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ABSTRACT

This paper reviews recent developments in methods for dealing with weak instruments (IVs) in IV
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are relevant when the number of IVs is large and the coefficients on the IVs are relatively small.

Asymptotic power envelopes for invariant tests are established. Power comparisons of the
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1 Introduction

The standard approach to reporting empirical results in economics is to provide
point estimates and standard errors. With this information, confidence intervals (CIs)
and tests are constructed using t tests and the normal critical values. In instrumental
variables (IVs) regression with weak IVs, this approach is problematic. The most
widely used estimator, two-stage least squares (2SLS), has significance bias and is
poorly approximated by a normal distribution when IVs are weak and the degree
of endogeneity is medium to strong. In fact, when the parameter space allows for
arbitrarily weak IVs the exact finite-sample level of standard CIs of the form “estimate
± std error × constant” is zero and t tests have level one.

This paper reviews recent results in the literature on weak IVs that develop an
alternative approach to inference with weak IVs. With this approach, one reports
point estimates accompanied by CIs or tests that have levels that are robust to the
strength of the IVs. In particular, CIs are formed by inverting tests that are robust
to weak IVs. That is, a CI for a parameter β, say, is the set of points β0 for which a
weak IV robust test fails to reject the null hypothesis H0 : β = β0. This is the same
method that is used to generate a CI of the form “estimate ± std error × constant”
except that the test employed is one whose level is robust to weak IVs, rather than
a t tests based on a normal approximation.

The paper focuses on the linear IV model with a single right-hand side (rhs) en-
dogenous variable and independent identically distributed (iid) homoskedastic normal
errors. The majority of applications involve a single rhs endogenous variable. Inter-
est usually is focussed on the coefficient on this variable. Although this basic model
is relatively simple, it captures the essence of the problem. Tests whose levels are
robust to weak IVs for this model can be extended to the case of non-normal errors,
heteroskedastic and/or autocorrelated errors, multiple rhs endogenous variables, and
nonlinear moment condition models. The paper discusses these extensions. Not all
of them are completely satisfactory.

For a just-identified model, the Anderson-Rubin (AR) test, or a heteroskedasticity
and/or autocorrelation robust version of it, is the preferred test because its level
is robust to weak IVs and its power properties are quite good–optimal in certain
respects. For over-identified models, the AR test still is robust to weak IVs, but its
power properties are not as good because it effectively ignores parameter restrictions
that arise naturally in the model. The literature has sought tests that are robust to
weak IVs and are more powerful than the AR test in over-identified models.

Alternatives to the AR test that have been considered include an LM test and
a conditional likelihood ratio (CLR) test. Both of these tests are robust to weak
IVs. The power properties of the CLR test have been found to dominate those of
the LM and AR tests (with iid homoskedastic normal errors). In fact, the CLR test
is found to be essentially on a power envelope for two-sided invariant similar tests.
Furthermore, there is no cost in terms of performance of the test when the IVs are
strong–the test is asymptotically efficient under standard strong IV asymptotics.

“Conditioning” methods have been developed that can be used to convert t tests,
such as the usual one based on the 2SLS estimator, into tests whose levels are robust
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to weak IVs. The power properties of such tests, however, are found to be distinctly
inferior to those of the CLR test. Hence, the CLR test outperforms standard t tests
both in terms of level and in terms of level—corrected power under weak IVs and is
asymptotically efficient under strong IVs.

Although the CLR test is robust asymptotically to weak IVs and non-normality of
the errors, it is not robust to heteroskedasticity and/or autocorrelation of the errors
or to left-out IVs (from the reduced form equation for the rhs endogenous variables).
Nevertheless, versions of the CLR test that are robust to these features have been
developed. We recommend such tests and the CIs they generate for general use in IV
regression with potentially weak IVs. Furthermore, generalizations of these CLR tests
to moment condition models, which are typically estimated by generalized method of
moments (GMM), also are available. For moment condition models, we recommend
such tests because they are robust to weak IVs and can be expected to have relatively
good power properties.

In addition to reviewing some of the recent literature on inference with weak IVs,
this paper presents new results for testing under “many weak IV asymptotics”. Such
asymptotics are designed for the case in which the IVs are weak and the number of
IVs, k, is relatively large compared to the sample size n. We find that in this set-up
the CLR test is still completely robust asymptotically to weak IVs and is essentially
on the power envelope for two-sided invariant (similar or nonsimilar) tests. This holds
no matter how one specifies the relative magnitude of the strength of the IVs to k
in the asymptotics. Hence, the optimal power properties of the CLR test are quite
robust to k. The AR and LM tests have power that lies off the power envelope–in
some cases by a considerable extent. On the other hand, the level of the CLR test
is not completely robust to the magnitude of k relative to n. One does not want to
take k too large relative to n. With normal errors, the CLR test has correct size
asymptotically provided k3/2/n → 0 as n → ∞. With non-normal errors, k3/n → 0
as n→∞ is required.

We conclude that the “many weak IV” results for the CLR test buttress the
argument for employing this test (or heteroskedasticity or autocorrelation robust
versions of it) in scenarios with potentially weak IVs.

This paper focuses on hypothesis tests and CIs that are robust to weak IVs,
and pays less attention to two other aspects of the weak IV problem. The first
neglected topic concerns pretesting for weak instruments: if the instruments are
weak, one adopts a robust strategy, but if the instruments are strong, one uses 2SLS.
This approach is now common empirical practice and is an improvement over the
practice of a decade ago, in which 2SLS was always used without thought about
the strength of the instruments. But this approach entails standard concerns about
pretests, and as a result we find fully robust tests and CIs more appealing. The
second neglected aspect is point estimation. Despite a great deal of work in the finite
sample and Edgeworth expansion literatures, there are few sharp results concerning
point estimates. Although it is generally found that 2SLS has particularly poor finite
sample behavior, each alternative estimator seems to have its own pathologies when
instruments are weak. We therefore have focused on testing and CIs weak IVs, for
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which a solution is closer at hand than it is for estimation.
The remainder of this paper is organized as follows. Section 2 introduces the

model considered in much of the paper. Section 3 discusses what is meant by weak
IVs and the problems with 2SLS estimators, tests, and CIs under weak IVs. Sec-
tion 4 describes “weak IV asymptotics,” “many IV asymptotics,” and “many weak
IV asymptotics.” Section 5 covers formal methods for detecting weak IVs. Section
6 discusses the two approaches to tests and CIs mentioned above–t test-based CIs
versus CIs obtained by inverting weak IV robust tests. Section 7 describes recent
developments for tests whose levels are robust to weak IVs. This includes similar
tests via conditioning, optimal power, robustness to heteroskedasticity and/or auto-
correlation, power with non-normal errors, and extensions to multiple rhs endogenous
variables, coefficients on exogenous variables, and moment condition models. Section
8 briefly outlines some recent developments for estimation with weak IVs. Section 9
does likewise for estimation with many weak IVs. Section 10 presents the new results
for testing with many weak IVs.

