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1 Introduction

Recent macroeconomic research has devoted considerable efforts to the development and estimation

of dynamic stochastic general equilibrium (DSGE) models that are internally consistent, and based

on first principles. Some recent micro-founded DSGE models, which involve numerous frictions and

various types of shocks, appear to replicate the data in important dimensions (see, e.g., Christiano,

Eichenbaum and Evans (2005), Smets and Wouters (2003, 2004)). For instance, Smets and Wouters

(2004) report that a DSGE model with a wide range of shocks fits the data well and performs well

in terms of out-of-sample forecasts. Motivated by these promising results, such models are now

increasingly perceived as a valuable input to policy making.1

In estimating these models, researchers have so far maintained the assumption that all relevant

information for the estimation is adequately summarized by a relatively small number (i.e., between

three and seven) of data series.2

This is at odds, however, with the fact that central banks and financial market participants

monitor and analyze literally hundreds of data series. Moreover, there is growing empirical evidence

suggesting that a large set of macroeconomic variables may in fact be crucial to properly capture

the economy’s dynamics. In a macroeconomic forecasting context, Stock and Watson (1999, 2002)

and Forni, Hallin, Lippi and Reichlin (2000) among others find that factors estimated from large

data sets of macroeconomic variables lead to considerable improvements over small scale VAR

models.3 Bernanke and Boivin (2003) and Giannone, Reichlin and Sala (2004) show that this

large information set appears to matter empirically to properly model monetary policy. Bernanke,

Boivin and Eliasz (2005) argue that inference based on small-scale VARs, by omitting relevant

1For instance, the Bank of Canada is “completing the development of a new projection model–
a sticky-price dynamic stochastic general-equilibrium (DSGE) model of the Canadian economy” (see
http://www.bankofcanada.ca/en/fellowship/highlights_res.htm). Papers that study optimal policy in estimated
medium-sized DSGE models include Juillard, Karam, Laxton and Pesenti (2005), Levin, Onatski, Williams and
Williams (2005).

2The only exception we are aware of is Adolfson, Laséen, Lindé and Villani (2005) which estimates a relatively
large model of a small open economy using fifteen data series. Leeper and Sims (1994) estimated their model with
three and ten data series, but report that they were unable to obtain a reasonable fit with ten series.

3Stock and Watson (1999), comparing a wide range of inflation forecasting exercises, found that their best-
performing forecast involves a composite index of aggregate activity based on 168 individual activity measures. They
argue that the forecasting gains from using this index are economically large and statistically significant over the
1970-1996 sample period. Similar evidence has been found in Forni et al. (2001), Stock and Watson (2002), Bernanke
and Boivin (2003) and Boivin and Ng (2003), among others.
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information, may be importantly distorted. For instance, they provide evidence in favor of Sims’

(1992) explanation of the “price puzzle,” – i.e., the finding based on small-scaled VARs that prices

tend to increase following a monetary policy tightening – according to which conventional VARs

do not account for the information that the central bank has about future inflation. They show

that the information from a large set of indicators is indeed important to properly identify the

monetary transmission mechanism. These empirical models with large data sets remain however

largely non-structural. This limits our ability to determine the source of economic fluctuations, to

perform counterfactual experiments, or to analyze optimal policy.

Why would such information be relevant in the context of available DSGE models? If the model

of the economy is well specified and all theoretical concepts are directly observed by the agents and

the econometrician, there is no scope for using additional data series in the estimation of DSGE

models. But if some of the key concepts of the model are imperfectly observed or if the data are

informative about some exogenous shocks or other state variables, exploiting the information from

additional series could be important.

While the assumption that some or all theoretical concepts are observed by the econometrician

is routinely made in the estimation of DSGE models, it may not be realistic. The upper panel

of Figure 1 plots three detrended quarterly measures of employment (in logs) from 1964 to 2002.4

Figure 2 reports the (de-meaned) quarterly growth rates of popular price measures: the GDP

deflator, the personal consumption expenditures (PCE) deflator, and the consumer price index

(CPI). While these series display broadly similar patterns, they reveal noticeable differences from

one quarter two the next. In fact, as indicated in the lower panels of the figures, the coherences — i.e.,

the correlations in the frequency domain — between any two of the series are high at low frequencies,

but they are markedly lower, though nonzero, at higher frequencies. If all of the fluctuations in these

indicators were attributable to fundamental macroeconomic shocks, one would expect for instance

these indicators of inflation to move in sync. However, most high-frequency inflation spikes are not

common to all three series considered.

Gaps between several indicators of macroeconomic variables may reflect measurement error.

4The measure SW is taken from Smets and Wouters (2004), and is described in section 3.2 below. The other two
indicators represent employment numbers based respectively on the household and the establishment surveys.
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For employment, the systematic discrepancies between its two main measures – one obtained

from the establishment survey and the other from the population survey – which have received

a lot of attention in the aftermath of the 2001 recession,5 underscore the fact that employment

is imperfectly measured.6 Aggregate prices are also notoriously difficult to measure. One of the

most commonly used measure, the CPI, has undergone various changes in methodology since the

1996 Boskin commission, to mitigate important shortcomings. But recent research emphasizes

that the current CPI might still be subject to important biases, stemming for instance, from

the difficulty of measuring quality improvements or properly adjusting for outlet substitution.7

Imperfect measurement may also affect real output, consumption, investment, real wages.

At another level, there may be conceptual differences between the model variables and the

data used to measure them. One could of course imagine macroeconomic models to be sufficiently

detailed so as to specify a separate role for, e.g., each of the available price indices (such as the GDP

deflator, PCE deflator, CPI, core-CPI, and so on). In practice, however, this distinction is rarely

made, as there are advantages to analyzing relatively simple models. If follows that researchers

often pick a particular price index in a more or less arbitrary way.

Failing to account empirically for the imprecise link between theoretical concepts and observable

macroeconomic data can invalidate model estimation and the assessment of whether a particular

theory fits the facts. Following Sargent (1989), this has led some researchers to recognize explicitly

the presence of measurement error in their empirical framework.8 However, even when they allow for

measurement error, all existing studies that estimate structural models are, to our knowledge, based

on at most a single (and sometimes arbitrary), observable time series corresponding to each variable

of the model. That is, whether or not one considers measurement error in the model estimation,

it is typically assumed that a small number of data series contain all available information about

concepts of the model such as output and inflation.

5See, e.g., Bernanke (2004).
6The BLS actually reports standard errors for the employment measures based on both surveys in the Employment

Report. The non-farm payroll employment number, being based on a larger sample, is statistically more precise. But
it is also subject to biases, such as the double-counting of jobs.

7See Hausman (2003), Hausman and Leibtag (2004) and Bils (2004).
8See, e.g., Altuğ (1989), McGrattan (1994), Anderson, Hansen, McGrattan and Sargent (1996), McGrattan,

Rogerson and Wright (1997), Schorfheide (2000), Fernández-Villaverde and Rubio-Ramírez (2004). Another practical
motivation for adding measurement error is to avoid the stochastic singularity problem that arises when there are
fewer theoretical shocks than observable series.
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Once one acknowledges that the data provides only an imperfect indicator of the concept, it is

plausible to think that other data series carry useful additional information. Viewed in this light,

existing estimations of DSGE models appear to be based implicitly on an arbitrary choice of data.

Given each indicator-specific idiosyncrasy, properly exploiting the information from several indica-

tors – rather than from a single one – should help to better separate an estimate of the economic

concept (such as employment or inflation) from the indicator-specific “measurement error.”9 This

should also provide us with a better estimate of the underlying economic shocks.

Moreover, some exogenous shocks or other state variables, that are typically assumed to be

completely unobserved by the econometrician, might in fact be partially observed. One example

is the productivity shock underlying many DSGE models. In existing estimations, it is treated

as completely latent, which amounts to assuming implicitly that no observable measure contains

independent information about this shock, beyond the handful of variable used in the estimation.

But measures of labor productivity, oil prices, or commodity prices may all be correlated with total

factor productivity, and thus serve as noisy indicators containing independent information.10 In

principle, since this could be the case for all exogenous shocks, many more indicators could carry

important information for the estimation.

In this paper, we propose a general empirical framework to estimate DSGE models that exploits

the information from a potentially large panel of data series in a systematic fashion. We relax

the common assumption that theoretical concepts are properly measured by a single data series,

and instead treat them as unobserved common factors for which observed data series are merely

imperfect indicators. We also include information from indicators that potentially have an unknown

relationship with the state variables of the model.

The proposed empirical framework has several advantages. First, as a consequence of the

factor structure, the latent model concepts and the series-specific component (or “measurement

errors”) can be consistently identified from the cross-section of macroeconomic indicators, and not

exclusively from the dynamic structure implied by the DSGE model. Consequently, unlike in the

9 In the same spirit, Prescott (1986) used these two indicators to calibrate the labor elasticity of output in his RBC
model.
10This is in part the rationale for the inclusion of commodity prices in VARs to “fix” the price puzzle (see Sims

(1992)).
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standard treatment mentioned above, allowing for measurement error does not necessarily help the

model fit the data. Using multiple indicators in the model estimation also allows us to consider

a potentially large number of imperfectly measured concepts without restricting the number of

structural shocks that can be identified within the model. Rather than taking a stance on whether

“measurement errors” or structural shocks should be part of the model, we can remain agnostic

and determine empirically their relative importance. A by-product is an empirical assessment of

the information content of each indicator.

Second, we can exploit the information from indicators that are not directly and unambiguously

linked to a specific concept of the model. If the additional information considered is relevant,

it should make our estimation more efficient. This is particularly important to determine more

accurately the state of the economy, and helps in forecasting.

Third, our framework can be interpreted as a dynamic factor models à la Stock and Watson

(1999, 2002), Forni et al. (2000), Forni, Lippi and Reichlin (2003), Bernanke, Boivin and Eliasz

(2005), and Giannone, Reichlin and Sala (2004), in which we impose the full structure of the DSGE

model on the transition equation of the latent factors. This has the added benefit of allowing us

to provide a very clear economic interpretation of all estimated latent factors: in our setup, these

factors correspond to state variables of the model (i.e., predetermined variables or shocks). In

contrast, in empirical studies of factor models, the latent factors do not have a clear interpretation,

since they are identified only “up to a rotation.” Taken as a whole, the set of the factors obtained

in empirical studies spans the space of common components in the data, but each factor does not

uniquely characterize a common component. Our framework, in contrast provides an interpretation

of all information contained in a large data set through the lenses of a DSGE model.

The estimation involves Markov-Chain Monte-Carlo (MCMC) techniques which deal effectively

with the dimensionality problem by working with marginal densities and avoiding gradient methods.

Because of the large dimension of models in a data-rich environment, direct estimation by maximum

likelihood is usually infeasible in practice. The specific algorithm that we propose extends the

standard implementation of Bayesian MCMC methods11 to account for the relationship between a

potentially large number of indicators and a relatively small number of model concepts.

11See, e.g., Geweke (1999), Schorfheide (2000), Smets and Wouters (2003, 2004), Levin et al. (2005).
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We apply our estimation procedure to a state-of-the-art DSGE model based on microeconomic

foundations. The model is taken from Smets and Wouters (2004), which builds on the model of

Christiano, Eichenbaum and Evans (2005). One important finding is that by considering infor-

mation from a larger data set in our model estimation, and by relaxing the link between some

indicators and the model’s concepts, we are able to considerably improve the estimates of the

model’s latent concepts such as inflation, of state variables and shocks. Our results suggest that

the additional information provided by the data-rich environment is highly relevant for the model

estimation. Estimates of critical model parameters such as a pseudo-elasticity of intertemporal

substitution in consumption, the degree of habit formation, the degree of inflation indexing as

well as estimated variances of exogenous shocks differ importantly depending on the assumed link

between theory and data. This arises even though the estimated latent variables display patterns

generally consistent with the indicators typically used to measure them. The different estimates

also imply very different conclusions about the sources of economic fluctuations. As more data

series are used in the model estimation, we find that fewer shocks are necessary to explain eco-

nomic fluctuations, and that shocks to the efficiency of investment goods become a main source of

business cycle fluctuations.

The rest of the paper is structured as follows. Section 2 lays down the formal setup for an

arbitrary linear(ized) DSGE model. It explains how we relate the structural model to the large

data set, and discusses implications of the setup for a canonical real business cycle (RBC) model.

The section then proceeds with a description of the general estimation methodology. Detailed

information about the estimation is left in an appendix. Section 3, presents an application of our

approach in the context of a state-of-the-art DSGE model, the model of Smets and Wouters (2004),

and discusses the estimation results and their implications. Section 4 concludes.

