
NBER TECHNICAL WORKING PAPER SERIES

INSTRUMENTAL VARIABLES ESTIMATION OF HETEROSKEDASTIC LINEAR
MODELS USING ALL LAGS OF INSTRUMENTS

Kenneth D. West
Ka-fu Wong

Stanislav Anatolyev

Technical Working Paper 338
http://www.nber.org/papers/t0338

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
May 2007

The authors are listed in the order that they became involved in this project. We thank two anonymous
referees and various seminar audiences for helpful comments, and the National Science Foundation
for financial support. Correspondence: Kenneth D. West, Department of Economics, University of
Wisconsin, 1180 Observatory Drive, Madison, WI 53706. Email: kdwest@wisc.edu.  The views expressed
herein are those of the author(s) and do not necessarily reflect the views of the National Bureau of
Economic Research.

© 2007 by Kenneth D. West, Ka-fu Wong, and Stanislav Anatolyev. All rights reserved. Short sections
of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full
credit, including © notice, is given to the source.



Instrumental Variables Estimation of Heteroskedastic Linear Models Using All Lags of Instruments
Kenneth D. West, Ka-fu Wong, and Stanislav Anatolyev
NBER Technical Working Paper No. 338
May 2007
JEL No. C13,C32

ABSTRACT
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This paper proposes and evaluates a technique for instrumental variables estimation of

linear time series models with conditionally heteroskedastic disturbances that may also be serially

correlated.  Our aim is to provide a set of tools that will yield improved estimation and inference.

 Equations such as the ones we consider arise often in macroeconomics and finance.  One

class of applications evaluates the ability of one variable or set of variables to predict another,

perhaps over a multiperiod horizon.  Examples include forward exchange rates as predictors of

spot rates (e.g., Hodrick (1987), Chinn (2006)), dividend yields and interest rate spreads as

predictors of stock returns (e.g., Fama and French (1988), Boudokh et al. (2005)), and survey

responses as predictors of economic data (e.g., Brown and Maital (1981), Ang et al. (2006)).  A

second class evaluates a first order condition or decision rule from an economic model.  Recent

applications include consumption based asset pricing models (e.g., Parker and Julliard (2005)) and

Phillips curves with a forward looking expectational component (e.g.,  Fuhrer (2006)); more

generally, the relevant models are ones with moving average or conditionally heteroskedastic

shocks (e.g., Shapiro (1986), Zhang and Ogaki (2004)), costs of adjustment or habit persistence

(e.g., Ramey (1991), Carrasco et al. (2005)) or time aggregation (e.g., Hall (1988), Renault and

Werker (2006)).

Two techniques are commonly used in these and related applications.  The first is

maximum likelihood (Bollerslev and Wooldridge (1992)).  In models with moving average

disturbances, however, maximum likelihood can be computationally cumbersome and the standard

assumption that the regression disturbance has a martingale difference innovation can lead to

inconsistent estimates (Hayashi and Sims (1983)).  Such applications are therefore often estimated

with a second technique, instrumental variables.  Typically, investigators use an instrument list of

fixed, small dimension, applying Hansen (1982).  We call this technique “conventional GMM” or

“conventional instrumental variables.”  A recent literature has, however, documented that in

some environments conventional GMM suffers from a number of finite sample deficiencies.  See,

for example, the January 1996 issue of the Journal of Business and Economic Statistics and

theoretical analyses such as Anatolyev (2005).  Papers that propose procedures to remedy such

deficiencies include Andrews (1999) and Hall and Peixe (2003).
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We, too, are motivated by finite sample evidence to develop procedures with better

asymptotic and therefore (one hopes) better finite sample properties.  Our starting point is the

observation that in many time series models, the number of potential instruments is arbitrarily

large for an arbitrarily large sample: usually, if a given variable is a legitimate instrument, so,

too, are lags of that variable.  Moreover, when the regression disturbance displays conditional

heteroskedasticity or serial correlation, use of additional instruments typically delivers increased

asymptotic efficiency.  In conditionally homoskedastic environments, instrumental variables

estimators that efficiently use all available lags are developed in Hayashi and Sims (1983) and

Hansen (1985, 1986), and simulated in West and Wilcox (1996).  This work has shown that the

asymptotic benefits of using all available lags as instruments sometimes are large, and that the

asymptotic benefits may be realized in samples of size available to economists.

A less well developed literature has studied similar environments in which conditional

heteroskedasticity is present.  Broze et al. (2001) and Breusch et al. (1999) describe how

efficiency gains may result from using a finite set of additional lags.  Very general theoretical

results are developed in Hansen (1985), extended by Bates and White (1993), applied by Tauchen

(1986) in a model with a serially uncorrelated disturbance, and exposited in West (2001). 

Hansen, Heaton and Ogaki (1988) build on Hansen (1985) to present an elegant and general

characterization of an efficiency bound; they do not, however, indicate how to construct a feasible

estimator that achieves the bound.  Special cases have been considered in Kuersteiner (2002) and

West (2002), who characterize bounds for univariate autoregressive models with serially

uncorrelated disturbances, and Heaton and Ogaki (1991), who consider a particular example.

In this paper, we propose and evaluate a technique for instrumental variables estimation of

linear models in which the disturbances display conditional heteroskedasticity and, possibly, serial

correlation.   The set of instruments that we allow consists of time-invariant distributed lags on a

pre-specified set of variables that we call the “basic” instruments.  The disturbances may be

correlated with right hand side variables.  As well, the model may have the common characteristic

that filtering such as that of generalized least squares would induce inconsistency (Hayashi and
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Sims (1983)).

Our estimator posits parametric forms for conditional heteroskedasticity and for the

process driving the instruments and regressors.  The procedure does not require correct

parameterization; we allow for the possibility that (say) the investigator models conditional

heteroskedasticity as  GARCH(1,1) (Bollerslev (1986)) while the true process is stochastic

volatility.   An Additional Appendix available on request shows that under commonly assumed

technical conditions, the estimator converges at the usual T ½ rate, with a variance-covariance

matrix that can be consistently estimated in the usual way.   If, as well, the assumed parametric

forms are correct, the estimator achieves an asymptotic efficiency bound.  

We use asymptotic theory and simulations to compare our estimator to one that uses a

small and fixed number of instruments (what we call the “conventional” estimator), and to

maximum likelihood (ML), in a simple scalar model, with conditional heteroskedasticity. 

Relative to the conventional estimator, our estimator has decided asymptotic advantages when the

regression disturbance has a moving average root near unity or when there is substantial

persistence in the conditional heteroskedasticity of the disturbance; relative to ML, our estimator

generally has modest asymptotic disadvantages.  Simulations indicate that the asymptotic

approximation can work well, even when we misspecify, albeit in a minor way, the parametric

form of the data generating process.  Our estimator has a little more bias than the conventional

estimator, but also generally has better sized hypothesis tests and dramatically smaller mean

squared error.  Compared to ML, our estimator shows less bias and yields more accurately sized

hypothesis tests, while ML has smaller mean squared error.

Thus the simulations indicate that our estimator does not unambiguously dominate existing

methods.  But, for that matter, no other estimator is dominant.  Different researchers will find

different estimators appealing.  Relative to ML, for example, ours will appeal to those who prefer to

give up something in mean squared error to gain a reduction in bias and size distortion; ML will

appeal to those who prefer the converse.

