed across the relevant information conditions and probability of loss conditions. 
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6.4.3 Testing H7: 

The parameter 3iβ  reflects how an individual’s likelihood of investing in period t is impacted by 

learning that her counterpart invested in period t-1, holding other factors fixed.  H7 says that the mean 

of 3iβ  is positive. Table 7 shows the posterior median for the mean of 3iβ  (across subjects) in the three 

information conditions.   

[INSERT TABLE 7 HERE] 

There is strong evidence that for the DPD and the SPD-FF, the average subject is more likely to 

invest if his or her counterpart invested in the previous round than if his or her counterpart did not.  For 

the DPD, the median of the odds ratios among different subjects for the subject to invest if his or her 

counterpart invested in the previous period compared to if his or her counterpart did not is estimated to 

be exp(1.37)=3.94; for the SPD-FF, the median odds ratio is estimated to be somewhat smaller, 

exp(0.87)=2.39, but still significant.  For the SPD-PF, there is not strong evidence that a subject is more 

likely to invest if his or her counterpart invested in the previous round than if his or her counterpart did 

not; the median odds ratio is estimated to be only exp(0.03)=1.03.  Thus, H7 is confirmed for DPD and 

SPD-FF, but not for SPD-PF.  The differences in the impact of learning about one’s counterpart 

investing between SPD-FF and SPD-PF might be explained by the implicit learning in SPD-PF not 

being as effective as the explicit learning in DPD and SPD-FF (see hypothesis H4).    

 
6.4.3 Testing the Four Versions of H8:  

H8A: The odds ratio for a subject to invest in the current period if the subject invested in the previous 

period, the counterpart did not invest and the subject experienced a loss compared to the same 

conditions but the subject did not experience a loss is 6exp( )iβ .  Thus, H8A hypothesizes that the mean 

of 6iβ  is positive for subjects in SPD-FF.  The posterior median for the mean of 6iβ  for subjects in SPD-

FF is 0.28 with a 95% credibility interval of (-0.02, 0.58).  Thus, although the point estimate supports 

H8A, there is only moderate evidence for H8A as the credibility interval contains zero, albeit slightly so.   

 
H8B:  The odds ratio for a subject in SPD-FF to invest in the current period if the subject did not invest 

in the previous period, the counterpart did invest and the subject experienced a loss compared to the 

same conditions but the subject did not experience a loss is 5 7exp( )i iβ β+ .  Thus, H8B hypothesizes that 

the mean of 5 7i iβ β+  is positive for subjects in SPD-FF.  The posterior median for the mean of 
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5 7i iβ β+ for subjects in SPD-FF is 0.51 with a 95% credibility interval of (0.28,0.85).  Thus, there is 

strong evidence for H8B. The estimated median odds ratio for the effect of a loss in the situation of H8B 

is exp(0.51)=1.67.   

 
H8C:  The odds ratio for a subject in SPD-FF to invest in the current period if both the subject and the 

counterpart did not invest and the subject experienced a loss compared to the same conditions but the 

subject did not experience a loss is 5exp( )iβ .  Thus, H8C hypothesizes that the mean of 5iβ is positive 

for subjects in SPD-FF.  The posterior median for the mean of 5iβ  is 0.39 with a 95% credibility interval 

of (0.16, 0.59).  Thus, there is strong evidence for H8C.  The estimated median odds ratio for the effect 

of a loss in the situation of H8C is exp(0.39)=1.48.   

 
H8D: The odds ratio for a subject in SPD-PF to invest in the current period if the subject did not invest 

in the previous period, the subject could not learn his or her counterpart’s decision in the previous period 

and the subject experienced a loss compared to the same conditions but the subject did not experience a 

loss is 5exp( )iβ .  Thus, H8D hypothesizes that the mean of 5iβ  is positive for subjects in SPD-PF.  The 

posterior median for the mean of 5iβ  for subjects in SPD-PF is 0.33 with a 95% credibility interval of 

(0.12, 0.54).  Thus, there is strong evidence for H8D.  The estimated median odds ratio for the effect of a 

loss in the situation of H8D is exp(0.33)=1.39.   

