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1 Introduction

Volatility estimation from high frequency data has received substantial attention in the

recent literature: see ,e.g., Dacorogna et al. (2001), Andersen et al. (2001), Zhang (2001),

Barndorff-Nielsen and Shephard (2002), Meddahi (2002), and Oomen (2002). A phenom-

enon which has been gradually recognized, however, is that the standard estimator, realized

volatility or realized variance (RV, hereafter), can be unreliable if the microstructure noise

in the data is not explicitly taken into account. Market microstructure effects are surpris-

ingly prevalent in high frequency financial data. As the sampling frequency increases, the

noise becomes progressively more dominant, and in the limit swamps the signal. Empiri-

cally, sampling a typical stock price every few seconds can lead to volatility estimates that

overestimate the true volatility by a factor of two or more. As a result, the usual prescrip-

tion in the literature is to sample sparsely, with the recommendations ranging from five to

thirty minutes, even if the data are available at much higher frequencies.

Our interest in this was initially motivated by the apparent inefficiency inherent in

throwing away so much data. We formally analyzed the issue in Aït-Sahalia et al. (2005a),

where we studied the impact of different types market microstructure noise on the properties

of RV estimators and proposed likelihood corrections for (parametric) volatility estimation.

As part of our analysis of the properties of RV estimators when market microstructure noise

is taken into account, in the nonparametric context, we were led in Zhang et al. (2002) to

propose five different RV-like estimation strategies, culminating with an estimator based

on combining two time scales, which we called TSRV (two scale realized volatility). TSRV

is the first nonparametric volatility estimator in the literature to be consistent. Following

this work, other varieties have been introduced to improve the efficiency or deal with more

complex noise structures: see Zhang (2004), Aït-Sahalia et al. (2005b) and Barndorff-Nielsen

et al. (2004).1

One thing in common among all these RV-type estimators is that the limit theory pre-

1Other strategies have been proposed to deal with the microstructure issue in RV estimation. Zhou (1996)

proposed adjusting the usual RV estimator by adding one or more lagged correction terms; this approach was

further investigated by Hansen and Lunde (2004); Bandi and Russell (2003) advocated using an optimally

sampled sparse data set, as in one of the intermediary estimators (“third best”) in Zhang et al. (2002). None

of these estimators are consistent, however.
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dicts that these estimators should be asymptotically normal. Without noise, the asymptotic

normality of RV estimates dates back to at least Jacod (1994) and Jacod and Protter (1998);

see also e.g., Barndorff-Nielsen and Shephard (2002) and Mykland and Zhang (2002). When

microstructure noise is present, the asymptotic normality of the standard RV estimator (as

well as that of the subsequent refinements that are robust to the presence of microstructure

noise, such as TSRV) was established in Zhang et al. (2002).

As we shall see, however, simulation results do not always agree well with what the theory

predicts, even with fairly large sample sizes. The usual remedy in such situations is to use

Edgeworth expansions and, in this paper, we will derive such expansions for the volatility

estimators when the observations of the price process are noisy. Recently, Goncalves and

Meddahi (2005) have developed an Edgeworth expansion for the basic RV estimator when

there is no noise. Their expansion applies to the studentized statistic based on the standard

RV and it is used for assessing the accuracy of the bootstrap in comparison to the first

order asymptotic approach. By contrast, we develop here an Edgeworth expansion for

nonstudentized statistics for the standard RV, TSRV and other estimators, but allow for

the presence of microstructure noise.

We argue that the lack of normality is caused by the coexistence of a small effective

sample size and small noise. What makes the situation unusual is that the errors � are very

small, and if they are taken to be of order Op(1), their impact on the Edgeworth expansion

may be exaggerated. Consequently, the coefficients in the expansion may not accurately

reflect which terms are important. To deal with this, we develop expansions under the

hypothesis that the size of |�| goes to zero, as stated precisely at the beginning of Section 4.
We will document that this approach predicts the small sample behavior of the estimators

better than the approach where |�| is of fixed size. In this sense, we are dealing with an
unusual type of Edgeworth expansion.

With the help of Cornish-Fisher expansions, our Edgeworth expansions can be used for

the purpose of setting intervals that are more accurate than the ones based on the normal

distribution. Since our expansions also hold in a triangular array setting, they can also

be used to analyze the behavior of bootstrapping distributions. A nice side result in our

development, which may be of use in other contexts, shows how to calculate the third and

fourth cumulants of integrals of Gaussian processes with respect to Brownian motion. This

2



can be found in Proposition 4.

The paper is organized as follows. In Section 2, we briefly recall the estimators under

consideration. Section 3 gives their first order asymptotic properties, and reports initial

simulation results which show that the normal asymptotic distribution can be unsatisfactory.

So, in Section 4, we develop Edgeworth expansions. In Section 5, we examine the behavior

of our small-sample Edgeworth corrections in simulations. Section 6 concludes. Proofs are

in the Appendix.

2 Data Structure and Estimators

Let {Yti}, 0 = t0 ≤ t1 ≤ · · · tn = T , be the observed (log) price of a security at time

ti ∈ [0, T ]. The basic modelling assumption we make is that these observed prices can be
decomposed into an underlying (log) price process X (the signal) and a noise term �, which

captures a variety of phenomena collectively known as market microstructure noise. That

is, at each observation time ti, we have

Yti = Xti + �ti . (2.1)

Let the signal (latent) process X follow an Itô process

dXt = µtdt+ σtdBt, (2.2)

where Bt is a standard Brownian motion. Typically, µt, the drift coefficient, and σ2t , the

instantaneous variance of the returns process Xt, will be (continuous) stochastic processes.

We do not assume that the volatility process, when stochastic, is orthogonal to the Brownian

motion driving the price process.

Let the noise �ti in (2.1) satisfy the following assumption,

�ti i.i.d. with E(�ti) = 0, and V ar(�ti) = E�2. Also � ⊥⊥ X process, (2.3)

where ⊥⊥ denotes independence between two random quantities. Note that our interest in

the noise is only at the observation times ti’s, so, model (2.1) does not require that �t exists

for every t.
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We are interested in estimating the integrated volatility
R T
0 σ2t dt, or quadratic variation

of the true price processX, assuming model (2.1), and assuming that Yti ’s can be observed at

high frequency. In particular, we focus on estimators that are nonparametric in nature, and

as we will see, are extensions of the realized volatility or realized variance (RV) estimators.

These estimators require nothing more than summing up squared returns sampled at some

frequency within a fixed time period, and taking different linear combinations of such sums.

In Zhang et al. (2002), we considered five RV-type estimators. Ranked from the statis-

tically least desirable to the most desirable, we started with the “all” estimator [Y, Y ](all),

where RV is based on the entire sample and consecutive returns are used; the sparse estima-

tor [Y, Y ](sparse), where the RV is based on a sparsely sampled returns series. Its sampling

frequency is often arbitrary or selected in an ad hoc fashion; the optimal, sparse estimator

[Y, Y ](sparse,opt), which is similar to [Y, Y ](sparse) except that the sampling frequency is pre-

determined to be optimal in the sense of minimizing root mean squared error (MSE); the

averaging estimator [Y, Y ](avg), which is constructed by averaging the sparse estimators and

thus also utilizes the entire sample, and finally two scales estimator (TSRV) \hX,Xi, which
combines the RV estimators from two time scales, [Y, Y ](avg) and [Y, Y ](all), using the latter

as a means to bias-correct the former. We showed that the combination of two time scales

results in a consistent estimator. TSRV is the first estimator proposed in the literature

to have this property. The first four estimators are biased; the magnitude of their bias is

typically proportional to the sampling frequency.

