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maximize expected discounted utility in a Markov perfect equilibrium. Previous econometric

methods estimate the probability distribution of agents’ actions in a first stage. In a second step, a

finite vector of parameters of the period return function are estimated. In this paper, we develop

semiparametric estimators for dynamic games allowing for continuous state variables and a
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1 Introduction.

In economic theory it is common place, if not standard, to model market equilibrium as a game. Game

theory has profoundly inuenced how economic theorists conceptualize markets and regularly inuences

policy debates. By comparison, the impact of game theory on most applied fields in economics has been

much less significant. While there is a large empirical literature that tests the predictions of certain games,

there is by comparison much less work that formally models the relationship between endogenous and ex­

ogenous variables in light of game theory. Rigorously understanding the econometric implications of game

theory is clearly a necessary condition for coherence between theoretical and empirical work in economics.

Over the past decade, structural estimation of game theoretic models has been a topic of active research

within the subfield of empirical industrial organization. See Ackerberg, Benkard, Berry, and Pakes (2005)

for an excellent survey. In particular, researchers have recently proposed two­step estimation methods for

dynamic games. Like the models surveyed in Rust (1994) or studied in Keane and Wolpin (1997), agents

choose from a finite set of actions and utility at a particular point in time is a function of covariates and sto­

chastic preference shocks. Agents are forward looking and maximize expected discounted utility. How­

ever, unlike Rust, agents interact strategically and play a Markov perfect equilibrium to a dynamic game.

See Pakes, Ostrovsky and Berry (2003), Aguirregabiria and Mira (2002), Pesendorfer and Schmidt­Dengler

(2003) and Bajari, Benkard and Levin (2003). Substantive applications of dynamic games estimators in­

clude Jenkins, Liu, McFadden, and Matzkin (2004) to the browser war and Ryan (2005) to regulation in a

concentrated industry. The problem of equilibrium existence is also considered in Jenkins et. al. (2004) as

well.

Like Hotz and Miller (1993) or Guerre, Perrigne and Vuong (2000), estimation in these models essen­

tially takes place in two steps. In the first step, the economist exibly estimates agents’ reduced form pol­

icy functions. In many cases, this involves estimating the probability that each of the finite set of actions is

played conditional on a finite vector of state variables. In the second step, the structural parameters of the

model are estimated. Typically, these are a finite vector that parameterize the period utility as a function

of actions and states. These estimators are attractive for applied work since they impose a relatively low

computational burden and are straightforward to program.

The formal econometric arguments used in these papers are based standard methods for the analysis

of parametric models. Such methods are appropriate for problems where (i) there are a finite number of

discrete state variables or (ii) there are continuous state variables but the parametric first stage is correctly
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specified. However, the econometric theory has not been worked out for the case of a nonparametric first

stage and continuous state variables. This case is important since many problems have state variables that

are naturally modeled as continuous. For instance, the state variable in models of strategic firm entry/exit

usually includes productivity which the literature usually models as continuous.

One could of course ignore the fact that the state variables are continuous and discretize the state space.

However, increasing the number of grids in estimating the first stage choice probabilities has two offsetting

effects. It reduces the bias in the first stage estimation but on the other hand increases the variance. When

the dimension of the continuous state variables is larger than four, it is impossible to obtain
√
T consistent

(where T is the sample size) and asymptotically normal estimators for the second stage parameters through

discretization. It can be shown that the variance of the discretization procedure is of the magnitude of

1/
√
Thd where d is the dimension of the continuous state variables and h is the window size used in the

discretization. The bias, on the hand, is of the magnitude of
√
Th2.

√
T consistency of the parameter

estimator requires than both the variance and the bias decrease to zero as the sample size increases to∞. It

can easily be shown that this is impossible, however, when d is larger than 4.

In this paper, we consider the problem of semiparametric estimation of a dynamic game of incomplete

information similar to models discussed by Pakes, Ostrovsky and Berry (2003), Aguirregabiria and Mira

(2002), Pesendorfer and Schmidt­Dengler (2003) and Bajari, Benkard and Levin (2003). As in these earlier

papers, the goal of estimation is the recovery of a finite number of parameters in the players’ period utility

functions. Estimation takes place in four steps and, like the earlier literature imposes a fairly low com­

putational burden. In the first step, the econometrician uses sieve methods to nonparametrically estimate

choice probabilities as a function of the state variables. (See Ai and Chen (2003) and Chen (2005)). In

the second step, using standard formulas that relate choice probabilities to choice­specific value functions,

the econometrician recovers an estimate of the choice­specific value function. (See Hotz and Miller (1993)

and Aguirregabiria and Mira (2002)). In the third step, the econometrician generates choice­specific value

functions consistent with a guess about the parameters of the period utility function. In the final step, the

econometrician minimizes the distance between the choice­specific value functions derived in the second

and third steps.

While the construction of our estimator is in many ways inspired by insights from the earlier literature,

our approach to establishing the asymptotic properties of the estimator is quite distinct. Building on the

analysis of Newey (1994), we prove that our estimators are
√
T consistent and asymptotically normal even

if the first stage is estimated nonparametrically. For expositional simplicity, we consider the case of period
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utility functions that are linear in the parameters as in Bajari, Benkard and Levin (2003). However, we

demonstrate in the last section that our methods can be generalized to models that do not impose this

assumption.

Finally, we consider the problem of identification. Nonparametric identification results for dynamic dis­

crete games are developed by Aguirregabiria and Mira (2002) and Pesendorfer and Schmidt­Dengler (2003)

in the context of discrete state space models. Recent works by Heckman and Navarro (2005) and Aguir­

regabiria (2005) present identification results for dynamic discrete choice models allowing for continuous

state variables. In general, the class of models we study is not identified for general period return functions.

We follow Bajari, Hong and Ryan (2004) and Bajari and Krainer (2004), we demonstrate that if appropriate

exclusion restrictions are made on payoffs identification is possible under fairly weak assumptions about

the nature of payoffs.

2 The Model.

The model is an infinitely repeated game of incomplete information. We restrict attention to stationary

environments and Markov perfect equilibrium.2 In the model, there are a finite number of players i =

1, ..., n and an infinite number of discrete time periods T = 1, ...,∞. During each time period, players

simultaneously choose an action ai ∈ {0, 1, . . . ,K} out of a finite set. We restrict players to have the same

set of actions for notational simplicity. However, all of our results will generalize to the case where all

players have different finite sets of actions. Let A = {0, 1, . . . ,K}n denote the vector of possible actions

for all players and let a = (a1, ..., an) denote a generic element of A. As is common in the literature,

we shall let a−i = (a1, ...ai−1, ai+1, ..., an) denote a vector of strategies for all players excluding player i.

There are no mixed strategies since with probability one players will have a unique best response.

Let si ∈ Si denote the state variable for player i which is common knowledge to all players in the game.

The state variable is assumed to be a real valued vector, but unlike most of the previous literature, Si is not

required to be a finite set. Let S = ΠiSi and let s = (s1, ..., sn) ∈ S denote a vector of state variables

for all n players. For each agent, there are also K + 1 state variables which we label as ²i(ai) which are

private information. These state variables are distributed i.i.d. across time periods, agents and actions. Let

²i denote the 1×(K + 1) vector of the individual ²i(ai). The density of ²i(ai) will be denoted as f(²i(ai)),

however, we shall sometimes abuse notation and denote the density for εi = (εi(0), ..., εi(K)) as f(²i).

Let g(s0|s, a) denote the density for the realization of next periods state, s0, conditional on the current state,
2 Certain aspects of the notation will follow Rust (1994) and Pesendorfer and Schmidt­Dengler (2003).

4



s, and the vector of actions, a.

The period utility function for player i is:

ui(a, s, ²i; θ) = Πi(ai, a−i, s; θ) + ²i(ai). (1)

The utility (1) is identical to commonly used discrete choice models such as the multinomial logit. Player

i’s utility is the sum of two terms. The first term, Πi(ai, a−i, s; θ) is a deterministic function of the players’

actions a = (ai, a−i), the state, s = (s1, ..., sn) which depends on the parameters θ. In the previous

literature, Πi(ai, a−i, s; θ) has been a parameterized as a linear combination of the actions and states. The

second term, ²i(ai), is i’s private information which is commonly interpreted as an unobserved state variable

(see Rust (1994)). In many applications, this will be drawn from an extreme value distribution as in the

logit model.

