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ABSTRACT

The conventional heteroskedasticity-robust (HR) variance matrix estimator for cross-sectional

regression (with or without a degrees of freedom adjustment), applied to the fixed effects estimator

for panel data with serially uncorrelated errors, is inconsistent if the number of time periods T is

fixed (and greater than two) as the number of entities n increases. We provide a bias-adjusted HR

estimator that is (nT)1/2 -consistent under any sequences (n, T) in which n and/or T increase to �.
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1.  Model and Theoretical Results 

Consider the fixed effects regression model, 

 

Yit = αi + β′Xit + uit, i = 1,…, n, t = 1,…, T    (1) 

 

where Xit is a k×1 vector of regressors and where (Xit, uit) satisfy: 

 

Heteroskedastic panel data model with conditionally uncorrelated errors 

1. (Xi1,…, XiT, ui1,,…, uiT) are i.i.d. over i = 1,…, n (i.i.d. over entities),  

2. E(uit|Xi1,…, XiT) = 0 (strict exogeneity) 

3.  ≡ EXXQ � �
1

1

T
it itt

T X−
=

X ′∑ � �  is nonsingular (no perfect multicollinearity), and  

4. E(uituis| Xi1,…, XiT) = 0 for t ≠ s (conditionally serially uncorrelated errors).   

 

For the asymptotic results we will further assume: 

 

Stationarity and moment condition 

5. (Xit, uit) is stationary and has absolutely summable cumulants up to order 

twelve.   

 

The fixed effects estimator is, 

 

ˆ
FEβ  = 

1

1 1 1 1

n T n T

it it it it
i t i t

X X X
−

= = = =

⎛ ⎞′⎜ ⎟
⎝ ⎠
∑∑ ∑∑� � � �Y      (2) 
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where the superscript “~” over variables denotes deviations from entity means 

( , etc.).  The asymptotic distribution of 1
1

T
it it iss

X X T X−
=

= − ∑� ˆ
FEβ  is [e.g. Arrelano 

(2003)] 

 

nT ( ˆ
FEβ  – β)  N(0, 

d
→ 1

XXQ−
� � Σ

1
XXQ−
� � ),  where Σ = ( )2

1

1 T

it it it
t

E X X u
T =

′∑ � � . (3) 

 

The variance of the asymptotic distribution in (3) is estimated by 1ˆ ˆˆ
XX XXQ Q 1− −Σ� � � � , where  

=  and  is a heteroskedasticity-robust (HR) covariance matrix 

estimator. 

ˆ
XXQ � �

1
1 1

( ) n T
it iti t

nT X X−
= =

′∑ ∑ � � Σ̂

A frequently used HR estimator of Σ is 

 

ˆ HR XS−Σ  = 2

1 1

1 ˆ
n T

it it it
i t

X X u
nT n k = =

′
− − ∑∑ � � �      (4) 

 

where { } are the fixed-effects regression residuals,  =  – (ˆ
itu� ˆ

itu� itu� ˆ
FEβ  – β)′ .itX� 2  

Although ˆ HR XS−Σ  is consistent in cross-section regression [White (1980)], it turns 

out to be inconsistent in panel data regression with fixed T.  Specifically, an implication 

of the results in the appendix is that, under fixed-T asymptotics with T > 2, 

 

                                                 
2 For example, ˆ HR XS−Σ  is the estimator used in STATA and Eviews. 
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ˆ HR XS−Σ  
p
→ (n → ∞, T fixed) 

1 (
1

B
T

Σ + −Σ
−

) , where B = 2

1 1

1 1T T

it it is
t s

E X X u
T T= =

⎡ ⎤⎛ ⎞⎛′ ⎞
⎢ ⎥⎜ ⎟⎜
⎝ ⎠⎝

⎟
⎠⎣ ⎦

∑ ∑� � .   (5) 

 

The expression for B in (5) suggests the bias-adjusted estimator,  

 

ˆ HR FE−Σ  = 1 1ˆ ˆ
2 1

HR XST B
T T

−−⎛ ⎞⎛Σ −⎜ ⎟⎜− −⎝ ⎠⎝
⎞
⎟
⎠

,  

where B̂  = 2

1 1 1

1 1 1 ˆ
1

n T T

it it is
i t s

X X
n T T= = =

⎛ ⎞⎛′⎜ ⎟⎜ −⎝ ⎠⎝
u ⎞
⎟
⎠

∑ ∑ � � �∑   (6) 

 

where the estimator is defined for T > 2. 

It is shown in the appendix that, if assumptions 1-5 hold, then under any sequence 

(n, T) in which n → ∞ and/or T → ∞ (which includes the cases of n fixed or T fixed), 

 

ˆ HR FE−Σ = Σ + Op(1/ nT )      (7) 

 

so the problematic bias term of order T−1 is eliminated if  ˆ HR FE−Σ  is used. 

 

Remarks 

1. The bias arises because the entity means are not consistently estimated when T is 

fixed, so the usual step of replacing estimated regression coefficients with their 

probability limits is inapplicable.  This can be seen by considering  

 

 3



HR XS−Σ�  ≡ 2
1 1

1
( 1)

n T
it it iti t

X X u
n T = =

′
− ∑ ∑ � � � ,     (8) 

 

which is the infeasible version of ˆ HR XS−Σ   in which β is treated as known and the 

degrees-of-freedom correction k is omitted.  The bias calculation is short: 

 

E HR XS−Σ�  = 
2

1 1 1

1 1
( 1)

n T T

it it it is
i t s

E X X u
n T T= = =

⎛ ⎞′ −⎜ ⎟− ⎝ ⎠
∑∑ ∑� � u  

      = 2

1

1
1

T

it it it
t

E X X u
T =

′
− ∑ � �  – 

1 1

2
( 1)

T T

it it it is
t s

E X X u
T T = =

′
− ∑∑ � � u + 2

1 1 1

1
( 1)

T T T

it it is ir
t s r

E X X u
T T = = =

′
− ∑∑∑ � � u   

       = ( )2

1

2 1
1

T

it it it
t

T E X X u
T T =

−⎛ ⎞ ′⎜ ⎟−⎝ ⎠
∑ � �  + 2

2
1 1

1
( 1)

T T

it it is
t s

E X X
T T = =

u′
− ∑∑ � �  

= 2
1

T
T
−⎛ ⎞Σ⎜ ⎟−⎝ ⎠

 + 1
1

B
T −

,        (9) 

 

where the third equality uses the assumption E(uituis| Xi1,…,XiT) = 0 for t ≠ s; 

rearranging the final expression in (9) yields the plim in (5).  The source of the bias is 

the final two terms in the second line of (9), both of which appear because of 

estimating the entity means.  The problems created by the entity means is an example 

of the general problem of having increasingly many incidental parameters. 