2 Data-Rich Environment

We now present a formal framework that merges a general class of dynamic general equilibrium

models with a data-rich empirical model. We then discuss the implications of this framework, both

in general terms and in the context of a canonical RBC model.
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2.1 General Framework

Let us consider a general linear (or linearized) rational expectations model of the form

AEt

⎡⎢⎣ zt+1

Zt+1

⎤⎥⎦ = B

⎡⎢⎣ zt

Zt

⎤⎥⎦+ Cst (1)

st = Mst−1 + εt (2)

where Et [x] ≡ E [x|It] denotes the expectation of some variable x conditional on the information
set It available at date t, zt is a vector of non-predetermined endogenous variables, Zt is a vec-

tor containing predetermined endogenous variables or lagged exogenous variables (i.e., satisfying

EtZt+1 = Zt+1), st is a vector of exogenous variables following the process (2), εt is a vector

of mean-zero unforecastable exogenous disturbances (such that Etεt+j = 0 for all j > 0) with a

diagonal variance-covariance matrix Q, and A, B, C and M are conformable matrices of coeffi-

cients. Below, we will consider examples of structural dynamic general equilibrium models based

on microeconomic foundations that can be cast in the form (1)—(2). Models with additional lags,

lagged expectations, or expectations of variables father in the future can be written as in (1) by

expanding the vectors zt and Zt appropriately. We assume that the information set in period t is

It = {zτ , Zτ+1, sτ , ετ , for τ ≤ t;A,B,C,Q} so that all agents considered in the model are assumed
to know the model, its parameters, and the realizations of all variables determined in the present

and past.12 We solve the model using standard numerical techniques,13 and express the solution as

zt = DSt (3)

St = GSt−1 +Hεt, (4)

12This can be generalized in various ways at the expense of complications for the estimation problem described
below. One can for instance assume that some or all of the agents in the model also face imperfect information about
the state of the economy, and thus need to solve a filtering problem (see, e.g., Pearlman, Currie, and Levine, 1986,
Svensson and Woodford, 2003, 2004) that may or may not be the same as the one of the econometrician described
below. The model could still be written in the form (1), except that the vectors zt, Zt, and st would include also
estimates on the part of agents of the respective variables. We leave an analysis of imperfect information on the part
of economic agents for future work.
13See, e.g., Blanchard and Kahn (1980), King and Watson (1998), Klein (1997), McCallum (1998), Sims (2000).
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where

St ≡

⎡⎢⎣ Zt

st

⎤⎥⎦
is the state vector and the matrices D,G,H are function of the underlying model’s structural

parameters.

In many applications, the system (1) contains identities and Zt includes redundant variables

such as lags of variables in zt. We will be interested in a subset Ft of the variables in zt, St (all

known at date t), which refers only to variables characterizing the economy in period t. The (nF × 1)
vector Ft will typically include endogenous variables of interest for which indicators are observable.

Specifically, we define

Ft ≡ F

⎡⎢⎣ zt

St

⎤⎥⎦
where F is a matrix that selects the appropriate elements of the vector [z0t, S0t]

0 . Given (3), we can

rewrite the variables of interest as a linear combination of the state vector

Ft = ΦSt, (5)

where

Φ ≡ F

⎡⎢⎣ D

I

⎤⎥⎦ (6)

is entirely determined by the model parameters and the selection of variables in Ft. The evolution

of Ft is given by (4)—(6).

In order to estimate the model we consider nX observable macroeconomic variables collected

in a vector Xt. We collect in a nXF × 1 subvector XF,t =
h
x1F,t, ..., x

nXF
F,t

i0
the indicators of the

variables of interest Ft =
£
f1t , ..., f

nF
t

¤0
, where nXF ≥ nF , and assume that the observed indicators

relate to the variables of the model according to

xiF,t = λiF f
j
t + eiF,t (7)
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for i = 1, ..nXF , j = 1, ...nF , where for each i, λiF is a coefficient, and eiF,t denotes a mean-

zero indicator-specific component, which may be viewed as representing measurement error or

conceptual differences between the theoretical concept f jt and the respective indicator x
i
F,t. We

omit throughout a constant to simplify the notation. We assume that these indicator-specific

components are potentially serially correlated, but that they are uncorrelated across indicators.

The set of equations (7) can be rewritten in matrix form as

XF,t = ΛFFt + eF,t, (8)

where eF,t is a nXF × 1 vector of mean-zero indicator-specific and potentially serially correlated
components, and ΛF is an (nXF × nF ) matrix of coefficients. As each element of XF,t is supposed

to be an indicator of one of the elements of Ft, each row of the matrix ΛF will have at most one

nonzero element. However, to the extent that each variable in Ft can be imperfectly measured by

many indicators, each column of ΛF can have many nonzero elements.

The observation equation (8) is appropriate in the case that several observable indicators relate

directly to the same variable of interest, and that each of the indicator-specific components is uncor-

related with that of other indicators. For instance, if inflation based on the personal consumption

expenditure deflator and the CPI correspond to the same concept of inflation in the model, then one

may want to include both indicators in XF,t. However, if these indicators refer actually to different

concepts, then at least one of them should not be included in XF,t. Such an indicator, even though

it does not relate directly to any variable in Ft should still depend on the evolution of the state

vector St.

More generally, to the extent that the theoretical model is true, a potentially very large number

of indicators observed – e.g., asset prices, commodity prices, monetary aggregates and so on –

should depend on the state vector St. Again, it may be useful to consider such indicators in the

estimation, as they may be informative about the state of the model economy. To exploit the

information provided by such indicators in the model estimation, we assume that the remaining

data series of Xt which do not correspond to any particular variable of Ft are collected in a nXS×1

9



vector XS,t and are related to the state vector according to

XS,t = ΛSSt + eS,t, (9)

where eS,t is a nXS × 1 vector of mean-zero components that are not related to the model’s state
vector, and ΛS is an (nXS × nS) matrix of coefficients. Equation (9) allows all indicators not

associated with any particular variable of the model to potentially provide information about the

state vector St. We propose to capture the information from the data in XS,t in a non-structural

way, letting the weights in ΛS be determined by the data.

While the weights ΛF relating the variables of interest to their indicators can be interpreted

as structural – i.e., policy invariant – the weights ΛS relating the state vector to all other in-

dicators do not need to be so.14 Even though (9) may not be reliable to determine the effects of

alternative policies on the variables in XS,t, information about these variables can be very useful

for the estimation of the state vector and model parameters under historical policy. Once the state

vector and model parameters are correctly estimated – using the information provided by (9) –

counterfactual exercises can legitimately be performed for all variables Ft, St, XF,t, without using

(9) any more.

Combining (8)—(9) and using (5), we obtain the observation equation

Xt = ΛSt + et (10)

where

Xt ≡

⎡⎢⎣ XF,t

XS,t

⎤⎥⎦ , et ≡

⎡⎢⎣ eF,t

eS,t

⎤⎥⎦ , Λ ≡

⎡⎢⎣ ΛFΦ
ΛS

⎤⎥⎦ .
We assume that indicator-specific components eF,t and eS,t are uncorrelated across indicators but

14 In fact the weights ΛS mix the weights that the variables in XS,t would attribute to their theoretical counterpart,
with the coefficients that relate these theoretical concepts to the state vector St.
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serially correlated, so that

eF,t = ΨF eF,t−1 + vF,t (11)

eS,t = ΨSeS,t−1 + vS,t (12)

where the vectors vF,t and vS,t are assumed to be normally distributed with mean zero and variance

RF and RS , respectively, and where the matrices RF , RS and ΨF , ΨS are assumed to be diagonal.15

Our empirical model consists of the transition equation (4) – which is fully determined by

the underlying DSGE model –, the selection equation (5), and the observation equation (10)-(12)

which relates the model’s theoretical concepts to the data. It contains as an important special

case the measurement error framework proposed by Sargent (1989). In the latter framework, each

variable in Ft corresponds to a unique observable indicator in XF,t, so that the observation equation

reduces to Xt = Ft+et = ΦSt+et. In this case nXS = 0, ΛF = InF , Λ = Φ. A further trivial special

case is one in which model variables are assumed to be directly measured, so that the observation

equation reduces to Xt = Ft = ΦSt, as in most existing estimations of DSGE models.

The key innovation here is to generalize Sargent (1989)’s framework to the case where the vector

of observables, Xt, may be much larger than the vector Ft of variables in the model, i.e. nX >> nF ,

and that their exact relationship, summarized by Λ, may be partially unknown. The interpretation

is that this large number of macroeconomic variables are noisy indicators of model concepts and

thus share some common sources of fluctuations. This implies an observation equation with a factor

structure similar to the one assumed in the recent non-structural empirical literature which uses

a large panel of macroeconomic indicators. However, an important difference with this literature

is that, in the present framework, the evolution of the unobserved common components obeys the

15We may allow the vector eS,t to be correlated across indicators, as we may want to include in the vector XS,t

indicators that are driven by some common factors which are not included in the model’s vector of state variables.
This could happen for instance if several indicators included in XS,t are part of a same category of indicators, but that
their theoretical counterpart is not fully fleshed out in the model. In this case we would assume that the component
of these indicators which is not correlated with the model’s state vector has the following factor structure

eS,t = ΓSe,t + ẽS,t

where ẽS,t is a nXS × 1 vector of mean-zero indicator-specific (i.e., uncorrelated across indicators) and potentially
serially correlated components, and Se,t is a vector of common components in the set of indicators XS,t, which are
uncorrelated with the model’s state vector St.
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structure of a DSGE model.

The use of large information sets provides our framework with two important advantages over

the existing implementation of DSGE model estimation. First, as the latent variables and the

measurement can be identified from the cross-section of macroeconomic indicators, it allows one to

identify a much richer pattern of “measurement errors,” even in the presence of many structural

shocks. This reduces the risk of biased estimation. Second, it has the potential to yield a more

efficient estimation procedure. To illustrate these points, consider the following special case of the

framework presented above. Suppose that, according to theory, a variable of interest, ft, satisfies

ft = ρft−1 + ηt, (13)

where |ρ| < 1 and the exogenous disturbance ηt is iid.
16 Suppose moreover that we observe an

indicator x1t of ft. In the case that x1t constitutes a perfect measure of ft, i.e., that the observation

equation (10) is trivially x1t = ft, the variable of interest ft is known, and the parameter ρ can

easily be estimated by OLS or maximum likelihood. Suppose instead that x1t is a noisy indicator

of ft and that the observation equation takes the form

x1t = ft + e1t (14)

where e1t is iid.17 In the case that ρ 6= 0, standard techniques such as proposed Sargent (1989)

can be applied to estimate f̂t and disentangle it from the “measurement error,” using the Kalman

filter. For this to work, however, we need the stochastic process of ft to be different from the one

that drives the measurement error. In contrast, when ρ = 0, standard techniques cannot be applied

to recover the variable of interest ft, as x1t = ηt + e1t is the sum of two variables with the same

stochastic process.18 However, if one or more additional indicators

xit = ft + eit (15)

16This is a special case of (4)—(5), where ft = Ft = St, εt = ηt, Φ = 1, G = ρ and H = 1.
17This is a special case of (10) where Xt = x1t, ΛF = 1, Λ = Φ = 1, and et = e1t.
18The likelihood function in this case involves the sum of the variances of ηt and e1t, so that each variance cannot

be identified separately.
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for i = 2, .., nX are available, then it is possible to estimate ft even if it is serially uncorrelated.

In fact, ft is a common factor that can be identified through the cross section, on the basis the

observation equations (14)—(15), while the dynamic model (13) is used for identification of the

shocks ηt.

More generally, when no more than one indicator is used for any concept of the model – i.e.,

when nX = nF , as in existing implementations – both the structural shocks and the unobserved

variables have to be identified entirely from the restricted dynamics of the DSGEmodel, summarized

by equations (4)—(5). In that case, having more structural shocks in the model limits the number of

independent sources of measurement errors that can be contemplated and it is difficult to formally

test whether the resulting model is properly identified or not. Typically, researchers avoid these

problems by assuming either no measurement error or few structural shocks. But as argued in the

introduction, measurement error or conceptual differences between the measured indicators and

the theoretical variables might be quite prevalent, and if so, ignoring them would lead to biased

inference.