Specifically, our estimators have the following form. First, [Y, Y ]
(all)
T uses all the obser-

vations

[Y, Y ]
(all)
T =

X
ti∈G

(Yti+1 − Yti)
2, (2.4)

where G contains all the observation times ti’s in [0, T ], 0 = t0 ≤ t1, . . . ,≤ tn = T .

The sparse estimator uses a subsample of the data,

[Y, Y ]
(sparse)
T =

X
tj ,tj,+∈H

(Ytj,+ − Ytj)
2, (2.5)

where H is a strict subset of G, with sample size nsparse, nsparse < n. And, if ti ∈ H, then
ti,+ denotes the following elements in H. The optimal sparse estimator [Y, Y ](sparse,opt) has
the same form as in (2.5) except replacing nsparse with n∗sparse, where n∗sparse is determined
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by minimizing MSE of the estimator (an explicit formula for doing so in given in Zhang

et al. (2002).)

The averaging estimator maintains a slow sampling scheme based on using all the data,

[Y, Y ]
(avg)
T =

1

K

KX
k=1

X
tj ,tj,+∈G(k)

(Ytj,+ − Ytj)
2

| {z }
=[Y,Y ]

(k)
T

, (2.6)

where G(k)’s are disjoint subsets of the full set of observation times with union G. Let
nk be the number of time points in Gk and n̄ = K−1PK

k=1 nk the average sample size

across different grids Gk, k = 1, . . . ,K. One can also consider the optimal, averaging

estimator [Y, Y ](avg,opt), by substituting n̄ by n̄∗ where the latter is selected to balance the

bias-variance trade-off in the error of averaging estimator (see again Zhang et al. (2002) for

an explicit formula.) A special case of (2.6) arises when the sampling points are regularly

allocated:

[Y, Y ]
(avg)
T =

1

K

X
tj ,tj+K∈G

(Ytj+K − Ytj)
2,

where the sum-squared returns are computed only from subsampling everyK-th observation

times, and then averaged with equal weights.

The TSRV estimator has the form of

\hX,XiT = (1−
n̄

n
)
−1 ³

[Y, Y ]
(avg)
T − n̄

n
[Y, Y ]

(all)
T

´
(2.7)

that is, the volatility estimator \hX,XiT combines the sum of squares estimators from two

different time scales, [Y, Y ]
(avg)
T from the returns on a slow time scale whereas [Y, Y ]

(all)
T

is computed the returns on a fast time scale. n̄ in (2.7) is the average sample size across

different grids. (Note that this is what is called the “adjusted” TSRV in Zhang et al. (2002).)

From the model (2.1), the distributions of various estimators can be studied by decom-

posing the sum-of-squared returns [Y, Y ],

[Y, Y ]T = [X,X ]T + 2[X, �]T + [�, �]T . (2.8)

The above decomposition applies to all the estimators in this section, with the samples

suitably selected.
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3 Small Sample Accuracy of the Normal Asymptotic Distri-

bution

We now briefly recall the distributional theory for each of these five estimators which we

developed in Zhang et al. (2002); all five have asymptotically Normal distributions. As we

will see, however, this asymptotic distribution is not particularly accurate in small samples.

3.1 Asymptotic Normality for the Sparse Estimators

For the sparse estimator, we have shown in that

[Y, Y ]
(sparse)
T

L≈ hX,XiT + 2nsparseE�
2| {z }

bias due to noise

(3.1)

+ [V ar([�, �]
(sparse)
T ) + 8[X,X]

(sparse)
T E�2| {z }

due to noise

+
2T

nsparse

Z T

0

σ4t dt| {z }
due to discretization| {z }

]1/2

total variance

Ztotal,

where V ar([�, �]
(sparse)
T ) = 4nsparseE�

4 − 2V ar(�2), and Ztotal is standard normal.

If the sample size nsparse is large relative to the noise, the variance due to noise in (3.1)

would be dominated by V ar([�, �]
(sparse)
T ) which is of order nsparseE�4. However, with the

dual presence of small nsparse and small noise (say, E�
2), 8[X,X]

(sparse)
T E�2 is not neces-

sarily smaller than V ar([�, �]
(sparse)
T ). One then needs to add 8[X,X]

(sparse)
T E�2 into the

approximation. We call this correction small-sample, small-error adjustment. This type

of adjustment is often useful, since the magnitude of the microstructure noise is typically

smallish as documented in the empirical literature, cf. the discussion in the introduction to

Zhang et al. (2002).

Of course, nsparse is selected either arbitrarily or in some ad hoc manner. By contrast,

the sampling frequency in the optimal-sparse estimator [Y, Y ](sparse,opt) can be determined

by minimizing the MSE of the estimator analytically. Distribution-wise, the optimal-sparse

estimator has the same form as in (3.1), but, one replaces nsparse by the optimal sampling
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frequency n∗sparse, where for equidistant observations,

n∗sparse =
¡
E�2

¢−2/3µT
4

Z T

0

σ4t dt

¶1/3
. (3.2)

n∗sparse is optimal in the sense of minimizing the mean square error of the sparse estimator.

No matter whether nsparse is selected optimally or not, one can see from (3.1) that the

sparse estimators are asymptotically normal.

3.2 Asymptotic Normality for the Averaging Estimator

The optimal-sparse estimator only uses a fraction n∗sparse/n of the data; one also has to pick

the beginning (or ending) point of the sample. The averaging estimator overcomes both

shortcomings. Based on the decomposition (2.8), we have

[Y, Y ]
(avg)
T

L≈ hX,XiT + 2n̄E�2| {z }
bias due to noise

(3.3)

+ [V ar([�, �]
(avg)
T ) +

8

K
[X,X ]

(avg)
T E�2| {z }

due to noise

+
4T

3n̄

Z T

0
σ4t dt| {z }

due to discretization| {z }
]1/2

total variance

Ztotal,

where

V ar([�, �]
(avg)
T ) = 4

n̄

K
E�4 − 2

K
V ar(�2),

and Ztotal is a standard normal term.

The distribution of the optimal averaging estimator [Y, Y ](avg,opt) has the same form as

in (3.3) except that we substitute n̄ with the optimal sub-sampling average size n̄∗. To find

n̄∗, one determines K∗ from the bias-variance trade-off in (3.3) and then set K∗ ≈ n/n̄∗.

In the equidistantly sampled case,

n̄∗ =
µ

T

6(E�2)2

Z T

0
σ4t dt

¶1/3
. (3.4)

If one removes the bias in either [Y, Y ]
(avg)
T or [Y, Y ]

(avg,opt)
T , it follows from (3.3) that the

next term is, again, asymptotically normal.
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3.3 The Failure of Asymptotic Normality

In practice, things are, unfortunately, somewhat more complicated than the story that

emerges from equations (3.1) and (3.3). The distributions of the sparse estimators and the

averaging estimator can be, in fact, quite far from normal. We provide an illustration of this

using simulations. The simulation design is described in Section 5.1 below, but here we give

a preview to motivate our following theoretical development of small sample corrections to

these asymptotic distributions.

Figures 1- 5 report the QQ plots of the standardized distribution of the five estimators

before any Edgeworth correction is applied. It is clear that the sparse, sparse-optimal and

averaging estimators are not symmetrically distributed. Comparing to a normal distribu-

tion, these three estimators have thinner tails at large values and fatter tail at low values.

On the other hand, the “all” estimator and the TSRV estimator appear to be normally

distributed. The apparent normality of the “all” estimator is mainly due to the large sam-

ple size (one second sampling over 6.5 hours); it is thus fairly irrelevant to talk about its

small-sample behavior.