Section 2 describes our setup and estimator.  For some simple, stylized data generating
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processes, Section 3 provides asymptotic comparisons of the optimal and conventional GMM

estimators.  Section 4 presents simulation evidence.  Section 5 concludes.  Throughout, our

presentation is relatively non-technical.  A lengthy Additional Appendix that is available on

request has formal assumptions and proofs, as well as additional simulation results.

2. THE ENVIRONMENT AND OUR ESTIMATOR

The linear regression equation and vector of what we call “basic” instruments are:

(2.1)   yt =  XtN$ + ut, ut~MA(q), zt the “basic” instruments, with Wold innovation et.
(1×1)   (1×k)(k×1) (1×1) (r×1)            (r×1)

In (2.1), the scalar yt and the vectors Xt and zt are observed, and $ is the unknown parameter

vector to be estimated.  For simplicity, and in accordance with the leading class of applications

(see the references in the previous section), the unobservable disturbance ut is assumed to follow a

finite order MA process of known order q (q=0 Y ut is serially uncorrelated).   In addition to a

constant term, there is a (r×1) vector of “basic” instruments zt that can be used in estimation,

with (r×1) Wold innovation et.  The adjective “basic” distinguishes zt from its lags zt-j, which also

can be used as instruments.  The dimension of the basic instrument vector (r) may be larger or

smaller than that of the coefficient vector (k).  All variables are stationary; if the underlying data

are I(1), differences or cointegrating combinations are assumed to have been entered in yt, Xt and

zt.

We assume that there is a single equation rather than a set of equations, and that the only

non-stochastic instrument is a constant term, for algebraic clarity and simplicity.  The results

directly extend to multiple equation systems (see the Appendix).  They do so as well if one (say)

uses four seasonal dummies instead of a constant or if one omits non-stochastic terms altogether

from the instrument list (see the discussion below). 

Let T be the sample size.  It is notationally convenient for us to express GMM estimators

as instrumental variables estimators.   We consider estimators that can be written
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(2.2)
^
$ = (ET

t =1
^
ZtXtN)

-1(ET
t =1

^
Ztyt)

for a (k×1) vector 
^
Zt that depends on zt, zt-1, ..., z1 in a (possibly) sample dependent way.  

Let us map conventional GMM in this framework, using an illustrative but arbitrarily

chosen set of lags of zt.  Define the (2r+1)×1 vector Wt = (1 ztN zt-1N)N.  Suppose that we

optimally exploit the moment condition EWtut=0.  Define the (2r+1)×(2r+1) matrix

B=Gq
i =-qE(Wt-iut-iutWtN), assumed to be of full rank.  Let 

^
B be a feasible counterpart that converges

in probability to B.  The GMM estimator chooses 
^
$ to minimize (T-1/23s

T
=1Wsus)N

^
B-1(T-1/23s

T
=1Wsus). 

Then of course 
^
$ = (ET

t =1
^
ZtXtN)

-1(ET
t =1

^
Ztyt) with 

^
Zt = (T-13s

T
=1XsWsN)

^
B-1Wt. 

In an important class of applications–those in which the researcher evaluates the ability of

one variable or set of variables to predict another–least squares is consistent.   We note that in

such applications the procedures proposed here continue to be relevant and potentially attractive. 

Suppose, for example, that we wish to test the hypothesis that a scalar variable >t is the optimal

predictor of a variable yt.  The variable >t might be a q+1 period ahead forward exchange rate,

with yt the spot exchange rate in period t+q (Hodrick (1987)).  Then as a first pass investigators

typically set zt=>t and XtN= (1 >t) (=(1 zt)).   The null hypothesis is that $=(0 1)N, and under the

null ut ~ MA(q) because ut is a q+1 period ahead prediction error.   In subsequent investigation,

one might extend the Xt vector to include another period t variable, say a scalar z2t.  Then  XtN= (1

>t z2t), ztN=(>t z2t), the null hypothesis is that $ = (0 1 0)N, and under the null we still have  ut ~

MA(q). 

      In such examples, least squares is consistent.  We note that our procedures nevertheless

provide asymptotic benefits.  This holds even if q=0: as noted in Cragg (1983), in the presence

of conditional heteroskedasticity, use of additional moments can increase efficiency.

To return to our estimator: our aim is to efficiently exploit the information in all lags of zt. 

One way to do so is to use conventional GMM estimation, with the number of lags of zt used 

increasing suitably with sample size.   Koenker and Machado (1999) establish a suitable rate of

increase for a linear model with disturbances that are independent over time.  Related theoretical

work includes Newey (1988) and Kuersteiner (2002), while Tauchen (1986) presents simulation
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evidence. Unfortunately, much simulation evidence, including the evidence presented below, has

shown that in samples of size typically available, estimators that use many lags have poor finite

sample performance.  Accordingly, we try another approach.

In our approach, we work with zt’s Wold innovation et rather than with zt for analytical

convenience.  Thus, we shall describe how we propose to fully exploit information available in

linear combinations of lags of et, with obvious mapping back to zt.   To describe our procedure,

we begin with a non-feasible estimator.  Let T be the sample size.  Define 

(2.3)    e(t)=(1,etN,...,et-T+1N)N,   Q = Ee(t)XtN,    S=Gq
i =-qE[e(t-i)ut-iute(t)N],    Zt = QNS -1e(t).

(1+Tr)×1                (1+Tr)×k       (1+Tr)×(1+Tr)           (k×1)

We omit a T subscript on each of these quantities for notational simplicity.

Consider the nonfeasible estimator of $ that uses Zt as an instrument: (ET
t =1ZtXtN)

-1(ET
t =1Ztyt). 

(This is not feasible since the moments required to compute Q and S are not known, and e(t) is not

observed.)  This estimator efficiently uses the instruments e(1), e(2), ... , e(T) in the sense of

Hansen (1982).  Evidently, as T 6 4, this estimator efficiently uses the information in all lags of et

and thus in all lags of zt.  (A formal statement may be found in the Additional Appendix.)

To make this estimator feasible, we need to replace unknown moments with sample

estimates.  We cannot simply use sample moments, since the number of moments involved

increases with sample size.  Instead, we write the (XtN,ztN)N and (etN,ut)N processes as functions of a

finite dimensional parameter vector b, and solve for Q, S and then for optimal linear

combinations of all available lags of et in terms of b.  The vector b includes two types of

parameters.  The first are those necessary to compute Q, the projection of Xt onto current and

lagged et’s.  In many applications, the parametric model of choice will probably be a vector AR

model for Xt and zt, though our results do not require such a model.1   The second type of

parameter includes those necessary to compute the second moments of levels and cross-products

of et and ut, yielding an estimate of S.   This second type will include $ (to yield a series {
^
ut} for

use in estimation of the second moments)–that is, our procedure will require an initial consistent
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estimate of $.  The second type might include as well parameters from a regression model relating

ut to current and lagged et, and from a parametric model for the squares of these variables.  