In contrast, one key feature of factor models with multiple indicators is that the factors can

be identified by the cross-section of macroeconomic indicators alone. This implies that in our

framework with a factor structure, the large number (nX >> nF ) of indicators provides enough

restrictions to identify the latent variables, and the series-specific terms from the observation equa-

tion (10). As a result, we can allow for a large amount of measurement errors without restricting in

any way the number of structural shocks that can be identified in the model. Rather than taking

a stance on which source of variations should be part of the model, we can remain agnostic and

determine empirically their importance.

Even when the factors can be identified solely from the model dynamics, as in Sargent (1989),

considering the information from the large data set provides another important advantage, namely

efficiency of the factor estimation. A key property of factor models is that the variances of the

factor estimates are of order 1/nX where nX is again the number of indicators in Xt. A consistent

estimate of the factors can thus be obtained as nX −→ ∞ (see Forni et al. (2000), and Stock

and Watson (2002), Bai and Ng (2004).) This suggests that exploiting information from a large

number of macroeconomic indicators can reduce considerably the uncertainty in the estimated
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latent variables, which in turn implies a more efficient estimation of model parameters. Estimation

efficiency is then important, in particular for forecasting exercises and policy analysis, as forecasting

performance is directly related to precision in model estimates.

It is important to note that by expanding the vector Xt of indicators we are not facilitating

the model’s ability to fit the data. To the contrary, given the factor structure, the more indicators

we have in Xt, the more we require the state variables (here k̂t and at) to explain the common

components in the data series, while at the same time satisfying their law of motion given by (20).

2.2 An Illustrative Example: A Simple RBC Model

To clarify how the empirical framework just discussed can be applied to the estimation of a DSGE

model, we first discuss a simple example, the canonical RBC model (see, e.g., King, Plosser and

Rebelo (1988)). This model allows us also to relate to much of the literature on estimated DSGE

models which has often considered variants of the basic RBC model. In section 3, we estimate a

more elaborate model that adds numerous frictions to a RBC model of this kind. In the basic RBC

model considered here, households maximize their lifetime utility which depends on consumption,

ct, and leisure, 1− lt,

E0

∞X
t=0

βt [log (ct) + v log (1− lt)] , 0 < β < 1, v > 0 (16)

subject to the following restrictions

eatk1−αt lαt = ct + kt+1 − (1− δ) kt, 0 < α < 1, 0 < δ < 1 (17)

at = ρat−1 + vt, 0 < ρ < 1 (18)

where the exogenous productivity shock at follows a mean-zero AR(1) process. Equation (17)

indicates that output, which is generated using the capital stock kt (chosen at date t − 1), hours
worked, lt, and total factor productivity, at, is the sum of private consumption and gross investment.

Solving this household problem yields a set of first-order necessary conditions which, together with

(17) and a transversality condition, characterize the equilibrium evolution of the variables ct, lt,
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and kt, for given exogenous disturbances and an initial value of the capital stock. As is well known,

this model admits a unique deterministic steady state in which all endogenous variables remain

constant. As a closed-form solution does generally not exist, the model is commonly log-linearized

around the steady state. The model’s approximate dynamics around the steady state can be written

as ⎡⎢⎣ l̂t

ĉt

⎤⎥⎦ =

⎡⎢⎣ d11 d12

d21 d22

⎤⎥⎦
⎡⎢⎣ k̂t

at

⎤⎥⎦ (19)

⎡⎢⎣ k̂t

at

⎤⎥⎦ =

⎡⎢⎣ g hρ

0 ρ

⎤⎥⎦
⎡⎢⎣ k̂t−1

at−1

⎤⎥⎦+
⎡⎢⎣ h

1

⎤⎥⎦ vt (20)

which is of the form (3)—(4) with zt =
h
l̂, ĉt

i0
, St =

h
k̂t, at

i0
, and the matrices D,G,H are function

only of the model parameters. Here, the circumflex denotes percent deviations from the steady

state (e.g., ĉt ≡ log (ct/c̄)).
To illustrate the richness of our empirical framework, we consider several variants of the obser-

vation equation (10).

No measurement error. A common approach to the estimation of DSGE models is to suppose

that we have perfect indicators of the variables of interest. In the case that an indicator Xt =

hours1t (e.g., based on the establishment survey) is viewed as measuring perfectly the concept l̂t,

we may write the selection equation (5) as Ft = l̂t = [d11, d12]St, so that the observation equation

(10) reduces to

hours1t = l̂t = d11k̂t + d12at. (21)

In this case, estimation of the model (19)—(20) with the above observation equation would attribute

all variations in the indicator hours1t to the only source of exogenous fluctuations, the productivity

shock.19

19Given that the RBC model considered here has only one source of exogenous fluctuations, using more than one
observable series would result in the model rejection, in the absence of measurement error. In fact, as Ingram et al.
(1994) point out, since the number of exogenous disturbances is smaller than the number of endogenous variables,
one can find particular combinations of endogenous variables that are deterministic, so that their variance-covariance
matrix is singular. The model is said to be stochastically singular in this case. As this is not true in the data, the
model is sure to be rejected.
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Standard treatment of measurement error. In the case that hours1t is considered as a noisy

indicator of hours, the observation equation needs to be augmented with a measurement error term,

hours1t = l̂t + e1t = d11k̂t + d12at + e1t,

and the standard approach proposed by Sargent (1989) is commonly applied.20 According to this

approach, the restrictions of the dynamic model and the Kalman filter are used to estimate the

unobserved variables l̂t, k̂t, at and the measurement error. However, as illustrated in the previous

simple example, such an approach may have trouble disentangling the structural disturbances –

the innovations to at – from the measurement error, et, and thus may not be able to identify the

latent variable of interest, l̂t. Unfortunately, it is difficult to test in practice whether or not the

latent variables and the model parameters are actually identified.

An alternative treatment of noisy indicators: Using multiple indicators of given con-

cepts. Once one recognizes that the data often contains noisy indicators of the concepts that

one seeks to measure, there is scope for using additional indicators to get better estimates of the

model’s parameters and concepts. This can be done generally and systematically in our empirical

framework. It suffices to include all relevant indicators in the vector Xt, and to let them be related

to the respective concepts in Ft. For instance, while the establishment survey may provide a good

indicator of the concept of hours worked (hours1t), it is likely to include measurement error that

is uncorrelated with measurement error in the hours as implied by the household survey (hours2t).

Accounting for the information contained in these two measured series may thus help us get a

better estimate of the concept of hours worked and the model parameters.21 The observation (10)

then takes the form⎡⎢⎣ hours1t

hours2t

⎤⎥⎦ =
⎡⎢⎣ 1

λ

⎤⎥⎦ l̂t + et =

⎡⎢⎣ d11 d12

λd11 λd12

⎤⎥⎦
⎡⎢⎣ k̂t

at

⎤⎥⎦+
⎡⎢⎣ e1t

e2t

⎤⎥⎦ .
20See, e.g., Altuğ (1989), McGrattan (1994), Hall (1996), McGrattan, Rogerson and Wright (1997), and Ireland

(2004).
21 In the same spirit, Prescott (1986) used these two indicators of hours worked to calibrate the labor elasticity of

output in his RBC model.
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All indicators of hours are thus assumed to have one common factor, l̂t, on which they “load” with

a particular weight. We typically normalize one of the loading coefficients to 1 so as to normalize

the scale of the fluctuations in the latent variable l̂t to be of the same order of magnitude as the

respective indicator, but leave the other loading coefficient free to be estimated, in case the fluctu-

ations in the second indicator are of a different magnitude. By exploiting both the cross-sectional

and the time series characteristics of the data, and noting that the latent variables are assumed

to generate the common variation in both indicators, while the “measurement error” is specific to

each series, we can more easily estimate the latent variables here than in the standard treatment

of measurement error. The observation equation mentioned here only exploits information about

employment, but one could easily augment it with indicators of other variables.

Using information to estimate the state vector through an unknown link. So far, we

have assumed that ΛS is a zero matrix. We have thus implicitly assumed, as do current estimations

of DSGE models, that the data series in XS,t, which do not measure any specific variable of the

vector Ft – here, hours worked – do not contain any additional information about the remaining

latent variables.22 However, if the theoretical model is true, all economic data series should at

least partly determined by the state vector. Data on stock prices, commodity prices, oil prices,

monetary aggregates and so on could thus be informative about the current state of the economy,

even though the model does not explicitly specify model such concepts. Exploiting their information

content should result in a more efficient estimation. In our simple example, if oil prices (Poilt) are

systematically related to the state vector of the model economy, we can augment our observation

equation as follows ⎡⎢⎢⎢⎢⎣
hours1t

hours2t

Poilt

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

d11 d12

λd11 λd12

λS1 λS2

⎤⎥⎥⎥⎥⎦
⎡⎢⎣ k̂t

at

⎤⎥⎦+
⎡⎢⎢⎢⎢⎣

e1t

e2t

e3t

⎤⎥⎥⎥⎥⎦
where the new parameters λS1 and λS2 are to be estimated.

22Several studies, including Christiano (1988), Altuğ (1989) and McGrattan (1994), assume that the capital stock
is observed, so that it would be in Ft. They however assume that other variables are latent. McGrattan (1994),
for instance, using a more elaborate variant of the RBC model presented here assumes that output, investment,
government purchases, hours of work, the capital stock and various tax rates are observed, while housing starts and
past hours (weighted) are assumed to be latent.
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2.3 Estimation Procedure

We now discuss the general procedure for the estimation of the parameters and the latent variables

(in zt, Zt, st) of the structural model (1). This model results in an equilibrium characterized by

(3)—(5). We suppose that the observation equation takes the form (10), where we allow Xt to

potentially contain a rich set of macroeconomic indicators, and where Λ involves possibly few a

priori restrictions. Doing so obviously comes at a cost. The high-dimensionality of the problem

and the presence of unobserved variables considerably increase the computational burden of the

estimation. In particular, methods that rely on explicitly maximizing the likelihood function or the

posterior distribution appear impractical (see Bernanke, Boivin and Eliasz (2005)).

To circumvent this problem, we consider a variant of a Markov Chain Monte Carlo (MCMC)

algorithm.23 There are two key general features of these simulation-based techniques that help

us in the present context. First, rather than working with the likelihood or posterior directly,

these methods approximate the likelihood with empirical densities, thus avoiding gradient methods.

Second, by exploiting the Clifford-Hammersley theorem, these methods sample iteratively from a

complete set of conditional densities, rather than from the joint density of the parameters and the

latent variables. This is particularly useful when the likelihood is not known in closed form, as it is

the case in our application. Moreover, by judiciously choosing the break up of the joint likelihood

or posterior distribution into the set of conditional densities, the algorithm deals effectively with

the high dimensionality of the estimation problem.

Like in existing Bayesian implementations of the MCMC algorithm, the structural parameters

of equation (1) are drawn using a Metropolis step, since their distribution conditional on the

unobservable state variables and the parameters of equations (3)—(4) are not known in closed form.

The unobservable states are drawn using Carter and Kohn (1994) forward-backward algorithm.

The remaining parameters are drawn directly from their known conditional distributions. The

precise description of the algorithm is provided in Appendix A.

23See Johannes and Polson (2004) for a survey of these methods and Geweke (1999). Recent applications to the
estimation of DSGE models include DeJong, Ingram and Whiteman (2000), Schorfheide (2000), Otrok (2001), Smets
and Wouters (2003, 2004), Fernández-Villaverde and Rubio-Ramírez (2004), Justiniano and Preston (2004), and
Justiniano and Primiceri (2006).
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3 Application: Estimating a DSGE Model

3.1 Model

We now apply the data-rich environment just described to a state-of-the-art DSGE model based on

microeconomic foundations. The model that we consider is taken from Smets and Wouters (2004).

It builds on the canonical RBC model presented in the previous section, as well as Rotemberg and

Woodford (1997), Christiano, Eichenbaum and Evans (2005) and others, by adding various frictions

and allowing for nine different types of exogenous disturbances. The canonical RBC model can be

viewed as a special case of the Smets and Wouters (2004) model in the absence of frictions and of

shocks, except for the total factor productivity shock. The Smets and Wouters model has received

much attention recently, in part because of its success in fitting actual data, both in the U.S. and

in the Euro area (see Smets and Wouters, 2003, 2004). As Smets and Wouters (2004) report, this

micro-based model performs also surprisingly well in terms of out-of-sample predictions, in some

cases outperforming standard VAR and Bayesian VAR models.