Overall, we conclude from these QQ plots that the small-sample distribution of the TSRV

estimator is close to normality, while the small-sample distribution of the other estimators

departs from normality. As mentioned in Section 5.1, n is very large in this simulation.

4 Edgeworth Expansions for the Distribution of the Estima-

tors

4.1 The Form of the Edgeworth Expansion in Terms of Cumulants

In situations where the normal approximation is only moderately accurate, improved accu-

racy can be obtained by appealing to Edgeworth expansions, as follows. Let θ be a quantity

to be estimated, such as θ =
R T
0 σ2t dt, and let θ̂n be an estimator, say the sparse or average

realized volatility, and suppose that αn is a normalizing constant to that Tn = αn(θ̂n − θ)

is asymptotically normal. A better approximation to the density fn of Tn can then be

obtained through the Edgeworth expansion. Typically, second order expansions only are
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used, to capture skewness and kurtosis, as follows:

fn(x) = φ(z)

∙
1 +

1

6
cum3(Tn)h3(z) +

1

24
cum4(Tn)h3(z) +

1

72
cum3(Tn)

2h5(z) + ...

¸
(4.1)

where z = (x−E(Tn))/V ar(Tn)
1/2, and where the Hermite polynomials hi are given by

h3(z) = z3 − 3z
h4(z) = z4 − 6z2 + 3
h5(z) = z5 − 10z3 + 15z.

The neglected terms are typically of lower order in n than the terms that are included,

and we shall refer to this as the usual Edgeworth form. For broad discussions of Edgeworth

expansions, and definitions of cumulants, see e.g., Chapter XVI of Feller (1971) and Chapter

5.3 of McCullagh (1987).

In some cases, Edgeworth expansions can only be found for distribution functions, in

which case the form is obtained by integrating equation (4.1) term by term. This can be

turned into expansions for p-values, and to Cornish-Fisher expansions for critical values, for

which we refer the reader to, e.g., Hall (1992).

Let us now apply this to the problem at hand here. An Edgeworth expansion of the

usual form, up to second order, can be found separately for each of the components in (2.8)

by first considering expansions for n−1/2([�, �](all)−2nE�2) and n−1/2K([�, �](avg)T −2n̄E�2).
Each of these can then be represented exactly as a triangular array of martingales. The

remaining terms are also, to relevant order, martingales. Results deriving expansions for

martingales can be found in Mykland (1993), Mykland (1995b) and Mykland (1995a). See

also Bickel et al. (1986) for n−1/2([�, �](all) − 2nE�2).

To implement the expansions, however, one need the form of the cumulants up to order

four of Tn. This is what we do in the following for the sparse and average volatility. We

assume that the “size” of the law of � goes to zero, formally that E|�|p → 0 for all p ∈ (0, 8].
In particular, say, Op(E|�|5) = op(E|�|4). If one does not do this, then the expansion will
not work as well, as demonstrated in Section 5.3 below.
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4.2 Conditional Cumulants

We start by deriving explicit expressions for the conditional cumulants for [Y, Y ] and

[Y, Y ](avg), given the latent process X. All the expressions we give below about [Y, Y ]

hold for both [Y, Y ](all) and [Y, Y ](sparse); in the former case, n remains to be the total sam-

ple size in G, while in the latter n is replaced by nsparse. We use a similar notation for [�, �]
and for [X,X ].

4.2.1 Third-Order Conditional Cumulants

Denote

c3(n)
∆
= cum3([�, �]− 2nE�2), (4.2)

where [�, �] =
Pn−1

i=0 (�ti+1 − �ti)
2. We have:

Lemma 1.

c3(n) = 8

∙
(n− 3

4
) cum3(�

2)− 7(n− 6
7
) cum3(�)

2 + 6(n− 1
2
) var(�)var(�2)

¸

From that Lemma, it follows that

c3(n) = Op(nE[�
6]) (4.3)

and also because the �’s from the different grids are independent,

cum3

³
K([�, �](avg) − 2n̄E�2)

´
=

KX
k=1

cum3([�, �]
(k) − 2nkE�2) = Kc3(n̄).

For the conditional third cumulant of [Y, Y ], we have

cum3([Y, Y ]T |X) = cum3([�, �]T + 2[X, �]|X)
= cum3([�, �]T ) + 6cum([�, �]T , [�, �]T , [X, �]T |X)
+ 12cum([�, �]T , [X, �]T , [X, �]T |X) + 8cum3([X, �]T |X). (4.4)

From this, we have:
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Proposition 1.

cum3([Y, Y ]T |X) = cum3([�, �]T ) + 48[X,X]E�4 +Op(n
−1/2E[|�|3]),

where cum3([�, �]T ) is given in (4.3). Also

cum3(K[Y, Y ]
(avg)
T |X) = cum3(K[�, �]

(avg)
T ) + 48K[X,X]

(avg)
T E�4

+Op(Kn̄−1/2E[|�|3]).

4.2.2 Fourth-Order Conditional Cumulants

For the fourth-order cumulant, denote

c4(n)
∆
= cum4([�, �]

(all) − 2nE�2).

We have that:

Lemma 2.

c4(n) = 16{(n− 7
8
)cum4(�

2) + n(E�4)
2 − 3n(E�2)4 + 12(n− 1)var(�2)E�4

− 32(n− 17
16
)E�3cov(�2, �3) + 24(n− 7

4
)E�2(E�3)

2
+ 12(n− 3

4
)cum3(�

2)E�2}

Also here,

cum4

³
K([�, �](avg) − 2n̄E�2)

´
=

KX
k=1

cum4([�, �]
(k) − 2nkE�2) = Kc4(n̄).

For the conditional fourth-order cumulant, we know that

cum4([Y, Y ]|X) = cum4([�, �]T ) + 24cum([�, �]T , [�, �]T , [X, �]T , [X, �]T |X)
+ 8cum([�, �]T , [�, �]T , [�, �]T , [X, �]T |X)
+ 32cum([�, �]T , [X, �]T , [X, �]T , [X, �]T |X)
+ 16cum4([X, �]|X). (4.5)

Similar argument as in deriving the third cumulant shows that the latter three terms in the

right hand side of (4.5) are of order Op(n−1/2E[|�|5]). Gathering terms of the appropriate
order, we obtain:
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Proposition 2.

cum4([Y, Y ]|X) = cum4([�, �]T ) + 24[X,X ]Tn
−1cum3([�, �]T )

+Op(n
−1/2E[|�|5])

Also, for the average estimator,

cum4(K[Y, Y ]
(avg)|X) = cum4(K[�, �]

(avg)
T ) + 24K[X,X]

(avg)
T

c3(n̄)

n̄
+Op(Kn̄−1/2E[|�|5])

4.3 Unconditional Cumulants

To pass from conditional to unconditional third cumulants, we will use general formulae for

this purpose (see Brillinger (1969), Speed (1983), and also Chapter 2 in McCullagh (1987)):

cum3(A) = E[cum3(A|F)] + 3Cov[V ar(A|F), E(A|F)] + cum3[E(A|F)]
cum4(A) = E[cum4(A|F)] + 4Cov[cum3(A|F), E(A|F)] + 3V ar[V ar(A|F)]

+ 6cum3(V ar(A|F), E(A|F), E(A|F)) + cum4(E(A|F)).

In what follows, we apply these formulae to derive the unconditional cumulants for our

estimators.