We note that recent survey papers on weak IVs include Stock, Wright, and Yogo
(2002), Dufour (2003), and Hahn and Hausman (2003).

2 Model

We start by defining the model that we focus on for much of the paper. The
model is an IV regression model with one endogenous right-hand side (rhs) variable,
multiple exogenous variables, multiple IVs, and independent identically distributed
(iid) homoskedastic normal errors. The exogenous variables and IVs are treated as
fixed (i.e., nonrandom).

The reasons for considering this special model are the following. First, the case of a
single rhs endogenous variable is by far the most important in empirical applications.
Second, asymptotic results for non-normal errors with random or fixed exogenous
variables and IVs are analogous to the finite sample results for normal errors with fixed
exogenous variables and IVs. Third, results for heteroskedastic and/or autocorrelated
errors can be obtained by extending the results for iid homoskedastic errors. Below
we discuss these extensions.

The model consists of a structural equation and a reduced-form equation:

y1 = y2β +Xγ1 + u,

y2 = Zπ +Xξ + v2, (2.1)

where y1, y2 ∈ Rn, X ∈ Rn×p, and Z ∈ Rn×k are observed variables; u, v2 ∈ Rn
are unobserved errors; and β ∈ R, π ∈ Rk, γ1 ∈ Rp, and ξ ∈ Rp are unknown
parameters. We assume that Z is the matrix of residuals from the regression of some
underlying IVs, say hZ ∈ Rn×k, on X (i.e., Z = MX

hZ, where MX = In − PX and
PX = X(X �X)−1X �). Hence, Z �X = 0. The exogenous variable matrix X and the
IV matrix Z are fixed (i.e., non-stochastic) and [X : Z] has full column rank p + k.
The n × 2 matrix of errors [u : v2] is iid across rows with each row having a mean
zero bivariate normal distribution.
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The variable y2 is endogenous in the equation for y1 (i.e., y2 and u may be
correlated). Endogeneity may be due to simultaneity, left-out variables, or mismea-
surement of an exogenous variable. Although we refer to the equation for y1 as a
structural equation, only in the case of simultaneity is the equation for y1 really a
structural equation.

The two reduced-form equations are

y1 = Zπβ +Xγ + v1

y2 = Zπ +Xξ + v2, where

γ = γ1 + ξβ and v1 = u+ v2β. (2.2)

The reduced-form errors [v1 : v2] are iid across rows with each row having a mean
zero bivariate normal distribution with 2× 2 nonsingular covariance matrix Ω. The
parameter space for θ = (β,π�, γ�, ξ�)� is taken to be R×Rk ×Rp×Rp. Let Y = [y1 :
y2] ∈ Rn×2 denote the matrix of endogenous variables.

In empirical applications, interest often is focussed on the parameter β on the rhs
endogenous variable y2.

3 Weak Instruments

It is well known that there are two key properties for IVs: (i) exogeneity, i.e.,
lack of correlation of the IVs with the structural equation error, and (ii) relevance,
i.e., the ability of the IVs to explain the rhs endogenous variables. For many years,
considerable attention has been paid in applications to the issue of exogeneity. Only
more recently has attention been paid to relevance. Weak IVs concerns relevance.

IVs are weak if the mean component of y2 that depends on the IVs, viz., Zπ, is
small relative to the variability of y2, or equivalently, to the variability of the error
v2. This can be measured by the population partial R2 of the equation (2.1) for y2
(where the effect of the exogenous variables X is partialed out). In sample, it can
be measured by the sample partial R2 or, equivalently, by the F statistic for the null
that π = 0 in (2.1), see Shea (1997), Godfrey (1999), and Section 5 below.

Note that IVs can be weak and the F statistic small either because π is close to
zero or because the variability of Z is low relative to the variability of v2. Also note
that in practice the issue typically is how close to zero is π or Zπ, not whether π or
Zπ is exactly equal to zero.

There are numerous examples of weak IVs in the empirical literature. Here we
mention three. The first is the classic example from labor economics of Angrist
and Krueger’s (1991) IV regression of wages on the endogenous variable years of
education and additional covariates. Dummies for quarter of birth (with and without
interactions with exogenous variables) are used as IVs for years of education. The
argument is that quarter of birth is related to years of education via mandatory school
laws for children aged sixteen and lower. At best, the relationship is weak, which
leads to weak IVs. A notable feature of this application is that weak instrument
issues arise despite the fact that Angrist and Krueger use a 5% Census sample with
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hundreds of thousands of observations. Evidently, weak instruments should not be
thought of as merely a small-sample problem, and the difficulties associated with
weak instruments can arise even if the sample size is very large.

The second example is from the macroeconomics/finance literature on the con-
sumption CAPM. Interest concerns the elasticity of intertemporal substitution. In
both linear and nonlinear versions of the model, IVs are weak, e.g., see Neeley, Roy,
and Whiteman (2001), Stock and Wright (2000), and Yogo (2004). In one specifi-
cation of the linear model in Yogo (2004), the endogenous variable is consumption
growth and the IVs are twice lagged nominal interest rates, inflation, consumption
growth, and log dividend-price ratio. Since log consumption is close to a random
walk (see Hall (1978)), consumption growth is difficult to predict. This leads to the
IVs being weak. For example, Yogo (2004) finds F statistics for the null hypothesis
that π = 0 in the first stage regression that lie between 0.17 and 3.53 for different
countries.

The third example is from the macroeconomics literature on the new Keynesian
Phillips curve. Inference typically is carried out using IV methods, see Mavroeidis
(2004) and Nason and Smith (2005). Twice-lagged real marginal cost (labor share
in income) or change in inflation are used as IVs for current inflation growth. Given
that changes in inflation are difficult to predict, the IVs are weak.

Much of the current interest in weak IVs started with two important papers by
Nelson and Startz (1990, 1991) which showed the dramatically non-normal distribu-
tions of the 2SLS estimator and t-statistic when instruments are weak. The effect of
weak IVs on these 2SLS statistics depends considerably on the degree of endogeneity,
which is measured by the correlation, ρu,v2 , between u and v2. If ρu,v2 = 0 or ρu,v2 is
close to zero, then standard procedures work well (in terms of low bias and test and
CI levels being close to their nominal values). When the IVs are weak and the degree
of endogeneity is fairly strong, however, the 2SLS estimator has appreciable bias and
the normal approximation to its distribution is poor. See Nelson and Startz (1990,
1991) and Maddala and Jeong (1992).

There is also a considerable earlier literature that is relevant to this issue, see the
references in Phillips (1984). But, most of the early finite sample literature tended
not to focus on the properties of procedures when the IVs are weak, because the
empirical relevance of this scenario was not recognized. On other hand, for the LIML
estimator, Phillips (1984, 1989) and Choi and Phillips (1992) investigate the finite
sample and asymptotic properties under the limiting case of completely irrelevant
IVs (lack of identification) as well as case of partial identification. Their results show
quite different sampling properties under lack of identification or partial identification
compared to strong identification. This suggests that problems arise when the model
is identified, but the IVs are weak.