 
6.4.4 Testing H9 

H9 can only be tested for subjects in SPD-FF.  The odds ratio for a subject to invest in the current period 

if the subject did not invest in the previous period, experienced a loss and the counterpart invested 

compared to the same conditions but the subject did not experience a loss is exp( 5 7i iβ β+ ).  The odds 

ratio for a subject in SPD-FF to invest in the current period if the subject did not invest in the previous 

period, experienced a loss and the counterpart did not invest compared to the same conditions but the 

subject did not experience a loss is exp( 5iβ ).  H9 is hypothesizing that the former odds ratio is larger 

than the latter odds ratio on average.  Thus, H9 is hypothesizing that the mean of 7iβ  is greater than zero 

for subjects in SPD-FF.  The posterior median for the mean of 7iβ  for subjects in SPD-FF is 0.13 with a 

95% credibility of (-0.17, 0.49).  Thus, although the point estimate supports H9, there is not strong 

evidence for H9.   
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We now summarize the results of testing hypotheses H8 and H9.  For the most part, we found support 

for the hypothesis H8 that experiencing a loss makes subjects more likely to invest in the future, holding 

all other conditions fixed.  The only situation in which we did not find strong support for H8 was when a 

subject invested but his or her counterpart did not invest (H8A).  In addition, we did not find strong 

evidence that the effect of a loss was greater when the subject’s failure to invest was the sole cause of 

the loss as compared to when both players share some blame for the loss (H9).   

 
6.4.5  Effects of person level covariates 

We now describe for each of the random subject coefficients 1 7, ,i iβ βK  which of the six person level 

covariates (age, gender, race, undergraduate, business major and the interaction between undergraduate 

and business major), if any, had statistically significant effects on the mean of the random coefficient at 

a 95% confidence level. 

 
1. 1iβ  (propensity to invest): None of the person level covariates had a significant effect. 
2. 2iβ  (persistence of investment): Age had a positive effect on persistence.  The mean of 2iβ  was 

estimated to increase by 0.03 for each year of age with a 95% credibility interval for this effect of 
(0.01, 0.06).  Men were more persistent than women on average.  The mean of 2iβ  was estimated to 
be 0.35 higher for men than women with a 95% credibility interval of (0.03, 0.66).    

3. 3iβ (increase in investment when counterpart invests):  Whites increase their investment when the 
counterpart invests less (are less cooperative) than minorities on average.  The mean of  3iβ  was 
estimated to be 0.46 lower for whites than minorities with a 95% credibility interval of (0.18, 0.75).   

4. 4iβ  (interaction between subject’s and counterpart’s decision to invest): Whites have more of an 
interaction between subject’s and counterpart’s decision to invest than minorities on average.  The 
mean of 4iβ was estimated to be 0.44 higher for whites than minorities with a 95% credibility 
interval of (0.11, 0.79).   

5. 5iβ  (effect of loss when subject does not invest): Undergrads respond less to losses than graduate 
students and non-students on average.  The mean of 5iβ  was estimated to be 0.34 lower for 
undergrads with a 95% credibility interval of (0.09,0.59). 

6. 6iβ  (effect of loss when subject does invest): None of the person level covariates had a significant 
effect. 

7. 7iβ  (additional effect of loss when subject does not invest and counterpart invests): None of the 
person level covariates had a significant effect. 

 
While these covariate effects are quite suggestive, we believe that further study with a broader 

population is necessary. 
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7. Conclusions and Suggestions for Future Research   

We now summarize the key findings from these experiments and suggest future experiments to 

improve our understanding of behavior in IDS situations.  

 

Summary of Key Experimental Findings 

This paper provides evidence that in a two person prisoner’s dilemma game individuals are much 

more likely to be cooperative when payoffs are deterministic (the DPD game) than when there is some 

chance that one will not suffer a loss, even if one does not invest in protection (the SPD games).  A key 

factor behind this difference is that subjects in the SPD games respond not just to what their counterparts 

did but also to whether or not they suffered a loss. When a person does not invest but his or her 

counterpart does, the individual is less likely to reciprocate the counterpart’s investment in the next 

period if he or she does not suffer a loss.   

In comparing two stochastic prisoner’s dilemma games, one with full feedback on the 

counterpart’s behavior and the other with only partial feedback on the counterpart’s behavior, we found 

that the overall amount of cooperation (investment) was similar.  However, we did find that when 

subjects in the partial feedback game could learn their counterpart’s actions implicitly, they reciprocated 

their counterparts’ behavior less than in analogous situations in the full feedback game when subjects 

learned their counterparts’ behavior explicitly.   