In what follows, we shall assume that Πi(a, st; θ) is a linear function of θ. Suppose that the “determin­

istic” part of utility takes the form:

Πi(a, st; θ) = Φi(ai, a−i, s)
0θ (2)

where Φi(ai, a−i, s) = (µ1(ai, a−i, s), ..., µl(ai, a−i, s)) is a collection of l basis functions and Πi(a, st; θ)

is formed as the linear combination of this basis. This assumption may initially seem quite restrictive. We

shall impose this restriction for three reasons. The first is that this will generate a considerable savings in

terms of both our notation. The second is that in almost all related applications in the literature payoffs

are assumed to be linear. Indeed, if the set of basis functions is sufficiently rich, (2) can approximate a

continuous utility function arbitrarily well. We invoke the linearity assumption primarily to simplify the

exposition of the estimator. In Section 5, we formally discuss extensions of the estimator to the case where

utility is nonlinear in θ.

Player i’s decision rule is a function ai = δi(s, ²i). Note that the decision rule is not indexed by time

because of the Markovian assumption. Also, i’s decision does not depend on ²−i, since these shocks are

private information to the other players in the game. Define σi(ai|s) as:

σi(ai = k|s) =
Z
1 {δi(s, ²i) = k} f(²i)d²i. (3)

In the above expression, 1 {δi(s, ²i) = k} is the indicator function that player ı́’s action is k given the vector

of state variable (s, ²i). Therefore, σi(ai = k|s) is the distribution of i’s actions conditional on the state

variables that are public information. We will define the distribution of a given s as σ(a|s) = Πni=1σ(ai|s).
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Next define πi(ai, s, ²i; θ) as:

πi(ai, s, ²i; θ) =
X
a−i

Πi(ai, a−i, s, θ)σ−i(a−i|s) + ²i(ai) (4)

where σ−i(a−i|s) = Πj 6=iσj(aj |s). (5)

In (4), πi(ai, s, ²i; θ) is player i’s expect utility from choosing ai when the vector of parameters is θ. Since

i does not know the private information shocks, ²j for the other players, his beliefs about their actions are

given by σ−i(a−i|s).

Players maximize expected discounted utility using the discount factor β. Given a state s and private

information ²i, player i’s value function is:

Wi(s, ²i;σi,σ−i) = max
ai∈Ai

⎧⎨⎩πi(ai, s, ²i; θ) + β

Z X
a−i

Wi(s
0, ²0i;σi,σ−i)g(s

0|s, ai, a−i)σ−i(a−i|s)f(²0i)d²0i

⎫⎬⎭
(6)

The optimal choice of ai depends on the expected period utility, πi(ai, s, ²i; θ) plus the discounted contin­

uation value. Note that the term
P
a−i
g(s0|s, ai, a−i)σ−i(a−i|s) is the density for the state variable in the

next period given that player i chooses the action ai today.

Definition: A Markov Perfect Equilibrium is a collection of decision rules δi(s, ²i), i = 1, ..., n such
that for all i, all s and all ²i, δi(s, ²i) maximizes Wi(s, ²i;σi,σ−i) where σ−i(a−i|s) is given by (3)
and (5).

2.1 Expected and Choice­Specific Value Functions.

Following Rust (1994), we will next define the expected and choice­specific value functions. The expected

value function, Vi(s) is defined as the expected value ofWi(s, ²i) marginalizing out ²i. It follows from (6)

that:

Vi(s) =
X
a∈A

σ(a|s)Πi(a, s; θ) +
KX
k=0

E(²i(ai)|ai = k is chosen, s)σi(ai = k|s) (7)

+β

Z X
a∈A

Vi(s
0)g(s0|s, a)σ(a|s)ds0.

The expected value function is defined recursively as a sum of three terms. The first term,
P
a∈A σ(a|s)Πi(a, s; θ),

is the expected value of the deterministic part of the period return function. The second term,
PK
k=0 E(²i(ai)|ai =

k is chosen, s)σi(ai = k|s), is the expected value of the error term conditional on the chosen action ai = k
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and the state s. The third term, β
P
a∈A Vi(s

0)g(s0|s, a)σ(a|s), is the expected discounted continuation

value.

Let the choice­specific value function, Vi(ai, s) be defined as:

Vi(ai, s) =
X
a−i

σ(ai, a−i)Πi(ai, a−i, s, θ) + β

Z X
a−i

Vi(s
0)g(s0|s, a)σ(a−i|s)ds0

The choice­specific value function is the expected utility that the agent received from taking the action ai

in the current period and reverting to the to the optimal action in the future periods. Note that the choice­

specific value function, however, does not include the error term in the period return function
PK
k=0E(²i(ai)|ai =

k is chosen, s)σi(ai = k|s).

2.2 Choice Probabilities and Choice­Specific Value Functions.

Arguing as in Rust (1994), it is straightforward to show that the equilibrium in our model must satisfy:

δi(s, ²i) = k if and only if Vi(k, s) + ²i(k) > Vi(k
0, s) + ²i(k

0) for all k0 6= k. (8)

The choice­specific value function is useful since it allows us to characterize the optimal decision rule in

our fully dynamic model in an analogous way as in a static discrete choice model. That is, action k is

chosen if and only if the choice­specific value function and error term associated with k is greater than the

analogous values for k0 6= k.

An implication of (8) is that the equilibrium choice probabilities σi(a|s) must satisfy:

σi(ai|s) = Pr {²i(ai) + Vi(ai, s)− Vi(0, s) > ²i(k) + Vi(k, s)− Vi(0, s), ∀k = 0, . . . ,K, k 6= ai} (9)

Equation (9) is a simple consequence of (8). The equilibrium probability that action ai is chosen is precisely

the probability that inequality (8) holds. Since the inequalities (8) depend only on the differences between

the choice­specific value functions, we can subtract Vi(0, s) from both sides.

For example, suppose that we generate ²i(ai) from an extreme value distribution as in the logit model.

Then:

σi(ai|s) =
exp(Vi(ai, s)− Vi(0, s))PK
k=0 exp(Vi(k, s)− Vi(0, s))

(10)

A key insight emphasized by Hotz and Miller (1993) is that equation (10) implies that the equilibrium choice

probabilities, σi(ai|s), have a one­to­one relationship to the choice­specific value functions, Vi(ai, s) −
Vi(0, s). Simple algebra implies that for any k, k0:

log (σi(k|s))− log
¡
σi(k

0|s)
¢
= Vi(k, s)− Vi(k0, s)
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This equation is central is the estimation algorithms proposed by Aguirregabiria and Mira (2002) and Pe­

sendorfer and Schmidt­Dengler (2003). It will also play a crucial role in the algorithm that we discuss

below.

The one­to­one mapping between choice probabilities and choice­specific value functions holds more

generally than in just the simple case of the logit model. Evidently, the mapping holds whenever the

distribution of ²i has full support. We let Γ : {0, ...,K} × S → [0, 1] denote the map in general from

choice­specific value functions to choice probabilities, i.e.

(σi(0|s), ...,σi(K|s)) = Γ (Vi(1, s)− Vi(0, s), ...Vi(K, s)− Vi(0, s))

We will denote the inverse mapping by Ω:

(Vi(1, s)− Vi(0, s), ...Vi(K, s)− Vi(0, s)) = Ωi (σi(0|s), ...,σi(K|s)) . (11)

2.3 Outline of Estimation Strategy.

Estimation proceeds in four steps. In the first step, the economist estimates σi(k|s) exibly using a sieve

estimation strategy. In the second step, the economist evaluates equation (11) using the estimated choice

probabilities. This generates an estimate of the choice­specific value functions that is consistent with the

observed choices in the data. In the third step, given a guess θ of the true value of the utility parameters,

θ0, the economist evaluates equations similar to (7). This generates choice­specific value functions that are

consistent with θ. In the fourth step, the economist then minimizes the distance between the choice­specific

value functions found in the second and third steps. We will describe the estimator in detail in what follows

below.

2.3.1 First Step: Estimation of Choice Probabilities.

Suppose that the economist has access to time series data on t = 1, ..., T repetitions of the dynamic game.

During each time period, the economist observes the actions and state variables for each agent (ai,t, si,t).

In the first step we form an estimate bσi(k|s) of σi(k|s) using sieve series expansions (Ai and Chen (2003)).

Let s = (sd, sc) denote the discrete and continuous components of s. Also let #d and #c denote the

dimension of sd and sc.