2. The asymptotic bias in ˆ HR XS−Σ  is O(1/T).  An implication of the calculations in the 

appendix is that var( ˆ HR XS−Σ ) = O(1/nT), so MSE( ˆ HR XS−Σ ) = O(1/T2) + O(1/nT). 

3. In general, B – Σ is neither positive nor negative semidefinite, so standard errors 

computed using ˆ HR XS−Σ  can in general either be too large or too small. 
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4. If (Xit, uit) are i.i.d. over t as well as over i, then the asymptotic bias in ˆ HR XS−Σ  is 

proportional to the asymptotic bias in the homoskedasticity-only estimator,  = ˆ homoskΣ

2ˆ ˆuXXQ σ� � , where 2ˆuσ  = 1
1 1

ˆ( ) n T
iti t

nT n k u−
= =

− − 2∑ ∑ � .  Specifically, plim( ˆ HR XS−Σ – Σ) = 

bTplim(  – Σ), where bˆ homoskΣ T = (T – 2)/(T – 1)2.  In this sense, ˆ HR XS−Σ  undercorrects 

for heteroskedasticity. 

5. One case in which ˆ HR XS−Σ   Σ is when T = 2, in which case the fixed effects 

estimator and 

p
→

ˆ HR XS−Σ  are equivalent to the estimator and HR variance matrix 

computed using first-differences of the data (suppressing the intercept). 

6. Another case in which ˆ HR XS−Σ  is consistent is when the errors are homoskedastic:  if 

E( |X2
itu i1,…,XiT) = 2

uσ , then B = Σ = XXQ � �
2
uσ . 

7. Another estimator of Σ is the clustered (over entities) variance estimator, 

 

1 1 1

1 ˆˆ
n T T

cluster
it it is is

i t s

X u X u
nT = = =

ˆ
′⎛ ⎞⎛Σ = ⎜ ⎟⎜

⎝ ⎠⎝
∑ ∑ ∑� �� ⎞

⎟
⎠

�     (10) 

 

If T = 3, then the infeasible version of ˆ HR FE−Σ  (in which β is known) equals the 

infeasible version of , and ˆ clusterΣ ˆ HR FE−Σ  is asymptotically equivalent to  to 

order 1/

ˆ clusterΣ

n ; but for T > 3,  and ˆ clusterΣ ˆ HR FE−Σ  differ.  Interestingly, the problem of no 

consistent estimation of the entity means does not affect the clustered variance 

estimator for any value of T because of the (idempotent matrix) identity  = 

.  This identity does not hold in general for heteroskedasticity- and 

1

T
it itt

X u
=∑ � �

1

T
it itt

X u
=∑ �
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autocorrelation-consistent (HAC) kernel estimators of Σ, rather it arises as a special 

case for the untruncated rectangular kernel used in the cluster variance estimator.  

Thus the means-estimation problem discussed above for ˆ HR XS−Σ  seems likely to arise 

for HAC panel data estimators other than ˆ clusterΣ .  

8. Under general (n, T) sequences (n and/or T → ∞), ˆ clusterΣ  = Σ + Op(1/ n ) [Hansen 

(2005)].  Because ˆ HR FE−Σ  = Σ + Op(1/ nT ), if the errors are conditionally serially 

uncorrelated and T is moderate or large then ˆ HR FE−Σ  will be more efficient than 

. ˆ clusterΣ

9. The assumption of 12 absolutely summable cumulants, which is used in the proof of 

the nT -consistency of ˆ HR FE−Σ , is stronger than needed to justify HR variance 

estimation in cross-sectional data or HAC estimation in time series data.  In the proof 

in the appendix, this stronger assumption arises because the number of nuisance 

parameters (entity means) is increasing when n → ∞.  Under T fixed, n → ∞ 

asymptotics, stationarity and summable cumulants are unnecessary and assumption 5 

can be replaced by  < ∞ and  < ∞, t = 1,…, T. 12
itEX 12

itEu

10. As written, ˆ HR FE−Σ is not guaranteed to be positive semi-definite (psd). 

Asymptotically equivalent psd estimators can be constructed in a number of standard 

ways.  For example if the spectral decomposition of ˆ HR FE−Σ  is Q′ΛQ, then ˆ HR FE
psd

−Σ = 

Q′|Λ|Q is psd.  

11. These results should extend to IV panel data regression with heteroskedasticity, albeit 

with different formulas. 
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2.  Monte Carlo Results 

A small Monte Carlo study was performed to assess the quantitative importance 

of the bias in ˆ HR XS−Σ  and the relative MSEs of the variance estimators.  The design has a 

single regressor and Gaussian errors: 

 

yit = xitβ  + uit        (11) 

xit ~ i.i.d. N(0,1)       (12) 

uit|xi ~ i.n.i.d. N(0, 2
itσ ), 2

itσ  = λ(0.1 + 2
itx )κ ,    (13) 

 

where κ = ±1 and λ is chosen so that the unconditional variance of uit is 1.  The variance 

estimators considered are ˆ HR XS−Σ  (given in (4)), ˆ HR FE−Σ  (given in (6)), and  (given 

in 

ˆ clusterΣ

(10)). 