A derivation of the non-linear model from first principles can be found in Smets and Wouters

(2004). Here, we merely summarize the important log-linearized equilibrium conditions of the

model. The model involves optimizing households that consume goods and services, supply spe-

cialized labor on a monopolistically competitive labor market, rent capital services to firms, and

decide how much capital to accumulate. Firms choose the desired level of labor and capital inputs,

and supply differentiated products on a monopolistically competitive goods market. Prices and

wages are re-optimized at random intervals as in the Calvo (1983) model. When they are not re-

optimized, prices and wages are partially indexed to past inflation rates. While Smets and Wouters

(2004) assume an exogenously moving inflation target, so as to allow in a crude way for changes in

the monetary policy rule and in average inflation over the 1957 - 2002 period, we do not consider

such time-varying target, as we estimate the model using data from 1982 to 2002.

More precisely, the model assumes that there exists a continuum of households who derive

utility from consumption and leisure. The utility function is non separable in consumption and

leisure as in King, Plosser and Rebelo (1988) and Basu and Kimball (2000), to allow for a steady

state growth path driven by labor-augmenting technological progress, and involves consumption in
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excess of an external, time-varying habit stock. While households may be heterogenous regarding

their wage profile and hours worked, there exists a complete set of state-contingent securities

which allows households to pool their risks, so that they all make the same consumption and

investment decisions. The Euler equation for optimal consumption decisions log-linearized around

the deterministic steady state with constant growth and zero inflation is given by

Ct =
h

1 + h
Ct−1 +

1

1 + h
EtCt+1 +

σc − 1
σc (1 + λw) (1 + h)

(Lt −EtLt+1)

− (1− h)

(1 + h)σc
(it −Etπt+1) + εbt (22)

where Ct and Lt represent percent deviations of consumption and hours worked from their respective

steady state, it denotes deviations of the quarterly nominal interest rate from its steady-state level,

and πt is quarterly inflation. The parameter h ∈ (0, 1) measures the degree of habit formation and
σc > 0 indicates the curvature of the utility function with respect to consumption, and (1 + λw)

is the steady-state markup of the real wage due to market power on the labor market. In the

absence of habit formation, (22) states that consumption depends negatively on the ex-ante real

interest rate with a coefficient σ−1c (corresponding to the elasticity of intertemporal substitution)

and positively on expected future consumption. When h > 0, current consumption is also higher

the higher past consumption. When σc > 1, hours worked and consumption are complementary.24

Finally the exogenous disturbance εbt is a preference shocks that affects the entire utility function

and that is assumed to follow and AR(1) process with degree of serial correlation ρb.

On the labor market, households are assumed to re-optimize their wages given the demand for

their labor services, with a probability 1 − ξw. When choosing their optimal wage they take into

account the probability that wages will not be re-optimized for some periods. Whenever they cannot

re-optimize their wages, they index them to lagged inflation with a degree of indexation γw ∈ (0, 1) .
Optimal wage setting by households results in the following aggregate linearized equation for the

24See Basu and Kimball (2000) for details.
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real wage

wt =
β

1 + β
Etwt+1 +

1

1 + β
wt−1 +

β

1 + β
Etπt+1 − 1 + βγw

1 + β
πt +

γw
1 + β

πt−1

− λw (1− βξw) (1− ξw)

(1 + β) (λw + (1 + λw)σL) ξw

∙
wt − σLLt − σc

1− h
(Ct − hCt−1) + εLt

¸
+ ηwt (23)

where wt is the percent deviation of the real wage from the steady state path, εLt is a shock to

the disutility of labor, which follows an AR(1) process with degree of serial correlation ρL, and ηwt

is an iid shock to the wage mark-up. The parameter β ∈ (0, 1) is the subjective discount factor,
σ−1L > 0 is the elasticity of work effort with respect to the real wage. The term in square brackets

corresponds to the gap between the actual real wage and the real wage that would prevail in the

case of flexible prices and flexible wages. A positive gap tends to reduce the actual real wage, and

the effect is stronger the smaller the degree of wage rigidity, ξw, the lower demand elasticity for

specialized labor, (1 + λw) /λw, and the higher the elasticity of labor supply with respect to the

real wage, σ−1L .

Households choose the capital stock which they rent to firms. To increase the supply of capital

services, they can either invest in future capital, or increase the utilization rate of installed capital.

Investment in capital takes one period to be installed and involves adjustment costs which assumed

to be function of the change in investment, as in Christiano, Eichenbaum and Evans (2005). As in

Greenwood, Hercowitz and Krusell (1998) and Fisher (2002), the relative efficiency of investment

goods is also assumed to be affected by an exogenous shock εIt which follows an AR(1) process with

degree of serial correlation ρI . The log-linearized Euler equation for optimal investment is given by

It =
1

1 + β
It−1 +

β

1 + β
EtIt+1 +

1/ϕ

1 + β

¡
Qt + εIt

¢
(24)

where It denotes real investment and Q is the real value of capital, in percent deviations from

steady state, and ϕ is a measure of adjustment costs. The real value of capital follows in turn

Qt = − (it −Etπt+1) +
1− τ

1− τ + r̄k
EtQt+1 +

r̄k

1− τ + r̄k
Etr

k
t+1 + ηQt , (25)

so that the real value of capital relates negatively on the ex-ante real rate of interest, and positively
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on the expected future real value of capital and the expected future rental rate of capital rkt .

The mean rental rate of capital r̄k and the depreciation rate of capital, τ , are assumed to satisfy

β = 1/
¡
1− τ + r̄k

¢
. The exogenous shock ηQt , assumed to be iid, is meant as a shortcut for changes

in the external finance premium. The capital accumulation equation then involves both the flow of

investment, and its relative efficiency

Kt = (1− τ)Kt−1 + τIt−1 + τεIt−1. (26)

There is a continuum of firms that hire aggregates of labor and capital (adjusted for effective

utilization) as inputs, combine them using a Cobb-Douglas production function with constant re-

turns to scale, and a capital share α ∈ (0, 1) , and supply a differentiated intermediate good on a
monopolistically competitive market. In producing their goods, all intermediate firms face a fix

cost and a common stationary technology shock, εat , assumed to be AR(1) with degree of serial cor-

relation ρa, and labor augmenting technological progress growing at a constant rate. Intermediate

goods are then aggregated into a single final good used for consumption or investment. Minimizing

the firms’ cost of production results in the linearized demand for labor

Lt = −wt + (1 + ψ) rkt +Kt−1. (27)

This implies that for a given stock of capital, the labor demand depends negatively on the real

wage and positively on the capital stock and the rental rate of capital, where ψ > 0 is the inverse

of the elasticity of the capital utilization cost function.

Similarly to households on the labor market, firms are assumed to re-optimize their prices given

the demand for their goods, with a probability 1− ξp. When they cannot re-optimize their prices,

they index them to lagged inflation with a degree of indexation γp ∈ (0, 1) . Optimal price setting
by firms results in the following aggregate linearized equation for inflation

πt =
β

1 + βγp
Etπt+1 +

γp
1 + βγp

πt−1 +
¡
1− βξp

¢ ¡
1− ξp

¢¡
1 + βγp

¢
ξp

h
αrkt + (1− α)wt − εat

i
+ ηpt . (28)

As in the canonical New Keynesian supply equation, actual inflation depends on expected future
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inflation and on the marginal cost, here represented by the expression in brackets. The marginal

cost depends in turn on the real rental rate of capital, the real wage, the productivity shock. To the

extent that prices are indexed, current inflation is also affected by lagged inflation. The exogenous

shock ηpt is assumed to be iid and refers to exogenous fluctuations in the price mark-up.

The linearized goods market equilibrium condition can then be written as

Yt = (1− τky − gy)Ct + εGt + τkyIt + r̄kkyψr
k
t (29)

= φ
h
εat + αKt−1 + αψrkt + (1− α)Lt

i
(30)

where ky is the steady-state capital-output ratio, gy is the steady-state government spending-

output ratio, and φ is one plus the share of fixed cost in production, and ψ is again the inverse of

the elasticity of the capital utilization cost function. Government spending (in percent deviation

from steady state, times gy), εGt , is assumed to evolve exogenously and to follow and AR(1) process

with serial correlation ρG. While the first equation corresponds to the aggregate demand side for

output, the second equation results from aggregate production.25

The model is closed with a specification of an empirical monetary policy reaction function.

Here, we assume that monetary policy follows the generalized Taylor rule

it = (1− ρ) [rπ0πt + rπ1πt−1 + ry0Yt + ry1Yt−1] + ρit−1 + ηit (31)

where ηit is an iid monetary policy shock. The specification considered here differs slightly from

the one in Smets and Wouters (2004): while we suppose that the central bank responds to actual

output fluctuations (in deviations from the steady-state trend), Smets and Wouters (2004) assume

that the central bank responds to deviations of output from the output that would obtain in the

case of flexible prices and flexible wages.26

The model is thus summarized by the ten equations (22)—(31). It involves ten endogenous
25 In the first equation, we corrected the equilibrium condition indicated in Smets and Wouters (2004), adding the

term r̄kkyψr
k
t as in Onatski and Williams (2004).

26Their “output gap” may be considered more appropriate as it corresponds to the welfare relevant output gap,
in the context of this model. It however differs substantially from empirical measures of “output gap” or the CBO’s
measure. In addition, their measure of output gap requires the specification of a significantly larger model, as the
flexible-price, flexible-wage counterpart to the equations mentioned above need to be adjoined to the model, to
determine the flexible-price, flexible-wage level of output.
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variables Yt, Ct, It, Lt, Kt, Qt, r
k
t , πt, wt, it, and nine exogenous disturbances, five of them auto-

correlated (εat , ε
b
t , ε

G
t , ε

L
t , ε

I
t ) and four iid (η

Q
t , η

w
t , η

p
t , η

i
t). The system can then be written as in

(1), and can be solved using numerical techniques to obtain a solution of the form (3)—(4), where

zt is a vector of endogenous non-predetermined variables, Zt contains predetermined endogenous

variables as well as lagged exogenous variables, and εt is the vector of innovations to the 10 shocks.

In the estimation, we will use indicators of the following vector of variables of interest

Ft = [it, Yt, Ct, It, πt, wt, Lt]
0 .

This vector is related to the state vector

St =
h
it−1, Yt−1, Ct−1, It−1, πt−1, wt−1,Kt−1, εat , ε

b
t , ε

G
t , ε

L
t , ε

I
t , η

Q
t , η

p
t , η

w
t , η

i
t, ε

I
t−1
i0

through (5)-(6). This state vector follows a law of motion of the form (4).

3.2 Implementation of the Estimation

3.2.1 Data

Smets andWouters (2004) estimate their model using quarterly U.S. data starting in 1957. However,

given the evidence provided about the instability of interest rate rules of the form (31), especially

around the end of the 1970’s and early 1980’s (see, e.g., Clarida, Galí and Gertler (2000), Boivin

(2005), Boivin and Giannoni (2006)), we estimate the model starting in 1982:1 and ending in 2002:3.

Our large data set contains 91 macroeconomic indicators.27 Details are provided in Appendix B.

Seven data series, included in a vector X1,t are however worth emphasizing as they are used to

normalize the seven concepts of the model included in the vector Ft. They are the series used by

Smets and Wouters (2004) for the estimation of their model. For each of these series, we normalize

the corresponding weights in Λ to 1. Output (Yt) is normalized to real GDP. Consumption (Ct)

and investment (It) are normalized respectively to personal consumption expenditures and fixed

27These are indicators of real output, compensation and wages, employment and hours, consumption, investment,
interest rates, money, credit, prices, and some miscellaneous indicators.
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private domestic investment.28 The labor input (Lt) corresponds to hours worked per person.29

All preceding series are expressed in per capita terms by dividing with the population over the age

of 16. The real wage (wt) is normalized with the hourly compensation for the nonfarm business

sector, divided by the GDP deflator. We express all these series in natural logs and remove a linear

trend, so that they are expressed in percentage deviations from the trend, consistently with the

model concepts. Inflation (πt) is measured as the quarterly percentage change in the GDP deflator.

The nominal interest rate (it) is the Federal funds rate. Both inflation and the interest rate are

demeaned, to be consistent with the model’s concepts.

Smets and Wouters (2004) assume that in steady-state, the above series are all growing at

the rate of labor-augmenting technological progress, and they estimate their model imposing the

common trend. This assumption is unfortunately rejected by the data (see Del Negro, Schorfheide,

Smets and Wouters, 2004). To circumvent this issue, we detrend all series before the model es-

timation, so that the model parameters are estimated on the basis of deviations from the steady

state.

3.2.2 Prior distributions of the parameters

As mentioned above, we estimate the DSGE model using Bayesian MCMC methods. We assume

the same prior distributions as in Smets and Wouters (2004). These priors are summarized in Table

1 and are discussed in more details in Smets and Wouters (2004). Six of the structural parameters

are calibrated, as they are difficult to estimate from percent deviations from the steady state.