 
Future Experiments  

The IDS-like experiments reported in this paper were based on parameters so that the only Nash 

equilibrium was for both players to not invest in protection if they behaved in a way that maximized 

expected value, even though they both would have been better off by investing.  They were explicitly 

designed to examine prisoner-dilemma like behavior in the more realistic setting of probabilistic 

outcomes.  

As shown in Section 3, IDS games can have two Nash equilibria so that individuals are faced 

with the challenges of coordination when they cannot communicate with each other. Hess, Holt and 

Smith (2005) have undertaken a set of laboratory experiments in such a setting with groups of four 

individuals, each having to decide whether to invest in protection against either an internal or external 

threat. They design the probabilities and payoffs so that the economically sensible decision is for all 

individuals to invest in protection even though there is an inferior stable NE where all players do not 
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invest. They show that many groups fail to coordinate their investment decisions when the game is 

played simultaneously but the outcomes are improved in a sequential game when participants are 

allowed to view the decisions of other group members as soon as they were submitted.  

More generally an IDS setting opens up the possibility of tipping behavior in the spirit of 

Schelling (1978) and others. Future experiments could study when tipping is likely to occur if all players 

in the group are identical or when there is heterogeneity among the players. In either situation one could 

force one or more of the players to make a decision as to whether or not to invest, as Hess, Holt and 

Smith (2005) did in their sequential model, and determine whether other players are likely to follow suit. 

In theory one would expect that a player, who knows that others will observe her decision, will take an 

action designed to encourage others to coordinate so that everyone reaches the superior Nash 

equilibrium. In practice this may not be the case if the player believes that some of his counterparts will 

decide not to cooperate in order to maximize their own personal gains at the expense of social welfare.  

Another line of experiments would be to examine individual behavior in either a simultaneous or 

sequential game when the probability of a loss is very low (i.e. p, q < .1) and the loss L is very high. 

There is considerable empirical evidence that in such settings individuals behave as if the event will not 

happen to me and hence do not undertake protective measures (Kunreuther 2001).  Whether one would 

be able to induce tipping behavior through some type of sequential game is an open question.   

In the IDS experiments conducted to date, if one individual suffers a loss then the other 

individuals will also suffer the identical loss.  Future experiments could examine behavior when there is 

uncertainty as to whether a counterpart will suffer a loss if you do not invest in protection (i.e. q< 1). 

Another variation on this theme would be to have the size of the loss differ if it is due to your own 

failure to invest or from the counterpart’s decision not to protect herself.  For example, if a fire is caused 

by your failure to invest in protection then the loss to your house could be considerably higher than if 

the fire spread from your neighbor’s house to yours.  

At a prescriptive level one could also design experiments that induced one or more players to 

invest in protection by imposing positive economic incentives (e.g. subsidies) to encourage this actions 

or negative sanctions (e.g. fines) for failure to do so. Given the much larger proportion of pairs of 

individuals who failed to invest in protection when outcomes were uncertain than when they were 

deterministic it may be necessary to intervene in these ways to improve both individual and social 

welfare in the many IDS-like situations that we are facing in today’s interdependent world.  
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Figure 1 
 

 
The ends of the boxes show the .05 and .95 quantiles of the distribution of subject investment 
proportions in a condition, where the investment proportion for a given subject is computed using all 
supergames the subject played.  The dark line in the middle of the box shows the mean investment 
across subjects in the condition.   
 

Figure 2 
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Figure 3 
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Table 1. Expected Returns Associated with Investing and Not Investing in 

Protection 
 
 
 Individual 2 ( A2 )  
 I  NI 

I Y-c,    Y-c  Y-c-qL,  Y -pL 
Individual 1 ( A1 )       

NI Y-pL,   Y-c-qL Y –[pL + (1-p) qL], Y –[pL+ (1-p)qL] 
 
 
 

Table 2.  Scenarios related to Decisions in Period t and whether or not learning is 
possible in the Stochastic Partial-Feedback Condition: 

 
Scenario Player 1 

Decision 
Player 2 
Decision 

Color Loss or No Loss? Player 1 can learn 
decision of Player 2? 