The results, which are based on 20,000 Monte Carlo draws, are summarized in 

Table 1(a) (for κ = 1) and 1(b) (for κ = –1).  The first three columns of results report the 

bias of the three estimators, relative to the true value of Σ (e.g., E[ ˆ HR XS−Σ  – Σ]/Σ).  The 

next three columns report their MSEs, relative to the MSE of the infeasible HR estimator 

=  that could be constructed if the true errors were 

observed.  The final three columns report the size of the 10% two-sided test of β = β

ˆ infΣ 1
1 1

( ) n T
it it iti t

nT X X u−
= =

′∑ ∑ � � 2

0 

based on the t-statistic using the indicated variance estimator and the asymptotic normal 

critical value.  Several results are noteworthy. 
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First, the bias in ˆ HR XS−Σ  can be large, it persists as n increases with T fixed, and it 

can be positive or negative depending on the design.  For example, with T = 5, and n = 

1000, the relative bias of ˆ HR XS−Σ  is –11.2% when κ = 1 and is 31% when κ = –1. 

Second, a large bias in ˆ HR XS−Σ  can result in a very large relative MSE.  

Interestingly, in some cases with small n and T and κ = 1, the MSE of ˆ HR XS−Σ  is less than 

the MSE the infeasible estimator, apparently reflecting a bias-variance tradeoff.  

Third, the bias correction in ˆ HR FE−Σ  does its job: the relative bias of ˆ HR FE−Σ  is less 

than 3% in all cases with n ≥ 100, and in most cases the MSE of ˆ HR FE−Σ  is very close to 

the MSE of the infeasible HR estimator. 

Fourth, consistent with remark 8, the ratio of the MSE of the cluster variance 

estimator to the infeasible estimator depends on T and does not converge to 1 as n gets 

large for fixed T.  The MSE of the cluster estimator considerably exceeds the MSE of 

ˆ HR FE−Σ  when T is moderate or large, regardless of n. 

Fifth, although the focus of this note has been bias and MSE, one would suspect 

that the variance estimators with less bias would produce tests with better size.  Table 1 is 

consistent with this conjecture: When ˆ HR XS−Σ  is biased up, the t-tests reject too 

infrequently, and when ˆ HR XS−Σ  is biased down, the t-tests reject too often.  When T is 

small, the magnitudes of these size distortions can be considerable:  for T = 3 and n = 

1000, the size of the nominal 10% test is 13.0% for κ = 1 and is 6.2% when κ = –1.  In 

contrast, in all cases with n ≥ 500, the other two variance estimators produce tests with 

sizes that are within Monte Carlo error of 10%.  In more complicated designs, the size 

distortions of tests based on ˆ HR XS−Σ  are even larger than reported in Table 1. 
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3.  Conclusions 

Our theoretical results and Monte Carlo simulations, combined with the results in 

Hansen (2005), suggest the following advice for empirical practice.  The usual estimator 

ˆ HR XS−Σ  can be used if T = 2 but it should not be used if T > 2.  If T = 3, ˆ HR FE−Σ  and ˆ clusterΣ  

are asymptotically equivalent and either can be used.  If T > 3 and there are good reasons 

to believe that uit is conditionally serially uncorrelated, then ˆ HR FE−Σ  will be more efficient 

than , so ˆ clusterΣ ˆ HR FE−Σ  should be used.  If, however, serially correlated errors are a 

possibility – as they are in many applications – then ˆ clusterΣ  should be used in conjunction 

with tn or F.,n critical values for hypothesis tests on β  [see Hansen (2005)]. 
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Appendix: Proof of (7) 

 

All limits in this appendix hold for any nondecreasing sequence (n, T) in which n 

→ ∞ and/or T → ∞. To simplify the calculations, we consider the special case that Xit is a 

scalar.  Without loss of generality, let EXit = 0.  Adopt the notation iu  =  and 1
1

T
itt

T u−
=∑

iX  = .  The proof repeatedly uses the inequality 1
1

T
itt

T −
=∑ X ( )1

var m
jj

a
=∑  ≤ 

( )2

1
var( )m

jj
a

=∑ . 

Begin by writing nT ( ˆ HR FE−Σ  – Σ) as the sum of four terms using (6) and (9): 

 

   nT ( ˆ HR FE−Σ  – Σ) = 1 1 1 1ˆ ˆ
2 1 2

HR XS HR XST TnT B E B
T T T T

− −− −⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛Σ − − Σ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜⎢ ⎥− − −⎝ ⎠⎝ ⎠ ⎝ ⎠⎝⎣ ⎦
�

1
⎞
⎟− ⎠

 

( ) ( )1 ˆ ˆ
2 2

HR XS HR XST nnT E B B
T T

− −−⎛ ⎞= Σ − Σ −⎜ ⎟− −⎝ ⎠
� T

−  

( ) ( )1 ˆ
2

HR XS HR XS HR XS HR XST nT nT E
T

− − − −−⎛ ⎞ ⎡ ⎤= Σ − Σ + Σ − Σ⎜ ⎟ ⎣ ⎦−⎝ ⎠
� � �  

    ( ) (ˆ
2

T n n )B B B
T T T

⎡ ⎤⎛ ⎞− − +⎢⎜ ⎟−⎝ ⎠ ⎣ ⎦
� � B− ⎥      (14) 

 

where HR XS−Σ�  is given in (8) and  is B� B̂  given in (6) with  replaced by . ˆ
itu� itu�

The proof of (7) proceeds by showing that, under the stated moment conditions,  

 

(a) ( )HR XS HR XSnT E−Σ − Σ� � −  = Op(1),   
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(b) ( )/n T B B−�  = Op(1/ T ),  

(c) ( )ˆ HR XS HR XSnT − −Σ − Σ�
p
→  0,  

(d) ( )ˆ/n T B B− �
p
→  0. 