Thus, one first estimates b, obtaining say 
^
b and a series {

^
et}.  Define 

^
et / 0 for t#0.   Let

^
Q=Q(

^
b) and 

^
S=S(

^
b) denote estimates of Q and S obtained from the parameter vector 

^
b, and let

^
e(t) / (1,

^
etN,...,

^
et-T+1N)N.   One sets

(2.4)   
^
Z*

t  = 
^
QN

^
S -1 

^
e(t) = (say) 

^
:+Gt

j
-

=
1
0
^
gj

^
et-j, t=1,...,T; 

^
$ = (ET

t =1
^
Z*

tXtN)
-1(ET

t =1
^
Z*

tyt).  
(k×1)      (k×1)     (k×r)(r×1)           (k×1)

Note that the time t instrument 
^
Z*

t  uses all available lags of 
^
et (although, as noted below,

asymptotic efficiency in general is little affected if one uses only J<T lags for sufficiently large

J). 

An estimate 
^
V of the asymptotic variance-covariance matrix may be obtained in either of

two ways.  The first is the familiar 
^
V = (T -1Et

T
=1

^
Z*

tXtN)
-1^
S (T -1Et

T
=1Xt

^
Z*

tN)
-1.  Here, 

^
S is a consistent

estimate of the long-run variance of Z*
tut.  (Z

*
t  is the large sample [T64] counterpart to Zt defined

in (2.3).)  
^
S may be computed with techniques such as Andrews (1991), Newey and West (1994),

or den Haan and Levin (1996), using data on 
^
Z*

t  and 
^
ut, where 

^
ut is a residual obtained with an

initial consistent estimate of $.   
^
V provides a consistent estimator of the asymptotic

variance-covariance matrix of 
^
$ even if the parametric specification is not correct.  The second

method is to set 
^
V=(

^
QN

^
S -1 ^
Q)-1.  This method has the advantage of computational simplicity, since

one will compute 
^
Q and 

^
S -1 in any case.  It has the disadvantage that it is consistent only if the

parametric specification is correct.  We show in our asymptotic calculations and simulations,

however, that if the parameter specification is incorrect in minor ways, this second method still

works tolerably well.

A simple example may clarify.  Suppose yt = $0+$1zt+ut, where ut~MA(1) (q=1), the

scalar zt is the sole element of the basic instrument vector (r=1), and XtN = (1 zt) (k=2).  (So in

this simple example least squares is consistent.)  For simplicity, suppose as well that ut and et are

symmetric in the sense that 0 = Eu2
tet-jet-m = Eu2

tet-j = Eutut+1et-jet-m = Eutut+1et-j, j…m, j,m$0. 
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Then

(2.5)

(Eu2
t+2Eutut+1 0 0 0 0 ... 0 0 0 )

 ( 0 Ee2
tu

2
t Ee2

tut+1ut 0      0 ... 0 0 0 )
( 0 Ee2

tut+1ut Ee2
t-1u

2
t Ee2

t-1ut+1ut 0 ... 0 0      0 )
S = ( 0 0    Ee2

t-1ut+1ut Ee2
t-2u

2
t Ee2

t-2ut+1ut ... 0 0 0 ),
( 0 0    0 Ee2

t-2ut+1ut Ee2
t-3u

2
t ... 0 0 0 )

(.... )
( 0 0     0      0       0    ....     Ee2

t-T+3u
2
t Ee2

t-T+3ut+1ut 0 )
( 0 0     0      0       0    ....     Ee2

t-T+3ut+1ut Ee2
t-T+2u

2
t Ee2

t-T+2ut+1ut )
( 0 0     0      0      0    .... 0 Ee2

t-T+2ut+1ut Ee2
t-T+1u

2
t )

(1 Ezt )
(0 Eetzt  )

Q = (0 Eet-1zt ).
(...  )
(0 Eet-T+1zt )

^
Q and 

^
S are obtained by replacing the elements of Q and S with estimates.  Suppose, for

example, that zt is modeled as an AR(1), zt = N0+Nzt-1+et, |N|<1, Ee2
t/F

2
e, with corresponding

estimates 
^
N0, 

^
N and 

^
F2

e.  (Here, N0, N and F2
e are elements of the parameter vector b.)  Then in 

^
Q,

the estimate of Eet-jzt is 
^
N j^F2

e.
2  

^
S(1,1) may be set to 

^
F2

u+2
^
Fu,1, where 

^
F2

u and 
^
Fu,1 are estimates of

F2
u/Eu2

t  and Fu,1/Eutut+1; F
2
u and Fu,1 are also elements of b.  One obtains 

^
F2

u and 
^
Fu,1 from the

residuals from an initial consistent estimator of $ (e.g., least squares, in the present example),

either by directly computing moments or estimating an MA model.  The other diagonal elements

of 
^
S may be constructed from a GARCH or other model applied to 

^
et and 

^
ut, as illustrated in the

simulations below.

Let us now return to our general discussion to make several remarks.  First, one could

write the instrument as a distributed lag on zt rather than 
^
et; in the scalar AR(1) illustration of the

previous paragraphs, for example, one could substitute out for 
^
et using 

^
et=zt-

^
N0-

^
Nzt-1.  We

formulate our estimator in terms of the 
^
et’s because in most applications it will be a little simpler

and more convenient: popular models for conditional heteroskedasticity such as GARCH and
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stochastic volatility models are written in terms of innovations. 

Second, to use an alternative set of nonstochastic instruments, simply replace the “1” that

appears in the equation (2.3) definition of e(t) with the relevant set of nonstochastic terms.  The

equation (2.3) definitions of S, Q, and the mechanics described below equation (2.3), remain

unchanged.  For example, if one is using zero mean data, and thus has no need of a constant term

as an instrument, e(t) is redefined to omit the constant term; e(t) will then have dimension Tr×1,
^
S will have dimension Tr×Tr, etc.

Third, our feasible estimator has attractive asymptotic properties.  Let b denote the (m×1)

probability limit of 
^
b:   

^
b 6p b.  Suppose first that our parametric models for Q and S are correct. 

That is, suppose that S=S(b), Q=Q(b). (S and Q are defined in terms of moments of the data in

(2.3); S(b) and Q(b) are the quantities that result when the parametric models are used, evaluated

at the population parameter vector b.)  Then under standard conditions, our estimator attains an

asymptotic efficiency bound, and uses information in all lags of zt.  Suppose, instead, that the

difference between S and S(b), or between Q and Q(b), is not zero.  Then our estimator is still

asymptotically normal with a variance-covariance matrix that can be estimated in familiar ways. 

Again, see the Additional Appendix for a formal statement.

Fourth, we have emphasized that our procedure allows one to use all available lags of et. 

There are, of course, diminishing returns to such usage; as a formal matter, one can capture an

arbitrarily large amount of the efficiency gains of all available lags by using an arbitrarily large

but finite number of such lags.  That is, one can use (2.3) and (2.4) but with e(t)/(1,etN,...,et-J+1N)N

for some J<T.   In practice, one can see how rapidly the 
^
gj’s die down for a couple of trial J’s. 

In our data generating processes, which included some highly persistent specifications, J=50 was

pretty much sufficient to yield an estimator whose asymptotic variance was indistinguishable from

that of the optimal estimator (though because we are compulsive we set J=100). 