Let {ql(sc), l = 1, 2, . . .} denote a sequence of known basis functions that can approximate a real valued

measurable function of sc arbitrarily well for a sufficiently large value of l. The sieve could be formed

using splines, Fourier Series or orthogonal polynomials (see Chen (2005) for a survey of sieve estimation).
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We let the basis become increasingly exible as T becomes large. Let κ(T) denote the number of basis

functions to be used when the sample size is T. We shall assume that κ(T ) → ∞, κ(T )/T → 0 at an

appropriate rate to be specified below. Denote the 1× κ(T) vector of basis functions as

qκ(T )(sc) = (q1(s
c), . . . , qκ(T )(s

c)), (12)

Let sd be a particular value of the discrete state variables. Define the vectorQT (sd) as:

QT (s
d) = (qκ(T )(sc1)1(s

d
1 = s

d), . . . , qκ(T )(scT )1(s
d
T = s

d)).

The number of elements in this vector is κ(T ) times the number of time periods T times the number of

discrete values that sd can assume times κ(T ). The indicator function 1(sdt = s
d) is equal to one if the value

of the discrete state in the data is equal to sd and zero otherwise. Thus, the vector QT (sd) is comprised

of the individual qκ(T )(sct) for t = 1, ..., T in those periods when the state is sd and a zero vector of length

κ(T ) in periods t when sdt 6= sd.

One potential sieve estimator for bσi(k|s), k = 1, . . . ,K is a linear probability model, i.e.:

bσi(k|s) = TX
t=1

1(ait = k, s
d
t = s

d)qκ(T )(sct )(QT (s
d)0QT (s

d))−1qκ(T )(sc). (13)

Equation (13) is the standard formula for a linear probability model where the regressors are the sieve func­

tions κ(T) in equation (12). The sieve estimator bσi(k|s) will converge to the true σi(k|s) at a nonparamet­

ric rate which is slower than
√
T . This results in no loss of generality as long as we define the sieve basis

functions properly to include dummy variables that indicate the discrete state variables. In what follows, we

shall assume for the ease of exposition that s = sc. Since there are a finite number of discrete states, our

rate of convergence and asymptotic theory will be unaffected in the more general case where s = (sc, sd).

Other link functions could also be used. For example, we could estimate a sieve logit model in the first step.

The asymptotic theory is notationally simpler for the case of a sieve linear probability model. However, a

similar strategy could be used to establish our asymptotic results for alternative estimators in the first step.

The first step estimator implicitly abstracts away from problems that might be caused by the multiplicity

of equilibrium. If our data consists of a time series for a fixed set of agents, multiplicity is not an issue.

However, in many standard applications in empirical industrial organization the data are pooled across

markets (see, for example, the entry models of Bresnahan and Reiss (1991,1992), Berry (1992) and Ciliberto

and Tamer (2005)). Since it is likely that different markets may be in different equilibria, lack of uniqueness

could be an issue. In this case, it is not possible even in principal to recover a single rule σi(k|s) that

describes behavior in all markets.
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In practice, there are two potential solutions to the multiplicity problem. The first is to use estimators that

explicitly accommodate multiplicity as in Bjorn and Vuong (1984), Bresnahan and Reiss (1990,1991), Berry

(1992), Moro (2003), Ackerberg and Gowrisankaran (2002), Tamer (2002), Sweeting (2004), Ciliberto and

Tamer (2005) or Bajari, Hong and Ryan (2005). Unfortunately, many of these estimators either require the

econometrician to be able to analytically characterize certain properties of the equilibrium or to compute

the entire equilibrium set. These strategies do not generalize to the class of dynamic models that we are

considering.

The second approach to dealing with multiplicity is to assume uniqueness. This is a strong assumption,

as even single agent problems can generate multiple solutions. Typically, very strong strict convexity and

concavity assumptions are required for uniqueness in many single agent models. The results of Komunjer

and Echenique (2005) suggest that many standard regressions, ranging from estimates of production func­

tions to the returns from education are highly problematic if multiplicity is present. The basic idea is that

the observed endogenous variables are determined by how the equilibrium is selected given a fixed set of

primitives. This source of uncertainty is rarely accounted for in either econometric theory or applied econo­

metrics. While the uniqueness assumption is potentially strong, we note that it is made implicitly in many

applications. We shall make this assumption in what follows, but not that accounting for multiplicity im­

portant topic for future research.

2.3.2 Second Step: Inversion.

In our second step, we take as given our estimates bσi(k|s) of the equilibrium choice probabilities. We

then form an estimate of the choice­specific value functions, V̂i(k, st) − V̂i(0, st) for k = 1, ...,K and

t = 1, ..., T . This can be done by evaluating (11) using bσi(k|s) in place of σi(k|s). That is:³bVi(1, st)− bVi(0, st), ...bVi(K, st)− bVi(0, st)´ = Φi (bσi(0|st), ..., bσi(K|st))
In the specific case of the logit model, this inversion would simply be:

V̂i(k, st)− V̂i(0, st) = log (bσi(k|st))− log (bσi(0|st)) (14)

In an alternative model, such as one with normal shocks, we would need to solve a nonlinear system.

In our second step, we will also want to compute bE(²i(ai)|ai is chosen,st) for all i and all t. This is an

estimate of the expected value of the error term conditional on the action and the observed value of the state

variable. Fix i and st and draw r = 1, ..., R simulated values of ²(r)i of the stochastic preference shocks.
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Since the distribution of the preference shocks is known, this can easily be done. Equation (9) implies that

given choice­specific value functions V̂i(k, st)− V̂i(0, st):

a
(r)
i = δ(st, ²

(r)
i ) if and only if ²(r)i (ai) +

bVi(ai, s)− bVi(0, s) >
²
(r)
i (k) +

bVi(k, s)− bVi(0, s),∀k = 0, . . . , K, k 6= ai.

By taking the average value of ²(r)i when a(r)i = δ(st, ²
(r)
i ), we can estimate bE(²i(ai)|ai is chosen,st). In

principal, such a simulations could introduce error into our estimator. However, we will assume that the

investigator has access to a sufficiently powerful computer to simulate the objects so that this source of error

can be effectively ignored.

2.3.3 Third Step: Computation of Choice­Specific Value Function.

In the third step, we find choice­specific value functions that are consistent with a particular value of θ. In

what follows, we make the assumption (2) that utility is a linear function of the underlying parameters θ.

Define

Λi(s) =
X
k

bE(²i(ai)|ai = k is chosen, s)bσi(ai = k|s), (15)

Φi(s) =

Z X
a

Φi(a, s)bσ(a|s)ds, (16)

Λi(s) = Λi(s) + βEΛi(s
0|s), (17)

Φi(s) = Φi(s) + βEΦi(s
0|s). (18)

In equation (15), Λi(s) is the expected value of the error term after we have marginalized out player i’s

action ai. The function Φi(s) is the expected value of the basis functions after we have marginalized out

the actions of all players. Equations (17) and (18) has the same recursive structure as a Bellman’s equation.

The term EΛi(s0|s) is defined as the expected value of Λi(s0) given that the current state is s:

EΛi(s
0|s) =

Z X
a

Λi(s
0)g(s0|s, a)σ(a)ds. (19)

The term EΦi(s
0|s) is defined similarly.

Let V ∗i (ai, s; θ) denote the choice­specific value function. Using standard arguments in dynamic pro­
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gramming (see Rust (1994)), it can easily be shown that:

V ∗i (ai, s; θ) = Φi(ai, s)
0θ + βeΛi(ai, s) + βeΦi(ai, s)0θ, (20)

where Φi(ai, s) = Ê [Φi(ai, a−i, s)|ai, s] (21)eΦi(ai, s) = Ê[Φi(s
0)|ai, s] (22)eΛi(ai, s) = Ê

£
Λ̄i(s

0)|ai, s
¤
. (23)

In equations (21)­(23) Ê will denote a consistent “estimate” of the objects in parentheses. For instance,eΛi(ai, s) will denote an estimate of Λ̄i(s0) given that the current action is ai and the state is equal to s.

Equation (20) says that the choice­specific value function is equal to the sum of three terms. The first term,

Φi(ai, s)
0θ is the expected value of Φi(ai, a−i, s) given that player i’s action is ai and the state is s. The

second term, βeΛi(ai, s) is the expected continuation value of future values of the error term in equation

(17) given that the current choice is ai. The final term, βeΦi(ai, s)0θ, is the expected discounted value of the

deterministic part of utility, given that the current choice is ai.

We wish to avoid the computational burden of simulating objects similar to (19) or using a contraction

mapping to directly solve equations (17)­(18). Therefore, we will use a sieve estimator to estimate the right

hand sides of (21)­(23). For example, to estimate the right hand side of (23) we regress Λ̄i(st+1) on Λ̄i(st)

conditional on the fact that the action at time t is ai. The fitted value of the regression is our consistent

estimate of the right hand sides of (23).