 

Substitution of (a) – (d) into (14) yields nT ( ˆ HR FE−Σ  – Σ) = Op(1) and thus the result (7)

. 

 

(a)  From (8), we have that 

 

( )var HR XS HR XSnT E− −⎡ ⎤Σ − Σ⎣ ⎦
� �  = ( )2 2 2 2

1 1

1var
1

n T

it it it it
i t

T X u EX u
T nT = =

⎡ ⎤⎛ ⎞ −⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦
∑∑ � �� �  

= 
2

2 2

1

1var
1

T

it it
t

T X u
T T =

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

∑ � �  

 

so (a) follows if it can be shown that ( )1/ 2 2 2
1

var T
it itt

T X−
=∑ � �u  = O(1).  Expanding 

2 2
1

1 T
it itt

X u
T =∑ � �  yields: 

  

      2 2

1

1 T

it it
t

X u
T =
∑ � �  = A0 – 2A1D3 + ( )2 2

1 2 2 1 2 4
1 2A D A D A A
T

+ −  + 1 2 3
4 A A A
T

 – 2 2
1 23/ 2

3 A A
T
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where A0 = 2 2

1

1 T

it it
t

X u
T =
∑ , A1 = 

1

1 T

it
t

X
T =
∑ , A2 = 

1

1 T

it
t

u
T =
∑ , A3 = 

1

1 T

it it
t

X u
T =
∑ , A4 = 

2

1

1 T

it it
t

X u
T =
∑ , D1 = 2

1

1 T

it
t

X
T =
∑ , D2 = 2

1

1 T

it
t

u
T =
∑ , and D3 = 2

1

1 T

it it
t

X u
T =
∑ .  Thus 

 

2 2

1

1var
T

it it
t

X u
T =

⎛
⎜ ⎟
⎝ ⎠

∑ � � ⎞  ≤ {var(A0)1/2 + 2var(A1D3)1/2 + T–1/2var( 2
1 2A D )1/2  

+ T–1/2var( 2
2 1A D )1/2 + 2T–1/2var(A2A4)1/2  

+ 4T–1var(A1A2A3)1/2  + 3T-3/2var( 2 2
1 2A A )1/2}2

≤  {  +  + 1/ 2
0var( )A ( )1/ 44 4

1 32 EA ED ( )1/ 41/ 2 8 4
1 2T EA ED−  + ( )1/ 41/ 2 8 4

2 1T EA ED−   

+  + ( )1/ 41/ 2 4 4
2 42T EA EA− ( ) ( )1/8 1/ 41 8 8 4

1 2 34T EA EA EA−  + ( ) }21/ 43/ 2 8 8
1 23T EA EA−  (15) 

 

where the second inequality uses term-by-term inequalities, for example the second term 

in the final expression obtains using var(A1D3) ≤  ≤ 2 2
1 3EA D ( )1/ 24 4

1 3EA ED .  Thus a 

sufficient condition for ( )1/ 2 2 2
1

var T
it itt

T X−
=∑ � �u  to be O(1) is that var(A0), , , , 

, , , and  all are O(1). 

8
1EA 8

2EA 4
3EA

4
4EA 4

1ED 4
2ED 4

3ED

First consider the D terms.  Because  ≤ ,  ≤ , and (by Hölder’s 

inequality)  ≤  ≤ ( )

4
1ED 8

itEX 4
2ED 8

itEu

4
3ED 4 8

it itEX u ( )1/ 3 2 / 312 12
it itEX Eu , under assumption 5 all the D moments 

in (15) are O(1). 
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For the remainder of the proof of (a), drop the subscript i.  Now turn to the A 

terms, starting with A1. Because Xt (Xit) has mean zero and absolutely summable eighth 

cumulants, 

 

8
1EA  = 

8

1

1 T

t
t

E X
T =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  ≤ 
4

8 cov( , )t t j
j

h X X
∞

−
=−∞

⎛ ⎞
⎜
⎝ ⎠
∑ ⎟  + O(T–1) = O(1) 

 

where h8
 is the eighth moment of a standard normal random variable.3  The same 

argument applied to ut yields  = O(1). 8
2EA

Now consider A3 and let ξt = Xtut.  Then 

 

4
3EA  = 

4

1

1 T

t
t

E
T

ξ
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  = 
1 2 3 4

1 4

2
,..., 1

1 T

t t t t
t t

E
T

ξ ξ ξ ξ
=

∑  

 = 
1 2

1 2

2

1 1

13 cov( , )
T T

t t
t tT

ξ ξ
= =

⎡ ⎤
⎢ ⎥
⎣ ⎦
∑∑  + 

1 2 3 4

1 4

2
,..., 1

1 cum( , , , )
T

t t t t
t tT

ξ ξ ξ ξ
=

∑  

= 3var(ξt)2 + 
1 2 3

1 2 3

0
, , 1

1 cum( , , , )
T

t t t
t t tT

ξ ξ ξ ξ
=

∑  

≤ 3 4 4
t tEX Eu  + 

1 1 2 2 3 3

1 2 3

0 0
, , 1

1 cum( , , , )
T

t t t t t t
t t t

X u X u X u X u
T =
∑   (16) 

 

where cum(.) denotes the cumulant, the third equality follows from assumption 1 and the 

definition of the fourth cumulant (see definition 2.3.1 of Brillinger (1981)), the fourth 
                                                 
3 If at is stationary with mean zero, autocovariances γj,  and absolutely summable 

cumulants up to order 2k, then E(T−1/2
1

T
tt

a
=∑ )2k ≤ h2k ( )k

jj
γ∑ + O(T−1). 
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equality follows by the stationarity of (Xt, ut) and because cov(ξt,ξs) = 0 for t ≠ s by 

assumption 4, and the inequality follows by Cauchy-Schwartz (first term). 