4.3.1 Unconditional Cumulants for Sparse Estimators

In Zhang et al. (2002), we showed that

E([Y, Y ]T | X process) = [X,X]T + 2nE�
2

and also that

V ar([Y, Y ]T |X) = 4nE�4 − 2V ar(�2)| {z }
V ar([�,�]T )

+ 8[X,X]TE�
2 +Op(E|�|2n−1/2),

This allows us to obtain the unconditional cumulants as:

cum3([Y, Y ]T − hX,XiT ) = c3(n) + 48E(�
4)E[X,X ]

+ 24V ar(�)Cov([X,X]T , [X,X]T − hX,XiT ) (4.6)

+ cum3([X,X ]T − hX,XiT ) +O(n−1/2E[|�|3])
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and

cum4([Y, Y ]T − hX,XiT ) = c4(n) + 24
1

n
c3(n)E[X,X]T

+ 192E�4Cov([X,X]T , [X,X]T − hX,XiT )
+ 192(V ar(�))2V ar([X,X]T ) (4.7)

+ 48V ar(�)cum3([X,X]T , [X,X ]T − hX,XiT , [X,X]T − hX,XiT )
+ cum4([X,X]T − hX,XiT ) +O(n−1/2E[|�|5])

To calculate cumulants of [X,X]T − hX,XiT , consider now the case where there is

no leverage effect. That is to say that one can take σt to be (either conditionally or

unconditionally) nonrandom. In this case,

[X,X]T =
nX
i=1

χ21,i

Z ti

ti−1
σ2t dt,

where the χ21,i are i.i.d. χ
2
1 random variables. Hence, with implicit conditioning,

cump([X,X ]T ) = cump(χ
2
1)

nX
i=1

ÃZ ti

ti−1
σ2t dt

!p

The cumulants of the χ21 distribution are as follows:

p = 1 p = 2 p = 3 p = 4

cump(χ
2
1) 1 2 8 54

When the sampling points are equidistant, one then obtains the approximation

cump([X,X]T ) = cump(χ
2
1)

µ
T

n

¶p−1 Z T

0
σ2pt dt + Op(n

1
2
−p)

under the assumption that σ2t is an Itô process (often called a Brownian semimartingale).

Hence, we have:

Proposition 3. In the case where there is no leverage effect, conditionally on the path of

13



σ2t ,

cum3([Y, Y ]T − hX,XiT ) = c3(n) + 48E(�
4)

Z T

0
σ2t dt

+ 48V ar(�)n−1T
Z T

0
σ4t dt (4.8)

+ 8n−2T 2
Z T

0

σ6t dt

+O(n−3/2E[�2]) +O(n−1/2E[|�|3]) +O(n−5/2)

Similarly for the fourth cumulant

cum4([Y, Y ]T − hX,XiT ) = c4(n) + 24n
−1c3(n)

Z T

0
σ2t dt

+ 384(E�4 + V ar(�)2)n−1T
Z T

0
σ4t dt

+ 384V ar(�)n−2T 2
Z T

0
σ6t dt++54n

−3T 3
Z T

0
σ8t dt (4.9)

+O(n−1/2E[|�|5]) +O(n−3/2E[�4])

+O(n−5/2E[�2]) +O(n−7/2)

It is clear that one needs �n = op(n−1/2) to keep all the terms in (4.8) and (4.9) non-

negligible. In this case, the error term in equation (4.8) is of order O(n−1/2E[|�|3]) +
O(n−5/2), while that in equation (4.9) is of order O(n−1/2E[|�|5])+O(n−7/2). In the case of

optimal-sparse estimator, (3.2) lends to � = Op(n
−3/4), in particular � = op(n

−1/2). Hence,

the expression works in this case, and also for many suboptimal choices of n.

For the special case of constant σ and equidistant sampling times, the optimal sampling

size is

n∗sparse =
µ
T

2

σ2

E�2

¶2/3
. (4.10)

Also, in this case, it is easy to see (by the same derivation as above) that the error terms in

equations (4.8) and (4.9) are, respectively, O(n−1/2E[|�|3]) and O(n−1/2E[|�|5]). Plug (4.10)
into (4.8) and (4.9) for the choice of n, and it follows that

cum3([Y, Y ]
(sparse,opt)
T − hX,XiT ) =48(σ2T )4/322/3(E�2)

5/3
(4.11)

+ 8(σ2T )5/3(2E�2)
4/3
+O(E|�|11/3)

14



and

cum4([Y, Y ]
(sparse,opt)
T − hX,XiT ) =384(E�4 + V ar(�)2)(σ2T )4/3(2E�2)

2/3

+ 384(σ2T )5/324/3(E�2)
7/3

(4.12)

+ 54(σ2T )2(2E�2)
2
+O(E|�|17/3)

respectively.

But under optimal sampling, we have

V ar([Y, Y ](sparse,opt)T ) = E
³
V ar([Y, Y ]

(sparse,opt)
T | X)

´
+ V ar

³
E([Y, Y ]

(sparse,opt)
T | X)

´
= 8 hX,XiT E�2 +

2

n∗sparse
(σ2T )

2
(4.13)

+ 4n∗sparseE�
4 − 2V ar(�2)

= 2(σ2T )
4
3 (2E�2)

2
3 +Op(E�

2),

hence,

cum3

³
(E�2)

−1/3
([Y, Y ]

(sparse,opt)
T − hX,XiT )

´
= O((E|�|)2/3) (4.14)

cum4

³
(E�2)

−1/3
([Y, Y ]

(sparse,opt)
T − hX,XiT )

´
= O((E|�|)4/3). (4.15)

In other words, the third-order and the fourth-order cumulants indeed vanish as n → ∞
and E�2 → 0.

4.3.2 Unconditional Cumulants for the Averaging Estimator

Similarly, for the averaging estimators,

E([Y, Y ]
(avg)
T | X process) = [X,X ]

(avg)
T + 2n̄E�2, (4.16)

V ar([Y, Y ](avg)T |X) = V ar([�, �](avg)T ) +
8

K
[X,X](avg)T E�2 +Op(E[|�|2(nK)−1/2]), (4.17)

with

V ar([�, �]
(avg)
T ) = 4

n̄

K
E�4 − 2

K
V ar(�2). (4.18)

Also, from Zhang et al. (2002), for nonrandom σt, we have that

var([X,X]
(avg)
T ) =

K

n

4

3
T

Z T

0
σ4t dt+ o

µ
K

n

¶
(4.19)
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Invoking the general relations between the conditional and the unconditional cumulants

given above, we get the unconditional cumulants for the average estimator:

cum3([Y, Y ]
(avg)
T − hX,XiT ) =

1

K2
c3(n̄) + 48

1

K2
E(�4)E[X,X]

(avg)
T

+ 24
1

K
V ar(�)Cov([X,X]

(avg)
T , [X,X]

(avg)
T − hX,XiT ) (4.20)

+ cum3([X,X]
(avg)
T − hX,XiT ) +O(K−2n̄−1/2E[|�|3])

and

cum4([Y, Y ]
(avg)
T − hX,XiT ) =

1

K3
c4(n̄) + 24

1

K3

c3(n̄)

n̄
E[X,X]

(avg)
T

+ 192
1

K2
E�4Cov([X,X ]

(avg)
T , [X,X ]

(avg)
T − hX,XiT )

+ 192
1

K2
(V ar(�))2V ar([X,X ]

(avg)
T ) (4.21)

+ 48
1

K
V ar(�)cum3([X,X]

(avg)
T , [X,X]

(avg)
T − hX,XiT , [X,X]

(avg)
T − hX,XiT )

+ cum4([X,X]
(avg)
T − hX,XiT ) +O(K−3n̄−1/2E[|�|5])

To calculate cumulants of [X,X ]
(avg)
T − hX,XiT for the case where there is no leverage

effect, we shall use the following proposition, which has some independent interest. We

suppose that Dt is a process, Dt =
R t
0 ZsdWs. We also assume that (1) Zs has mean zero,

(2) is adapted to the filtration generated byWt, and also (3) jointly Gaussian withWt. The

first two of these assumptions imply, by the martingale representation theorem, that one

can write

Zs =

Z s

0

f(s, u)dWu, (4.22)

the third assumption yields that this f (s, u) is nonrandom, with representation Cov(Zs,Wt)

=
R t
0 f(s, u)du for 0 ≤ t ≤ s ≤ T .