Let QT (ai) be formed in a similar way to QT in step one, except that only observations in which the

choice of agent i is equal to ai are used. Instead of having T rows, QT (ai) only has number of rows equal

to the total number of observations with realized choice ai. We then form our estimates by:

Ê
£
Λi(s

0)|ai, s
¤
= qκ(T )(s)0

¡
QT (ai)

0QT (ai)
¢−1 TX

τ=1,aiτ=ai

qκ(T )(sτ )Λi(sτ+1). (24)

Ê [Φi(ai, a−i, s)|ai, s] = qκ(T )(s)0
¡
QT (ai)

0QT (ai)
¢−1 TX

τ=1,aiτ=ai

qκ(T )(sτ )Φi(aiτ , a−iτ , sτ ). (25)

Ê
£
Φi(s

0)|ai, s
¤
= qκ(T )(s)0

¡
QT (ai)

0QT (ai)
¢−1 TX

τ=1,aiτ=ai

qκ(T )(sτ )Φi(sτ+1). (26)

Given the above equations, value function iteration is not required to solve for Λi(st) or Φi(st) for

12



t = 1, ..., T . To see why, substituting (24) into equation (17) yields to following system:

Λ̄i(st)− βqκ(T )(st)
0 ¡Q0T (ai)QT (ai)¢−1 TX

τ=1,aiτ=ai

qκ(T )(sτ )Λi(sτ+1) = Λi(st).

Suppose that we estimate Λi(st) by simulating (15). Substitute this simulation estimate bΛi(st) of Λi(st)

into the above to yield:

Λ̄i(st)− βqκ(T )(st)
0 ¡Q0TQT ¢−1 T−1X

τ=1

qκ(T )(sτ )Λ̄i(sτ+1) = bΛi(st).
AT

⎛⎜⎝ Λ̄i(s1)
...

Λ̄i(sT )

⎞⎟⎠ =

⎛⎜⎝ bΛi(s1)
...bΛi(sT )

⎞⎟⎠
It is straightforward to demonstrate that the T by T matrix AT is invertible and Λ̄i(st) can be solved for

uniquely. 3 By analogous arguments, Φi(st), t = 1, ..., T can be computed as the solution to a linear

system.

Since both (17) and (18) can be solved as a linear system, it follows that V ∗i (st; θ) = Λi(st) +Φi(st)
0θ

for t = 1, ..., T can be solved for as a linear function of θ. We note that neither Λi(st) nor Φi(st) depend

on θ. Thus, while it may initially take some effort to compute these objects, once these 2T scalars are

computed, we never need to compute them again in order to solve for V ∗i (st; θ)!

We note that other strategies are possible for finding the expected choice­specific value functions. For

instance, one could simulate continuation values as in Bajari, Benkard and Levin (2003) in order to avoid

the need to invert the T ×T matrix. In samples with many observations, this may be a preferable procedure

since less memory is required.

2.3.4 Final Step: Minimization.

The final step that we perform is to find a value of θ which minimizes the distance between the choice­

specific value functions found in the second and third steps. As before we will use V̂T (s) to denote the

vector of functions recovered from inverting the vector of conditional choice probabilities, for each s:

bVT (s) = hV̂i(k, s)− V̂i(0, s), , k = 1, . . . ,K, i = 1, . . . , n
i
, (27)

3 If we examine the coefficient matrix on Λ̄i(st), t = 1, . . . , T , we will easily see that it is a nonsingular and invertible matrix.
Alternatively, we can use an iterative procedure to solve for Λ̄i(st) for all t. It is not difficult to see that for
each T , this defines a contraction mapping in the integrated square norm 1/T

PT
t=1 Λ̄i(st), so that the value

function iteration procedure will converge to a unique fixed point.
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and let Λ̃∗T (s) denote the column vector of functions computed in our third step which we define as:

Λ̂∗T (s) = β
h
Λ̃i(k, s)− Λ̃i(0, s), k = 1, . . . , K, i = 1, . . . , n

i
.

Also, define Φ̂∗T (s) by

Φ̂∗T (s) =
h
Φi(k, s)−Φi(0, s) + β

³
Φ̃i(k, s)− Φ̃i(0, s)

´
, k = 1, . . . , K, i = 1, . . . , n

i
. (28)

Let A(s) be a dim(θ)× (n×K) dimension matrix of instruments which is sufficiently rich to identify θ.

We can then define our parameter estimate as:

bθ = argmin
θ

1

T

TX
t=1

A(st)
h
V̂T (st)− Λ̂∗(st)− Φ̂∗T (st)0θ

i
= 0. (29)

The estimator θ̂ then can be written as

θ̂ =

Ã
1

T

TX
t=1

A(st)Φ̂
∗
T (st)

0
!−1

1

T

TX
t=1

A(st)
h
V̂T (st)− Λ̂∗(st)

i
.

3 Practical Inference

The theory of sieve approximation provides rigorous conditions for controlling the bias term from the fact

that the first stage is approximated using a finite number of basis functions. It turns out, as we shall

rigorously justify in the next sections, that the statistical properties of our estimator can be performed as

if the first stage was estimated parametrically. In this section we describe in details how one can perform

practical inference to obtain a consistent estimate of the confidence intervals and standard errors. In the

next section, we will discuss the formal theory of semiparametric variances and the required regularity

conditions.

In equation (29), a simple approach would be to define our instruments as A(st) = Φ̂∗T (st). This would

be equivalent to running a least squares regressions to recover θ̂ by minimizing

1

T

TX
t=1

h
V̂T (st)− Λ̂∗(st)− Φ̂∗T (st)0θ

i0 h
V̂T (st)− Λ̂∗(st)− Φ̂∗T (st)0θ

i
.

This is equivalent to choosing the instrument matrix A(st) = Φ̂∗T (st), and one can compute θ̂ analytically

by

θ̂ =

Ã
1

T

TX
t=1

Φ̂∗T (st)Φ̂
∗
T (st)

0
!−1

1

T

TX
t=1

Φ̂∗T (st)
h
V̂T (st)− Λ̂∗(st)

i
. (30)
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In practice, it is possible to use bootstrap or other resampling schemes to obtain consistent standard errors.

When T is small, the value function iteration step can be solved by just inverting a T × T matrix, the

computation cost of repeatedly computing θ̂ should not be overly demanding.

In what follows, we describe a method for computing standard errors that does not require resampling.

This can potentially save computational time if T is large and difficult to store in the memory of the re­

searcher’s computer. By equation (30) it follows that:

√
T
³
θ̂ − θ0

´
=

Ã
1

T

TX
t=1

A(st)Φ̂
∗
T (st)

0
!−1

1√
T

TX
t=1

A(st)
h
V̂T (st)− Λ̂∗(st)− Φ̂∗T (st)0θ0

i
. (31)

By standard arguments, the variance of
√
T
³
θ̂ − θ0

´
can be consistently estimated by Ĝ−1T Ω̂T Ĝ

−10
T , where

ĜT =

Ã
1

T

TX
t=1

A(st)Φ̂
∗
T (st)

0
!
,

and Ω̂T is a consistent estimate of the variance of

`(θ0) =
1√
T

TX
t=1

A(st)
h
V̂T (st)− Λ̂∗(st)− Φ̂∗T (st)0θ0

i
.

To obtain Ω̂T we examine the structure of `(θ0). Let VT (st), Λ∗(st) and Φ∗T (st) denote the population

analog of V̂T (st), Λ̂∗(st) and Φ̂∗T (st). First we note that

VT (st)− Λ∗(st)−Φ∗T (st)0θ0 ≡ 0

as an identity relation. Then we can rewrite `(θ0) as

1√
T

TX
t=1

A(st)

∙
V̂T (st)− VT (st)− (Λ̂∗(st)− Λ∗(st))−

³
Φ̂∗T (st)−Φ∗T (st)

´0
θ0

¸
.

The estimation uncertainty in `(θ0) all comes from the first stage estimation errors in estimating V̂T (st),

Λ̂∗T (st) and Φ̂∗T (st). To describe this, we will use Ψ̂T (st)−Ψ(st) to denote any one of the elements ofh
V̂T (st)− VT (st), Λ̂∗(st)− Λ∗(st), Φ̂∗T (st)− Φ∗T (st)

i
.