It remains to show that the final term in (16) is finite.  We do so by using a result 

of Leonov and Shiryaev (1959), stated as Theorem 2.3.2 in Brillinger (1981), to express 

the cumulant of products as the product of cumulants.  Let zs1 = Xs and zs2 = us, and let ν 

= 
1

m

j
j

ν
=
∪  denote a partition of the set of index pairs 

3AS  = {(0,1), (0,2), (t1,1), (t1,2), (t2,1), 

(t2,2), (t3,1), (t3,2)}.  Theorem 2.3.2 implies that  = 
1 1 2 2 3 30 0cum( , , , )t t t t t tX u X u X u X u

1 1 2 2 3 301 02 1 2 1 2 1 2cum( , , , )t t t t t tz z z z z z z z  = 1cum( , ) cum( , )ij ij mz ij z ij
ν

ν ν∈ ∈∑ " , where the 

summation extends over all indecomposable partitions of 
3AS .  Because (Xt, ut) has mean 

zero, cum(X0) = cum(u0) = 0 so all partitions with some νk having a single element make 

a contribution of zero to the sum.  Thus nontrivial partitions must have m ≤ 4.  Separating 

out the partition with m = 1, we therefore have that 

 

    
1 1 2 2 3 3

1 2 3

0 0
, , 1

cum( , , , )
T

t t t t t t
t t t

X u X u X u X u
=

∑  ≤ 
1 1 2 2 3 3

1 2 3

0 0
, ,

cum( , , , , , , , )t t t t t t
t t t

X u X u X u X u
∞

=−∞
∑  

+ 
1 2 3

1
: 2,3,4 t , ,

cum( , ) cum( , )ij ij m
m t t

z ij z ij
ν

ν ν
∞

= =−∞

∈∑ ∑ " ∈ .  (17) 

 

The first term on the right hand side of (17) satisfies  

 

1 1 2 2 3 3

1 2 3

0 0
, , 1

cum( , , , , , , , )
T

t t t t t t
t t t

X u X u X u X u
=

∑  ≤ 
1 2 3 4 5 6 7

1 2 7

0
, ,...,

cum( , , , , , , , )t t t t t t t
t t t

X u X u X u X u
∞

=−∞
∑   
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which is finite by assumption 5. 

It remains to show that the second term in (17) is finite.  Consider cumulants of 

the form 
1 1

cum( ,..., , ,..., )
rt t s sp

X X u u  (including the case of no X’s).  When p = 1, by 

assumption 1 this cumulant is zero.  When p = 2, by assumption 4 this cumulant is zero if 

s1 ≠ s2.  Thus the only nontrivial partitions of 
3AS  either (i) place two occurrences of u in 

one set and two in a second set, or (ii) place all four occurrences of u in a single set. 

In case (i), the three-fold summation reduces to a single summation which can be 

handled by bounding one or more cumulants and invoking summability.  For example, 

one such term is 

 

3 1 2 2 1 3

1 2 3

0 0
, ,

cum( , )cum( , , )cum( , , )t t t t t
t t t

tX X X u u X u u
∞

=−∞
∑  

= 0 0 0 0cum( , )cum( , , )cum( , , )t t t
t

tX X X u u X u
∞

=−∞
∑ u  

≤ 
1 2

1 2

2 4
0 0 0 0

,

var( ) cum( , , )t t
t t

X EX Eu X u u
∞

=−∞
∑  < ∞   (18) 

 

where the inequality uses 0cum( , )tX X  ≤  var(X0), 0 0cum( , , )tX u u  ≤  2
0tEX u  ≤ 

2 4
0 0EX Eu , and 0cum( , , )t tt

X u u∞

=−∞∑  ≤ 
1 21 2

0,
cum( , , )t tt t

X u u∞

=−∞∑ ; all terms in the final 

line of (18) are finite by assumption 5.  For a partition to be indecomposable, it must be 

that at least one cumulant under the single summation contains both time indexes 0 and t 

(if not, the partition satisfies Equation (2.3.5) in Brillinger (1981) and thus violates the 
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row equivalency necessary and sufficient condition for indecomposability).  Thus all 

terms in case (i) can be handled in the same way (bounding and applying summability to 

a cumulant with indexes of both 0 and t) as the term handled in (18).  Thus all terms in 

case (i) are finite. 

In case (ii), the summation remains three-dimensional and all cases can be 

handled by bounding the cumulants not containing the u’s and invoking absolute 

summability for the cumulant containing the u’s.  A typical term is 

 

1 2 3 1 2 3

1 2 3

0 0
, ,

cum( , , , , )cum( , , )t t t t t t
t t t

X u u u u X X X
∞

=−∞
∑  ≤ 

1 2 3

1 2 3

3
0 0 0

, ,

cum( , , , , )t t t
t t t

E X X u u u u
∞

=−∞
∑  

≤ 
1 2 3 4

1 4

3
0 0

,...,

cum( , , , , )t t t t
t t

E X X u u u u
∞

=−∞
∑  < ∞. 

 

Because the number of partitions is finite, the final term in (17) is finite, and it follows 

from (16) that  = O(1).  4
3EA

Next consider A4.  The argument that  = O(1) closely follows the argument 

for A

4
4EA

3.  The counterpart of the final line of (16) is  

 

4
4EA  ≤ 3 8 4

t tEX Eu  + 
1 1 1 2 2 2 3 3 3

1 2 3

0 0 0
, , 1

1 cum( , , , )
T

t t t t t t t t t
t t t

X X u X X u X X u X X u
T =
∑  

 

so the leading term in the counterpart of (17) is a twelfth cumulant, which is absolutely 

summable by assumption 5.  Following the remaining steps shows that  < ∞. 4
4EA
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Now turn to A0.  The logic of (17) implies that 