The discount rate β is set at 0.99, the quarterly depreciation rate τ is set at 0.025, the share of

consumption (1− τky − gy) and investment (τky) are set at 0.65 and 0.17, which implicitly define

gy and ky. The capital-income share in the production function, α is set at 0.24. The parameter λw

is fixed at 0.5. One difference with respect to Smets and Wouters (2004) involves the parameters

of the policy rule which we assume takes the form of a generalized Taylor rule. The (long-run)

response of the (annualized) federal funds rate to (annualized) inflation is assumed to be normally

28The nominal series for consumption and investment are deflated with the GDP deflator, as in Altig, Christiano,
Eichenbaum and Lindé (2003), and Smets and Wouters (2004).
29As in Smets and Wouters (2004), average hours of the nonfarm business sector are multiplied with the civilian

employment to account for the limited coverage of the nonfarm business sector, compared to GDP.
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distributed with a mean of 1.5 and a variance of 0.5, and the response to detrended output is

assumed to have a mean of 0.5 and variance of 0.2. The degree of inertia in monetary policy, or the

response to the lagged interest rate is beta distributed with a mean of 0.75 a standard deviation

of 1. Finally, fairly loose priors are assumed on the degree of measurement error. More details are

provided in Appendix A.

3.2.3 Alternative specification of the observation equation: Four cases

We now proceed with the model estimation. To assess the importance of measurement error

and of additional information, we consider four cases, each involving different restrictions on the

observation equation (10), i.e., on the link between the model concepts and the data.

• Our first case, denoted Case SW corresponds to the standard estimation with a small set of

data series, assuming that there is no measurement error. This case effectively attempts to

replicate the results of Smets and Wouters (2004).30 The seven key model variables included

in Ft are assumed to be perfectly observed, and only the associated time series mentioned

above – included in X1,t – are used in the estimation. In terms of our general notation, the

observation equation (10) reduces to X1,t = Ft = ΦSt.

As argued above, it is plausible that the indicators in X1,t measure only imperfectly the model

concepts. If this is true, the estimates of the model parameters and of the shocks should be distorted.

We thus consider three different cases in which we allow the indicators collected in X1,t to include a

series-specific component (or measurement error) that is unrelated to the actual economic concept,

Ft. We however maintain throughout the assumption that the nominal interest rate is perfectly

observed.

• In our benchmark case with imperfect measurement, denoted Case A, we reestimate the
model with the same seven data series but allowing for “measurement error” (except for the

nominal interest rate). The observation equation is thus X1,t = Ft + e1,t = ΦSt + e1,t where

30As mentioned above, our estimation differs slighlty from the baseline case of Smets and Wouters (2004) for the
following reasons: We consider a slightly different policy rule, we detrend the data before estimating the model
parameters instead of estimating a common trend (the growth rate of technology) with the rest of the model, we
assume that the inflation target is fixed, and we use a shorter sample.
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the first element of e1,t is set equal to zero. The setup corresponds to the one in Sargent

(1989), where the restrictions of the dynamic model are used to estimate the latent variables

in Ft.

As discussed in Section 2, Case A is likely to be affected by identification problems due to

the difficulty in disentangling the structural disturbances εt from the measurement errors e1,t, in

the face of a large number of shocks and measurement errors. Such problems can be addressed

by considering a larger data set which can more easily identify the latent variables of interest by

separating the series-specific components from the common factors, Ft. In the next cases, we thus

maintain the observation equation X1,t = Ft + e1,t, but append to it another observation equation

including additional indicators.

• In Case B, we add seven new indicators collected in a vector X2,t, which have a known link to
the variables in Ft. These additional indicators are selected on the grounds that they cannot

be a priori rejected as indicators of the variables of interest.31 The observation equation for

this second set of indicators is of the form X2,t = Λ2Ft + e2,t, where each element of e2,t is

allowed to follow an AR(1) process. The matrix Λ2, which we estimate, is restricted to have

as many nonzero elements per column as there are new indicators in X2,t of the corresponding

variable in Ft. It has however no more than one nonzero element per row as each indicator is

assumed to load on only one variable.

• Our final case, Case C, exploits the information from our entire data set in a flexible way. The
fourteen primary indicators contained in X1,t and X2,t remain linked to the model’s concepts

as in case B, but we augment the vector X2,t with eight additional indicators of inflation

which we link to the variable πt, as documented in Appendix B. In addition, we introduce in

X3,t information from all other indicators and assume that X3,t is related to the state vector

St in a nonstructural way, according to the observation equation X3,t = ΛSSt + eS,t. The

elements of X3,t are the 25 principal components of all remaining data series listed in our

31For consumption, the new indicator is real personal consumption expenditures excluding food and energy, for
investment we add real gross private domestic investment, for inflation we add the indicators based on the deflator for
personal consumption expenditures, the CPI, and the CPI less food and energy. For employment, we add the number
of employees in the nonfarm business sector, as based on the establishment survey, and the number of workers as
based on the household survey.
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Appendix B. Each element of eS,t is assumed to follow an AR(1) process, and the loading

matrix ΛS is left unrestricted and is estimated.

The motivation for this last specification comes from the fact that if the theoretical model is

true, the data series in X3,t should be related at least in part to the state vector. These indicators

are publicly available. They are thus arguably part of the information set according to which

economic agents in the DSGE model base their decisions. If these indicators contain information

about the state of the economy that is not included inX1,t andX2,t, then exploiting this information

should help us obtain even more accurate estimates of the state of the economy and of the model

parameters.

In case A, we assume the “measurement error,” e1,t, to be serially uncorrelated, as this restric-

tions is necessary to identify the model parameters. Whenever we let e1,t to be serially correlated

in this case, we obtain estimated model parameters that are perfectly aligned with the prior distri-

butions, suggesting that the data is uninformative, i.e., that the parameters are unidentified. As

conjectured in Section 2, this highlights the fact that for models with a large number of structural

shocks, and using a small set of observable variables, the extent to which measurement error can be

allowed is severely limited using standard techniques. For comparison with this standard approach

(case A), we assume that the measurement error in the primary indicators is also iid in cases B

and C (even though we can relax this assumption in these cases, and still be able to identify the

model parameters). We however allow the measurement errors of the secondary indicators (e2,t or

eS,t) to be serially correlated. By restricting the indicator-specific error terms to be iid, we may

understate the magnitude of the series-specific component in the primary indicators X1,t. This

guarantees that the departures from the standard setups (cases SW and A) are relatively small.

Nonetheless, as we show below, even for such small departures there are important benefits from

exploiting information from a richer data set.

3.3 Empirical Results

We now describe the empirical results. We first provide evidence indicating that some of the seven

primary indicators contain a nontrivial amount of series-specific idiosyncrasies, so that estimation
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allowing for it should be warranted. We next argue that estimating the model with a richer data

sets provides a number of benefits among which a more accurate estimate of the state of the model

economy.

3.3.1 Evidence of indicator-specific component (or “measurement error”)

According to the observation equation (10), each of the indicators can be decomposed into a “macro-

economic component,”ΛSt, which is informative about the latent macroeconomic concepts, and an

indicator-specific component (or “measurement error”), et.

Table 2 reports correlations between the indicators collected inX1,t, X2,t, and the corresponding

model concept. Looking at the seven primary indicators, X1,t, there is evidence of substantial

“measurement error” for the indicator of inflation. The correlation between the growth rate of

the GDP deflator and the estimate of inflation ranges between 0.73 and 0.86 depending on the

number of indicators used in the model estimation. For other indicators in X1,t, the extent of

“measurement error” appears small. Figure 3 plots the posterior distribution of these correlations,

in case A. Similar figures – not reported – are obtained for cases B and C. Clearly there is

considerable “measurement error” in the growth rate of the GDP deflator. But the figure shows

also that at any confidence level, the correlations are slightly lower than 1 for all indicators except

for the Federal funds rate which is assumed to be perfectly correlated with it.

The lower panel of Table 2 suggests that the additional indicators X2t provide relevant infor-

mation for the model concepts: while their correlations with the corresponding model variables

are relatively low in case A, they increase when they are used in the estimation (cases B and C).

Interestingly, the PCE deflator provides a better indicator of the concept of inflation than the GDP

deflator, when judged on the basis of their correlation with the estimated concept of inflation, in

cases B and C.

Figures 4 and 5 report the estimated time series of the seven main endogenous variables for

each of the cases SW, A, B and C. In case SW, the estimated series correspond to the primary

indicators which are represented with solid lines. In the other cases, the model’s concepts except

for the short-term interest rate are estimated latent variables. Overall, these plots confirm the

results found in Table 2: the estimated latent variables and most corresponding primary indicators
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display very similar patterns, but there are wide discrepancies between inflation and the growth

rate of the GDP deflator (Figure 5). These gaps, which reach in some quarters more than one

percentage point (in annualized inflation).can have very important implications for the assessment

of the inflation situation and for monetary policy actions. As we will see below, such differences

can also result in different assessments about the sources of fluctuations in inflation.

One important difference between the growth rate of the GDP deflator and our estimated infla-

tion series and is that the latter show more muted high-frequency fluctuations. In case A, estimated

inflation is smoother than the data, as iid measurement errors pick up part of the high frequency

fluctuations. In cases B and C, however, this occurs because the high-frequency fluctuations in the

growth rate of the GDP deflator have little correlation with those of other inflation indicators, as

we saw in Figure 2. While the quarterly growth rate of the GDP deflator and the CPI both dis-

play high-frequency fluctuations, some of these short-lived spikes do not occur at the same time in

both series, so that they are considered as indicator-specific components. Therefore the estimated

inflation, which in cases B and C corresponds to a common component of all inflation indicators,

does not involve such high frequency fluctuations. Interestingly, the estimated inflation series are

similar in cases B and C, suggesting case B includes an important part of the relevant information

contained in our entire data set, for the assessment of inflation.

3.3.2 Benefits of richer data sets

As we just argued, at least one indicator often used in the estimation of DSGE models contains

significant idiosyncratic fluctuations unrelated to the macroeconomic concepts which we attempt to

measure. Failing to account for such indicator-specific noise in model estimation could potentially

distort the estimates of all model parameters, of the model concepts, as well as of the shocks. It is

therefore important that we acknowledge indicator-specific fluctuations in estimating such models.

However even if one accounts for such “measurement error,” one still needs to choose how many

indicators to use in the model estimation. While we do not attempt to determine the optimal choice

of indicators, we now show how using multiple indicators can be valuable.
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Precision of model concepts. Once we recognize that the indicators provide only imperfect

measurements of the model concepts, we become necessarily uncertain about the state of the econ-

omy in any given period. Table 3 reports measures of the uncertainty surrounding the main model

variables in cases A, B, and C. In particular, it reports for each variable, the average over time

of the standard deviation (taken at each date) of the estimated variable. The standard deviations

are based on the empirical distribution of the estimates generated by the estimation draws. For

cases B and C, we report the standard deviations relative to those of case A, so that numbers

below 1 indicated a reduction in uncertainty. When the model is estimated using only the seven

primary indicators, X1,t, (case A), the standard deviation in the estimate of (annualized) quarterly

inflation amounts to 0.50. However, when we append the second set of indicators X2,t (case B),

the uncertainty surrounding this concept drops by 9%. This reduction in uncertainty about actual

inflation is particularly valuable given the extent of “measurement errors” in its indicators.

The uncertainty surrounding the other variables is arguably less important given their small

“measurement error.” Nonetheless, using the second set of indicators X2,t in the model estimation

also reduces considerably the uncertainty surrounding the estimate of such concepts. The standard

deviation of real output, consumption and hours worked all fall respectively by 7%, 7%, and 24%

in case B.

In case C, as all indicators of our data set are used in a nonstructural way for the model

estimation, the uncertainty surrounding some of the estimated model concepts shrinks even further.

Most notably, the uncertainty about the estimate of inflation is in this case 35% smaller than that

of the case A. Figure 6 plots the estimated inflation rate in cases A, B, and C, together with the

5%-95% confidence bands. The latter bands become sensibly tighter as we more from case A to B

and C.

Forecasts. Conditional on the DSGE model and the observation equation being correctly speci-

fied, the model characterized by (3)—(5) and (10) provides the best possible forecasts of the macro-

economic concepts. Anyone convinced that the model is well specified should thus perform forecasts

using the model restrictions.