In a parametric setup for the first stage where the parametric functional form is assumed to be correctly

specified, Ψ̂T (st) − Ψ(st) depends on a set of least squares regression coefficients α, such that Ψ∗T (st) =

Ψ∗T (st;α0), and Ψ̂
∗
T (st) = Ψ̂

∗
T (st, α̂). Each component of `(θ0) is then approximately distributed as

ŴT

√
T (α̂− α0) + op(1).
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where the first component

ŴT =
1

T

TX
t=1

A(st)
∂Ψ̂∗T (st; α̂)

∂α
. (32)

can be evaluated by numerical derivatives (The appendix gives more details about computing ŴT ). The

variance of
√
T (θ̂−θ0) can then be estimated by Ĝ−1T ŴT Σ̂Ŵ

0
T Ĝ

−10
T , where Σ̂ is an estimate of the variance

of
√
T (α̂ − α0). Since α̂ is just a set of least square regression coefficients. Σ̂ can easily be computed by

either bootstrapping, or Huber­White robust standard error type calculation. In the later case, let yt denote

the vector of the collection of dependent variables used in these linear regression, such as Λ̄i(st+1) for all

i, and use et to denote the vector of residuals in these linear regressions. Then we can estimate

Σ̂ = I ⊗
¡
Q0TQT

¢−1 1
T

TX
t=1

ete
0
t ⊗ qκ(T )(st)qκ(T )(st)0I ⊗

¡
Q0TQT

¢−1
.

Naturally, one can also estimate Σ by the empirical variance covariance matrix of bootstrapped α̂. The next

question will be related to the efficient choice of AT (st), the instrument matrix. We can choose AT (st) to

minimize the asymptotic variance of
√
T (θ̂− θ0), which is

¡
E
£
AT (s)Φ

∗
T (s)

0¤¢−1E ∙AT (s)∂Ψ∗T (s;α)
∂α

¸
ΣE

∙
∂Ψ∗T (s;α)

∂α

0
AT (s)

0
¸ ¡
E
£
Φ∗T (s)AT (s)

0¤¢−1 .
With a correctly specified parametric first step α, it is not immediate to simplify the solution for the optimal

instruments AT (s), except in the case where s are all discrete, in which case AT (s) can be solved by a

system of linear equations. As we will see in the parametric case it is easier to obtain the optimal AT (s) in

the general case including continuous state variables s.

4 Semiparametric Variance

The estimator that we consider falls within the class of semiparametric estimators considered by Newey

(1994). He demonstrates that, under appropriate regularity conditions, the second stage asymptotic variance

will be independent of the particular choice of nonparametric method used to estimate the first stage (e.g.

sieve or kernel). This suggests that we can derive the form of the semiparametric asymptotic variance of our

estimator that is independent of the nonparametric methods that are used to estimate the choice probabilities.

Deriving this semiparametric variance is important because it validates the practical inference methods we

described in the previous section. The validity of these parametric inference methods depends on both the

knowledge of the limit semiparametric variances, and a set of regularity conditions that require the choice

probabilities and transition probabilities to be sufficiently smooth functions of the state variables.
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We are concerned with the asymptotic variance of the estimator defined in (31), where the first step

parametric estimation is considered to be a sieve approximation that expands as a function of the sample

size. Since Φ̂∗T (st) consistently estimates Φ∗T (st), it should be intuitively clear that the first component of

the Jacobian term converges in probability: ĜT
p−→ G, where G = E [A(st)Φ∗T (st)] . If we can derive the

asymptotic variance Ω of

1√
T

TX
t=1

m(st,bh) = 1√
T

TX
t=1

A(st)
hbVT (st)− Λ̂∗(st)− Φ̂∗T (st)0θi

then it follows that
√
T
³
θ̂ − θ0

´
d−→ N

¡
0,G−1ΩG−1

0¢
. In the above ĥ is used to denote the set of

sieve least square projections that are used to estimate h, the set of conditional choice probabilities and

conditional transition processes given the state variables, that are used in forming

Ψ̂∗T (st) = V̂T (st)− Λ̂∗(st)− Φ̂∗T (st)0θ0.

For this purpose, the following proposition verifies the linearization requirement in Newey (1994) for the

dynamic discrete model that we considered:

Proposition 1 There exists a set of linear functionalsD(st, h) such that for any parametric sub­path h(θ)
through the space of nonparametric functions h:

∂

∂θ
Em (st, h(θ)) =

∂

∂θ
ED (st, h(θ)) ,

and we can find a set of functions δ(st) such that for all h:

ED(st, h) = Eδ(st)h(st).

The complete set of functions h, the linear functions D(z, h), and the set of inuence functions δ(z), are
given in the next section.

Based on the calculations that lead to this proposition, it then follows immediately from proposition 4 in

Newey (1994) that Ω = V ar(α(st)), where α(st) = δ(st)⊗ (yt−h(st)), and yt is the vector of dependent

variables used in the first stage linear regressions, and

h(st) = E (yt|st) .

In the previous section about practical inference, given that α̂− α is essentially

(Q0TQT )
−1

TX
t=1

(yt − hα(st))⊗ qκ(T )(st),
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where hα(st) is the parametric approximation of h(st), in (32) we are effectively estimating α(st) by the

linear square projection of

α̂(st) = ŴT

¡
Q0TQT

¢−1
qκ(T )(st)⊗ (yt − hα(st)) .

This is because the ŴT in (32) is approximately

1

T

TX
t=1

D
³
st, q

κ(T )(·)
´
=
1

T

TX
t=1

δ(st)q
κ(T )(st),

therefore the first part ŴT (Q0TQT )
−1 qκ(T )(st) in α̂(st), being the fitted value of a least square projection

of δ(st) on qκ(T )(st), should be close to δ(st).

The verification of the semiparametric asymptotic variance indicates that other approximations can be

used to estimate the asymptotic variance of θ̂. For example, a kernel based nonparametric regression or

other sieve basis functions can be used to consistently estimate h(st) and δ(st), which are feasibly given the

analytical forms of δ(st) derived in the appendix. They can be chosen based on computational tractability

and the plausibility of the results.

4.1 Semiparametric Inuence Functions

This subsection derives the linear asymptotic inuence functionsD(st, h) and δ(st) that are used in propo­

sition 1. This subsection presumes familiarity with the arguments in Newey (1994) and can be skipped by

those readers interested in implementation issues and not the proof of proposition 1. We will denote the

collection of the inuence functions as

hJ =
¡
hj , j = 1, . . . , J

¢
,

where each set of hj(st) corresponds to a step in the nonparametric estimations before the last stage of

fitting the parametric utility functions.

The inuence function h1(st) The function h1(st) corresponds to the estimation of σ̂i(k|s) in (14).

Since the functions σ̂i(k|s) enter the calculations of V̂T (st) through (14) and Λ̂∗T (st) through (15), (17),

(23) and (27). Hence in correspondence to V̂T (st) and Λ̂∗T (st) we can separate

D(st, h
1) = D1(st, h

1) +D2(st, h
1).

Define ∂Φ(σ)
∂σ (st) to be the (K × n) by (K)× n block diagonal derivative matrix of V̂T (st) with respect to

all σi(k|st) of equation (14), and define σ̂(st) to be the K × n vector of the collections of all σ̂i(k|st) for
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all i and all k, then

D1(st, h
1) = A(st)

∂Φ(σ)

∂σ
(st)σ̂(st).

The corresponding linear inuence function is then

A(st)
∂Φ(σ)

∂σ
(st) (at − σ̂(st))

with δ(st) = A(st)
∂Φ(σ)
∂σ (st) and at is the stacked vector of ait for all i = 1, . . . , n.

Next define ∂Λ(σ)
∂σ (st) to be the n by K × n derivative of (15). Note that ∂Λ(σ)

∂σ (st), (17), (23) and (27)

define a (system of) linear functional from σ(st) to Λ̂∗T (st). Denote this linear mapping by Λ̂∗T (σ̂(·)) (st):

D2(st, h
1) = A(st)Λ̂

∗
T (σ̂(·)) (st).

The linear inuence function for D2(st, h1) will be derived below.

The inuence function h2(st) The inuence function h2(st) corresponds to the conditional expectation

operator in (17) and (18) that are used to compute the fixed point functions Λ̄i(s) and Φ̄i(s). The transfor­

mations in (17) and (18) are nonlinear but can be linearized as follows. Let Ψ to denote generically either

Λ or Φ. We can replace (17) and (18) by

Ψ̄i(s)−Ψ0i (s) = β
h
Ê(Ψ0i (s

0)|s)− E0(Ψ0i (s0)|s)
i
+ βE

£
0Ψ̄i(s

0)−Ψ0i (s0)|s
¤
. (33)

This defines a linear mapping from Ê(Ψ0i (s
0)|s) to Ψ̄i(s). Together (33) and (23) and (22) define a linear

mapping from Ê(Ψ0i (s
0)|s) to Ψ̂∗T (s), which was stacked in a vector Ψ̃i(ai, s). Denote this linear transfor­

mation by Ψ̂∗T (Ê[Ψ
0(s0)|·])(st):

D(st, h
2) = A(st)Ψ̂

∗
T

³
Ê
£
Ψ0(s0)|·

¤´
(st).