Obviously, V ar(DT ) =
R T
0 E(Z2s )ds =

R T
0

R s
0 f(s, u)

2duds. The following result provides

the third and fourth cumulants of DT . Note that for u ≤ s

cov(Zs, Zu) =

Z u

0

f(s, t)f(u, t)dt. (4.23)
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Proposition 4. Under the assumptions above,

cum3(DT ) = 6

Z T

0
ds

Z s

0
cov(Zs, Zu)f(s, u)du

= 6

Z T

0
ds

Z s

0
du

Z u

0
f(s, u)f(s, t)f(u, t)dt (4.24)

cum4(DT ) = −12
Z T

0
ds

Z s

0
dt

µZ t

0
f(s, u)f (t, u)du

¶2
+ 24

Z T

0
ds

Z s

0
dx

Z x

0
du

Z u

0
dt (f(x, u)f(x, t)f(s, u)f(s, t) (4.25)

+ f(x, u)f(u, t)f(s, x)f(s, t) + f(x, t)f(u, t)f(s, x)f(s, u))

The proof is in the appendix. Note that it is possible to derive similar results in the

multivariate case. See, for example, equation (E.3) in the appendix. For the application

to our case, note that when σt is (conditionally or unconditionally) nonrandom, DT =

[X,X]
(avg)
T − hX,XiT is on the form discussed above, with

f(s, u) = σsσu
2

K
(K −#tj between u and s)+ . (4.26)

This provides a general form of the low order cumulants of [X,X]
(avg)
T . In the equidistant

case, one can, in the equations above, to first order make the approximation

f(s, u) ≈ 2σsσu
µ
1− s− u

K∆t

¶+
. (4.27)

This yields, from Proposition 4,

cum3([X,X ]
(avg)
T ) = 48

µ
K

n

¶2
T 2
Z T

0
σ6t dt

Z 1

0
dy

Z 1

0
dx (1− y)(1− x)(1− (x+ y))+

= 48

µ
K

n

¶2
T 2
Z T

0
σ6t dt

Z 1

0
dz

Z 1

1−z
dv zv(z + v − 1)

+ o

Ãµ
K

n

¶2!
(4.28)

=
44

10

µ
K

n

¶2
T 2
Z T

0
σ6t dt+ o

Ãµ
K

n

¶2!
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and

cum4([X,X ]
(avg)
T ) =

µ
K

n

¶3
T 3
Z T

0
σ8t dt

(
−192

Z 1

0
dy

µZ 1

0
(1− (x+ y))+(1− x)dx

¶2
+384

Z 1

0
dz

Z 1

0
dy

Z 1

0
dw[(1− y)+(1− (y + w))+(1− (y + z))+(1− (w + y + z))+

+ (1− y)+(1− w)+(1− z)+(1− (w + y + z))+ (4.29)

+(1− (w + y))+(1− w)+(1− z)+(1− (y + z))+]
ª

+ o

Ãµ
K

n

¶3!

=
1888

105

µ
K

n

¶3
T 3
Z T

0
σ8t dt+ o

Ãµ
K

n

¶3!
Thus, (4.20) and (4.21) lead to the following results:

Proposition 5. In the case where there is no leverage effect, conditionally on the path of

the σ2t ,

cum3([Y, Y ]
(avg)
T − hX,XiT ) =

1

K2
8

½
(n̄− 3

4
) cum3(�

2)− 7(n̄− 6
7
) cum3(�)

2

+ 6(n̄− 1
2
) Var(�)Var(�2)

¾
(4.30)

+ 48
1

K2
E(�4)

Z T

0
σ2t dt+

96

3

1

n
E(�2)T

Z T

0
σ4t dt

+
44

10

µ
K

n

¶2
T 2
Z T

0
σ6t dt+ smaller terms

cum4([Y, Y ]
(avg)
T − hX,XiT ) = 16

n̄

K3
{cum4(�

2) + (E�4)
2 − 3(E�2)4 + 12Var(�2)E�4

− 32E�3cov(�2, �3) + 24E�2(E�3)2 + 12cum3(�
2)E�2}+O(

1

K3
E|�|8)

+ 192
1

K3

©
cum3(�

2)− 7 cum3(�)
2 + 6 Var(�) Var(�2)

ªZ T

0

σ2t dt+O(
1

nK2
E|�|6)

+ 256
1

nK

¡
E�4 + (Var(�))2

¢
T

Z T

0
σ4t dt+ o(

1

nK
E|�|4) (4.31)

+
2112

10

K

n2
Var(�)T 2

Z T

0
σ6t dt+ o(

K

n2
E|�|2)

+
1888

105

µ
K

n

¶3
T 3
Z T

0
σ8t dt+ o(

µ
K

n

¶3
) + smaller terms
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Also, the optimal average subsampling size for the constant σ is,

n̄∗ =
µ

σ4T2

6(E�2)2

¶1/3
.

The unconditional cumulants of the averaging estimator under the optimal sampling are

cum3([Y, Y ]
(avg,opt)
T − hX,XiT ) =

22

5

µ
K

n

¶2
T 2
Z T

0

σ6t dt+ o

Ãµ
K

n

¶2!
,

and

cum4([Y, Y ]
(avg,opt)
T − hX,XiT ) =

1888

105

µ
K

n

¶3
T 3
Z T

0

σ8t dt+ o

Ãµ
K

n

¶3!
respectively.

Also, the unconditional variance of the averaging estimator, under the optimal sampling,

is

V ar([Y, Y ]
(avg,opt)
T ) =

8

K
E�2

Z T

0
σ2t dt+ 4

n̄∗

K
E�4 − 2

K
V ar(�2)| {z }

=E V ar([Y,Y ]
(avg,opt)
T | X)

+
K

n̄∗
4

3
T

Z T

0

σ4t dt+ o(
K

n̄∗
)| {z }

=V ar E([Y,Y ]
(avg,opt)
T | X)

(4.32)

=
4

3
6
1
3 (E�2)

2
3 (σ2T )

4
3 + o(E|�|4/3)

hence, we have that

cum3

³
(E�2)

−1/3
([Y, Y ]

(avg,opt)
T − hX,XiT )

´
= O((E�2)

1/3
)→ 0, (4.33)

cum4

³
(E�2)

−1/3
([Y, Y ]

(avg,opt)
T − hX,XiT )

´
= O((E�2)

2/3
)→ 0, (4.34)

as n→∞ and E�2 → 0.