1 I I Red No Loss Yes 
2 I I Orange No Loss No 
3 I I Green No Loss No 
4 I NI Red Loss Yes 
5 I NI Orange No Loss No 
6 I NI Green No Loss No 
7 NI I Red Loss No 
8 NI I Orange No Loss Yes 
9 NI I Green No Loss No 
10 NI NI Red Loss No 
11 NI NI Orange Loss Yes 
12 NI NI Green No Loss No 
 
Table 3.   Number of Individuals in Each Experimental Condition 
 
Condition Number of  Supergames Number of Individuals 
   
DPD 84 104 
SPD-FF (all) 140 210 
   p=0.2 40 54 
   p=0.4 40 76 
   p=0.6 60 80 
SPD-PF (all) 140 206 
   p=0.2 40 52 
   p=0.4 50 96 
   p=0.6 50 58 
TOTAL     324      520 
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Table 4.  Percentage of Individuals Investing in Protection in the Three Conditions 
 
Condition (Loss) Total Decisions Total I Decisions I/Total 
    
DPD (L=10)   8800 5039 0.57 
SPD-FF (all) 14800 4626 0.31 
   P=0.2 (L=50)   4320 1094 0.25 
   P=0.4 (L=25)   4440 1211 0.27 
   P=0.6 (L=19)   6040 2321 0.38 
SPD-PF (all) 13600 4753 0.35 
   P=0.2 (L=50)   4140 1092 0.26 
   P=0.4 (L=25)   5400 1809 0.34 
   P=0.6 (L=19)   4060 1852 0.46 
    
All P=0.2 (L=50)   8460 2186 0.26 
All P=0.4 (L=25)   9840 3020 0.31 
All P=0.6 (L=19) 10100 4173 0.41 
 
Table 5  Confidence Intervals for Contrasts in Proportion of Investment Between 

Conditions 
 
Contrast Estimated Difference 95% CI 
(SPD-FF, p=.2)-DPD -0.34 (-0.41,-0.27)                  R1 
(SPD-PF, p=.2)-DPD -0.30 (-0.37,-0.23)                  R2 
(SPD-FF, p=.4)-DPD -0.29 (-0.40,-0.18)                  R3 
(SPD-PF, p=.4)-DPD -0.25 (-0.36,-0.14)                  R4 
(SPD-FF, p=.6)-DPD -0.18 (-0.29,-0.07)                  R5 
(SPD-PF, p=.6)-DPD -0.13 (-0.02,-0.25)                  R6 
(SPD-FF,p=p*)- 
(SPD-PF,p=p*)for p*=(.2,.4.6) 

-0.04 (-0.09,0.00)                    R7 

p=.6 – p=.2 for fixed SPD game 0.16 (0.10,0.22)                     R8 
p=.6 – p=.4 for fixed SPD game 0.12 (0.06,0.17)                     R9 
p=.4 – p=.2 for fixed SPD game 0.05 (-0.01,0.10)                   R10 
 
Table 6 
 
Previous Decision 
by Subject 

Previous Decision by 
Counterpart 

Investment 
Proportion in SPD-
FF 

Investment Proportion in 
SPD-PF when 
counterpart’s previous 
decision is learned 

I I 0.88 0.79                         R1 
NI I 0.21 0.15                         R2 
I NI 0.44 0.40                         R3 
NI NI 0.08 0.19                         R4 
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Table 7 
Information Condition Posterior Median of 3iβ  95% Credibility Interval for 

3iβ  
DPD 1.37 (0.99, 1.82) 
SPD-FF 0.87 (0.58, 1.12) 
SPD-PF 0.03 (-0.45, 0.43) 
 
Appendix A: Demographic Information about the Subject Pool 

 
Total number of subjects: 520 
(Note that some subjects did not identify their gender, age, and/or ethnicity.) 
 
Male:   226 
Female:  293 
 
Asian or Pacific Islander:   205 
Black, not of Hispanic Origin:    37 
Hispanic:       24 
White, not of Hispanic Origin:  229 
Other:        24 
 
17 yrs old:     6 
18:    84 
19:  101 
20:    92 
21:    71 
22:    38 
23:    20 
24:      9 
25:      7 
older than 25:   88 
 
Undergraduate Student, Business:   164 
Undergraduate Student, Arts & Sciences:  158 
Undergraduate Student, Engineering:    65 
Undergraduate Student, Nursing:      6 
Graduate Student, Arts & Sciences:    17 
Graduate Student, Engineering:    10 
Graduate Student, Other (Med, Law, etc.):   38 
Other/Non-Student:      63 
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Appendix B.  Instructions to Subjects 
 
1. Instructions Presented to Subjects in the Deterministic Prisoner’s’ Dilemma 
Condition 
 
[Opening Instruction Page:] 

This is a game in which the outcomes of your decisions depend not only on what you do, but also 
on what your counterpart does. 
 