Its corresponding linear inuence function is also discussed below.

The inuence function h3(st) The inuence function h3(st) corresponds to the conditional expectation

operator in (22) and (23) that are used to compute the choice­specific expectations. Since these are already

linear transformations.

D(st, h
3) = A(st)Ê[Ψ

0(s0)|st, ai],

and the corresponding linear inuence function is therefore

A(st)
³
Ψ0(st+1)− Ê[Ψ0(s0)|st, ai]

´
where δ(st) = A(st).
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The inuence function h4(st) The inuence function h4(st) corresponds to the estimation of

Êa−i [Φi(ai, a−i, s)|ai, s]

in (21). This enters the calculation of Φ̂∗T (st) directly through its first terms in (28). by (21), and also

through the second term in (28) through both (21) the value function iterations (22). Therefore we can

correspondingly partition

D(st, h
4) = D1(st, h

4) +D2(st, h
4),

Obviously, the first component can be written as

D1(st, h
4) = A(st)Ea−t [Φ(at, a−t, st)|at, st] ,

where Ea−t [Φ(at, a−t, st)|at, st] is the stacked vector of Êa−i [Φi(ai, a−i, s)|ait, st].

For the second partD2(st, h4), both (21) and (22) are linear transformations. They define a linear func­

tional from Êa−i [Φi(ai, a−i, s)|ai, s] to Φ̂∗T (st), which we denote by Φ̂∗T
³
Êa−i [Φi(ai, a−i, ·)|ai, ·]

´
(st).

Hence,

D2(st, h
4) = A(st)Φ̂

∗
T

³
Êa−i [Φi(ai, a−i, ·)|ai, ·]

´
(st).

The linear inuence functions forD2(st, h1),D(st, h2), andD2(st, h4). In the above we have explic­

itly given the asymptotic linear inuence function representations forD1(st, h1),D(st, h3) andD1(st, h4).

We are now left to specify the linear inuence functions that correspond to D2(st, h1), D(st, h2), and

D2(st, h
4). These inuence functions have a common structure which we exploit now. This common struc­

ture begins with a value function contraction mapping:

ĝ(st)− βE [ĝ(st+1)|st] = ĥ(st).

In the second step the forward choice­specific conditional expectation of g(st) is computed and instru­

mented, so that we are concerned with the asymptotic representation of the moment conditions:

E [A(st)E [ĝ(st+1)|at = k, st]] .

For ease of exposition, we analyze an equivalent set of moment conditions:

E [A(st)p(ait = k|st)E [ĝ(st+1)|ait = k, st]]

= E [A(st)E [1(ait = k|st)ĝ(st+1)|st]] = E [A(st)1(ait = k|st)ĝ(st+1)] .

In the spirit of Newey (2004), we are looking for a set of functions δ(st) such that we can write

E [A(st)1(ait = k)ĝ(st+1)] = E
h
δ(st)ĥ(st)

i
. (34)
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To describe δ(st), first we define the function

Ã(st) = E [A(st−1)1(ait−1 = k)|st] .

Then we can define δ(st) as the unique function solution to the following contraction mapping:

δ(st)− βE [δ(st−1)|st] = Ã(st). (35)

To see why this satisfies (34), note that we can write its left hand side as

E [E [A(st)1(ait = k)|st+1] ĝ(st+1)] = E
h
Ã(st+1)ĝ(st+1)

i
,

which can also be written E
h
Ã(st)ĝ(st)

i
because of stationarity. Now using the definition of δ(st), this

can be written as

E [(δ(st)− βE [δ(st−1)|st]) ĝ(st)] = Eδ(st)ĝ(st)− βEδ(st−1)ĝ(st)

= Eδ(st)ĝ(st)− βEδ(st)ĝ(st+1) = Eδ(st) [ĝ(st)− βE (ĝ(st+1)|st)] .

The definition of g(st) in (35) then verifies that this is equal to Eδ(st)ĥ(st). With this definition of δ(st),

we can then write the asymptotic linear representation as

δ(st) (yt − h(st))

where yt are the dependent variables used in the construction of h(st) = E(yt|st), including ∂Φ(σ)
∂σ (st)at in

D2(st, h1), βΨ0i (st+1) for D(st, h2), and Φi(ait, a−it, st) in D(st, h4).

The linearity representation functions also allow us to address the issue of efficient choice of instruments.

In general as we show above δ(st) is a linear functional of the instrument functionsA(st), which we denote

δ[A(·)](st). Also let Σ(st) = V ar(yt − h(st)|st) denote the conditional variance matrix of the dependent

variables in the conditional expecation calculations. Then we can in general write the asymptotic variance

in the form of

(EA(st)Φ
∗
T (st))

−1 E
¡
δ[A(·)](st)Σ(st)δ[A(·)](st)0

¢ ¡
EΦ∗T (st)

0A(st)
0¢−1 .

The efficient choice of A(st) minimizes this asymptotic variance, which will equate

(EA(st)Φ
∗
T (st)) = E

¡
δ[A(·)](st)Σ(st)δ[A(·)](st)0

¢
.

Alternatively, we can also choose δ(st) efficiently, noting in turn that A(st) can be written as a linear

functional of δ(st) by inverting the mapping fromA(st) to δ(st). It is straightforward but tedious to describe

the explicit functional form of A(st), because δ[A(·)](st) involves both a simple pointwise derivative and a

value function iteration. We omit such details.
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4.2 Regularity conditions

Newey (1994) provided a set of sufficient conditions that rigorously justify the validity of semiparametric

variances and the validity of the use of seive parametric models to approximate the limiting semiparametric

variance. We verify these regularity conditions for the dynamic model that we study.

The required regularity conditions can be broadly classified into two categories. The first category con­

tains conditions on the sieve functions used and the degree of smoothness of the underlying function that

is estimated nonparametrically, so that the conditional expectations can be estimated at a sufficiently fast

rate of convergence. The second category of regularity conditions requires that the second stage semipara­

metric parameter is a sufficiently smooth functional of the conditional expectation functions that are being

estimated nonparametrically in the first stage.

Assumption 1. For each of the h(s) = hj(s) conditional expectation function that is being estimated
nonparametrically in the first stage,

sup
s∈
|h(s)− hκ(s)| ≤ Cκ−α

where hκ(s) = qκ(s)0 (Eqκ(s)qκ(s)0)−1Eqκ(s)h(s). The class of sieve approximating functions
satisfies the following conditions:

√
T ζ0(κ)

2
h³ κ
T

´
+ κ−2α

i
−→ 0

where ζ0(κ) = supz∈ ||qκ(s)||.

This assumption implies that the first stage nonparametric estimation converges to the truth at a rate

faster than T 1/4 because Newey (1994b) showed that under this assumption:

sup
z∈
|ĥ(z)− h(z)| = Op

µ
ζ0(κ)

∙r
κ

T
+ κ−α

¸¶
.

Assumption 2. For each of the δ(s) = δj(s), define δκ(s) = qκ(s) (Eqκ(s)qκ(s)0)−1Eqκ(s)δ(s).
Then

TE
£
|δ(s)− δκ(s)|2

¤
E
£
|h(s)− hκ(s)|2

¤
→ 0.

In addition, ζ40
κ
T → 0, E (δ(s)− δκ(s))

2 → 0, and

ζ0(κ)
2E (h(s)− hκ(s))2 −→ 0.

Newey (1994) showed that this assumption implies that

√
TED

³
st, ĥ− h

´
=

1√
T

TX
t=1

δ(st)(yt − h(zt)) + op(1).

Note that both of these two assumptions apply generically to similar two step semiparametric models.

Once we made these two assumptions, there is no need to verify them for our model. In contrast, the next
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two assumptions stated below will need to be verified for the model we consider. The contraction mapping

properties turn out to be useful for verifying these assumptions.

Assumption 3.
¡Pκ

k=1 |qk(s)|20
¢1/2 h¡ κ

T

¢1/2
+ κ−α

i
−→ 0, and for each h = hj , D(st, h) satisfies

|D(st, h)−D(st, h0)| ≤ b(st) sup
s
|h(s)− h0(s)|. where Eb(st)

2 <∞.