Fifth, as noted above, an alternative way to fully exploit information in linear

combinations of past zt’s would be to estimate with conventional GMM, letting the number of lags

of zt used in estimation increase with sample size.  We view our parametric approach as
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complementary rather than competing.   Our procedure has the disadvantage that if the parametric

specification is incorrect, we will not obtain the efficiency bound: under such misspecification,

our estimator may be more efficient or less efficient asymptotically than conventional GMM with

a given number of instruments.   On the other hand, our procedure appears to have some finite

sample advantages relative to conventional GMM, at least if the parametric specification is

approximately correct.  (See the simulations presented below.)  The improved performance may

well be tied to the smaller number of parameters required by our estimator to construct the linear

combination of instruments.  We require estimation of a vector b that includes the parameters of

the time series processes for (XtN ztN)N and (etN ut)N.  The reader familiar with the forecasting and

conditional volatility literature will recognize that in many datasets a handful of parameters will

likely be adequate.  That may not be the case if one is attempting to nonparametrically pick up the

information in many lags of zt. 

Sixth, in certain cases our estimator specializes to ones discussed in earlier work. If

conditional heteroskedasticity is absent, i.e., if E(utut-j|et,et-1,...) = Eutut-j, our instrument is

asymptotically that of the non-feasible estimator described in Hansen (1985, section 5.2) or the

feasible estimator described in West and Wilcox (1996).3  If conditional heteroskedasticity is

present but there is no serial correlation in ut, and, further, the model is a univariate

autoregression (Xt consists of a constant and lags of yt, ut=et+1, zt=yt-1), our instrument is

asymptotically that of Kuersteiner (2002).  Our estimator allows for both serial correlation and

conditional heteroskedasticity.

Seventh, in the presence of conditional heteroskedasticity, one might want to broaden the

class of estimators to include ones in which the instruments asymptotically depend on stochastic

combinations of lagged zt’s or et’s.  An example of the latter is weighted least squares.  This

broader class of instruments brings no asymptotic efficiency gains when the regression

disturbance ut is homoskedastic conditional on the zt’s, but it does improve efficiency in the

presence of conditional heteroskedasticity (Hansen (1985), Hansen, Heaton and Ogaki (1988),

Anatolyev (2003)).  To our knowledge, a feasible procedure to attain an efficiency bound has not
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been developed for models that combine serial correlation and conditional heteroskedasticity,

though Anatolyev (2002) makes considerable progress towards that goal with use of judicious

approximations.  We consider our research complementary to parallel research on feasible

procedures to exploit asymptotically stochastic combinations.  Under misspecification or use of an

approximating parametric model to construct instruments, there is no theoretical presumption that

a procedure exploiting stochastic combinations is asymptotically more efficient than ours.  And of

course there is no presumption that one class of estimators will perform better than the other in

finite samples.  In short, for empirical work, it will be important to have asymptotic and finite

sample evidence on the behavior of both classes of estimators. 

Eighth and finally, our estimator is of course dominated asymptotically by maximum

likelihood under suitable conditions.  Even so, in some circumstances our estimator will be

attractive, for three reasons.  The first is that the “suitable conditions” just referenced of course

include correct specification of a complete model.  This will require assumptions beyond those

underlying (2.1) and beyond those we make in specifying an approximating parametric model.  If

such assumptions are incorrect, limited information estimation such as ours may dominate

maximum likelihood–indeed, ML might be inconsistent.  (Recall that our procedure still yields

consistent estimates, even if the approximating parametric models are not correct.)  The second

reason, which is related to the first, is that ML methods for models with serially correlated

disturbances are not well developed.  Seemingly straightforward application of ML can lead to

misspecification since the innovations to the disturbances need not have a martingale structure

(Hayashi and Sims (1983)).  The third reason our estimator is attractive is that maximum

likelihood will generally involve far more computation than will our procedure.  Maximum

likelihood will usually require nonlinear estimation, ours may not.  One implication of this is that

sometimes the ML procedure does not converge or converges to a local rather than global

maximum (see the simulations section below).

This is not to say that these reasons lead us to endorse our procedure relative to maximum

likelihood everywhere and always.  Rather, for empirical work, both approaches will be helpful. 
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Our research here is intended in part to guide the researcher to conditions under which our

approach is particularly appealing.

3. ASYMPTOTIC COMPARISONS

This section uses a very simple model to compare the asymptotic variances of conventional

and optimal GMM estimators of a scalar regression parameter.  The aim is to see what data

characteristics imply large efficiency gains when moving from the conventional to the optimal

estimator.  A secondary aim is to see whether minor misspecification of the parametric form of

the data generating process (DGP) substantially lessens efficiency gains that result under correct

specification.

The model we use has an MA(1) disturbance driven in whole or in part by GARCH(1,1)

innovations.   For all but the DGPs involving misspecification (detailed below), the DGP was:

(3.1a) yt = $0 + zt$1 + ut, 

(3.1b) ut = et+2-2et+1,

(3.1c) zt=Nzt-1+et,

(3.1d) et=Ft0t. 0t ~ i.i.d. N(0,1), F2
t  = T + (1e

2
t -1 + (2F

2
t -1, (/(1+(2.

All variables are scalars, and, as detailed below, parameters are restricted to insure stationarity

(e.g., in (3.1c) |N|<1).   The parameter of interest is $1 in (3.1a).  A constant and lags of zt

(equivalently, et) may be used as instruments.  The computations for GMM require only 0t ~

i.i.d.; normality is needed for the comparison to maximum likelihood.

We let GMMn denote conventional GMM with an instrument vector that includes a

constant and lags 0 through n-1 of zt (n=1 Y OLS).  The familiar formulas for this estimator are

presented in the next section.

We used 2 values of the autoregressive parameter N, 7 values of the moving average

parameter 2, 5 values of the GARCH parameter (, 2 values of the GARCH parameter (1,

yielding 140 (=2×7×5×2) combinations of parameters altogether.   For each combination, we
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computed the asymptotic variances of GMM1 (=least squares), GMM4, GMM12 and optimal

GMM.  We will report typical results, in the form of the ratio of the variance of conventional to

optimal GMM, commenting briefly on patterns reflected in the many unreported results. 

The ratio of the asymptotic variance of conventional to optimal GMM is strictly greater

than one, with the ratio declining towards one as the number of lags increases.  We aim to see

what characteristics of the data lead to large ratios, and how rapidly the ratio approaches one.  In

connection with data characteristics, we observe that if ut were a textbook disturbance (serially

uncorrelated and homoskedastic, conditional on zt), the ratio would be one for GMM with any set

of lags (that is, ordinary least squares is efficient).  Intuition thus suggests that there will be

relatively big gains when serial correlation or conditional heteroskedasticity in ut is particularly

marked.

Specifically, the parameter values used were as follows:

(3.2) N = 0.5, 0.9; 2 = -0.9, -0.5, 0, 0.5, 0.7, 0.9, 0.95;  ( = 0.5, 0.6, 0.7, 0.8, 0.9; (1 = 0.1, 0.3.