You will be paired with another person in the room whose identity is not known to you.  In each of 
10 rounds, you and your counterpart will independently make a decision about whether or not to 
invest funds to avoid a financial loss from a negative event.  

• If both of you choose to INVEST then it will cost each of you 12 talers, but neither of you will 
experience a financial loss from a negative event. 
 
• If one of you INVESTS and the other does NOT INVEST, it will cost the one who INVESTS 12 
Talers. In addition, both people will suffer an equal financial loss of 10 Talers from a negative 
event. 
 
• If both of you choose to NOT INVEST, then each of you suffers an equal financial loss of 16 
Talers from a negative event. 
 
Below is the summary of the possible outcomes: 
 

  
Your Counterpart  

INVEST NOT INVEST 

You 

INVEST 
• You lose 12. 
 
• Your counterpart loses 12. 

• You lose 22. 
 
• Your counterpart loses 10.  

NOT 
INVEST 

• You lose 10. 
 
• Your counterpart loses 22.  

• You lose 16. 
 
• Your counterpart loses 16.  

[Figure B1] 

You and your counterpart are each given 300 Talers (10 talers = $1) before you start making 
decisions.  You will not know the decision your counterpart has made until the end of the round.  
Before the start of the next round you will be given feedback on what each of you did and the 
status of your assets. 
 
One pair will be chosen at random to receive the dollar equivalent of the talers they have at the 
end of the game (10 talers = $1). 
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[Each subject sees the following screen before making his/her decision for the first 
round:] 
 

 
[Figure B2] 
 

[After each person in the pair has made a decision, subjects see their decisions and 
payoffs highlighted in a table:] 

 
[Figure B3]
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[In subsequent rounds each subject sees a history report of past decisions in the 
supergame.  The subject sees this on the decision screen:] 
 

 
[Figure B4] 
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2a. Instructions Presented to Subjects in the Stochastic Full-Feedback Condition 
(for p=0.2): 

[Opening Instruction Page:] 

This is a game in which the outcomes of your decisions depend not only on what you do, but also 
on what your counterpart does. 
 
You will be paired with another person in the room whose identity is not known to you.  In each of 
10 rounds, you and your counterpart will independently make a decision about whether or not to 
invest funds to avoid a financial loss from a random negative event. 

Financial losses will be measured in a fictitious currency called "Talers". 
 
• If both you and your counterpart choose to INVEST, then the investment cost to each of you is 
12 talers. 
 
• If you INVEST and your counterpart does NOT INVEST, then there is a 20% chance that your 
counterpart will lose 50 talers and you will lose 62 talers; and there is an 80% chance that your 
counterpart will lose 0 talers and you will lose 12 talers. 
 
• If you do NOT INVEST and your counterpart INVESTS, then there is a 20% chance that your 
counterpart will lose 62 talers and you will lose 50 talers; and there is an 80% chance that your 
counterpart will lose 12 talers and you will lose 0 talers. 
 
• If both you and your counterpart choose to NOT INVEST, then each of you has an 36% chance 
of losing 50 talers, and a 64% chance of losing 0 talers. 
 
Probabilistic outcomes will be determined by the following Random Number Generator, where it 
is equally likely that any number between 1 and 100 is chosen. 
 
For Example: If the Random Number generated is 6, then 6 will flash as follows: 

 
 
Below is a summary of the possible outcomes:  
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Your Counterpart  

INVEST  NOT INVEST  

You 

  

INVEST 

  

• You lose 12 talers. 
 
• Your counterpart loses 12 talers.  

• You definitely lose 12 talers and have a 
20% chance of losing an additional 50 talers. 
 
• Your counterpart has a 20% chance of 
losing 50 talers and an 80% chance of losing 
0 talers.  

NOT 
INVEST 

• You have a 20% chance of losing 50 
talers and an 80% chance of losing 0 
talers. 
 
• Your counterpart definitely loses 12 
talers and has a 20% chance of losing an 
additional 50 talers.  