 

          var(A0) = 2 2

1

1var
T

it it
t

X u
T =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑   

≤  2 2 2 2
0 0cov( , )t t

t

X u X u
∞

=−∞
∑  

≤  0 0 0 0cum( , , , , , , , )t t t t
t

X X u u X X u u
∞

=−∞
∑  

+ 1
: 2,3,4

cum( , ) cum( , )ij ij m
m t

z ij z ij
ν

ν ν
∞

= =−∞

∈∑ ∑ " ∈   (19) 

 

where the summation over ν extends over indecomposable partitions of 
0AS  = {(0,1), 

(0,1), (0,2), (0,2), (t,1) , (t,1) , (t,2) , (t,2)} with 2 ≤ m ≤ 4.  The first term in the final line 

of (19) is finite by assumption 5.  For a partition of 
0AS  to be indecomposable, at least 

one cumulant must have indexes of both 0 and t (otherwise Brillinger’s (1981) Equation 

(2.3.5) is satisfied).  Thus the bounding and summability steps of (18) can be applied to 

all partitions in (19), so var(A0) = O(1).  This proves (a).  

 

(b) First note that E  = B: B�

E  = B� 2 2

1 1 1

1 1 1
1

n T T

it is
i t s

E X
n T T= = =

⎛ ⎞⎛
⎜ ⎟⎜ −⎝ ⎠⎝

∑ ∑ ∑� �u ⎞
⎟
⎠

 

= 2 2
2

1 1 1 1

1 1
1 ( 1)

T T T T

it is is ir
t s s r

TE X u u u
T T T T= = = =

⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟ − −⎝ ⎠⎝ ⎠
∑ ∑ ∑∑�  
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= 2 2

1 1

1 1 1
1 ( 1)

T T

it is is
t s s

E X u u
T T T T= =

⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟ − −⎝ ⎠⎝ ⎠
∑ ∑ ∑� 2

1

T

=

 = B 

 

where the penultimate equality obtains because uit is conditionally serially uncorrelated.  

Thus 

 

( )
2

nE B B
T

⎡ ⎤
−⎢ ⎥

⎣ ⎦
�  =  2 2

1 1

1 1 1var
1

T T

it is
t s

X u
T T T= =

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ −⎝ ⎠⎝

⎟
⎠⎣ ⎦

∑ ∑� �  

≤ 
2 2

2 2

1 1

1 1 1
1

T T

it is
t s

E X u
T T T= =

⎛ ⎞ ⎛
⎜ ⎟ ⎜ −⎝ ⎠ ⎝
∑ ∑ ⎞

⎟
⎠

 

       ≤ 8 81
it isEX Eu

T
        (20) 

 

where the first inequality uses  ≤ 2
1

T
itt

X
=∑ � 2

1

T
itt

X
=∑  and 2

1

T
itt

u
=∑ �  ≤ 2

1

T
itt

u
=∑ .  The result 

(b) follows from (20).  Inspection of the right hand side of the first line in (20) reveals 

that this variance is positive for finite T, so that under fixed-T asymptotics the estimation 

of B makes a 1/nT contribution to the variance of ˆ HR FE−Σ . 

 

(c)       ( )ˆ HR XS HR XSnT − −Σ − Σ�  = 2

1 1

ˆ
n T

it it it
i t

nT X X u
nT n k = =

′
− − ∑∑ � � �  – 2

1 1( 1)

n T

it it it
i t

nT X X u
n T = =

′
− ∑∑ � � �  

= ( )2 2

1 1

1 ˆ
( 1)

n T

it it it it
i t

nT X X u u
n T k nT = =

⎛ ⎞ ′ −⎜ ⎟− −⎝ ⎠
∑∑ � � � �  – 

( 1)
HR XSk nT

n T k
−⎛ ⎞

Σ⎜ ⎟− −⎝ ⎠
� . (21) 
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An implication of (a) is that HR XS−Σ�   E
p
→ HR XS−Σ� , so the second term in (21) is 

Op(1/ nT ).  To show that the first term in (21) is op(1) it suffices to show that 

( )2 2

1 1

1 ˆ
n T

it it it it
i t

X X u u
nT = =

′ −∑∑ � � � �
p
→  0.  Because  =  – ˆ

itu� itu� ˆ( ) itXβ β− � , 

 

( )2 2

1 1

1 ˆ
n T

it it it it
i t

X X u u
nT = =

′ −∑∑ � � � �  = ( )2 4

1 1

1ˆ
n T

it
i t

nT X
nT

β β
= =

− ∑∑ �   

– ( ) 3

1 1

1ˆ2
n T

it it
i t

nT X u
nT

β β
= =

− ∑∑ � �   

      = ( ) 2
4

3/ 2
1 1

1ˆ
( )

n T

it
i t

nT X
nT

β β
= =

⎡ ⎤−⎣ ⎦ ∑∑ �  – ( ) 3

1 1

1ˆ2
n T

it it
i t

nT X u
nT

β β
= =

− ∑∑ �  

 + ( ) 3

1 1

1 1ˆ2
n T

it i
i t

nT X u
n T

β β
= =

⎛− ⎜
⎝ ⎠

∑ ∑ � ⎞
⎟ .    (22) 

 

Consider the first term in (22).  Now ( )ˆnT β β−  = Op(1) and 

 

E 4
3/ 2

1 1

1
( )

n T

it
i t

X
nT = =

∑∑ �   =  41 ( ) 0itE X
nT

→�  

     

where convergence follows because  < ∞ is implied by  < ∞. Thus, by 

Markov’s inequality the first term in 

4( itE X� ) )4( itE X

(22) converges in probability to zero.  Next consider 

the second term in (22).  Because  uit is conditionally serially uncorrelated, uit has 

(respectively) 4 moments, and has 12 moments (because XitX� it has 12 moments), 
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3

1 1

1var
n T

it it
i t

X u
nT = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑∑ �  = ( )6 21
it itE X u

nT
�  ≤ ( ) ( )12 41

it itEX Eu
nT

�  → 0. 