An influential paper by Bound, Baker, and Jaeger (1995) analyzes the properties
of 2SLS in the context of Angrist and Krueger’s (1991) regression of wages on ed-
ucation and exogenous variables. It shows that even when the sample size is huge,
the properties of 2SLS can be poor in the face of many weak IVs. The sample
size is not the key parameter. What matters most is the concentration parameter,
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λconc = π�Z �Zπ/σ2v2 (where σ
2
v2 is the variance of v2) and the degree of endogene-

ity, ρuv2 . The earlier finite sample literature was aware of this, e.g., see Rothenberg
(1984).

Generic results for models with isolated unidentified points in the parameter space
also have had an impact on the weak IV literature. Gleser and Hwang (1987) estab-
lish dramatic results concerning the levels of CIs and tests when the parameter space
includes unidentified points. Dufour (1997) extends these results and applies them
to the weak IV regression model. Consider any parametric model with parameters
(β,π) ∈ R2. Suppose the observations have common support. Suppose β is unidenti-
fied when π = 0. In this scenario, Gleser and Hwang’s (1987) result states that a CI
for β must have infinite length with positive probability–otherwise its (exact) level
is zero. This result also holds (essentially by a continuity argument) if the parameter
space is taken to be {(β,π) ∈ R2 : π 9= 0}, which only includes unidentified points.
The usual “estimator ± std error × constant” CI has finite length with probability
one. Hence, the finite-sample confidence level of such a CI is zero under the specified
conditions. Analogously, the finite sample significance levels of t-tests and Wald tests
are one. These conclusions do not apply to LR and LM tests and CIs based on them
because these CIs are not necessarily finite with probability one.

The idea behind this result is as follows. Suppose the parameter space is R2. If
π = 0, then a level 1− α CI must include (−∞,∞) with probability greater than or
equal to 1− α because every value of β ∈ R is a true value when π = 0. Hence, the
event “the CI has infinite length” has probability greater than or equal to 1−α when
π = 0 for a CI with level 1−α. By the common support assumption, this event must
have positive probability for any (β,π) in the parameter space. In consequence, if a
CI is finite with probability one for any (β,π), then its level must be less than 1−α.
If this holds for all α < 1, then its level must be zero.

Note that the argument does not apply if the parameter space is bounded away
from π = 0. But, in this case, the level of the CI typically lies between 0 and 1 − α
depending upon where the parameter space is truncated.

The conclusion from the result of Gleser and Hwang (1987) and Dufour (1997) is
that CIs and tests based on t-tests and Wald tests cannot be fully robust to weak
IVs. This concern is not just a theoretical nicety: numerical studies included in the
papers cited in this section have demonstrated that coverage rates of conventional
TSLS confidence intervals can be very poor when instruments are weak, even if the
sample size is large, in designs calibrated to practical empirical applications such as
the Angrist-Krueger data and the consumption CAPM.

4 Asymptotics

In this section we discuss some basic tools that are used in the weak IV literature,
viz., different types of asymptotics. Asymptotic results are widely used in economet-
rics to provide approximations and to facilitate comparisons of estimators or tests.
For the IV regression model, standard asymptotics let n→∞ and hold other features
of the model fixed. We refer to these asymptotics as strong IV asymptotics. These
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asymptotics provide poor approximations in the IV regression model with weak IVs
because (i) weak IVs correspond to a relatively small value of λ = π�Z �Zπ, (ii) the
finite sample properties of estimators and tests are sensitive to the magnitude of λ,
and (iii) the asymptotic framework results in λ→∞.

In consequence, the literature on weak IVs has considered several alternative
asymptotic frameworks. For linear models, Staiger and Stock (1997) consider asymp-
totics in which

π = C/
√
n for n = 1, 2, ... (4.1)

for some constant k-vector C. Combined with the standard assumption that Z �Z/n→
DZ as n→∞, for some k × k nonsingular matrix DZ , this yields

λ = π�Z �Zπ = C �(Z �Z/n)C → C �DZC as n→∞. (4.2)

Thus, under this asymptotic set-up, λ converges to a finite constant as n → ∞.
Depending on the magnitude of the constant, the IVs are weaker or stronger. We refer
to these asymptotics as weak IV asymptotics. Weak IV asymptotics are analogous to
local-to-unity asymptotics that are widely used in the unit root time series literature.

An attractive feature of weak IV asymptotics is that they provide better approx-
imations than standard asymptotics for the case where λ is small, yet still allow for
the usual simplifications regarding non-normality, heteroskedasticity, and/or auto-
correlation of the errors as under standard asymptotics. Under weak IV asymptotics,
estimation of the 2× 2 reduced-form covariance matrix, Ω, is an order of magnitude
easier than estimation of the structural parameters (β, γ1). In consequence, one typi-
cally obtains the same weak IV asymptotic results whether Ω is known or estimated,
which is another useful simplification.

Under weak IV asymptotics, the “limiting experiment” is essentially the same as
the finite sample model with iid homoskedastic normal errors and known reduced-
form covariance matrix Ω. This has the advantages listed in the previous paragraph,
but the disadvantage that the finite-sample normal model is significantly more com-
plicated than the usual Gaussian-shift limiting experiment.

A second type of asymptotics utilized in the literature lets k → ∞ as n →
∞ with π fixed for all n. We call this many IV asymptotics. These asymptotics
are appropriate when k is relatively large. But, Bekker (1994) argues that these
asymptotics provide better approximations than standard asymptotics even when k
is small. Many IV asymptotics have been employed by Anderson (1976), Kunitomo
(1980), Morimune (1983), Bekker (1994), Donald and Newey (2001), Hahn (2002),
Hahn, Hausman, and Kuersteiner (2004), and Newey (2004a) among others.

A third type of asymptotics, introduced by Chao and Swanson (2005), are many
weak IV asymptotics in which k →∞ and π → 0 as n→∞. These asymptotics are
designed for the case in which one has relatively many IVs which are weak. Many
weak IV asymptotics are employed by Han and Phillips (2002), Newey (2004b), and
Stock and Yogo (2005a). Sections 9 and 10 below consider estimation and testing
under many weak IV asymptotics.
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5 Detecting Weak IVs

A small first stage F statistic for H0 : π = 0 (or, equivalently, a low partial R2)
provides evidence that IVs are weak. Stock and Yogo (2005b) develop formal tests
based on the F statistic for the null hypothesis: (1) the bias of 2SLS is greater than
10% of the bias based on OLS. The F test rejects the null of weak IVs at the 5% level
if F > 10.3. They also consider the null hypothesis that (2) the null rejection rate of
the nominal 5% 2SLS t test concerning β has a rejection rate 10% or greater.. In this
case, the F test rejects the null of weak IVs at the 5% level if F > 24.6. Analogous
tests when the null hypothesis is specified in terms of the LIML estimator or Fuller’s
(1977) modification of LIML are provided in Stock and Yogo (2005b). These tests
have different (smaller) critical values.