However, one may be skeptical about the model, and may thus be interested in forecasting
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not the latent model concepts – which are model-dependent –, but rather the data releases of

the primary indicators X1,t. We thus compare the performance in forecasting these data releases

in cases A, B and C. In all cases, we use the model estimated over the entire sample to forecast

each indicator one quarter ahead, over the 1982:1-2003:2 period.32 Table 4 reports the root-mean-

squared error (RMSE) of the forecasts. For cases B and C, we report the RMSE relative to case A.

The last row provides an overall measure of forecast error: the log determinant of the forecast-error

covariance matrix. The table shows a substantial drop in the RMSE of the forecasts from case A to

case B for the indicators of real consumption, investment and the growth rate of the GDP deflator.

For instance, the RMSE in forecasting actual releases of GDP deflator inflation drops by 5% when

we include the indicators in X2,t for the model estimation.33 As we include all data series in the

model estimation (case C), the RMSE for inflation falls another 5%.

One may find it surprising that cases B and C provide such improvements in forecasting even

for releases of the GDP deflator. In fact, the estimated inflation series in cases B and C are not

designed to explain the GDP deflator, but the behavior of multiple indicators of inflation. It is

akin to the common component to all indicators of inflation. As a result, even if the model in case

C is able to forecast accurately true inflation, there is no guarantee that it ought to forecast the

growth rate of the GDP deflator, given that a large fraction of the fluctuations in this series are

estimated to be “measurement error” (see Table 2). More generally, one may be surprised by the

fact that cases B and C can forecast so well the seven primary indicators. In fact, while case A is

designed to explain the fluctuations in these seven primary indicators, cases B and C are designed

to explain fluctuations in a larger set of indicators.

One explanation for the relatively good performance of cases B and C is the fact that by

exploiting information from a large number of indicators in the model estimation, these cases are

able to estimate more precisely the state of the economy, and thus the key latent variables, as

shown in the previous section. More precision in estimating these variables implies then more

precise forecasts of the indicators.

32Because of the time involved in the estimation of each case and the relatively short sample, we did not re-estimate
the model at each period. The end of sample is in fact 2003:2 minus the forecasting horizon considered.
33Note that the improved forecasting performance in case B is not due a more flexible measurement error process.

In fact, we assume that the “measurement error” of the primary indicators X1,t is iid for all three cases.
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As argued, once one recognizes the fact that indicators are measured with error, or contain

indicator-specific components unrelated to the macroeconomic variables, it may be very valuable

to exploit the information in additional indicators. Such information can help assess the state of

the economy and variables of interest more precisely. Such additional information may even be

useful in forecasting more accurately actual data releases. Given the fact that we found inflation

indicators to be noisy, and given the prominent role that inflation plays in policy analysis, it is

crucial to obtain an accurate and precise assessment of inflation. Overall these results support our

conjecture that there is a scope to exploit more information in the estimation of DSGE models.

3.3.3 Implications for estimates of structural parameters

We argued that when we estimate the model with a larger set of indicators, we obtain more precise

estimates of the model variables. An important remaining question is whether these alternative

empirical models lead to different conclusions about the structure of the economy and the source

of business cycles.

Table 1 reports the parameter estimates (the median of the posterior distribution) together with

the estimated standard errors. Several parameter estimates are stable across all cases considered.

However, as we depart from the case SW and we allow for imperfect measurement using the same

indicators, there are some notable changes: in case A, the model calls for slightly more habit per-

sistence (h), price stickiness
¡
ξp
¢
, wage indexation (γw) and inflation indexation

¡
γp
¢
. In contrast,

when we include additional indicators in the model estimation (cases B and C), the parameter

estimates indicate much less habit persistence. In addition, the elasticity of real consumption to

changes in the real interest rate implied by the consumption Euler equation – which we call the

pseudo-EIS – increases from 0.099 in case A to 0.167 in case B.34 Hence, as we use multiple indica-

tors, we find that consumption becomes more sensitive to fluctuations in the real interest rate. The

rigidity in price re-optimization, ξp, falls slightly so that that the elasticity of current inflation to

marginal costs in (28) reaches 0.012 and 0.018 is cases B and C, compared to only 0.007 in case A.

Importantly, the degree of inflation indexing
¡
γp
¢
, which is critical for the effect of various shocks

34 In the presence of habit persistence, there is no natural elasticity of intertemporal substitution (EIS) in consump-
tion. We thus refer to 1−h

(1+h)σc
as a pseudo-EIS.
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on inflation and its persistence, falls considerably when we use multiple indicators: it reaches 0.36

in case C compared to 0.72 in case A.

3.3.4 Sources of business cycle fluctuations

Another important difference among cases A, B, C and the benchmark case SW relates to the

estimated variances of the exogenous shocks. Overall, these variances tend to be much smaller

when “measurement error” is allowed for in the model estimation, because part of the fluctuations

in the individual series is explained by an indicator-specific component. For most shocks, the

estimated variances fall as we move from case SW to case C (except for the labor supply shock

which is found to be most important in case A). This can be seen further in Figures 7 and 8 which

plot the estimated time series for the state variables such as the capital stock and the exogenous

shocks. As the figures show, the estimated shocks display generally much smaller and smoother

fluctuations when the indicators-specific components are allowed for, i.e., in cases A, B, C. The

fluctuations in the exogenous shocks appear also the smallest in the case C, when all data series

are used in the estimation.

An appropriate estimate of the shocks is crucial to assess the state of the economy at any given

date, and for conducting, e.g., monetary policy. But the figures reveal quite different histories of the

shocks depending on the case considered. Changes in these variances across the cases considered

yield different conclusions about the drivers of business cycle fluctuations. When the indicators

used are assumed to be measuring the theoretical concepts perfectly (case SW), the nine shocks

considered play a role in explaining the behavior of seven primary indicators. While the specification

of Smets and Wouters (2004) requires all of these shocks to explain the fluctuations in the data,

allowing for “measurement error” suggests that some shocks may be less important than previously

thought.

For instance, in the benchmark case SW, price markup shocks (or cost-push shocks, ηpt ) account

for 86% of the inflation fluctuations at the 1-quarter horizon and are still responsible for 52% of

inflation fluctuations after 3 years (Table 5). However, their role is sensibly reduced in case C: such

shocks explain only 56% of inflation fluctuations at the 1-quarter horizon and 23% after 3 years.

Instead, total factor productivity shocks (εat ) become an important source of inflation fluctuations
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in case C. They account for 21% of inflation fluctuations after 1 quarter (compared to only 8% in

case SW) and for 52% of inflation fluctuations after 3 years (compared to 30% in case SW).

4 Conclusion

Recent DSGE models have achieved important successes in terms of their ability to fit the data

and to forecast. As a result, such models have become relevant for policy analysis. Despite the

sophistication of these models, existing empirical applications have maintained one important as-

sumption: that a small number of data series is sufficient to estimate the model. This is however

at odds both with the fact that market participants and central banks monitor a large number

of data series to assess the state of the economy, and with the growing evidence from empirical

factor models according to which a large set of macroeconomic variables may in fact be needed to

characterize the evolution of the economy.

In this paper, we have proposed a general framework that exploits the information from a data-

rich environment for the estimation of a general class of DSGE models. The fact that observed

indicators may constitute imperfect measures of economic concepts relevant in the model provides

a scope for using additional indicators in the empirical model. A particularly attractive feature

of this framework, which we believe is crucial for policy considerations, is that it facilitates the

interpretation of observed economic developments through the use of a structural model. It can

also provide forecasts conditional on a variety of scenarios about structural disturbances, and on

alternative policies.35 Such advantages of the proposed framework cannot be achieved with existing

more reduced-form factor models.

We have used this framework to estimate a state-of-the-art DSGE model that has been recog-

nized for its empirical success. Our results suggest that much more accurate estimates of the

model’s concepts, in particular of inflation, of the state variables and of the exogenous shocks can

be obtained by exploiting more information in the model estimation. A proper estimation of the

35Recall that while the empirical framework estimates both structural parameters (i.e., the policy-invariant para-
meters of the theoretical model), and non-structural parameters (e.g. the loading coefficients), it is well suited to
perform counterfactual experiments on the model’s concepts, for all model parameters and theoretical concepts can
be estimated under historical policy, as in standard DSGE models. The framework may however not be adequate to
generate counterfactual evolution of indicators related in a non structural way to the model’s concepts.
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state of the economy appears in turn to be very useful to improve forecasts of important macro-

economic variables, and even popular data releases such as the growth rate of the GDP deflator.

Moreover, we showed that the inference drawn from the estimated model depends crucially on

whether additional information is exploited or not. In particular, by comparing the standard im-

plementation of the estimation using few indicators with our preferred specifications involving a

larger set of indicators, we reach different conclusions about the kind of shocks that drive business

cycles fluctuations.

The results in this paper open the way to many interesting avenues for future research, which

we are pursuing. First, while the results reported provide an important scope for using more

information in the estimation of DSGE models, more work needs to be done to determine how to

optimally choose the indicators to include in the empirical model. We have proposed a couple of

specifications (case B and C) that are successful in providing an accurate description of the state of

the economy, and for forecasting. But other specifications within the general framework proposed

here may perform even better.

Second, a real-time implementation of the proposed empirical framework should be of interest

to central bankers, to the extent that it would allow them to process a large amount of information

in real-time, assess the state of the economy systematically through the lenses of fully-specified

structural model, and to provide forecasts, conditional on a variety of scenarios.

Finally, many researchers have recently given attention to the development of optimal policy

rules or optimal target criteria for the conduct of monetary policy, in the context of DSGE models.

Such optimal rules often involve forecasts of important macroeconomic variables over the next few

quarters.36 Improved forecasts obtained through better estimates of the state of the economy,

using a rich data set, should thus be a key ingredient for such optimal target criteria. This may

help making the tools available for the conduct of optimal monetary policy more attractive to

policymakers by incorporating their concern for the developments in a large number of data series.

36Giannoni and Woodford (2003, 2004), for instance, characterize such optimal policy rules and target criteria for
simpler models than the one presented here. They show that the most important forecasts needed as inputs for the
implementation of monetary policy are over short horizons.
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A Appendix: MCMC Algorithm

This appendix describes our implementation of the MCMC algorithm used for the estimation of all

cases described in Section 3. The general class of rational expectation models we consider can be

represented as follows:

AEt

⎡⎢⎣ zt+1

Zt+1

⎤⎥⎦ = B

⎡⎢⎣ zt

Zt

⎤⎥⎦+ Cst (32)

st = Mst−1 + εt (33)

and the general form of the solution is:

zt = DSt (34)

St = GSt−1 +Hεt, (35)

where St ≡ [Z 0t, s0t]
0 is the state vector, and the matrices D, G, and H are non-linear functions

of the parameters in matrices A, B, C and M , obtained through numerical solutions techniques.

As explained in the text, the variables of interest, collected in the vector Ft constitute a linear

combination of the state variables

Ft = ΦSt,

and the matrix Φ depends on the model parameters and the selection of variables in Ft. The

measurement equation is given by

Xt = ΛSt + et, (36)

where

Λ ≡

⎡⎢⎣ ΛFΦ
ΛS

⎤⎥⎦ .
and

et = Ψet−1 + vt.
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Equations (35) and (36) form a state-space representation of the solution of the model. The vectors

εt and vt are assumed to be normally distributed with mean zero and variance Q and R respectively.

The matrices R and Ψ are diagonal.

The goal is to estimate jointly the structural parameters of the theoretical model ΘM =

{A,B,C,M,Q} and the measurement equation parameters Λ, Ψ and R. Let Υ = {Λ,Ψ, R},
Θ = {ΘM ,Υ} and X̃T = (X1,X2, ...,XT ). Our problem consists of characterizing the marginal

posterior distribution of Θ. Given the high dimensionality of the problem and the need to inte-

grate out the unobservable states, directly maximizing the posterior distribution is difficult and

impractical for some models such as the one that we consider in this paper. Instead, the esti-

mation approach that we consider provides an empirical approximation to this joint density. By

judiciously breaking up this posterior distribution into the product of conditional densities, and

sampling iteratively from the complete set of conditional densities, it effectively deals with the

high dimensionality of the problem. As has been shown in the MCMC literature, the empirical

distribution of the parameters resulting from the algorithm that we describe below converges to

the joint posterior distribution of Θ.

More specifically, provided with an initial value of the parameters, Θ(0), the algorithm proceeds

by drawing iteratively from p
³
Υ|ΘM , X̃T

´
and p

³
ΘM |Υ, X̃T

´
. We now provide more details on

each step of the algorithm.