By comparing to the expression for the sparse case, it is clear that the average volatility

is, in the sense of order of convergence, as close, but no closer, to normal than the sparsely

sampled volatility.
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4.4 Cumulants for the TSRV Estimator

The same methods can be used to find cumulants for the two scales realized volatility

(TSRV) estimator, \hX,XiT . Since the distribution of TSRV is well approximated by its

asymptotic normal distribution, we we only sketch the results. When � goes to zero suffi-

ciently fast, the dominating term in the third and fourth unconditional cumulants for TSRV

are, symbolically, the same as for the average volatility, namely

cum3(\hX,XiT − hX,XiT ) =
22

5

µ
K

n

¶2
T 2
Z T

0
σ6t dt+ o

Ãµ
K

n

¶2!
, (4.35)

and

cum4(\hX,XiT − hX,XiT ) =
1888

105

µ
K

n

¶3
T 3
Z T

0
σ8t dt+ o

Ãµ
K

n

¶3!
. (4.36)

However, the value of K is quite different for TSRV than for the averaging volatility esti-

mator. When σ is constant, it is shown in Section 4 of Zhang et al. (2002) that for TSRV,

the optimal choice of K is given by

K =

µ
16(E�2)2

T Eη2

¶1/3
n2/3. (4.37)

As is seen from Table 1, this choice of K gives radically different approximate values than

those for the average volatility. This is consistent with the behavior in simulation. Thus,

as predicted, the normal approximation works well in this case.

4.5 The Failure of Ordinary Edgeworth Expansions

The development in this paper is based on the assumption that the size of � goes to zero

as n → ∞. This is an unusual assumption. One would normally develop asymptotics as
n→∞ for fixed size of �. We here demonstrate that when one uses fixed � asymptotics to

produce leading terms in cumulants, the resulting expansion will fail to produce an accurate

correction to the normal distribution.

Take the sparse case. If � is fixed, one obtains in analogy with Proposition 3 that

cum3([Y, Y ]T − hX,XiT ) = c3(n) + 48E(�
4)

Z T

0
σ2t dt+O(n−1/2), (4.38)
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and

cum4([Y, Y ]T − hX,XiT ) = c4(n) + 24n
−1c3(n)

Z T

0
σ2t dt+O(n−1/2), (4.39)

where c3(n) and c4(n) are given in Lemmas 1-2. Compare these expressions to formulas

(4.11)-(4.12), and note that not the same terms are included. In particular, the leading

(order O(n)) terms in the above equations is not even present in (4.11)-(4.12). It is easy

to see that similar results hold in the average RV case. It is, therefore, as if, in some cases,

the asymptotics should naturally be done with the size of � going to zero.

5 Simulation Results Incorporating the Edgeworth Correc-

tion

In this paper, we have discussed five estimators to deal with the microstructure noise in

realized volatility. The five estimators, including [Y, Y ]
(all)
T , [Y, Y ]

(sparse)
T , [Y, Y ]

(sparse,opt)
T ,

[Y, Y ]
(avg)
T , \hX,XiT , are defined in Section 2. In this section, we focus on the case where the

sampling points are regularly allocated. We first examine the empirical distributions of the

five approaches in simulation. We then apply the the Edgeworth corrections as developed

in Section 4, and compare the sample performance to those predicted by the asymptotic

theory.

We simulateM = 50, 000 sample paths from the basic model dXt =
¡
µ− σ2/2

¢
dt+σdBt

at a time interval ∆t = 1 second, with parameter values µ = 0.05 and σ2 = 0.04. As for

the market microstructure noise �, we assume that it is Gaussian and small. Specifically,

we set
¡
E�2

¢1/2
= 0.0005 (i.e., the standard deviation of the noise is 0.05% of the value

of the asset price). On each simulated sample path, we estimate hX,XiT over T = 1

day (i.e., T = 1/252 using annualized values) using the five estimation strategies described

above: [Y, Y ]
(all)
T , [Y, Y ]

(sparse)
T , [Y, Y ]

(sparse,opt)
T , [Y, Y ]

(avg)
T and, finally, the TSRV estimator,

\hX,XiT . We assume that a day consists of 6.5 hours of open trading, as is the case on the
NYSE and NASDAQ. For [Y, Y ]

(sparse)
T , we use sparse sampling at a frequency of once every

5 minutes.

We now report our simulation results in Table 1 and Figures 1 -10. For each estimator,
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we report the values of the standardized quantities

R =
estimator− hX,XiT
[V ar(estimator)]1/2

. (5.1)

For example, the variances of [Y, Y ]
(all)
T , [Y, Y ]

(sparse)
T and [Y, Y ]

(sparse,opt)
T are based on

equation (4.13) with the sample size n, nsparse and n∗sparse respectively. And the variance

of [Y, Y ]
(avg)
T corresponds to (4.32) where the optimal subsampling size n̄∗ is adopted. The

final estimator TSRV has variance

2
³
1− n̄

n

´2
n−1/3 (12(E�2)2)

1/3
(σ2T )

4/3
.

As discussed in Section 3.3, Figures 1- 5 show the QQ plots (against the normal distribution)

of the standardized distribution of the five estimators before the Edgeworth correction is

conducted.

We now also inspect how the simulation behavior of the five estimations compares to

the second order Edgeworth expansion developed in the previous Section. The results are

in Figures 6 -10, and in a different form in Table 1. Table 1 reports the simulation results

for the five estimation strategies. In each estimation strategy, “sample” represents the

sample statistic from the M simulated paths; “Asymptotic (Normal)” refers to the straight

(uncorrected) Normal asymptotic distribution; “Asymptotic (Edgeworth)” refers to the

value predicted by our theory (the asymptotic cumulants are given up to the approximation

given in the previous section).

An inspection of Table 1 suggests that our expansion theory provides a good approx-

imation to all four moments of the small sample distribution in each estimation scheme.

Comparing different columns in Table 1, we also do not see substantial differences across

estimators. On the other hand, distribution-wise, all five estimators display very different

properties relative to the standard normal. This is especially so given the sample size n.

Finally, Figures 6-10 convey the similar message as in Table 1. In each figure, the

histogram displays the standardized distribution of the five estimators obtained from simu-

lation results, and the superimposed solid curve corresponds to the asymptotic distribution

predicted by our Edgeworth expansion. The dashed curve represents the distribution of

N(0,1). In the “all” and TSRV cases, these last two curves are indistinguishable.
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In summary, examination of these figures confirms that the sample distributions of all

five estimators conform to our Edgeworth expansion, while (except in the “all” and TSRV

cases), the normal approximation is somewhat off.

6 Conclusions

We have here developed and given formulas for Edgeworth expansions of several type of

realized volatility estimators. Apart from the practical interest of having access to such

expansions, there is an important conceptual finding. This is that the better expansion is

obtained by using as asymptotics where the noise level goes to zero when the number of

observations goes to infinity. Another lesson is that the asymptotic normal distribution is

a more accurate approximation for the two scales realized volatility (TSRV) than for the

subsampled estimators, whose distributions definitely need to be Edgeworth-corrected in

small samples.

In the process of developing the expansions, we also developed a general device for

computing cumulants of the integrals of Gaussian processes with respect to Brownian motion

(Proposition 4), and this result should have applications to other situations. The proposition

is only stated for the 3rd and 4th cumulant, but the same technology can potentially be

used for higher order cumulants.
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Appendix: Proofs

A Proof of Lemma 1

Let ai be defined as in (B.1). We can then write

c3(n) = cum3(2
nX
i=0

ai(�
2
ti
−E�2)− 2

n−1X
i=0

�ti�ti+1),

= 8[cum3(
nX
i=0

ai�
2
ti)− cum3(

n−1X
i=0

�ti�ti+1)− 3cum(
nX
i=0

ai�
2
ti ,

nX
j=0

aj�
2
tj ,

n−1X
k=0

�tk�tk+1)

+ 3cum(
nX
i=0

ai�
2
ti ,

n−1X
j=0

�tj �tj+1 ,
n−1X
k=0

�tk�tk+1)] (A.1)

where

cum(
nX
i=0

ai�
2
ti
,

nX
j=0

aj�
2
tj
,
n−1X
k=0

�tk�tk+1) = 2
n−1X
k=0

akak+1cum(�
2
tk
, �2tk+1 , �tk�tk+1) (A.2)

= 2(n− 1)(E�3)2 (A.3)

since
Pn−1

k=0 akak+1 = n− 1, and the summation is non-zero only when (i = k, j = k+1) or
(i = k + 1, j = k).