The adverse effect of weak IVs on standard methods, such as 2SLS, depends
on the degree of endogeneity present as measured by ρuv2 , the correlation between
the structural and reduced form errors u and v2. But, ρuv2 is difficult to estimate
precisely when the IVs are weak. In particular, ρuv2 cannot be consistently estimated
under weak IVs asymptotics. (The reason is that the residuals used to estimate u
depend on some estimator of β and β cannot be consistently estimated under weak
IV asymptotics.) In consequence, the F tests of Stock and Yogo (2005b) are designed
to be valid for any value of ρuv2 .

An alternative test for the detection of weak IVs based on reverse regressions is
given by Hahn and Hausman (2002). Unfortunately, this test has very low power
and is not recommended, at least for the purpose of detecting weak instruments, see
Hausman, Stock, and Yogo (2005).

If one uses an F test to detect weak IVs as a pre-test procedure, then the usual
pre-testing issues arise for subsequent inference, e.g., see Hall, Rudebusch, andWilcox
(1996). The approach of Chioda and Jansson (2004), which considers tests concerning
β that are valid conditional on the value of the F statistic, can deal with such pre-
testing issues. A drawback of this approach, however, is that it sacrifices power.

6 Approaches to Inference with Weak IVs

In most areas of econometrics, the standard method is to report a parameter
estimate along with an estimate of its standard error. Then, one utilizes CIs of the
form “estimator ± std error × constant” and one carries out t tests using critical
values from the normal distribution. This approach is suitable if the estimator has a
distribution that is centered approximately at the true value and is reasonably well
approximated by the normal distribution. In the case of IV estimation, this approach
does not work well if the IVs are weak, as discussed Section 3.

One approach to dealing with weak IVs is to follow the “estimate/standard error”
reporting method combined with a pre-test for weak IVs and/or a suitable choice of
(bias-corrected) estimator, standard error estimator, and/or IVs in order to improve
the normal approximation. For example, a sophisticated version of the latter is given
in Donald and Newey (2001). See Hahn and Hausman (2003), Hahn, Hausman, and
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Kuersteiner (2004), Newey (2004a, b), and Section 8 below for results and references
to the literature. This approach is justified if the parameter space is bounded away
from the unidentified set of parameter values where π = 0. But, the approach is not
fully robust to weak IVs.

An alternative approach is to report an estimate and CI, where the CI is fully
robust to weak IVs asymptotically. By this we mean that the CI has asymptotically
correct coverage probability under standard asymptotics for π 9= 0 and under weak IV
asymptotics (which includes the standard asymptotic case with π = 0). For testing,
this approach uses tests that are fully robust to weak IVs asymptotically. For the
weak IV problem, this approach was first advocated by Dufour (1997) and Staiger
and Stock (1997).

Fully-robust CIs can be obtained by inverting fully-robust tests. For example, a
CI for β of (approximate) level 100(1 − α)% consists of all parameter values β0 for
which the null hypothesis H0 : β = β0 is not rejected at (approximate) level 5%.
Note that standard CIs of the form “estimator ± std error × constant” are obtained
by inverting t tests. Thus, the only difference between the CIs used in the first and
second approaches is that the second approach employs tests that are fully robust to
weak IVs rather than t tests. Papers that discuss the mechanics of the inversion of
robust tests to form CIs include Zivot, Startz, and Nelson (1998), Dufour and Jasiak
(2001), and Dufour and Taamouti (2005). Papers that report empirical results using
CIs obtained by inverting fully-robust tests include Yogo (2004) and Nason and Smith
(2005).

We advocate the second approach. In consequence, we view robust tests to be very
important and we focus more attention in this paper on testing than on estimation.

7 Developments in Testing for the Linear Model

In this section, we consider testing in the model specified in (2.1)-(2.2). In appli-
cations, interest often is focused on the parameter β on the rhs endogenous variable
y2. Hence, our interest is in the null and alternative hypotheses:

H0 : β = β0 and H1 : β 9= β0. (7.1)

The parameter π, which determines the strength of the IVs, is a nuisance parameter
that appears under the null and alternative hypotheses. The parameters γ, ξ, and Ω
are also nuisance parameters, but are of lesser importance because tests concerning β
typically are invariant to γ and ξ and the behavior of standard tests, such as t tests,
are much less sensitive to Ω than to π.

We desire tests that are robust to weak IVs under normal or non-normal er-
rors. In addition, we desire tests that exhibit robustness under weak and strong IV
asymptotics to (i) left-out IVs, (ii) nonlinearity of the reduced form equation for
y2, (iii) heteroskedasticity–in cross-section contexts, (iv) heteroskedasticity and/or
autocorrelation–in some time series contexts, and (v) many IVs–in some contexts.

Some, e.g., Dufour (1997), desire tests whose finite-sample null rejection rate is
exactly the desired significance level under iid homoskedastic normal errors for any
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π. But, we view this as putting excessive weight on the iid homoskedastic normal
assumptions, which are not likely to hold in practice.

7.1 Anderson-Rubin and LM Tests

The first test employed specifically to deal with weak IVs is the Anderson-Rubin
(1949) (AR) test, see Dufour (1997) and Staiger and Stock (1997). The AR test
imposes the null β = β0 and uses the F test for the artificial null hypothesisH

∗
0 : κ = 0

in the model
y1 − y2β0 = Zκ+Xγ + u. (7.2)

The AR test statistic is

AR(β0) =
(y1 − y2β0)�PZ(y1 − y2β0)/keσ2u(β0) , where

eσ2u(β0) = (y1 − y2β0)�M[Z:X](y1 − y2β0)
n− k − p . (7.3)

Under the null hypothesis H0 : β = β0, we have

AR(β0) =
u�PZu/k

u�M[Z:X]u/(n− k − p)
. (7.4)

The null distribution of the AR statistic does not depend on π regardless of the dis-
tribution of the errors u and the AR test is fully robust to weak IVs. Under H0,
AR(β0)→d χ

2
k/k under strong and weak IV asymptotics assuming iid homoskedastic

errors u with two moments finite. Under the additional assumption of normal errors,
AR(β0) ∼ Fk,n−k−p. Hence, an F critical value is typically employed with the AR
test. As pointed out by Dufour (2003), the AR test does not rely on any assump-
tions concerning the reduced-form equation for y2. But, the AR test is not robust to
heteroskedasticity and/or autocorrelation of the structural equation error u.