The positive values of N were chosen to reflect the positive autocorrelation typically

present in time series data, with the larger value of N capturing near unit root behavior.  The wide

range of values of 2 reflect the wide range found in empirical work.  For example, negative first

order autocorrelation of regression residuals (implying positive 2) has been found in inventory

work (West and Wilcox (1996)); positive first order autocorrelation (implying negative 2) will

result from time aggregation. High persistence in conditional variance is captured by the relatively

high values of (.

Table 1 reports a few representative results.  To read the table, consider line 4, putting

aside for the moment the column labeled “ML.”  The “3.13" in the “GMM1" column says that

when N=0.5, 2=0.9, (=0.9, (1=0.1, the asymptotic variance of the least squares estimator is

3.13 times that of the optimal estimator.  The “1.00" in all three “GMM” columns in line 1

indicates that when N=0.9, 2=0.0, (=0, (1=.1, efficiency gains show up only in the third

decimal point or later: the asymptotic variance of GMMn is at most .5 percent higher than that of
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optimal GMM.  

Lines 2 through 5 hold fixed the GARCH parameters, at values that involve persistence in

conditional variances ((=.9), and mild persistence of the regressor (N=.5).  These lines differ

only in the value of the moving average coefficient 2, which increases from 2=-.5 (implying a

positive autocorrelation to ut) to 2=.95 (implying a negative autocorrelation).   Values of 2 near 1

yield sharp efficiency gains relative to least squares: for 2=.9 and 2=.95, the least squares

variance is over three times that of the optimal estimator.   By the time n=12 lags are used,

sharply diminishing returns have set in; the largest efficiency loss is when 2=.95, and even here

the conventional estimator with 12 lags has an asymptotic variance only 11 percent larger than the

optimal.  Negative autocorrelation in the disturbance (2>0) leads to larger efficiency gains than

positive autocorrelation (2<0), a result also found in conditionally homoskedastic environments

(Hansen and Singleton (1991, 1996), West and Wilcox (1996)).

Lines 6 through 9 increase the autoregressive parameter N to .9, with a variety of values

for the other parameters.  Upon comparing lines 6 and 4, or lines 9 and 5, we see the larger value

of N increases the relative efficiency of optimal GMM.  (This result, however, is not uniform; for

N=.9, 2=.5, (=.9, (1=.1, the ratio for GMM1 is 1.21 [not reported in the table], which is

slightly lower than the 1.36 reported in line 3.)   Line 7 suppresses conditional heteroskedasticity

in ut.  Upon comparing the entries in line 7 with those in lines 8 and 9, and similarly comparing

lines 9 and 1, we see that the relative efficiency of the optimal estimator is larger when there is

both conditional heteroskedasticity and serial correlation than just heteroskedasticity or

correlation.  Dramatic gains in efficiency, however, are attributable to correlation rather than

heteroskedasticity.4

Finally, line 10 allows |2|>1.  This specification is included largely to remind the reader

that in the relevant class of applications, the Wold innovation in the disturbances may be

correlated with the instruments (Hayashi and Sims (1983), Hansen and Sargent (1980)).  (Recall

that if ut=et+2-2et+1 with |2|>1, the Wold representation of ut is ut=,t-(1/2),t-1 with ,t a

distributed lag on current and past et+2's.)  In a conditionally homoskedastic environment, the
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efficiency gains would be the same for ut=et+2-2et+1 and et+2-(1/2)et+1; the presence of conditional

heteroskedasticity, however, changes instruments, and, accordingly, the numbers in line 10 are

different, though not by much, from those in line 9.

Now consider the “ML” column Table 1, which gives asymptotic efficiency for the

conditional (on zt) ML estimator. The ML estimator writes the log likelihood for a single

observation as -0.5[log F2
t+(e2

t/F
2
t)], and maximizes over the parameters in (3.1a), (3.1b) and

(3.1d).  The ML estimator of $1 lowers asymptotic variance by at most 12 percent relative to

optimal GMM.  Thus, ML may increase efficiency only modestly relative to GMM, a result also

found in West (1986) and West and Wilcox (1994).  This underscores the potential importance of

our approach, in light of the computational and robustness advantages noted in the previous

section.

We also completed similar calculations when we generalized the model to allow fat-tailed

innovations, or a disturbance ut that impounds multiple shocks.  Details are in the Additional

Appendix.  A summary: For 0t given in (3.1d), suppose that 0t~i.i.d. (0,1), with E04
t=3+60 for

some 60>0.  (The calculations in Table 1 assume 60=0.)  Then larger values of 60 lead to greater

asymptotic efficiency gains for optimal GMM relative to conventional GMM.  As well, a larger

value of (1 leads to greater efficiency gains for optimal GMM.  Next, suppose that ut =

et+2-2et+1+vt+2-dvt+1, vt ~ i.i.d. (0,F2
v), vt independent of et.

5  Then efficiency gains for optimal

GMM depend on the MA(1) parameter for ut, where the MA(1) parameter depends on 2, d and

the relative variances of et and vt.  As in Table 1, large values for this MA(1) parameter lead to

relatively large efficiency gains.

Our final asymptotic calculations involve the DGPs and procedures used in the simulations

presented in the next section.  These procedures misspecify the parametric process driving the

data, because in practice there will be some ambiguity about parametric specification. In the

present section we use misspecified processes to see whether our estimator’s asymptotic efficiency

gains hinge on nailing the parametric specification exactly; in the next section we use the same

processes to see whether any such gains have a reasonable chance of being realized in practice. 
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We impose misspecification of both the zt process and the conditional variance process for

et.  For zt, we use DGPs in which zt~ARMA(1,1), while zt is wrongly modeled as an AR(4).  

We believe that this captures a common element of econometric practice, in which the investigator

uses an unrestricted autoregression involving more parameters than would be required by

Box-Jenkins techniques, choosing a lag length sufficiently long that the residual seems to be white

noise.  Let e†
t  denote the residual to this autoregression, 

(3.3) e†
t  = zt - E(zt|zt-1,zt-2,zt-3,zt-4).  

This residual is a distributed lag on et that in our processes is almost but not quite white noise.

For example, when zt=.9zt-1+et-.5et-1 (one of our ARMA processes), the absolute value of all the

autocorrelations of e†
t  are below .03 and all past the fifth are less than .01.

For the conditional variance process, we continue to use a GARCH(1,1) as the DGP,

while e†
t’s conditional moments are computed as described in the next section from an

autoregressive forecast of |e†
t +j|.  This technique, which is based on an alternative to GARCH

models proposed by Schwert (1989), can be interpreted as trading parsimony for computational

ease. With our DGPs it seems to fit the data sufficiently well that we find it plausible that a

reasonable person would adopt the technique when faced with data such as ours.  Consider, for

example, this technique applied to |et| (rather than |e†
t|), with GARCH parameters as in the table

(T=.1, (1=.1, (2=.8).  Then  Ee2
te

2
t +1 =1.33, Ee2

te
2
t +2 = 1.29; the comparable values from the

misspecified technique are 1.28 and 1.23.

We simulate with three DGPs, called DGPs A, B, and C.  DGP A is one in which our

estimator has very substantial asymptotic advantages relative to conventional GMM, even under

misspecification.  In DGP B, the advantages are modest, and in DGP C the advantages

nonexistent for all practical purposes even in the absence of misspecification.  We hope that these

three stylized DGPs capture a salient feature from a wide range of possible datasets.