Also,

cum(
nX
i=0

ai�
2
ti ,

n−1X
j=0

�tj �tj+1 ,
n−1X
k=0

�tk�tk+1) = 2
n−1X
j=0

ajcum(�
2
tj , �tj �tj+1 , �tj �tj+1) (A.4)

= 2(n− 1
2
)(E�2)V ar(�2) (A.5)

since
Pn−1

j=0 aj = n− 1
2 , and the summation is non-zero only when j = k = (i, or i− 1).

And finally,

cum(
n−1X
i=0

�ti�ti+1,
n−1X
j=0

�tj �tj+1 ,
n−1X
k=0

�tk�tk+1) =
n−1X
i=0

cum3(�ti�ti+1) = n(E�3)
2
, (A.6)

cum(
nX
i=0

ai�
2
ti ,

nX
j=0

aj�
2
tj ,

nX
k=0

ak�
2
tk
) =

nX
i=0

a3i cum3(�
2
ti) = (n−

3

4
)cum3(�

2), (A.7)

with
Pn

i=0 a
3
i = n− 3

4 .

Inserting (A.2)-(A.7) in (A.1) yields (4.3).
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B Proof of Proposition 1

To proceed, define

ai =

½
1 if 1 ≤ i ≤ n− 1
1
2 if i = 0, n

(B.1)

and

bi =

⎧⎨⎩
∆Xti−1 −∆Xti if 1 ≤ i ≤ n− 1
∆Xtn−1 if i = n
−∆Xt0 if i = 0

(B.2)

Note that [X, �]T =
Pn

i=0 bi�ti .

Then it follows that

cum([�, �]T , [�, �]T , [X, �]T |X) =
nX
i=0

bicum([�, �]T , [�, �]T , �ti)

= (b0 + bn)[2E�
2E�3 − 3E�5] (B.3)

= Op(n
−1/2E[|�|5])

because cum([�, �]T , [�, �]T , �ti) = cum([�, �]T , [�, �]T , �t1), for i = 1, · · · , n− 1.
Also

cum([�, �]T , [X, �]T , [X, �]T |X) = cum(2
nX
i=0

ai�
2
ti ,

nX
j=0

bj�tj ,
nX

k=0

bk�tk |X)

− cum(2
n−1X
i=0

�ti�ti+1,
nX

j=0

bj�tj ,
nX

k=0

bk�tk |X)

= 2
nX
i=0

aib
2
iV ar(�

2)− 4
n−1X
i=0

bibi+1(V ar(�))
2 (B.4)

= 4[X,X]TE�
4 +Op(n

−1/2E[�4])

Finally,

cum3([X, �]T |X) =
nX
i=0

b3i cum3(�)

= E(�3)[−3
n−1X
i=1

(∆Xti−1)
2(∆Xti) + 3

n−1X
i=1

(∆Xti−1)(∆Xti)
2] (B.5)

= Op(n
−1/2E[|�|3])

Gathering the terms above together, one now obtains the first part of Proposition 1. The
second part of the result is then obvious.
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C Proof of Lemma 2

cum(
nX
i=0

ai�
2
ti
,
n−1X
j=0

�tj�tj+1,
n−1X
k=0

�tk�tk+1 ,
n−1X
l=0

�tl�tl+1)

=
nX
i=0

n−1X
j=k=0

ai[1{l=j}1{i=j,or j+1} +
µ
3

2

¶
(1{l=j+1,i=j+2} + 1{l=i=j−1})]

× cum(�2ti , �tj�tj+1, �tk�tk+1, �tl�tl+1) (C.1)

= 2(n− 1
2
)E�3cov(�2, �3) + 6(n− 3

2
)(E�3)

2
E�2

cum(
nX
i=0

ai�
2
ti ,

nX
j=0

aj�
2
tj ,

n−1X
k=0

�tk�tk+1 ,
n−1X
l=0

�tl�tl+1)

=
nX
i=0

nX
j=0

n−1X
k=0

n−1X
l=0

aiaj
£
1{i=j,k=l,i=(k+1 or k)} + 1{l=k−1,(i,j)=(k+1,k−1)[2]}

+ 1{l=k+1,(i,j)=(k,k+2)[2]} + 1{k=l,(i,j)=(k,k+1)[2]}
¤

(C.2)

= 2(n− 3
4
)cum3(�

2)E�2 + 4(n− 2)(E�3)2E�2 + 2(n− 1)(V ar(�2))2

where the notation (i, j) = (k+1, k−1)[2] means that (i = k+1, j = k−1), or (j = k+1, i =
k − 1). The last equation above holds because Pn

i=1 a
2
i = n− 3/4, Pn−1

i=1 ai−1ai+1 = n− 2,
and

Pn−1
i=0 aiai+1 = n− 1.

cum(
nX
i=0
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2
ti ,

nX
j=0

aj�
2
tj ,

nX
k=0

ak�
2
tk
,
n−1X
l=0

�tl�tl+1)

=
nX
i=0

nX
j=0

n−1X
k=0

n−1X
l=0

aiajak

µ
3

2

¶
[1{i=j=l,k=l+1} + 1{i=j=l+1,k=l}]

× cum(�2ti , �
2
tj , �

2
tk
, �tl�tl+1) (C.3)

= 6
n−1X
i=0

a2iai+1cum(�
2, �2, �)E�3

= 6(n− 5
4
)cum(�2, �2, �)E�3,

since
Pn−1

i=0 a
2
i ai+1 = n− 5/4.
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cum4(
n−1X
i=0

�ti�ti+1) =
n−1X
i=0

n−1X
j=0

n−1X
k=0
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l=0

[1{i=j=k=l} +
µ
4
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× cum(�ti�ti+1 , �tj �tj+1 , �tk�tk+1, �tl�tl+1) (C.4)
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2 − 3(E�2)4) + 12(n− 1)(E�2)2V ar(�2)
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8
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Putting together (C.1)-(C.5):
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�ti�ti+1),
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2
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8
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2) + n(E�4)
2 − 3n(E�2)4 + 12(n− 1)var(�2)E�4

− 32(n− 17
16
)E�3cov(�2, �3) + 24(n− 7

4
)E�2(E�3)

2
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4
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since cov(�2, �3) = E�5 −E�2E�3 and cum(�2, �2, �) = E�5 − 2E�2E�3.
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D Proof of Proposition 2

It remains to deal with the second term in equation (4.5),

cum([�, �]T , [�, �]T , [X, �]T , [X, �]T |X)
=
X
i,j

bibjcum([�, �]T , [�, �]T , �ti , �tj)

=
X
i

b2i cum([�, �]T , [�, �]T , �ti , �ti) (D.1)

+ 2
n−1X
i=0

bibi+1cum([�, �]T , [�, �]T , �ti , �ti+1) (D.2)

Note that cum([�, �]T , [�, �]T , �ti , �ti) and cum([�, �]T , [�, �]T , �ti , �ti+1) are independent of i,
except close to the edges. One can take α and β to be

α = n−1
X
i

cum([�, �]T , [�, �]T , �ti , �ti)

β = n−1
X
i

cum([�, �]T , [�, �]T , �ti , �ti+1).