 

This result and ( ˆnT )β β−  = Op(1) imply that the second term in (22) converges in 

probability to zero.  Turning to the final term in (22), because  uit is conditionally serially 

uncorrelated,  has 12 moments, uitX� it has 4 moments, 

 

3

1 1

1 1var
n T

it i
i t

X u
n T= =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ �  =  

2
3 2

1 1

1 1 1T T

it it
t t

E X u
nT T T= =

⎛ ⎞⎛ ⎞ ⎛
⎜ ⎟⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎝ ⎠

∑ ∑� ⎞
⎟
⎠

 

≤ 
4

3 4

1

1 1 T

it it
t

E X E
nT T =

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ � u  → 0 

 

This result and ( ˆnT )β β−  = Op(1) imply that the final term in (22) converges in 

probability to zero, and (c) follows. 

 

(d)  Use  =  – ˆ
itu� itu� ˆ( ) itXβ β− �  and collect terms to obtain 

 

( )ˆ/n T B B− �  = ( )2 2

1 1 1

1 1 1 ˆ
1

n T T

it it is is
i t s

X X u u
T TnT = = =

⎛ ⎞⎛′ −⎜ ⎟⎜ −⎝ ⎠⎝
∑ ∑ ∑� � � � ⎞

⎟
⎠

 

= ( )
2

2
2

3/ 2
1 1

1 1ˆ
1 ( )

n T

it
i t

T nT X
T nT

β β
= =

⎛ ⎞⎛ ⎞ ⎡ ⎤−⎜ ⎟ ⎜ ⎟⎣ ⎦−⎝ ⎠ ⎝ ⎠
∑ ∑ �

T
  

– ( ) 2

1 1 1

1 1 1ˆ2
1

n T T

it is is
i t s

nT X X u
nT T T

β β
= = =

⎛ ⎞⎛− ⎜ ⎟⎜ −⎝ ⎠⎝
∑ ∑ ∑� � � ⎞

⎟
⎠

.  (23) 

 21



 

Because ( ˆnT )β β−  = Op(1) and Xit has four moments, by Markov’s inequality the first 

term in (23) converges in probability to zero (the argument is like that used for the first 

term in (22)).  Turning to the second term in (23), 

 

      2

1 1 1

1 1 1var
1

n T T

it is is
i t s

X X
nT T T= = =

⎡ ⎤⎛ ⎞⎛ u⎢ ⎥⎜ ⎟⎜ −⎝ ⎠⎝⎣ ⎦
∑ ∑ ∑� � � ⎞

⎟
⎠

 = 2
2 2

1 1

1 1var
( 1)

T T

it is is
t s

X X u
n T T = =

⎛ ⎞
⎜ ⎟− ⎝ ⎠

∑∑ � � �  

≤ 12 4
2

1
( 1) it itEX Eu

n T −
�  → 0 

 

so the second term in (23) converges in probability to zero, and (d) follows. 

 

Details of remark 9.  The only place in this proof that the summable cumulant 

condition is used is to bound the A moments in part (a).  If T is fixed, a sufficient 

condition for the moments of A to be bounded is that Xit and uit have 12 moments.  

Stationarity of (Xit, uit) is used repeatedly but, if T is fixed, stationarity could be relaxed 

by replacing moments such as  with max4
itEX t

4
itEX .  Thus, under T-fixed, n → ∞ 

asymptotics, assumption 5 could be replaced by the assumption that  < ∞ and  

< ∞ for t = 1,…, T. 

12
itEX 12

itEu
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Details of remark 4.  If (Xit, uit) is i.i.d., t = 1,…, T, i = 1,…, n, then Σ = 

 = 2
it it itEX X u′� � 2

uXXQ σ� �  + Ω, where Ωjk = 2cov( , )jit kit itX X u� � , where jitX�  is the jth element of 

.  Also, the (j,k) element of B is  itX�

 

BBjk = 2
2

1 1

1 T T

jit kit is
t s

E X X u
T = =
∑∑ � �  = 2 2

, 2
1 1

1 cov( , )
T T

u jit kit isXX jk
t s

X u
T

σ
= =

+ ∑∑� �
� �Q X   

= 2
,

1
1u jXX jkQ

T
σ + Ω

−� � k , 

 

where the final equality uses, for t ≠ s, 2cov( , )jit kit isX X u� �  =  = 

 (because (X

2 2cov( , )jit kit itT X X− u

2( 1) jkT −− Ω it, uit) is i.i.d. over t).  Thus B = 2
uXXQ σ� �  + (T – 1)–1Ω = 2

uXXQ σ� �  + 

(T – 1)–1(Σ – 2
uXXQ σ� � ).  The result stated in the remark follows by substituting this final 

expression for B into (5), noting that ˆ homoskΣ   
p
→ 2

uXXQ σ� � , and collecting terms. 
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Table 1.  Monte Carlo Results: Bias, Relative MSE,  
and Size for Three Variance Estimators 

 
 Design: yit = xitβ  + uit, i = 1,…, n, t = 1,…, T 

 
xit ~ i.i.d. N(0,1) 
 
uit|xi ~ i.n.i.d. N(0, 2

itσ ); 2
itσ  = (0.1 + 2

itx )κ/E[(0.1 + 2
itx )κ]  

 
 
 

(a) κ = 1 
 

  Bias relative to true MSE relative to infeasible Size (nominal level 10%) 
T n ˆ HR XS−Σ  ˆ HR FE−Σ  ˆ clusterΣ  ˆ HR XS−Σ  ˆ HR FE−Σ  ˆ clusterΣ  ˆ HR XS−Σ  ˆ HR FE−Σ  ˆ clusterΣ  
3 50 -0.180 -0.052 -0.068 0.78 1.05 1.02 0.147 0.125 0.128 
5 50 -0.135 -0.029 -0.046 0.84 0.98 1.14 0.132 0.113 0.122 