Table 2 lists the parameters and asymptotic variances of each of the DGPs.  Line A of

Table 2 presents asymptotic results for DGP A, in which zt’s ARMA parameters are N=.9,  H=.5

and ut’s moving average parameter 2=-.95.  We note first of all that inclusion of the moving
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average component in zt raises considerably the relative efficiency of the optimal estimator,

indicating that the figures in Table 1 by no means yield maximum figures.  The “23.63" in

column 1, line 1, is larger than any of the Table 1 figures for GMM1 with comparable GARCH

parameters.  More to the point, we see in the “Proposed Estimator” column that these forms of

misspecification little affect asymptotic efficiency, causing only a 0.4 percent increase in

asymptotic variance.  In the other DGPs, with parameters as indicated in the table, asymptotic

efficiency is also little affected by our misspecification.  Consistent with Table 1, DGPs B and C,

the processes with less persistence in zt and smaller moving average coefficients, yield smaller

asymptotic efficiency gains for our estimator.

4. SIMULATION EVIDENCE

In this section, we present some simulation evidence on the behavior of our estimator. 

Our intention is not to provide an exhaustive characterization of finite sample behavior, but to get

a feel for whether the estimator can work well in samples of size typically available, and in the

presence of the minor forms of misspecification described in the previous section.  We present

results for the processes in Table 2, for sample sizes of T=250, 500, 1000 and 10,000.  The last

sample size is one not often seen in practice.  We include it not only because it is relevant for

some data sets, particularly those with asset pricing data, but to gauge how large a sample size is

required for the asymptotic approximation to be tight.  To conserve space, details of data

generation and mechanics of estimation are relegated to the Additional Appendix.

4.1 Data Generating Process and Estimators

We use the MA(1) model and estimation techniques underlying the results presented in

Table 2:

(4.1a) yt = $0+zt$1 + ut / XtN$ + ut, Xt/(1,zt)N,

(4.1b) ut = c2et+2+c1et+1 = et+2-2et+1,

(4.1c) zt=Nzt-1+et-Het-1,
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(4.1d) et ~ Ft0t, 0t~i.i.d.  N(0,1), F2
t  = T + (1e

2
t -1 + (2F

2
t -1, (/(1+(2.

Table 2 has the parameter values, apart from $0 and $1, which were set to zero for simplicity.  In

additional experiments not reported in detail, we replaced the standard normal distribution for 0t

to Student’s t with 5, 7, 9 degrees of freedom <, or skewed Student’s t (see Hansen (1994)) with

5, 7, or 9 degrees of freedom < and with skew-parameter 8 set to -0.2, -0.1, 0.1, 0.2.   Whether

or not 0t was normal, and consistent with Table 2, we constructed estimates of S and Q assuming

(incorrectly) that zt ~ AR(4) and that conditional variances of the residual to the AR(4), call it e†
t,

depend only on the autoregressive forecasts of the absolute value of this residual.  We write

(4.2a) zt = N0 +N1zt-1 + N2zt-2 + N3zt-3 + N4zt-4 + e†
t, e

†
t/zt-projection(zt|1, zt-1,zt-2,zt-3,zt-4);

(4.2b) |e†
t| = "0 + "1|e†

t -1|+ "2|e†
t -2| + "3|e†

t -3| + "4|e†
t -4| + <t

<t / |e†
t| - projection(|e†

t|*1, |e†
t -1|, |e†

t -2|, |e†
t -3|, |e†

t -4|);

(4.2c) b=($0,$1,F
2
u,Fu,1; N0,N1,N2,N3,N4,F

2
e†; "0,"1,"2,"3,"4,F

2
<;  c2,c1);

(4.2d) b† . (0,0,1.9025,.95; 0,.40,.21,.11,.07,1.003; 0.55,0.09,0.08,0.07,0.06,3.37; 1,-0.95)N, m=18.

In (4.2a,b), “projection” means linear least squares forecast; in (4.2d), m is the dimension of b

and of b†, while b† is the numerical value of b, which in turn is the probability limit of 
^
b.   In b†,

the figures for {Ni} and F2
e† were computed analytically, those for {"i} and F2

</E<2
t  from a

simulation.

As in previous sections, we focus on estimation of $1.  Using 5000 replications, we

simulated the behavior of five estimators.  The first was a feasible version of our proposed

estimator,  
^
$* / (Et

T
=1

^
Z*

tXtN)
-1(Et

T
=1

^
Z*

tyt).  Our implementation proceeded as follows (see the

Additional Appendix for details). We began with least squares estimation of $ in (4.1a) and

N0,...,N4 in (4.2a) to obtain residuals 
^
ut and 

^
e†

t.  These residuals were then used in least squares

estimation of c2 and c1 in (4.1b) and "0,...,"4 in (4.2b).  
^
Q was constructed from the first 100

moving average weights implied by the estimates of (4.2a).  
^
S was constructed so as to insure that

it was positive definite, again relying on only the first 100 rather than all T-1 lags of 
^
e†

t.  
^
Z*

t  was
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then computed according to equation (2.4), with the upper bound on the summation set to the

smaller of {t-1, 100}.  Finally, for inference, the estimate of the asymptotic variance-covariance

matrix of 
^
$* was computed as (

^
QN

^
S-1 ^
Q)-1.

The second through fourth estimators were conventional GMM with an instrument vector

Wt that includes a constant and lags 0 through n-1 of zt, Wt = (1,zt,zt-1,...,zt-n+1)N (n=1 Y OLS). 

These estimators proceed in a familiar fashion:

(4.3)
^
$ = (Et

T
=1

^
ZtXtN)

-1(Et
T
=1

^
Ztyt), T

 ½(
^
$-$) -A N(0,V),

^
Zt=(T-1Et

T
=nXtWtN)

^
S-1Wt, 

^
S 6p S / G1

i =-1E(Wt-iut-iutWtN),

V = [(EXtWtN)S
-1E(WtXtN)]

-1 = plim 
^
V /plim [(T-1Et

T
=nXtWtN)

^
S-1(T-1Et

T
=nWtXtN)]

-1.

In (4.3), the (n+1)×(n+1) matrix 
^
S was computed with a Bartlett kernel with VAR(1)

prewhitening and a bandwidth set to the integer part of [4(T/100)1/3] (see Newey and West

(1994)).

The fifth estimator is quasi-maximum likelihood (QML) assuming conditional normality of

0t defined in (4.1d).  When 0t is normal, as is assumed in most of the discussion presented below,

QML is ML; when 0t is instead t distributed, as in some simulations briefly summarized below,

the estimator is QML rather than ML only with respect to the density specification.  A t

distribution is a modest departure from fully correct specification, and so is favorable to QML.

The Newton-Raphson algorithm in the Gauss procedure “maxlik” was used, with actual parameter

values used as starting values; whether or not 0t is normal, the standard errors are computed in

robust form.

4.2 Results

Detailed numerical presentation of simulation results would be overwhelming (in the

words of a referee), and hence is relegated to the Additional Appendix.  Here, we report some

summary statistics in a table and present representative patterns graphically.  In the discussion that

follows we base comparisons only on those cases when the QML procedure converged

successfully, discarding simulations in which it did not.6  Except when otherwise noted, we focus
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on the specifications in which 0t ~ N(0,1).