The first part of this assumption is a condition on the sieve functions and is not model specific. In our

model, the second part of the above assumption is satisfied as long as the instrument matrixA(st) has finite

variance, because of the contraction mapping property. Note that in our modelD(st, h−h0) typically takes

the form of

A(st) (g(st)− g0(st)) ≤ A(st) sup
s
|g(s)− g0(s)|,

where (g(s)− g0(s)) is defined as the unique fixed point solution to the functional iteration:

g(s)− g0(s) = h(s)− h(s0) + βE
£
g(s0)− g0(s0).|s

¤
As long as β < 1, it follows immediately that

sup
s
|g(s)− g0(s)| ≤

1

1− β
|h(s)− h0(s)|.

Hence this assumption is satisfied.

The last assumption requires that the sample moment condition used in our estimation procedure is ap­

proximated well enough by theD(s, h) that are linear functionals of the first stage conditional expectations

h = hj for all j’s.

Assumption 4. For each h = hj ,
√
T sups |m(s, h)−m(s, h0)−D(s, h− h0)| = op(1).

To see why this assumption is satisfied in our model, note that m(st, h) typically takes the form of

A(st)ĝ(st), where ĝ(st) is the solution to the sample value function iteration:

ĝ(s) = ĥ+ βÊ
¡
ĝ(s0)|s

¢
.

The true g0(s) solves the population analog

g0(s) = h0(s) + βE
¡
g0(s

0)|s
¢
.

On the other hand, D(s, h) takes the form of A(st)ḡ(st), where ḡ(s) solves the following iteration:

ḡ(s)− g0(s) = ĥ(s)− h0(s) + β
³
Ê
¡
g0(s

0)|s
¢
−E

¡
g0(s

0)|s
¢´
+ βE

¡
ḡ(s0)− g0(s0)|s

¢
.
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The difference between m(s, h) and D(s, h) hence is driven by the difference ĝ(s) − ḡ(s), which can be

written as

ĝ(s)− ḡ(s) = β
³
Ê(ĝ(s0)− ḡ(s0)|s)

´
+ β

³
Ê
¡
ḡ(s0)− g0(s0)|s

¢
− E

¡
ḡ(s0)− g0(s0)|s

¢´
.

Under the smoothness conditions stated in assumption 1, it is not difficult to show that

sup
s

¯̄̄̄
Ê
¡
ḡ(s0)− g0(s0)|s

¢
− E

¡
ḡ(s0)− g0(s0)|s

¢ ¯̄̄̄
=

µ
ζ0(κ)

∙r
κ

T
+ κ−α

¸¶2
.

and that

βÊ(ĝ(s0)− ḡ(s0)|s) ≤ (β + op(1))E(ĝ(s0)− ḡ(s0)|s).

By combining these, we have therefore shown that

(1− β + op(1)) sup
s

√
T |ĝ(s)− ḡ(s)| ≤

µ
ζ0(κ)

∙r
κ

T
+ κ−α

¸¶2
.

Hence the last required assumption is verified because of assumption 1 and the above properties of our

model.

5 Nonparametric Identification and Alternative Estimators

In the previous sections, we have assumed that the period utility function has a parametric representation

Πi(a, s; θ). Identification in the estimator Section 2 formally required a sufficiently rich set of instruments.

In this section, we discuss the problem of identifying the period return function if parametric assumptions

are not imposed. Our identification strategy will suggest an alternative set of estimators which we will

briey discuss at the end of this section. Identification of models with discrete state spaces has been dis­

cussed by Hotz and Miller (1993), Berry, Pakes, and Ostrovsky (2003), Aguirregabiria and Mira (2002)

and Pesendorfer and Schmidt­Dengler (2003). Recent work by Heckman and Navarro (2005) and Aguirre­

gabiria (2005) discuss identification in models with continuous state variables. The arguments we present

here are closely related to the ideas of Bajari, Hong and Ryan (2004) and Bajari and Krainer (2004) which

propose exclusion restrictions to identify static games.

Formally, we consider the problem of recovering the function Πi(ai, a−i, s) without specifying it para­

metrically as Πi(ai, a−i, s; θ). We begin by assuming that the econometrician has knowledge of the distri­

bution of the ²i. As we discussed in Bajari, Hong and Ryan (2004), this assumption is required for identi­

fication even in a static model. The intuition is straightforward. For instance, a textbook binary probit is a
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special case of our dynamic model where β = 0, there are two choices and the error term is normally distrib­

uted. We can think of s as the set of covariates. Let σ1(a1 = 0|s) be the probability that the choice is equal

to one in the probit. Then we can rationalize this probability by setting Π1(a1, s) = F−1(σ1(a1 = 0|s))
where F is the normal c.d.f. Obviously, if knowledge of the distribution of the error term is required for a

static, single agent problem, it must be required for our model that nests this as an extremely special case.

Furthermore, we assume that the economist has knowledge of the discount factor, β. Rust (1994) discusses

why this is not identified even in single agent discrete choice problems.

We break the problem of identification into two steps. In the first step, we seek to identify for all

ai = 0, . . . ,K :

Πi(ai, s) ≡
X
a−i

Πi(ai, a−i, s)σ−i(a−i|s) (36)

In the second step, we ask what restrictions, such as exclusion restrictions, can be used to identifyΠi(ai, a−i, s)

from knowledge of Πi(ai, s).

5.1 Identification of Πi(ai, s)

Identification of the first step ofΠi(ai, s) follows from arguments along the lines of Aguirregabiria and Mira

(2002) and Magnac and Thesmar (2002). The basic idea is quite simple. The definition of equilibrium

implies that an agent makes a best response to his equilibrium expectations about the actions of the other

agents. By focusing on (36), we are identifying an agent’s period utility in equilibrium from choosing an

action ai. This is similar to identifying the structural parameters in a single agent problem:

Recall (7) implies that for each ai = 0, . . . ,K:

Vi(ai, s) = Πi(ai, s) + βE
£
Vi(s

0)|s, ai
¤
.

Furthermore, from equations (7) and (20), we can write

Vi(s) = Λi(s) +
KX
k=0

σi(k|s)Vi(k, s).

The combination of these two relations shows that

Vi(ai, s) = Πi(ai, s) + βE

"
Λi(s

0) +
KX
k=0

σi(k|s0)Vi(k, s0)|s, ai

#
. (37)

By writing Vi(k, s0) = Vi(k, s0)− Vi(0, s0) + Vi(0, s0), we can rearrange this relation so that

Vi(ai, s)− βE

"
Λi(s

0) +
KX
k=1

(Vi(k, s
0)− Vi(0, s0))σi(k|s0)|s, ai

#
= Πi(ai, s) + βE

£
Vi(0, s

0)|s, ai
¤
.
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Next, we impose the normalization that Πi(0, a−i, s) = 0 for all a−i. This is similar to the assumption

that there is an outside good in a single agent discrete choice model. In an entry model, if 0 corresponded to

the decision not to enter a market, then this assumption could be interpreted as the profit from not entering

a market being zero. Since this assumption is required for identification in much simpler static models

(see Bajari, Hong and Ryan (2004) for a formal argument), it is not surprising that it is also required for

identification in dynamic models. We can then rewrite the above equation as:

Vi(0, s)− βE
£
Vi(0, s

0)|s, 0
¤
= βE

"
Λi(s

0) +
KX
k=1

(Vi(k, s
0)− Vi(0, s0))σi(k|s0)|s, 0

#
. (38)

Based on arguments similar to Section 2, it is clear that the right hand side can be recovered from the

population. The left hand side obviously satisfies Blackwell’s sufficient conditions and is a contraction that

can be used to recover Vi(0, s) uniquely. Therefore Vi(0, s) is identified. In section 2, we established that

there is an inversion between choice probabilities and Vi(k, s)−Vi(0, s) for k = 1, ...,K. Given knowledge

of Vi(0, s), we can clearly recover Vi(k, s). Thus, our choice­specific value functions are identified.