A.1 Step 1: Drawing from the conditional distribution p
³
Υ(g)|Θ(g−1)

M , X̃T

´
To draw from p

³
Υ|ΘM , X̃T

´
, we exploit the fact that conditional on S̃T , Υ represents the para-

meters in a set of linear equations, the posterior distribution of which is known for standard prior

distributions. To do so, we draw separately from p(S̃
(g)
T |Θ(g−1)M , X̃T ) and p

³
Υ(g)|S̃(g)T ,Θ

(g−1)
M , X̃T

´
.

A.1.1 Step 1a: Drawing from the conditional distribution p(S̃
(g)
T |Θ(g−1)M , X̃T )

We use the forward-backward algorithm of Carter and Kohn (1994). As in Kim and Nelson (1999,

p. 191), the conditional distribution of the whole history of factors can be expressed as the product
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of conditional distributions of factors at each date t as follows:

p
³
S̃T |Θ, X̃T

´
= p

³
ST |Θ, X̃T

´ T−1Y
t=1

p
³
St|St+1,Θ, X̃T

´
.

This relies on the Markov property of St, which implies that p
³
St|St+1, St+2, ..., ST ,Θ, X̃T

´
=

p
³
St|St+1,Θ, X̃T

´
.

Because the state-space model (35)—(36) is linear and Gaussian, we have

ST |Θ, X̃T ∼ N
¡
ST |T , PT |T

¢
St|St+1,Θ, X̃T ∼ N

¡
St|t,St+1 , Pt|t,St+1

¢
,

where

ST |T = E
³
ST |Θ, X̃T

´
(37)

PT |T = Cov(ST |Θ, X̃T )

St|t,St+1 = E
³
St|St+1,Θ, X̃T

´
Pt|t,St+1 = Cov

³
St|St+1,Θ, X̃T

´
,

and where the notation St|t refers to the expectation of St conditional on information dated t or

earlier. To obtain these, we first calculate St|t and Pt|t, t = 1, 2, ..., T , by Kalman filter, conditional

on Θ and the data through period t, X̃t, with starting values of zeros for the factors and the identity

matrix for the covariance matrix (Hamilton, 1994). The last iteration of the filter yields ST |T and

PT |T , which together with the first line of (37) allows us to draw a value for ST . Treating this drawn

value as extra information, we can move “backwards in time” through the sample, using the Kalman

filter to obtain updated values of ST−1|T−1,ST and PT−1|T−1,ST ; drawing a value of ST−1 using the

third line of (37); and continuing in similar manner to draw values for St, t = T − 2, T − 3, ...1.37
37The Kalman filter is implemented to handle the serial correlation in et. In particular, in the Kalman filter

iterations, the observation equation is rearranged as:

X∗t = (ΛF −ΨΛ)St−1 + Λut + vt

with X∗t = Xt −ΨXt−1.
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A.1.2 Step 1b: Drawing from the conditional distribution p
³
Υ(g)|S̃(g)T ,Θ

(g−1)
M , X̃T

´
Conditional on the observed data and the estimated factors from the previous iteration, a new

iteration is begun by drawing a new value of the parameters. With known factors, (36) amounts to

a set of regressions with autoregressive errors. We can thus apply the algorithm proposed by Chib

(1993).

This conditional model is non-linear in the parameters. However, since conditional on Λ or

Ψ, the model is linear, we can characterize this distribution through a complete set of conditional

distributions that are linear in the parameters. More precisely, we assume that a priori Λ and R

are independent of Ψ. Conditional on Ψ and since R is diagonal, we can apply OLS equation by

equation to obtain Λ̂k and v̂k. We define X∗
k,t = Xk,t − ΨkkXk,t−1 and S∗k,t = St − ΨkkSt−1, set

Rkl = 0, k 6= l, and assume a proper (conjugate) but diffuse Inverse-Gamma (3, 0.001) prior for

Rkk. Standard Bayesian results (see Bauwens, Lubrano and Richard, 1999, p. 58) deliver posterior

of the form:

Rkk|X̃T , S̄T ,Ψ ∼ iG
¡
R̄kk, J × T + 0.001

¢
where R̄kk = 3+

PJ
j=1 v̂

0
kv̂k+

PJ
j=1 Λ̂

0
k

³
S̃∗0k,T S̃

∗
k,T

´−1
Λ̂k−Λ̄0kM̄−1

k Λ̄k, Λ̄k = M̄−1
k

³PJ
j=1 S̃

∗0
k,T S̃

∗
k,T Λ̂k

´
,

and M̄−1
k =M0+

PJ
j=1 S̃

∗0
k,T S̃

∗
k,T . HereM

−1
0 denotes the variance parameter in the prior on the co-

efficients of the k-th equation, Λk, which, conditional on the drawn value of Rkk, is N(0, RkkM
−1
0 ).

We set M0 = I. We draw values for Λk from the posterior N
¡
Λ̄k, RkkM̄

−1
k

¢
.

Conditional on Λ and since R is diagonal, we can apply OLS equation by equation to obtain

Ψ̂kk. Letting ek be the vector whose elements are given by ek,t = Xk,t−ΛkSt, and its lagged version
ek,−1, and assuming that the prior on Ψkk is N(0, 1), the posterior distribution of Ψkk is N(Ψ̄kk,

N̄−1
k ) where Ψ̄kk = N̄−1

k

³
R−1kk

PJ
j=1 e

0
k,−1ek,−1Ψ̂kk

´
and N̄k =

³
1 +R−1kk

PJ
j=1 e

0
k,−1ek,−1

´
.

A.2 Step 2: Drawing from the conditional distribution p
³
Θ
(g)
M |Υ(g−1), X̃T

´
The elements of the matricesΘM are individually drawn from a proposal scalar Student t-distribution,

with mean centered around the previous draws of the parameters, i.e. the corresponding elements
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of Θ(g)M , and a variance calibrated to yield appropriate acceptance rates.38 Let Θ∗M be the resulting

draws. Based on the solution of the model obtained from this last draw, the following ratio is

computed:

r =
p
³
Θ∗M |Λ, R, X̃T

´
p
³
Θ
(g)
M |Λ, R, X̃T

´
With probability min(1, r), Θ(g+1)M = Θ∗M , and otherwise Θ

(g+1)
M = Θ

(g)
M .

Steps 1 and 2 are repeated for each iteration g. Inference is based on the distribution of©
Θ(g)

ªG
g=b
, where b is large enough to guarantee convergence of the algorithm. As noted, the

empirical distribution from the sampling procedure should well approximate the joint posterior or

normalized joint likelihood. Calculating medians and quantiles of
©
Θ(g)

ªG
g=b

provides estimates of

the model parameters and the associated confidence regions.

38See Johannes and Polson (2004) for practical recommendations on the choice of the proposal density and the
desired acceptance rate.

47



1 1 Interest Rate: Federal Funds (Effective) (% per annum, NSA)
2 2 Real Gross Domestic Product (billions of chained 2000 dollars, SAAR)
3 2 Real Personal Consumption Expenditures (Chained 2000, NIPA)
4 2* Gross Private Domestic Investment - Fixed Investment (billions of chained 2000 dollars, SAAR)
5 5 Price Deflator - Gross Domestic Product (NIA)
6 Real Wage (Smets And Wouters)
7 Hours Worked (Smets And Wouters)

Case B
8 2 Personal Consumption Expenditures Excluding Food And Energy
9 2* Gross Private Domestic Investment (billions of chained 2000 dollars, SAAR)
10 5 Price Deflator - Private Consumption Expenditure (NIA)
11 5 CPI-U: All Items Less Food (82-84=100, SA)
12 5 CPI-U: All Items (82-84=100,SA)
13 2 Civilian Labor Force: Employed, Total (Thous.,SA)
14 2 Employees, Nonfarm - Total Nonfarm

Case C: Known link
15 5 Price Index  - Personal Consumption Expenditures - Durable Goods (2000=100), SAAR
16 5 Price Index  - Personal Consumption Expenditures - Nondurable Goods (2000=100), SAAR
17 5 Price Index  - Personal Consumption Expenditures - Services (2000=100) , SAAR
18 5 CPI -U: Durables (82-84=100, SA)
19 5 CPI -U: Commodities (82-84=100, SA)
20 5 CPI -U: Medical Care (82-84=100, SA)
21 5 CPI -U: Transportation (82-84=100, SA)
22 5 CPI -U: Apparel & Upkeep (82-84=100, SA)

Case C: Unknown link
23 2 Real Gross Domestic Product – Services (billions of chained 2000 dollars, SAAR)

24 2 Real Gross Domestic Product – Structures (billions of chained 2000 dollars, SAAR)
25 2 Industrial Production Index -  Products, Total
26 2 Industrial Production  Index -  Final Products
27 2 Industrial Production Index -  Consumer Goods
28 2 Industrial Production Index -  Durable Consumer Goods
29 2 Industrial Production Index -  Nondurable Consumer Goods
30 2 Industrial Production Index -  Business Equipment
31 2 Industrial Production Index -  Materials
32 2 Industrial Production Index -  Durable Goods Materials
33 2 Industrial Production Index -  Nondurable Goods Materials
34 2 Industrial Production Index -  Total Index
35 1 Capacity Utilization -  Manufacturing (SIC)
36 2* Nominal Total Compensation Of Employees (NIA)
37 2 Personal Income Chained 2000 Dollars (BCI)
38 2 Personal Income Less Transfer Payments (Chained) (#51) (Bil 92$,Saar)
39 6* Average Hourly Earnings, Production Workers: Manufacturing,
40 6* Average Hourly Earnings, Production Workers: Construction,
41 1 Unemployment Rate: All Workers, 16 Years & Over (%,SA)
42 1 Unemploy. by Duration: Average(Mean)Duration In Weeks (SA)

All series were taken from DRI/McGraw Hill Basic Economics Database or directly from the 
Bureau of Labor Statistics. The format is: series number; transformation code and series 
description as appears in the database. The transformation codes are: 1 – no transformation; 2 – 
Detrended log per capita; 3 – detrended logarithm level 4 – logarithm; 5 – first difference of 
logarithm; 6 – Adjustement specific to average hours and hourly earnings; 0 – variable not used 
in the estimation (only used for transforming other variables). A * indicate a series that is deflated 
with the GDP deflator (series #145).

Appendix B  -  Data Description

Cases SW and A



43 2 Unemploy. by Duration: Persons Unempl.Less Than 5 Wks (Thous.,SA)
44 2 Unemploy. by Duration: Persons Unempl.5 To 14 Wks (Thous.,SA)
45 2 Unemploy. by Duration: Persons Unempl.15 Wks + (Thous.,SA)
46 2 Unemploy. by Duration: Persons Unempl.15 To 26 Wks (Thous.,SA)
47 2 Employees, Nonfarm - Total Private
48 2 Employees, Nonfarm - Goods-Producing
49 2 Employees, Nonfarm - Mining
50 2 Employees, Nonfarm - Construction
51 2 Employees, Nonfarm - Mfg
52 2 Employees, Nonfarm - Durable Goods
53 2 Employees, Nonfarm - Nondurable Goods
54 2 Employees, Nonfarm - Wholesale Trade
55 2 Employees, Nonfarm - Government
56 2 REAL PERSONAL CONSUMPTION EXPENDITURES (Index 2000=100):  Durable Goods (NIPA Table 2.3.3)
57 2 Nondurable Goods
58 2 Services
59 2* Gross Private Domestic Investment - Fixed Nonresidential , Billions Of Dollars , SAAR
60 4 Housing Starts:Nonfarm(1947-58);Total Farm&Nonfarm(1959-)(Thous.,SA) 
61 1 NAPM Inventories Index (Percent)
62 1 NAPM New Orders Index (Percent)
63 1 NAPM Vendor Deliveries Index (Percent)
64 2 New Orders (Net) - Consumer Goods & Materials, 1996 Dollars (Bci)
65 1 Interest Rate: Federal Funds (Effective) (% Per Annum,Nsa)
66 1 Interest Rate: U.S.Treasury Bills,Sec Mkt,3-Mo.(% Per Ann,Nsa)
67 1 Interest Rate: U.S.Treasury Bills,Sec Mkt,6-Mo.(% Per Ann,Nsa)
68 1 Interest Rate: U.S.Treasury Const Maturities,1-Yr.(% Per Ann,Nsa)
69 1 Interest Rate: U.S.Treasury Const Maturities,5-Yr.(% Per Ann,Nsa)
70 1 Interest Rate: U.S.Treasury Const Maturities,10-Yr.(% Per Ann,Nsa)
71 1 Bond Yield: Moody's Aaa Corporate (% Per Annum)
72 1 Bond Yield: Moody's Baa Corporate (% Per Annum)
73 2 Money Stock: M1(Curr,Trav.Cks,Dem Dep,Other Ck'able Dep)(Bil$,Sa)
74 2 Money Stock:M2(M1+O'nite Rps,Euro$,G/P&B/D Mmmfs&Sav&Sm Time Dep(Bil$,
75 2 Money Stock: M3(M2+Lg Time Dep,Term Rp's&Inst Only Mmmfs)(Bil$,Sa)
76 2 Money Supply - M2 In 1996 Dollars (Bci)
77 2 Monetary Base, Adj For Reserve Requirement Changes(Mil$,Sa)
78 2 Depository Inst Reserves: Total, Adj For Reserve Req Chgs(Mil$,Sa)
79 2 Depository Inst Reserves: Nonborrowed,Adj Res Req Chgs(Mil$,Sa)
80 2 Commercial & Industrial Loans Oustanding In 1996 Dollars (Bci)
81 1 Wkly Rp Lg Com'l Banks:Net Change Com'l & Indus Loans(Bil$,Saar)
82 2 Consumer Credit Outstanding - Nonrevolving(G19)
83 5 Gross Private Domestic Investment, Price Deflators (2000=100) , Saar
84 5 CPI-U: All Items Less Medical Care (82-84=100,Sa)
85 5 CPI-U: All Items Less Shelter (82-84=100,Sa)
86 5 CPI-U: Services (82-84=100,Sa)
87 1 NAPM Commodity Prices Index (Percent)
88 1 U. of Michigan Index of Consumer Expectations(BCD-83)
89 3 Composite Cyclical Indicator (1996) - Leading
90 3 Composite Cyclical Indicator (1996) - Lagging 
91 3 Composite Cyclical Indicator (1996) - Coincident



Table 1: Priors and estimates of structural parameters

Prior Distribution SW Case A Case B Case C
Type Mean St.Err.