Under the alternative hypothesis,

AR(β0) =
(u+ Zπ(β − β0))

�PZ(u+ Zπ(β − β0))

u�M[Z:X]u/(n− k − p)
. (7.5)

In consequence, power depends on the magnitude of π�Z �Zπ(β − β0)
2. The power of

AR test is very good when k = 1. Moreira (2001) shows that it is UMP unbiased
when the errors are iid homoskedastic normal, Ω is known, and k = 1.

On the other hand, when k > 1, the power of AR test is not so good. It is a
k degrees of freedom test when only one parameter is under test. When the true
parameter is β, model is can be written as

y1 − y2β0 = Zπ(β − β0) +Xγ + v1. (7.6)

The AR test tests whether Z enters this equation. The AR test sacrifices power
because it ignores the restriction that κ = π(β − β0). Obviously, low power is an
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undesirable property for tests, and it leads to excessively long CIs based on such
tests.

The literature has sought more powerful tests than the AR test that are robust
to weak IVs. To start, one might consider the LR test of H0 : β = β0. The LR
statistic combined with the conventional χ21 critical value is not robust to weak IVs
when k > 1. But, Wang and Zivot (1998) show that a larger critical value, obtained
by bounding the asymptotic distribution of the LR statistic over π values, is robust
to weak IVs. However, the resulting test is nonsimilar asymptotically under weak IV
asymptotics (i.e., its asymptotic null rejection rate depends on π). In consequence,
the test is biased and sacrifices power. For instance, the test is not asymptotically
efficient under strong IV asymptotics.

Kleibergen (2002) and Moreira (2001) independently introduce an LM test whose
null rejection rate is robust to weak IVs. They use different ideas to arrive at the
LM test. Kleibergen’s idea is as follows: The AR statistic projects y1 − y2β0 onto
the k-dimensional space spanned by Z. Instead, one can estimate π under the null
hypothesis via the ML estimator, eπ(β0), and project onto the one-dimensional space
spanned by Zeπ(β0). It turns out that eπ(β0) is asymptotically independent of y1−y2β0
under the null under strong and weak IV asymptotics. Hence, a suitably scaled version
of the projection residuals is asymptotically χ21 under the null hypothesis under both
strong and weak IV asymptotics. The resulting test statistic is an LM statistic and
it is fully robust to weak IVs.

The power of the LM test often is better than that of the AR test when k > 1, but
not always. A drawback of the LM test is that it exhibits quirky power properties
including non-monotonicity in |β − β0|.

We note that when k = 1 the LM, LR, and AR tests are equivalent because the
LM and LR statistics equal k times the AR statistic.

7.2 Similar Tests

Moreira (2001, 2003) gives a characterization of (exactly) similar tests of H0 :
β = β0 for the model of (2.1)-(2.2) with normal errors and known Ω. Similar tests are
necessarily fully robust to weak IVs because their null distribution does not depend
on π. When Ω is unknown, a consistent estimator of Ω, say eΩ, can be plugged in
for Ω and an exactly similar test becomes a test that is asymptotically similar under
weak IV asymptotics (and typically under strong IV asymptotics as well).

By definition, a level α test φ(Y ) (which equals one when the test rejects H0 and
zero otherwise) is similar if

Eπφ(Y ) = α for all π, (7.7)

where Eπ(·) denotes expectation under (β0,π).
Moreira’s argument leading to the characterization of similar tests is as follows.

Under the null hypothesis, the unknown parameter is π.Using standard methods, e.g.,
Lehmann (1986), the null-restricted ML estimator of π, eπ(β0), can be shown to be a
complete sufficient statistic for π because the parametric model is in the exponential
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family of distributions. By definition, a sufficient statistic eπ(β0) is complete for π if,
for any real function h(·), Eπh(eπ(β0)) = c for all π implies that h(·) = c a.s. for some
constant c. Applying this definition with h(·) = Eπ(φ(Y )|eπ(β0) = ·) and using the
law of iterated expectations gives

Eπh(eπ(β0)) = EπEπ(φ(Y )|eπ(β0)) = Eπφ(Y ) = α for all π (7.8)

implies that h(·) = Eπ(φ(Y )|eπ(β0) = ·) = α a.s. That is, φ(Y ) is similar with level α
iff

Eπ(φ(Y )|eπ(β0) = x) = α for all x. (7.9)

Given this result, similar tests can be created from non-similar tests by employing
a conditional critical value function κφ,α(x) defined by

κφ,α(x) = E(φ(Y )|eπ(β0) = x) = α. (7.10)

Then, a similar test based on φ rejects H0 if

φ(Y ) > κφ,α(eπ(β0)). (7.11)

This method generates “conditional tests” that are similar. For example, one can
generate a conditional Wald test given an estimator such as 2SLS or LIML.

In addition, one can consider the conditional LR (CLR) test. Moreira (2003)
focuses on this test. It is a more sophisticated version of Wang and Zivot’s (1998)
LR test in which a critical value function replaces a constant to achieve the desired
level α. The CLR test has higher power than the Wang-Zivot LR test.

The CLR test based on a plug-in value of Ω has asymptotic null rejection rate α
under both weak and strong IV asymptotics and, hence, is fully robust to weak IVs.

Note that the critical value function κφ,α(x) of (7.10) can be computed by numer-
ical integration or simulation and then tabulated, see Moreira (2003) and Andrews,
Moreira, and Stock (2004b, c).

Moreira, Porter, and Suarez (2004) introduce a residual-based bootstrap for the
CLR test which is shown to be first-order correct under strong IV asymptotics whether
π = 0 or π 9= 0. Its behavior under weak IV asymptotics is not discussed. This
bootstrap does not deliver higher-order improvements.

7.3 Optimal Tests

The “conditioning” method leads to a surfeit of tests that are fully robust to
weak IVs because any test can be made fully robust. Given this, Andrews, Moreira,
and Stock (2004a) (AMS) address the question of optimal tests that are robust to
weak IVs. They consider the class of similar tests for the model of (2.1)-(2.2) with
iid homoskedastic normal errors and known Ω. If π is known, then it is plausible that
an optimal two-sided test is just the t test of H0 : β = β0 in the model

y1 − y2β0 = (Zπ)(β − β0) +Xγ + u. (7.12)
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Indeed, Moreira (2001) shows that the two-sided t test for the case when π and Ω are
known is UMP unbiased. But π is not known in practice, so no optimal two-sided test
exists. The problem is that the class of tests considered is too large. In consequence,
AMS restricts attention to similar tests that satisfy a rotational invariance property.