Once these quantities are known, Πi(ai, s) can then be identified since all of the terms on the right hand

side of the equation below can be recovered from the population:

Πi(ai, s) = Vi(ai, s)− βE

"
Λi(s

0) +
KX
k=0

Vi(k, s
0)σi(k|s0)|s, ai

#
(39)

5.2 Identification of Πi(ai, a−i, s)

Next we turn to the problem of identifying Πi(ai, a−i, s) from knowledge of Πi(ai, s) and σ−i(a−i|s):

Πi(ai, s) =
X
a−i

σ−i(a−i|s)Πi(ai, a−i, s),∀i = 1, . . . , n, ai = 1, . . . ,K. (40)

Even with the normalization that Πi(0, a−i, s) ≡ 0, it is clear that Πi(ai, a−i, s) is not identified. Holding

the state vector s fixed, determining the utilities of all agents involves solving for n × K × (K + 1)n−1

unknowns. That is, there are n agents, for each action k = 1, ...,K, utility depends on the (K + 1)n−1

possible actions of the other agents. However, the left hand side of (40) only contains information about

n × (K + 1) scalars holding s fixed. It is clearly not possible to invert this system in order to identify

Πi(ai, a−i, s) for all i, all k = 1, ....,K and all a−i ∈ A−i. Related nonidentification results have been

found by Bresnahan and Reiss (1991,1992) and Pesendorfer and Schmidt­Dengler (2003).

Obviously, there must be cross equation restrictions across either i or k in order to identify the system.

An obvious way to identify the system is to impose exclusion restrictions. Partition s = (si, s−i), and
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suppose Πi(ai, a−i, s) = Πi(ai, a−i, si) depends only on the subvector si. An example of this might be

in an entry model. In this type of model the state is usually a vector of productivity shocks. While we

might expect the profit of firm i to depend on the entry decisions of other agents, it should not depend on

the productivity shocks of other agents. See Bajari and Krainer (2003) and Bajari, Hong and Ryan (2004)

for other examples of possible exclusion restrictions that can be used in applications. If such an exclusion

restriction is possible, we can then write

Π̂i(ai, s−i, si) =
X
a−i

σ−i(a−i|s−i, si)Π̂i(ai, a−i, si).

Clearly, a sufficient identification condition is that for each si, there exists (K+1)n−1 points in the support

of the conditional distribution of s−i given si, such that this system of equations form by these (K +1)n−1

points given si is invertible. In other words, Let s1−i, . . . , s
(K+1)n−1

−i denote these points, then identification

requires that the matrixh
σ(a−i|sj−i, si), a−i = 1, . . . , (K + 1)n−1, j = 1, . . . , (K + 1)n−1

i
be nonsingular and invertible. Note that this assumption will be satisfied as long as s−i contains a continu­

ously distributed variable with sufficient variability.

Obviously, there must be cross equation restrictions across either i or k in order to identify the system.

An obvious way to identify the system is to impose exclusion restrictions. Partition s = (si, s−i), and

suppose Πi(ai, a−i, s) = Πi(ai, a−i, si) depends only on the subvector si. An example of this might be

in an entry model. In empirical studies of entry, the profit of firm i is usually modeled as a function of

i’s entry decision and the entry decision of other firms. The productivity shocks of other firms −i are not

typically included in i’s profits. However, the productivity shocks of other firms may inuence their own

entry decisions. Thus, these generate a set of variables that might be plausbily excluded from si but which

might enter s. Such exclusion restrictions are often difficult to find in practice and may be controversial.

However, they are required for identification when simultaneity is present in many other settings. We next

characterize which exclusion restrictions are sufficient for identification in games as well.

The two step identification structure that we discuss above also suggests simple identification conditions

for parametric utility models. Suppose we parameterize utilities as Πi(ai, a−i, s; θ) such that the normal­

ization constraint Π(0, a−i, s; θ) ≡ 0 at all values of θ. Since as in (40), the left hand side Πi(ai, s) and the

choice probabilities σ−i(a−i|s) are identified, parametric identification can be stated as requiring that for
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any θ 6= θ0, X
a−i

σ−i(a−i|s)Πi(ai, a−i, s; θ) 6=
X
a−i

σ−i(a−i|s)Πi(ai, a−i, s; θ0)

for some ai = 1, . . . ,K and for a set of s with positive probabilities.

5.3 Alternative Semiparametric Estimators

The identification procedure discussed above suggests an alternative approach to estimating the model that

does not rely on the linearity assumptions that we imposes earlier in the paper. Using the notation developed

in the previous sections, we briey describe the steps involved in constructing this alternative estimator.

Step 1: Estimate choice probabilities as in step 1 in section 2.3.1.

Step 2: Estimate V̂i(k, st)−V̂i(0, st) for k = 1, . . . ,K, i = 1, . . . , n and t = 1, . . . , T through the inversion

step described in section 2.3.2. As an immediate consequence, we can also estimate Λ̂i(s), the expected

unobserved utilities conditional on optimal choice of the agents.

Step 3: Use the sample analog of (38) to obtain an estimate of V̂i(0, s) for all i:

V̂i(0, s)− βÊ[V̂i(0, s
0)|s] = βÊ

h
Λ̂i(s

0) + Ê
h
(V̂i(k, s

0)− V̂i(0, s0))|s0
i
|s, 0

i
.

Consistent estimation of the expectation objects Ê in the above can be obtained by sieve based least

square regressions described in section 2.3.3. The value function iteration for V̂i(0, s) on the left hand side

can be obtained by either recursive least square projection that iterates to convergence, or by inverting a

T × T matrix as described in section 2.3.3.

Step 4: Use equation (39) or (37) to recover a nonparametric estimate of the conditional expected per period

utility Π̂i(ai, s).

Step 5: For each θ, use a least square projection to estimate Π̂i(ai, s; θ):

Π̂i(ai, s; θ) = q
κ(T )(s)0

¡
QT (ai)

0QT (ai)
¢−1 TX

τ=1,ai,τ=ai

qκ(T )(sτ )Πi(aiτ , a−iτ , sτ ; θ). (41)

Note that when Πi(ai, a−i; θ) is specified as a linear function of θ as in (2), we can estimate Π̂i(ai, s; θ) by

Φ̂i(ai; s)0θ, where the least square projection is applied to the individual index functions:

Φ̂i(ai; s) = q
κ(T )(s)0

¡
QT (ai)

0QT (ai)
¢−1 TX

τ=1,ai,τ=ai

qκ(T )(sτ )Φi(aiτ , a−iτ , sτ ).

Step 6: Minimize a proper norm of the distance between the nonparametric estimate of Π̂i(ai, s) and the

semiparametric estimate of Π̂i(ai, s; θ) in the above step 4:

θ̂ = min
θ
||Π̂(a, s)− Π̂(a, s; θ),∀i = 1, . . . , n,∀ai = 0, . . . , K||.
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where Π̂T (s) and Π̂T (s, θ) are the vectors of collections Π̂i(ai, s) and Π̂i(ai, s; θ) for all i = 1, . . . , n and

ai = 0, . . . ,K. As before, we can use the sample weights to specify the norms and use smooth norms so

that θ̂ is asymptotically defined by the solution to a set of moment conditions with a dim(θ)×(n×(K+1))
dimension instrument matrix A(s):

1

T

TX
t=1

A(st)
h
Π̂T (st)− Π̂T (st; θ)

i
.

For example, a semiparametric nonlinear least square estimator can be defined as

θ̂ = argmin
1

T

TX
t=1

h
Π̂T (st)− Π̂T (st; θ)

i2
.

This will be asymptotically equivalent to the “IV” estimator using the instrument matrix:

A(st) =
∂ΠT (st; θ0)

∂θ
.

In particular, with the linear in parameter specification of the per period utility function, the estimator for θ̂

can be computed analytically:

θ̂ =

Ã
1

T

TX
t=1

A(st)Φ̂T (st)

!−1
1

T

TX
t=1

A(st)Π̂T (st).

where Φ̂T (st) is the vector of Φ̂i(ai, st) constructed in (41).

Practical inference methods and the asymptotic distribution theory can be written similar to sections

3 and 4. Since they are completely analogous, we do not reproduce the results here. By choosing the

instrument matrix A(st) efficiently, we can also show that this estimator is as efficient as the previous one

we studied in sections 2, 3 and 4.

6 Conclusion

In this paper, we have proposed a semiparametric estimator for dynamic games of incomplete information.

The estimator is inuenced by earlier work by Pakes, Ostrovsky and Berry (2003), Aguirregabiria and Mira

(2002), Pesendorfer and Schmidt­Dengler (2003) and Bajari, Benkard and Levin (2003). However, unlike

the earlier literature, the econometric approach that we take exploits the modern theory of semiparametric

estimation, particularly sieve estimation (see Ai and Chen (2003) and Chen (2005)) and the theoretical

results of Newey (1994). Therefore, we are able to estimate models that allow for a nonparametric first

step and continuous state variables. Also, our results clarify the identification of these models for the
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case of continuous state variables. In general these models are underidentified, however, with appropriate

restrictions on payoffs, identification is possible.
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