ϕ Normal 4 1.5 5.36 5.88 6.17 3.81
( 0.88) ( 1.11) ( 1.13) ( 1.04)

σc Normal 1 0.375 1.54 1.45 1.79 1.63
( 0.24) ( 0.23) ( 0.44) ( 0.44)

h Beta 0.7 0.1 0.71 0.75 0.54 0.50
( 0.07) ( 0.07) ( 0.27) ( 0.27)

σL Normal 2 0.75 2.34 2.18 2.42 2.41
( 0.60) ( 0.65) ( 0.69) ( 0.68)

φ Normal 1.25 0.125 1.42 1.24 1.37 1.26
( 0.08) ( 0.07) ( 0.07) ( 0.07)

1/ψ Normal 0.2 0.075 0.32 0.27 0.26 0.27
( 0.06) ( 0.06) ( 0.06) ( 0.06)

ξω Beta 0.75 0.05 0.81 0.77 0.78 0.82
( 0.02) ( 0.03) ( 0.04) ( 0.03)

ξp Beta 0.75 0.05 0.88 0.90 0.88 0.86
( 0.01) ( 0.02) ( 0.01) ( 0.02)

γω Beta 0.5 0.15 0.39 0.45 0.43 0.48
( 0.12) ( 0.14) ( 0.14) ( 0.14)

γp Beta 0.5 0.15 0.66 0.72 0.50 0.36
( 0.08) ( 0.19) ( 0.15) ( 0.14)

ρ Beta 0.75 0.1 0.76 0.67 0.72 0.70
( 0.02) ( 0.05) ( 0.04) ( 0.03)

rπ0 Normal 1.8 0.1 1.78 1.81 1.72 1.66
( 0.08) ( 0.10) ( 0.10) ( 0.09)

rπ1 Normal -0.3 0.1 -0.22 -0.22 -0.30 -0.39
( 0.09) ( 0.12) ( 0.10) ( 0.09)

ry0 Normal 0.188 0.05 0.22 0.23 0.24 0.22
( 0.03) ( 0.03) ( 0.03) ( 0.03)

ry1 Normal -0.063 0.05 -0.13 -0.11 -0.12 -0.12
( 0.03) ( 0.03) ( 0.04) ( 0.03)

Implied parameters
pseudo EIS: 1−h

(1+h)σc
0.110 0.099 0.167 0.204

slope of PC: (
1−βξp)(1−ξp)
(1+βγp)ξp

0.011 0.007 0.012 0.018

The parameter estimates are given by the median of the posterior distribution
Results are based on 100 000 replications. Standard errors are reported in ().
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Table 1 (continued): Priors and estimates of parameters describing shock processes

Prior Distribution SW Case A Case B Case C
Type Mean St.Err.

ρa Beta 0.85 0.1 0.93 0.97 0.98 0.98
( 0.04) ( 0.02) ( 0.01) ( 0.01)

ρb Beta 0.85 0.1 0.62 0.62 0.71 0.69
( 0.06) ( 0.07) ( 0.11) ( 0.12)

ρG Beta 0.85 0.1 0.95 0.97 0.97 0.97
( 0.02) ( 0.01) ( 0.01) ( 0.01)

ρL Beta 0.85 0.1 0.83 0.77 0.84 0.86
( 0.10) ( 0.09) ( 0.09) ( 0.09)

ρI Beta 0.85 0.1 0.80 0.80 0.78 0.86
( 0.05) ( 0.05) ( 0.05) ( 0.03)

σ2a invGam 0.25 2 0.12 0.03 0.02 0.02
( 0.02) ( 0.01) ( 0.00) ( 0.01)

σ2b invGam 0.25 2 0.01 0.00 0.00 0.00
( 0.00) ( 0.00) ( 0.00) ( 0.01)

σ2G invGam 0.25 2 0.20 0.08 0.06 0.06
( 0.04) ( 0.02) ( 0.02) ( 0.02)

σ2L invGam 0.25 2 0.06 58.15 0.31 0.01
( 0.90) ( 44.03) ( 11.50) ( 0.01)

σ2I invGam 0.25 2 7.69 8.59 9.29 2.16
( 4.55) ( 4.17) ( 5.08) ( 0.99)

σ2Q invGam 0.25 2 14.13 2.41 2.86 0.40
( 10.86) ( 3.71) ( 5.89) ( 0.40)

σ2p invGam 0.25 2 0.01 0.00 0.01 0.01
( 0.00) ( 0.00) ( 0.00) ( 0.00)

σ2ω invGam 0.25 2 0.10 0.04 0.09 0.08
( 0.01) ( 0.04) ( 0.04) ( 0.02)

σ2i invGam 0.25 1.5 0.02 0.01 0.02 0.02
( 0.00) ( 0.00) ( 0.00) ( 0.00)

The parameter estimates are given by the median of the posterior distribution
Results are based on 100 000 replications. Standard errors are reported in ().
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Table 2: Correlation between estimated latent concepts and observable measures

Indicator Concept Case A Case B Case C
Fed funds rate Rt 1.00 1.00 1.00
Real GDP Yt 0.99 0.98 0.98
Real Consumption Ct 0.98 0.99 0.99

X1,t Real fixed Investment It 0.99 0.99 0.99
GDP defl. inflation πt 0.73 0.86 0.86
Real wage wt 0.99 0.99 0.98
Hours worked Lt 0.99 0.98 0.99
PCE ex. food and Energy Ct 0.98 0.99 0.98
Gross Real Investment It 0.94 0.95 0.94
PCE deflator inflation πt 0.70 0.92 0.93

X2,t core-CPI inflation πt 0.53 0.82 0.81
CPI inflation πt 0.54 0.83 0.82
Employment HH Survey Lt 0.89 0.92 0.92
Payroll Employment Lt 0.81 0.85 0.85

The entries are the correlation between the observable indicators and
the median estimate of the corresponding estimated latent variable.
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Table 3: Uncertainty about estimated model variables

Concept Case A Case B Case C
st. dev. Relative to case A

Interest rate Rt 0.000 – –
Output Yt 0.342 0.93 1.01
Consumption Ct 0.450 0.93 1.01
Investment It 0.908 0.94 0.89
Inflation (annualized) πt 0.500 0.91 0.65
Real wage wt 0.478 1.04 1.06
Hours worked Lt 0.311 0.76 0.97

The entries for case A are the standard deviations across estimation draws
of the latent variables for each date, and averaged over time. For cases B and C,
these standard deviations are divided by those in case A, so that numbers below 1

indicate reductions in uncertainty. Standard deviations apply to annualized data series.

Table 4: One-step ahead forecasting errors

Primary indicator Case A Case B Case C
RMSE Relative to case A

Fed funds rate 0.52 1.08 1.12
Real GDP 0.55 1.00 1.02
Real Consumption 0.59 0.93 0.97
Real Investment 1.64 0.97 0.88
GDP defl. inflation 0.20 0.95 0.90
Real wage 0.75 1.03 0.96
Hours worked 0.49 1.02 1.04
Overall -9.26 -9.38 -9.41

The entries for case A are root mean squared error (RMSE) of the forecasts. For
cases B and C, the RMSE are divided by those in case A. Numbers below 1

indicate forecasting improvements. The overall measure is for all cases the log determinant
of the variance-covariance matrix of the forecasting errors for the seven primary indicators.
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Table 5: Variance decompositions of model variables at 3-year horizon

Shock \ Endog. variable i Y C I π w L
Case SW

Productivity 0.21 0.08 0.02 0.11 0.30 0.09 0.22
Preference 0.10 0.24 0.78 0.06 0.02 0.03 0.22
Govt. Expenditures 0.03 0.14 0.04 0.08 0.00 0.00 0.14
Labor supply 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Investment 0.22 0.38 0.02 0.71 0.04 0.07 0.28
Equity premium 0.00 0.01 0.00 0.01 0.00 0.00 0.01
Cost-push prices 0.15 0.05 0.03 0.01 0.52 0.24 0.02
Cost-push wages 0.06 0.04 0.06 0.01 0.11 0.56 0.07
Monetary policy 0.23 0.05 0.06 0.01 0.01 0.01 0.04

Case A
Productivity 0.17 0.10 0.07 0.05 0.29 0.08 0.09
Preference 0.09 0.17 0.62 0.05 0.02 0.04 0.16
Govt. Expenditures 0.01 0.11 0.07 0.05 0.01 0.00 0.13
Labor supply 0.15 0.10 0.15 0.02 0.24 0.42 0.18
Investment 0.35 0.46 0.01 0.83 0.09 0.10 0.38
Equity premium 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cost-push prices 0.12 0.04 0.03 0.00 0.31 0.12 0.02
Cost-push wages 0.03 0.02 0.03 0.00 0.04 0.24 0.03
Monetary policy 0.08 0.01 0.01 0.00 0.00 0.00 0.01

Case B
Productivity 0.17 0.06 0.06 0.02 0.32 0.05 0.09
Preference 0.08 0.19 0.67 0.02 0.02 0.03 0.20
Govt. Expenditures 0.01 0.08 0.08 0.04 0.01 0.00 0.10
Labor supply 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Investment 0.35 0.56 0.02 0.90 0.07 0.10 0.47
Equity premium 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cost-push prices 0.10 0.03 0.02 0.00 0.44 0.11 0.01
Cost-push wages 0.07 0.03 0.07 0.01 0.13 0.69 0.08
Monetary policy 0.22 0.05 0.07 0.00 0.01 0.01 0.05

Case C
Productivity 0.30 0.09 0.10 0.02 0.52 0.12 0.09
Preference 0.06 0.21 0.64 0.02 0.01 0.02 0.22
Govt. Expenditures 0.00 0.07 0.08 0.05 0.00 0.00 0.08
Labor supply 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Investment 0.26 0.48 0.02 0.88 0.07 0.07 0.42
Equity premium 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cost-push prices 0.05 0.02 0.01 0.00 0.23 0.06 0.01
Cost-push wages 0.09 0.04 0.06 0.02 0.16 0.73 0.10
Monetary policy 0.24 0.08 0.08 0.01 0.01 0.01 0.08
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Figure 1: Indicators of employment (de-trended) and pairwise coherence.
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Figure 2: Indicators of quarterly inflation rates (de-meaned) and pairwise coherence.
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Figure 3: Extent of measurement error. Distribution of correlations between main indicators and
corresponding model variables (Case A)
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Figure 4: Estimated endogenous variables (Cases SW, A, B, and C)
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Figure 5: Estimated inflation (de-meaned; Cases SW, A, B and C)
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Figure 6: Estimated inflation and 5%-95% confidence band (Cases A, B, C)
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Figure 7: Estimated capital stock and shocks (Cases SW, A, B and C)
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Figure 8: Estimated shocks (Cases SW, A, B, and C)
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