The data matrix Y has a multivariate normal distribution, which is a member
of the exponential family of distributions. In consequence, low dimensional sufficient
statistics are available. For tests concerning β, there is no loss (in terms of attainable
power functions) in considering tests that are based on the sufficient statistic Z �Y for
(β,π�)�, see AMS. This eliminates the nuisance parameters (γ, ξ) from the problem.
The nuisance parameter π remains. As in Moreira (2003), we consider a one-to-one
transformation of Z �Y given by [S : T ], where

S = (Z �Z)−1/2Z �Y b0 · (b�0Ωb0)−1/2,
T = (Z �Z)−1/2Z �Y Ω−1a0 · (a�0Ω−1a0)−1/2,
b0 = (1,−β0)� and a0 = (β0, 1)�. (7.13)

The invariant tests considered in AMS depend on S and T only through the
maximal invariant statistic Q defined by

Q = [S:T ]�[S:T ] =
�
S�S S�T
T �S T �T

�
=

�
QS QST
QST QT

�
. (7.14)

(See AMS for the definition of the groups of transformations on the data matrix
[S:T ] and the parameters (β,π) that yields the maximal invariant to be Q. Note that
Y �PZY is an equivalent statistic to Q.)

For example, the AR, LM, and LR test statistics can be written as

AR = QS/k, LM = QST , and

LR =
1

2

�
QS −QT +

t
(QS −QT )2 + 4Q2ST

�
. (7.15)

The only tests that we are aware of that are not functions of Q are tests that involve
leaving out some IVs and t tests based on Chamberlain and Imbens (2004) many IV
estimator.

The matrix Q has a noncentral Wishart distribution with means matrix of rank
one and identity variance matrix. The distribution of Q (and hence of invariant
similar tests) only depends on the unknown parameters β and

λ = π�Z �Zπ ∈ R, (7.16)

where λ indicates the strength of the IVs (and is proportional to the concentration
parameter λconc). The utilization of invariance has reduced the k-vector nuisance
parameter π to a scalar nuisance parameter λ. The distribution of Q also depends on
the number IVs, k, and the parameter of interest, β.

AMS derives a power envelope for two-sided invariant similar (IS) tests and com-
pares new and existing tests to the power envelope. The power envelope is determined
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by the tests that are point optimal for each (β,λ) combination. There are several
ways to impose two-sidedness. First, AMS considers average power against two points
(β∗,λ∗) and (β∗2,λ

∗
2), where (β

∗
2,λ

∗
2) is selected given (β

∗,λ∗) to be the unique point
such that β∗2 is on the opposite side of the null value β0 from β∗ and such that the test
that maximizes power against these two points is asymptotically efficient (AE) under
strong IV asymptotics. The power envelope is then a function of (β∗,λ∗). Second,
AMS considers tests that satisfy a sign-invariance condition that the test depends on
QST only through |QST |. This is satisfied by most tests in the literature including the
AR, LM, and CLR tests. Third, AMS considers locally unbiased tests. AMS shows
that the first and second approaches yield exactly the same power envelope. Further-
more, numerical calculations show that the third approach yields a power envelope
that is hard to distinguish from the first and second.

AMS develops a class of new tests based on maximizing weighted average power
(WAP) given different weight functions on (β,λ). These tests and the AR, LM, and
CLR tests are compared numerically to the two-sided power envelope for IS tests.
The power envelope only depends on β, λ, k, ρ = corr(v1, v2) and is smooth in these
parameters. Hence, it is possible to make fairly exhaustive comparisons.

Figure 1 illustrates some of these comparisons for the case of k = 5 instruments.
The figure plots the power of the AR, LM, and CLR tests as a function of β, along
with the asymptotically efficient power envelope for two-sided invariant similar tests.
The first three panels show the effect of varying ρ = corr(v1, v2) (negative values of
ρ correspond to reversing the sign of β − β0) and for β0 = 0 (taken without loss
of generality). Panels (a) - (c) consider rather weak instruments, λ = 10, which
corresponds to a first-stage F-statistic having a mean of λ/k + 1 = 3 under the null.
Panel (d) presents the power functions for a case of relatively strong instruments,
λ = 80.

Figure 1 and other results in AMS show that the CLR test is essentially on the
power envelope for all β, λ, k, and ρ. In contrast, the AR test typically is below
the power envelope–the more so, the larger is k. In addition, the LM test has a
quirky non-monotone power function that is sometimes on the power envelope and
sometimes far from it. See AMS for an explanation of this behavior. Results in AMS
indicate that some point-optimal IS two-sided (POIS2) tests are very close to the
power envelope, like the CLR test. This is also true of some WAP tests based on
nondegenerate weight functions. But, these tests do not have as simple closed-form
expressions as the LR test statistic.

One might ask the question of whether the restriction to similar tests is overly
restrictive. Andrews, Moreira, and Stock (2004b) provides some results for the power
envelope for invariant non-similar tests using the least favorable distribution approach
of Lehmann (1986). In the cases in which the nonsimilar power envelope could be
computed, it is found to be very close to that for similar tests. Hence, the imposition
of similarity does not appear to be overly restrictive.

The finite sample power envelope for known Ω that is determined in AMS is shown
to be the same as the weak IV asymptotic power envelope for unknown Ω. Hence,
the feasible CLR test is (essentially) on the weak IV asymptotic power envelope for
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two-sided IS tests. In addition, AMS show that the CLR test (and the LM test) are
asymptotically efficient under strong IV asymptotics.

Based on these results, we recommend the CLR test among tests that are designed
for iid homoskedastic errors.

7.4 Conditional LR Test

There is a one-to-one transformation from the restricted ML estimator eπ(β0) to
the statistic QT . Hence, the CLR test can be written such that it rejects the null
hypothesis when

LR > κCLRα (QT ), (7.17)

where κCLRα (QT ) is defined to satisfy Pβ0(LR > κCLRα (qT )|QT = qT ) = α.
We note that the LR statistic combines the AR and LM statistics based on the

magnitude of QT − QS . If QT is much larger than QS, then LR is essentially LM.
If QT is much smaller than QS , then LR is essentially k·AR. This can be seen more
clearly by re-writing LR as follows:

LR =
1

2

#
QS −QT + |QT −QS |

v
1 +

4QT
(QT −QS)2LM

$
. (7.18)

Now, as QS/QT → 0, we have (i) QT − QS → ∞, (ii) QT/(QT − QS)2 → 0, (iii)
the
√· term is approximately 1+ 2[QT/(QT −QS)2]LM by a mean-value expansion,

(iv) |QT − QS| = QT − QS , (v) |QT − QS |[QT /(QT − QS)2]LM goes to LM, and
(vi) LR goes to LM. On the other hand, as QT → 0, (i) the

√· term goes to 1, (ii)
QS −QT + |QT −QS| goes to 2QS , and (iii) LR goes to QS = k ·AR.