• You have a 36% chance of losing 50 talers 
and a 64% chance of losing 0 talers. 
 
• Your counterpart has a 36% chance of 
losing 50 talers and a 64% chance of losing 
0 talers.  

[Figure B5] 
 
You and your counterpart are each given 300 Talers before you start making decisions.  You will 
not know the decision your counterpart has made until the end of each round.  Before the start of 
the next round you will be given feedback on what each of you did, whether or not a negative 
event occurred and the status of your assets. 
 
One pair will be chosen at random to receive the dollar equivalent of the talers they have at the 
end of the game (10 talers = $1). 
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[The payoff screen (what each pair sees after making their decisions for a round) looks 
like this:] 
 

 
[Figure B6] 
 
[The “Results of previous rounds” history table on the decision screen looks like this:] 
 
Round Negative 

Event 
Your 

Decision 
Your 

Outcome
Your Ending 

Balance
Counterpart’s 

Decision
Counterpart’s 

Outcome 
Counterpart’s 

Ending Balance
1 No Not Invest -0 300 Not Invest -0 300
2 Yes Invest -62 238 Not Invest -50 250 
3 No Not Invest -0 238 Invest -12 238
4 No Not Invest -0 238 Not Invest -0 238

[Figure B7] 
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2b. Instructions Presented to Subjects in the Stochastic Full-Feedback Condition 
(for p=0.4): 
 
[Opening Instruction Page is analogous to the p=0.2 condition, but with the following 
changes to the color-grid and the payoff matrix:] 

 
 
 

  
Your Counterpart  

INVEST  NOT INVEST  

You 

  

INVEST 

  

• You lose 12 talers. 
 
• Your counterpart loses 12 talers.  

• You definitely lose 12 talers and have a 
40% chance of losing an additional 25 talers. 
 
• Your counterpart has a 40% chance of 
losing 25 talers and a 60% chance of losing 
0 talers.  

NOT 
INVEST 

• You have a 40% chance of losing 25 
talers and a 60% chance of losing 0 
talers. 
 
• Your counterpart definitely loses 12 
talers and has a 40% chance of losing an 
additional 25 talers.  

• You have a 64% chance of losing 25 talers 
and a 36% chance of losing 0 talers. 
 
• Your counterpart has a 64% chance of 
losing 25 talers and a 36% chance of losing 
0 talers.  

[Figure B8] 

[Other screens are formatted analogously to those shown above for p=0.2.] 
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2c. Instructions Presented to Subjects in the Stochastic Full-Feedback Condition 
(for p=0.6): 

[Opening Instruction Page is analogous to the p=0.2 and p=0.4 conditions, but with the 
following changes to the color-grid and the payoff matrix:] 

 
 
 

  
Your Counterpart  

INVEST  NOT INVEST  

You 

  

INVEST 

  

• You lose 12 talers. 
 
• Your counterpart loses 12 talers.  

• You definitely lose 12 talers and have a 
60% chance of losing an additional 19 talers. 
 
• Your counterpart has a 60% chance of 
losing 19 talers and a 40% chance of losing 
0 talers.  

NOT 
INVEST 

• You have a 60% chance of losing 12 
talers and a 40% chance of losing 0 
talers. 
 
• Your counterpart definitely loses 12 
talers and has a 60% chance of losing an 
additional 19 talers.  

• You have an 84% chance of losing 25 
talers and a 16% chance of losing 0 talers. 
 
• Your counterpart has an 84% chance of 
losing 19 talers and a 16% chance of losing 
0 talers.  

[Figure B9] 
 
[Other screens are formatted analogously to those shown above for p=0.2.] 
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3. Instructions Presented to Subjects in the Stochastic Partial-Feedback Condition: 
 
[The Stochastic Partial-Feedback condition differs from the Full-Feedback as follows:] 
 
[1. Opening Instructions in the Partial-Feedback condition are the same as in the Full-
Feedback condition except that the penultimate paragraph reads as follows:] 
 
You and your counterpart are each given 300 Talers before you start making decisions.  You will 
not know the decision your counterpart has made.  Before the start of the next round you will be 
given feedback on what you did and the status of your assets. 
 
[2. The payoff screen (B6) does not indicate counterpart’s decision or talers lost.] 
 
[3. The history table (“Results of previous rounds”) does not show columns relating to 
counterpart information.] 
 
 