The results of running simulations with DGP A and DGP B are presented graphically in

Figures 1 and 2.  These figures plot smoothed density estimates, computed using a Gaussian

kernel.  In this and subsequent figures and tables, all estimates are normalized by dividing by the

asymptotic standard error of the proposed estimator.  The resulting quantities will asymptotically

be distributed as N(0,v/v*), where v*=1.004 is the proposed estimator’s entry in line A of Table

2 and v is the corresponding value for the estimator in question (e.g., v=23.63 for GMM1). 

Consistent with the asymptotic theory, Figures 1 and 2 make clear that our estimator is far

more concentrated around 0 (the true parameter value) than are the conventional GMM

estimators.  While it exhibits higher mean–and median–downward bias, it has dramatically lower

variance and thus lower RMSE.  Relative to our estimator, the ML estimator has larger bias and

modestly lower RMSE.  

The analogous plot for DGP C has densities that are very close to each other, so we do not

include it.  While our estimator performs better than the conventional GMM estimators in DGP

C, it does so modestly.  This result is consistent with Table 2, which showed that in DGP C the

conventional GMM estimators are close to the proposed estimator in terms of asymptotic

efficiency.  As in DGPs A and B, ML has modestly lower RMSE than our estimator.

Table 3 presents summary statistics for all three DGPs and all four sample sizes.   In

columns (1) and (2), the table presents the median of 12 values (12 = 3 DGPs × 4 sample sizes)

of RMSE and 12 values of median bias.  (Column (3) will be discussed below.)   Consistent with

the figures just presented, the proposed estimator has distinctly lower RMSE than conventional

GMM estimators, and modestly higher RMSE than ML.7  The same conclusion follows if one

uses interquartile range rather than RMSE as the measure of variability (not reported in the table). 

In terms of median bias, our estimator is somewhat better than ML but somewhat worse than

GMM1.

Figure 3 uses DGP A to illustrate how the quality of the asymptotic approximation of our

estimator varies as the sample size T varies. The Figure shows that the asymptotic approximation
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improves with T, and that there are notable departures from normality for all four values of T: for

this DGP, even with T=10,000, our estimator still is a bit too variable. For DGP B (not shown),

the asymptotic approximation looks good for T=10,000 and perhaps for T=1000 as well, while

for DGP C we find little to complain about even for T=250.

We turn now from parameter estimation to hypothesis tests. Figures 4A, 4B and 4C

present the actual size of two sided t-tests of H0: $1=0 for nominal sizes running from 0 to .25,

for a sample size T=1000, for all three DGPs. The dashed line in each box is a 45 degree line;

the other lines map nominal into actual size.  Our proposed estimator is called “GMM*” in these

figures. In all three DGPs, most lines are above the 45 degree dashed line, which means that the

estimators tend to reject too much.8  The size distortions for the proposed estimator are always

substantially less than those for GMM12 and somewhat less than those for ML, even though we

use the simple variance-covariance estimator that is asymptotically valid only under correct

specification (see the discussion below equation (2.4)). Unreported results indicate that the

asymptotic approximation is better with larger sample sizes, with size distortions quite moderate

when T=10,000, for all estimators.  Column (3) of Table 3 presents a summary statistic, in the

form of the median size across the 12 simulations of a nominal .10 test.   The ideal value is of

course 0.10.  Our estimator’s value is 0.13, which means it performs slightly worse than GMM1

(median size =0.12), but modestly better than ML (median size =0.16).

Results are qualitatively similar for DGPs in which 0t (defined in (4.1d)) was t- rather than

normally distributed (not reported in a table).  In particular, our estimator dominated other GMM

estimators in terms of RMSE but not bias; QML generally had smaller RMSE and larger bias than

did our estimator.  One difference was that for T=250 or T=500 QML often had larger RMSE

than did the proposed estimator. In terms of size, GMM1 was best, followed by our estimator and

QML.

In summary, we see in these simulations that no estimator’s finite sample performance is

perfectly, or even nearly perfectly, captured by the asymptotic approximation; as in many

simulation studies of time series estimators, our simulations suggest that all available estimators
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suffer from shortcomings of one sort or another.  Further, and even apart from possible

inadequacy of the asymptotic approximation, rankings of estimators depend in part on measure of

performance.  Measures of bias favor conventional GMM estimators, especially GMM1;

measures of RMSE favor the proposed estimator or ML; measures of accuracy of test size favor

GMM1 or the proposed estimator.  Since the RMSEs of the conventional GMM estimators are

considerably larger than those of the proposed estimator or ML, it is our sense that many

researchers would turn to the proposed estimator or ML, even though the conventional GMM

estimators have smaller bias and, in the case of GMM1, smaller size distortions as well.  In terms

of the simulation results, the trade off between the proposed estimator and ML is less sharp.

Compared to the proposed estimator, ML is slightly better in terms of RMSE, slightly worse in

terms of accuracy of hypothesis tests, somewhat worse in terms of bias.  

Our simulations did not include the empirically interesting class of DGPs, such as those

considered in Hayashi and Sims (1983), in which ML is inconsistent while our estimator is not. 

Hence these simulations probably make a conservative case for our estimator relative to ML. 

Thus we view our estimator as a reliable choice.

5. CONCLUSIONS

We have proposed and evaluated an instrumental variables estimator for linear models with

conditionally heteroskedastic disturbances.  The estimator is efficient in a class of estimators that

are linear in a possibly infinite set of lags of a finite number of basic instruments.  Implementation

of the estimator requires specification of a parametric model.  Simulations indicate that the

estimator often works well relative to a conventional estimator (Hansen (1982)) in common use,

and comparably to maximum likelihood, even when the parametric model is misspecified. 

Priorities for future research include development and evaluation of efficient estimators that are

nonlinear in lags of basic instruments, and alternative asymptotic approximations to better

characterize the small sample distortions evident in many of the simulations.



23

1. Note that use of a vector AR or other model does not require knowledge of the entire set of
structural equations relating the variables.  This model is merely a device for computing
E(Xt|current and lagged zt’s).  See West and Wilcox (1996) for an illustration of this point in a
conditionally homoskedastic environment.

2. One may of course omit the factor of 
^
F2

e without changing the estimate of $.  Note,
however,  one cannot then use (

^
QN

^
S -1 ^
Q)-1 to estimate the asymptotic variance-covariance

matrix. 

3. In finite samples, the present estimator and the West and Wilcox (1996) estimator will
behave differently.  As well, if conditional heteroskedasticity is absent, the West and Wilcox
(1996) probably is computationally simpler than is the present estimator.

4. This last result may, however, be sensitive to the assumed form of heteroskedasticity (Broze
et al. (2001)).   Also, Stambaugh (1994) shows that fatter tails implies greater efficiency to use
of additional lags.

5. That the disturbance ut impounds multiple shocks–in this case, two shocks,et and vt–is
standard in rational expectations models in which private agents have more information than
econometricians.  It is the presence of multiple shocks that precludes conventional GLS
filtering in such models.