We briefly illustrate the use of the CLR test to construct CIs using some results
from Yogo (2004). Yogo reports CIs for the elasticity of intertemporal substitution
obtained from regressions of stock returns on consumption growth using quarterly
data from 1970 to 1998 with four IVs: twice-lagged nominal interest rate, inflation,
consumption growth, and log of the dividend/price ratio. CIs are obtained by in-
verting AR, LM, and CLR tests. Yogo (2004) reports results for several countries.
For most countries, the CIs are (−∞,∞) using all three methods because the IVs
are very weak in this model specification. For Canada, the CIs are AR: [.02, 4.03],
LM: [.05, .35], and CLR: [.04, .41]. In this case, the AR CI is much wider than LM
and CLR CIs. For France, the CIs are AR: [−.28, .20], LM: (−∞,∞), and CLR:
[−.16, .11]. In this case, the LM CI is uninformative and the CLR CI is noticeably
shorter than the AR CI. These results illustrate that the power advantages of the
CLR test translate into shorter more informative CIs (at least in these applications).

7.5 Conditional t Tests

The usual test employed in practice is a t test based on the 2SLS estimator.
Analogously, the usual CI employed a is t test-generated CI of the form “estimator
± std error × constant.” As noted above, a t test using the normal approximation is
not robust to weak IVs. But, one can construct a conditional t test that is robust by
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using a conditional critical value function like that for the CLR test. In consequence,
one can answer the question of how good is a t test in terms of power once it has
been corrected to get its size correct.

Andrews, Moreira, and Stock (2004c) compare the power properties of conditional
t tests based on several estimators, including 2SLS, LIML, and Fuller’s (1977) mod-
ification of LIML, to the CLR test and the power envelope for two-sided IS tests. In
short, the results indicate that t tests have very poor power properties when the IVs
are weak. Power is often very low on one side of the null hypothesis. The CLR test
has much better power properties. We conclude that in the presence of weak IVs, t
tests not only lack robustness to weak IVs in terms of size, but their power properties
are also poor after size-correction by conditioning.

7.6 Robustness to Heteroskedasticity and/or Autocorrelation

Although the CLR test has good power properties, it is not robust to left-out
IVs, nonlinear reduced-form for y2, heteroskedasticity, or autocorrelation. However,
the LR test statistic can be replaced by a heteroskedasticity-robust version, HR-LR,
or a heteroskedasticity and autocorrelation-robust version, HAR-LR, that is robust,
see Andrews, Moreira, and Stock(2004d).

Given the HR-LR or HAR-LR statistic, the same conditional critical value func-
tion as for the CLR test is used to yield HR-CLR and HAR-CLR tests. These tests
are robust to left-out IVs, nonlinear reduced-form for y2 (which can be viewed to be
a cause of heteroskedasticity), heteroskedasticity, and/or autocorrelation under weak
and strong IV asymptotics. Furthermore, the asymptotic properties of the HR-CLR
and HAR-CLR tests under homoskedasticity are same as those of the CLR test. So,
HR-CLR and HAR-CLR tests are optimal IS two-sided tests under homoskedastic
iid errors.

Kleibergen (2005a, b) also gives heteroskedasticity and/or autocorrelation robust
tests that reduce to the CLR test under homoskedasticity. Kleibergen’s tests apply
in the more general context of nonlinear moment conditions. Note that Kleibergen’s
tests are not the same as those in AMS under heteroskedasticity and/or autocorre-
lation even asymptotically under weak IV asymptotics. But, they are the equivalent
asymptotically under weak and strong IV asymptotics with homoskedastic iid errors.

Other tests that are robust to weak IVs as well as to heteroskedasticity and/or
autocorrelation are the generalized empirical likelihood (GEL) tests of Guggenberger
and Smith (2005a, b), Otsu (2005), and Caner (2003). The GEL tests are analogues
of the AR and LM tests discussed above. They have the same asymptotic properties
under weak and strong IV asymptotics as heteroskedasticity and/or autocorrelation
robust versions of the AR and LM tests. The GEL tests are not as powerful asymp-
totically as the HR-CLR or HAR-CLR tests under iid homoskedastic errors. This is
probably also true under a variety of forms of heteroskedasticity and/or autocorrela-
tion.

Note that it should be possible to construct a GEL version of the HR-CLR and
HAR-CLR tests by combining the GEL versions of the AR and LM statistics to form
a GEL-LR statistic using the formula for LR given in (7.15) written as a function of
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the AR and LM statistics and employing the critical value function for the CLR test.

7.7 Power with Non-normal Errors

The power results of Section 7.3 are for normal errors. The question arises whether
tests exist with good power for normal errors and higher power for non-normal errors.
In certain contexts, the answer is yes. In particular, rank-based versions of the AR
and CLR tests have this property, see Andrews and Marmer (2003) and Andrews
and Soares (2004). With iid homoskedastic (possibly non-normal) errors and given
certain conditions on the exogenous variables and IVs, the rank-based AR test based
on normal scores has exact significance level α and has power that asymptotically
dominates the power of the AR test. Specifically, its power is higher for thick-tailed
error distributions. Hence, under the given conditions and k = 1 (in which case, the
AR, LM, and CLR tests are the same), the rank-based AR test is quite attractive. It
is robust to left-out IVs and nonlinear reduced form for y2. On the other hand, it is
not robust to heteroskedasticity or autocorrelation of the structural errors u. It also
relies on stronger assumptions concerning the exogenous variables and IVs than the
AR test. Hence, there is a trade-off between the rank and non-rank tests.

When k > 1, the rank-based CLR test has power advantages over the CLR test
for thick tailed errors. But, it is not robust to left-out IVs, heteroskedasticity, or
autocorrelation. Hence, there is a trade-off between the rank-based CLR test and
the HR-CLR and HAR-CLR tests in terms of power against non-normal errors and
these robustness properties.

We conclude that in certain circumstances rank-based tests are preferable to the
HR-CLR or HAR-CLR tests. But, in most circumstances, the latter are preferred.

7.8 Multiple Right-hand Side Endogenous Variables

Next, suppose y2 and β are vectors. The AR, LM, and CLR tests of H0 : β = β0
all generalize to this case, see Anderson and Rubin (1949), Kleibergen (2002), and
Moreira (2003). All of these tests are robust to weak IVs. One would expect the
relative power properties of these tests to be similar to those in the case of a scalar
β. However, the optimal power properties of the CLR test established in AMS do not
carry over in a straightforward manner because the Wishart distribution of the (data)
matrix Q that appears in the vector β case has a means matrix of rank two or greater,
rather than rank one. Nevertheless, based on the scalar β power comparisons, we
recommend the CLR (HR-CLR, or HAR-CLR) test over the AR and LM tests. The
CLR test does have the drawback that the conditional critical value function is higher
dimensional and, hence, more cumbersome in the vector β case.

To obtain a CI or test for an individual coefficient, say β1, in the vector β =
(β1,β

�
2)
� ∈ Rm, there are several approaches to inference when the IVs are weak–

none is completely satisfactory. First, one can construct a CI via the projection
method. The idea is to construct an approximate 100(1− α)% confidence region in
Rm for β using a test that is robust to weak IVs. Then, the approximate 100(1−α)%
CI for β1 is the set of β1 values for which (β1,β

�
2)
� is in the confidence region for some
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β2. In turn, an approximate level α test of H0 : β1 = β10 rejects the null hypothesis
if β10 is not in the CI for β1. For the application of this method using the AR test,
see Dufour and Jasiak (2001) and Dufour and Taamouti (2005). A drawback of this
method is that it is conservative. Hence, it yields CIs that are longer than desirable.