10 50 -0.073 -0.013 -0.034 0.92 0.99 1.47 0.119 0.108 0.119 
25 50 -0.030 -0.005 -0.026 0.96 0.99 2.42 0.107 0.102 0.113 
50 50 -0.015 -0.002 -0.021 0.98 0.99 3.82 0.103 0.102 0.110 

100 50 -0.008 -0.001 -0.020 0.99 1.00 6.95 0.099 0.098 0.107 
           

3 100 -0.160 -0.027 -0.035 0.89 1.11 1.10 0.144 0.118 0.120 
5 100 -0.123 -0.015 -0.023 0.95 1.02 1.20 0.127 0.106 0.110 

10 100 -0.067 -0.006 -0.016 0.99 1.01 1.54 0.116 0.105 0.108 
25 100 -0.028 -0.002 -0.012 1.00 1.00 2.43 0.103 0.099 0.104 
50 100 -0.014 -0.001 -0.012 1.00 1.00 3.95 0.102 0.100 0.104 

100 100 -0.007 -0.001 -0.012 1.00 1.00 6.94 0.101 0.100 0.106 
           

3 500 -0.142 -0.006 -0.008 1.60 1.21 1.20 0.123 0.097 0.097 
5 500 -0.113 -0.003 -0.004 1.70 1.07 1.30 0.123 0.101 0.102 

10 500 -0.062 -0.001 -0.003 1.45 1.03 1.55 0.114 0.103 0.104 
25 500 -0.026 0.000 -0.003 1.19 1.01 2.48 0.104 0.100 0.101 
50 500 -0.013 0.000 -0.002 1.10 1.00 4.06 0.102 0.100 0.101 

100 500 -0.007 0.000 -0.002 1.05 1.00 7.24 0.101 0.100 0.101 
           

3 1000 -0.139 -0.002 -0.003 2.35 1.22 1.22 0.130 0.104 0.104 
5 1000 -0.112 -0.001 -0.002 2.59 1.08 1.29 0.122 0.099 0.100 

10 1000 -0.062 -0.001 -0.002 2.00 1.02 1.56 0.109 0.098 0.099 
25 1000 -0.026 0.000 -0.002 1.43 1.01 2.46 0.105 0.101 0.101 
50 1000 -0.013 0.000 -0.001 1.23 1.00 3.93 0.102 0.100 0.100 

100 1000 -0.006 0.000 0.000 1.11 1.00 7.22 0.103 0.102 0.102 
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Table 1, ctd. 

 
 
 

(b) κ = −1 
 

  Bias relative to true MSE relative to infeasible Size (nominal level 10%) 
T n ˆ HR XS−Σ  ˆ HR FE−Σ  ˆ clusterΣ  ˆ HR XS−Σ  ˆ HR FE−Σ  ˆ clusterΣ  ˆ HR XS−Σ  ˆ HR FE−Σ  ˆ clusterΣ  
3 50 0.274 0.013 -0.012 2.72 1.32 1.28 0.067 0.105 0.110 
5 50 0.313 0.007 -0.014 5.20 1.68 2.02 0.060 0.104 0.107 

10 50 0.233 0.003 -0.017 6.96 1.51 4.57 0.068 0.101 0.110 
25 50 0.119 0.001 -0.017 6.36 1.33 14.20 0.083 0.101 0.108 
50 50 0.065 0.000 -0.018 4.62 1.19 32.51 0.091 0.101 0.111 

100 50 0.034 0.000 -0.020 3.14 1.11 69.91 0.094 0.100 0.110 
           

3 100 0.270 0.006 -0.007 3.78 1.30 1.28 0.064 0.099 0.101 
5 100 0.312 0.003 -0.006 8.65 1.66 2.10 0.059 0.099 0.101 

10 100 0.233 0.001 -0.009 12.68 1.51 4.68 0.065 0.098 0.102 
25 100 0.119 0.001 -0.008 11.09 1.33 14.22 0.082 0.102 0.106 
50 100 0.065 0.000 -0.009 7.93 1.19 32.62 0.090 0.101 0.107 

100 100 0.034 0.000 -0.010 5.19 1.12 70.98 0.094 0.100 0.105 
           

3 500 0.271 0.001 -0.002 13.59 1.31 1.30 0.063 0.098 0.098 
5 500 0.309 0.000 -0.001 35.28 1.66 2.04 0.059 0.099 0.099 

10 500 0.231 0.001 -0.001 55.72 1.50 4.81 0.066 0.099 0.099 
25 500 0.118 0.000 -0.002 49.32 1.31 14.35 0.081 0.098 0.100 
50 500 0.064 0.000 -0.002 34.61 1.19 32.99 0.090 0.100 0.101 

100 500 0.034 0.000 -0.001 21.26 1.12 71.91 0.093 0.098 0.099 
           

3 1000 0.269 0.001 0.000 25.27 1.31 1.31 0.062 0.099 0.099 
5 1000 0.310 0.000 -0.001 70.65 1.66 2.09 0.059 0.099 0.099 

10 1000 0.231 0.000 -0.001 108.60 1.50 4.66 0.069 0.099 0.099 
25 1000 0.118 0.000 -0.001 97.76 1.32 14.49 0.084 0.103 0.103 
50 1000 0.064 0.000 -0.001 68.18 1.19 33.12 0.088 0.098 0.099 

100 1000 0.034 0.000 -0.001 40.87 1.10 70.28 0.093 0.098 0.100 

 
 
 
Notes to Table 1:  The first three columns of results report the bias of the indicated 

estimator as a fraction of the true variance.  The next three columns report the MSE of the 

indicated estimator, relative to the MSE of the infeasible estimator ˆ infΣ = 

.  The final three columns report rejection rate under the null 

hypothesis of the 2-sided test of β = β

1
1 1

( ) n T
it iti t

nT X u−
= =∑ ∑ � 2 2

0 based on the t-statistic computed using the 

indicated variance estimator and the asymptotic normal critical value, where the test has a 

nominal level of 10%.  All results are based on 20,000 Monte Carlo draws. 
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