6. Across all simulations we performed, about 1% of QML procedure runs did not converge
when T=250, about 0.4% when T=500, and about 0.3% when T=1000. When T=10,000,
there are only a handful of cases of non-convergence. 

7. Note that we report root MSE here, while Table 2 reports variances.  Table 3 indicates that
the median value of MSE for GMM1 was about 3 times that of the proposed estimator [i.e.,
(1.92)2 .3×(1.12)2], a value consistent with the median value of 3.73 in the GMM1 column in
Table 2.  Also, poor performance of a conventional estimator that relies on many lags as
instruments (GMM12, in Table 3) is also found in Tauchen (1986) and West and Wilcox
(1996).

8. Using the usual formula for the standard error of our coverage ratios, [p(1-p)/5000]½, where
5000=number of repetitions, we have a standard error of about 0.003 for p=.05, of about
0.004 for p=.10.  Some of the patterns just noted might therefore be due to sampling error in
the simulations.  

FOOTNOTES



24

APPENDIX

Estimation of multiple equation systems proceeds as follows.  Consider an R equation

system, yt=XtN$+ut, where yt and ut are (R×1), Xt is (k×R) and $ is (k×1).  The (r×1) vector of

basic instruments zt has an (r×1) vector of innovations et that satisfies E(utqet-j)=0 for all j$0. 

Define

   e(t) = (1,etN,...,et-T+1N)N,  
~
e (t) = IRqe(t),         S = Gq

i =-qE[ut-iqe(t-i)][utNqe(t)N],
 (1+Tr)×1         (1+Tr)R×R                (1+Tr)R× (1+Tr)R         

     Q = EXtNqe(t),     G=S-1Q.
(1+Tr)R×k           (1+Tr)R×k

Define 
^
et-j/0 for t-j<0, and otherwise use a “^” to denote a sample counterpart constructed by

evaluating the indicated random variable or matrix of parameters at 
^
b.  Then the optimal (k×R)

instrument is 
^
Zt=

^
GN~̂e (t), 

^
G/

^
S-1 ^
Q, with corresponding estimate 

^
$ = (ET

t =1
^
ZtXtN)

-1(ET
t =1

^
Ztyt).
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Table 1

Asymptotic Variances Relative to Optimal GMM, ut=et+2-2et+1

N 2 ( (1    GMM1    GMM4  GMM12 ML

1. .9 0. .9 .1 1.00 1.00 1.00 0.88
2. .5 -.5 .9 .1 1.11 1.00 1.00 0.87
3. .5 .5 .9 .1 1.36 1.00 1.00 0.88
4. .5 .9 .9 .1 3.13 1.38 1.04 0.88
5. .5 .95 .9 .1 3.57 1.54 1.11 0.88
6. .9 .9 .9 .1 6.13 1.92 1.11 0.90
7. .9  .95 .0  .0 9.16 2.73 1.36 1.00
8. .9 .95 .5 .1 10.45 2.85 1.37 0.96
9. .9 .95 .9 .1 10.65 3.02 1.41 0.89
10. .9 .9 .1 9.92 2.88 1.38 n.a.1

95.

Notes:

1. The model is yt = $0+zt$1+ut, ut = et+2-2et+1, zt=Nzt-1+et, et ~ GARCH(1,1), et=Ft0t, 0t ~
iid(0,1), E04

t=3, F2
t  = T + (1e

2
t -1 + (2F

2
t -1, (/(1+(2.   The figures are invariant to choice of T

(set to 0.1) and $0 and $1 (both set to zero).

2. GMMn is the conventional GMM estimator (Hansen (1982)) with a constant and lags 0 through
n-1 of zt used as instruments (GMM1 = ordinary least squares).  ML is the maximum likelihood
estimator under normality.  The optimal GMM estimator asymptotically uses all lags of zt as
instruments.  The table presents the ratio of asymptotic variances of estimators of $1 to that of the
optimal GMM estimator.

3. The ML figure was not computed in line 10 because in line 10 the conditional
heteroskedasticity process that must be parameterized for ML estimation is not the simple
GARCH process applicable in the rest of the table.  Rather, it is a complex one that obtains for
the second order equivalent invertible MA model with moving average parameter 0.95. 
 



Table 2

Asymptotic Variances Relative to Optimal GMM, Processes Used In Simulations

GMM1   GMM4   GMM12    Proposed
   estimator

A. zt=.9zt-1+et-.5et-1, 2=.95 23.63 4.28 1.52 1.004

B. zt = .7zt-1+et-.5et-1, 2=.9   3.73 1.56 1.06 1.002

C. zt = .5zt-1+et+.5et-1, 2=.5   1.20 1.00 1.00 1.00

Notes:

1. See notes to Table 1 for the model and definition of “GMM1”, “GMM4” and “GMM12”.  In
all three DGPs, et ~ GARCH(1,1), et=Ft0t, 0t ~ i.i.d. N(0,1), F2

t  = 0.1 + 0.1e2
t -1 + 0.8F2

t -1.  

2. The column labeled “proposed estimator” presents the ratio of the asymptotic variance of the
estimator we propose to that of the optimal estimator.  In contrast to Table 1, we now assume that
the proposed estimator uses a misspecified parametric model and thus is not optimal
asymptotically.   It is misspecified in two ways.  First, the investigator wrongly models zt as an
AR(4) when in fact zt follows the indicated ARMA(1,1) processes.  Second, the investigator
computes Ee2

t  e
2
t +j from an AR(4) in |et| when in fact et follows the GARCH process given in

note 1.   See text and notes to Table 1 for additional details.



Table 3

Summary of Simulation Results, Normal Disturbances

Median across 12 simulations of:
(1)  (2)      (3)

actual size of
RMSE       median bias nominal .10 test

GMM1 1.92 -0.03 0.12
GMM4 1.34 -0.08 0.15
GMM12 1.40 -0.09 0.26
ML 1.04 -0.38 0.16
Proposed 1.12 -0.19 0.13
 Estimator

Notes:

1. The table presents the median across 12 simulations, for DGPs A, B and C, and for sample
sizes of T=250, 500, 1000, and 10,000. 

2. Column (1) presents root mean squared error of the estimator of $1, column (2) the median
bias of that estimator, column (3) the actual size of nominal .10 tests of H0:$1=0.

3. In columns (1) and (2), estimates are normalized by the asymptotic standard error of the
proposed estimator.  

4. See text and notes to earlier tables for additional details.



Figure 1: Density of Parameter Estimates, DGP A, T=1000 
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Notes:  The densities are asymptotically N(0,v/v*). 
 
 

Figure 2: Density of Parameter Estimates, DGP B, T=1000 
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Notes: The densities are asymptotically N(0,v/v*). 
 



Figure 3: Density of Parameter Estimates of Proposed Estimator, Various T, DGP A 
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Notes: The densities are asymptotically N(0,1). 



 
Figure 4A: Actual and Nominal size, DGP A, T=1000 
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Figure 4B: Actual and Nominal size, DGP B, T=1000 

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.05 0.10 0.15 0.20 0.25
Nominal Size

Ac
tu

al
 S

iz
e

45 degree
GMM1
GMM4
GMM12
GMM*
ML

 
 

Figure 4C: Actual and Nominal size, DGP C, T=1000 
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