Now following the two identities:

cum([�, �]T , [�, �]T , �i, �i) = cum3([�, �]T , [�, �]T , �
2
i )

− 2(Cov([�, �]T , �i))2
cum([�, �]T , [�, �]T , �i, �i+1) = cum3([�, �]T , [�, �]T , �i�i+1)

− 2Cov([�, �]T , �i)Cov([�, �]T , �i+1),
also observing that that Cov([�, �]T , �i) = Cov([�, �]T , �i+1), except at the edges,

2(α− β) = n−1cum3([�, �]T ) +Op(n
−1/2E[|�|6])

Hence, (D.1) becomes

cum4([�, �]T , [�, �]T , [X, �]T , [X, �]T |X)

=
nX
i=0

b2iα+ 2
nX
i=0

bibi+1β +Op(n
−1/2E[|�|6])

= n−1[X,X ]T cum3([�, �]T ) +Op(n
−1/2E[|�|6])

where the last line is because
nX
i=0

b2i = 2[X,X]T +Op(n
−1/2),

nX
i=0

bibi+1 = −[X,X]T +Op(n
−1/2).

The proposition now follows.
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E Proof of Proposition 4

The Bartlett identities for martingales, of this we use the cumulant version, with “cumulant

variations”, can be found in Mykland (1994). Set Z
(s)
t =

R s∧t
0 f (s, u)dWu, which is taken to

be a process in t for fixed s.

For the third cumulant,

cum3(DT ) = 3cov(DT , hD,DiT ) by the third Bartlett identity

= 3cov(DT ,

Z T

0

Z2sds)

= 3

Z T

0
cov(DT , Z

2
s )ds (E.1)

To compute the integrand,

cov(DT , Z
2
s ) = cov(Ds, Z

2
s ) since Dt is a martingale

= cum3(Ds, Zs, Zs) since EDs = EZs = 0

= cum3(Ds, Z
(s)
s , Z(s)s )

= 2cov(Z(s)s ,
D
D,Z(s)

E
s
) + cov

³
Ds,

D
Z(s), Z(s)

E
s

´
by the third Bartlett identity

= 2cov(Zs,

Z s

0
Zuf(s, u)du) by (4.22) and since

D
Z(s), Z(s)

E
s
is nonrandom

= 2

Z s

0

cov(Zs, Zu)f(s, u)du

= 2

Z s

0
du

Z u

0
f(s, u)f(s, t)f(u, t)dt (E.2)

Combining the two last lines of (E.2) with equation (E.1) yields the result (4.24) in the
Proposition.

Note that, more generally than (4.24), in the case of three different processes D
(i)
T ,

i = 1, 2, 3, one has

cum3(D
(1)
T ,D

(2)
T ,D

(3)
T ) = 2

Z T

0

ds

Z s

0

cov(Z(1)s , Z(2)u )f (3)(s, u)du [3], (E.3)

where the symbol “[3]” is used as in McCullagh (1987). We shall use this below.

For the fourth cumulant,

cum4(DT ) = −3cov(hD,DiT , hD,DiT ) + 6cum3(DT ,DT , hD,DiT ), (E.4)
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by the fourth Bartlett identity. For the first term

cov(hD,DiT , hD,DiT ) = cov(

Z T

0
Z2sds,

Z T

0
Z2sds)

=

Z T

0

Z T

0
dsdt cov(Z2s , Z

2
t )

= 2

Z T

0

Z T

0
dsdt cov(Zs, Zt)

2

= 4

Z T

0

ds

Z s

0

dt cov(Zs, Zt)
2

= 4

Z T

0
ds

Z s

0
dt

µZ t

0
f(s, u)f(t, u)du

¶2
(E.5)

For the other term in (E.4)

cum3(DT ,DT , hD,DiT ) =
Z T

0

cum3(DT ,DT , Z
2
s )ds

To calculate this, fix s, and set D
(1)
t = D

(2)
t = Dt, and D

(3)
t = (Z

(s)
t )2 − ­Z(s), Z(s)®

t
. Since

D
(3)
t =

R t
0 (2Z

(s)
u f(s, u))dWu for t ≤ s, D

(3)
t is on the form covered by the third cumulant

equation (E.3), with Z(for D(3))u = 2Z
(s)
u f(s, u) and f(for D(3))(a, t) = 2f(s, a)f(s, t) (for

t ≤ a ≤ s).

cum3(DT ,DT , hD,DiT ) = 4
Z T

0
ds

Z s

0
dx

Z x

0
du

Z u

0
dt (f(x, u)f(x, t)f(s, u)f(s, t)

+ f(x, u)f (u, t)f(s, x)f(s, t) + f(x, t)f(u, t)f(s, x)f(s, u)) (E.6)

Combining equations (E.4), (E.5) and (E.6) yields the result (4.25) in the Proposition.
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ALL SPARSE SPARSE OPT AVG TSRV

[Y,Y ]
(all)
T [Y, Y ]

(sparse)
T [Y, Y ]

(sparse,opt)
T [Y, Y ]

(avg)
T

\hX,XiT

Sample Mean 0.003 0.002 −0.004 −0.005 0.003
Asymptotic Mean 0 0 0 0 0

Sample Stdev 0.9993 1.001 0.997 0.996 1.015
Asymptotic Stdev 1 1 1 1 1

Sample Skewness 0.028 0.3295 0.425 0.453 0.042
Asymp. Skewness (Normal) 0 0 0 0 0
Asymp. Skewness (Edgeworth) 0.025 0.3294 0.427 0.451 0.035

Sample Kurtosis 3.010 3.162 3.256 3.34 2.997
Asymp. Kurtosis (Normal) 3 3 3 3 3
Asymp. Kurtosis (Edgeworth) 3.001 3.169 3.287 3.25 3.003

Table 1: Monte-Carlo simulations: This table reports the first four sample and
asymptotic moments for the five estimators, comparing the asymptotics based
on the Normal distribution and our Edgeworth correction.
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Figure 1: QQ plot for the estimator [Y, Y ](all) based on the asymptotic Normal distribution.
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Figure 2: QQ plot for the estimator [Y, Y ](sparse) based on the asymptotic Normal distrib-
ution.

35



-4 -2 2 4

-4

-2

2

4

HSparse OptimalL Estimator

Figure 3: QQ plot for the estimator [Y, Y ](aparse,opt) based on the asymptotic Normal dis-
tribution.
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Figure 4: QQ plot for the estimator [Y, Y ](avg) based on the asymptotic Normal distribution.

37



-4 -2 2 4

-4

-2

2

4

HTSRVL Estimator

Figure 5: QQ plot for the TSRV estimator \hX,Xi based on the asymptotic Normal distri-
bution.
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Figure 6: Comparison of the small sample distribution of the [Y, Y ](all) estimator (his-
togram), the Edgeworth-corrected distribution (solid line) and the asymptotically Normal
distribution (dashed line).
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Figure 7: Comparison of the small sample distribution of the [Y, Y ](sparse) estimator (his-
togram), the Edgeworth-corrected distribution (solid line) and the asymptotically Normal
distribution (dashed line).
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Figure 8: Comparison of the small sample distribution of the [Y, Y ](sparse,opt) estimator (his-
togram), the Edgeworth-corrected distribution (solid line) and the asymptotically Normal
distribution (dashed line).
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Figure 9: Comparison of the small sample distribution of the [Y, Y ](avg) estimator (his-
togram), the Edgeworth-corrected distribution (solid line) and the asymptotically Normal
distribution (dashed line).
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Figure 10: Comparison of the small sample distribution of the TSRV estimator (histogram),
the Edgeworth-corrected distribution (solid line) and the asymptotically Normal distribu-
tion (dashed line).
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