An alternative method, discussed in Moreira (2005), relies on exclusion restric-
tions in the reduced-form equations for the endogenous variables whose coefficients
are β2 in the structural equation. Given suitable restrictions, tests are available that
are asymptotically similar under weak and strong IV asymptotics. Such tests have
the drawback of relying on exclusion restrictions and of sacrificing power–they are
not asymptotically efficient under strong IV asymptotics.

A third approach is available that is partially robust to weak IVs. Suppose β1
is asymptotically weakly identified and β2 is asymptotically strongly identified. See
Stock and Wright (2000), Kleibergen (2004), or Guggenberger and Smith (2005a) for
precise definitions of what this means. Then, asymptotically non-conservative tests
for β1 are available by concentrating out β2. Simulation results in Guggenberger and
Smith (2005a) indicate that this method works fairly well in terms of size even if β2
not very strongly identified.

7.9 Inference on Other Coefficients

Suppose one is interested in a test or CI concerning a coefficient, say γa, on an ex-
ogenous variable, sayXa, in the structural equation for y1, whereXγ1 = Xaγa+Xbγb.
In this case, t tests based on the 2SLS or LIML estimator of γa do not necessarily
perform poorly under weak IVs asymptotics. What is key for good performance as-
ymptotically for 2SLS is that y2 is explained asymptotically by more than just the
part of Xa that is orthogonal to Xb. For example, one can show that consistency and
asymptotic normality of the 2SLS estimator holds in the model of (2.1)-(2.2) with iid
homoskedastic errors u with two moments finite if

lim inf
n→∞ (π�Z �Zπ + ξ∗�b X

�
bXbξ

∗
b)/n > 0 and lim

n→∞X
∗�
a X

∗
a/n =M > 0, where(7.19)

y2 = Zπ +X
∗
aξa +Xbξ

∗
b , X

∗
a =MXbXa, and ξ∗b = ξb + (X

�
bXb)

−1X �bXaξa.

Thus, consistency holds even if π = C/
√
n provided lim inf

n→∞ ξ∗�b X �bXbξ
∗
b/n > 0 (and

limn→∞X∗�a X∗a/n = M > 0). This sort of result is closely related to results under
partial identification of Phillips (1989).

There are several approaches to inference that are robust to weak IVs and small
values of ξ∗�b X �bXbξ

∗
b , but none is completely satisfactory. One one can use projection

as in Section 7.8, but this has the same potential drawback as described above. If Xa
(or equivalently X∗a) does not enter the reduced-form equation for y2, then ξa = 0
and least squares estimation of y1 on X∗a yields a consistent estimator of γa and least
squares t tests are invariant to π and ξ∗b . But, such an exclusion restriction may not
be plausible in a given application.
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7.10 Tests in Nonlinear Moment Condition Models

Weak IVs appear not only in linear models, but also in nonlinear models specified
by moment conditions. Such models typically are estimated by generalized method
of moments (GMM), although generalized empirical likelihood (GEL) estimation also
is possible. There have been significant contributions to the literature recently con-
cerning inference in such models when the IVs are weak.

Stock and Wright (2000) extend weak IV asymptotics to nonlinear models by
taking part of the population moment function to be local to zero for all values of
the parameter as n → ∞. This implies that part of the matrix of derivatives of
the sample moments is local to zero as n → ∞. These results allow one to assess
both the null rejection probabilities of tests under weak IV asymptotics and their
power properties. Stock and Wright (2000) consider extensions of the AR test and
corresponding CIs to the nonlinear moment condition model.

Kleibergen (2002, 2005a, b) extends the weak IV-robust LM test for the IV re-
gression model to the moment condition model. This allows him to construct, by
analogy, a CLR test for the nonlinear moment condition model, call it GMM-CLR.
The GMM-CLR test is robust to weak IVs and allows for heteroskedasticity and/or
autocorrelation. Its power properties have not been investigated, but one would think
that in many cases they would reflect the power advantages of the CLR test in linear
models.

Generalized empirical likelihood (GEL) versions of the weak IV robust AR and LM
tests have been constructed by Guggenberger and Smith (2005a, b), Otsu (2005), and
Caner (2003). These tests are robust to heteroskedasticity and/or autocorrelation.
Their properties under the null and alternatives using the weak IV asymptotics of
Staiger and Stock (2000) are the same as those of the AR and LM moment condition
tests. Hence, one would expect that these GEL tests are not as powerful as the
GMM-CLR test, at least if the amount of heteroskedasticity and autocorrelation is
not too large. We note that it should be possible to construct a GEL-based test that
is an analogue of the CLR test.

Given current knowledge, we recommend the GMM-CLR test of Kleibergen (2005a,
b) for dealing with weak IVs in moment condition models. However, knowledge in
this area is not completely developed and it remains an open question whether a test
that dominates GMM-CLR can be developed.

8 Estimation with Weak IVs

This section gives a brief discussion of estimation with weak IVs. Under weak IV
asymptotics, what is relevant is estimation in the normal linear model with known
Ω. There is a substantial older literature comparing estimators in this model. See
Rothenberg (1984) and Phillips (1984) for references. But, the relevance of some
of this literature is diminished for two reasons. First, many comparisons are based
on higher-order expansions under standard SI asymptotics. For example, see Nagar
(1959) and Rothenberg (1984) for further references. Hahn, Hausman, and Kuer-
steiner (2004) (HHK) and Chao and Swanson (2003) find such higher-order expan-
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sions are not accurate under weak IV parameter configurations. Second, Monte Carlo
comparisons in the older literature tend to be for relatively strong IV parameter con-
figurations, see HHK.

Recently, Chamberlain (2003) has provided a theoretical optimality result for the
LIMLk estimator (i.e., LIML for the case of known Ω) in the model of (2.1)-(2.2). He
shows that LIMLk is minimax for a particular bounded loss function. He also shows
that LIMLk minimizes average risk over certain ellipses in π-space independently of
the radius of these ellipses. These are nice theoretical properties, but the lack of finite
integer moments of LIML and LIMLk indicates that the loss function employed may
not be desirable if one is concerned with large estimation errors.

Via simulation, HHK confirm that LIML displays high dispersion under weak
IV parameter configurations relative to other estimators even when dispersion is
measured by the interquartile range rather than by the variance (which is infinite for
LIML and LIMLk). LIML does exhibits low median bias, which is consistent with
LIMLk being exactly median unbiased.

Fuller’s (1977) modification of LIML with a = 1 or 4 has finite moments and
its median-bias is relatively small in HHK’s simulations with weak IV parameter
configurations. The jackknife 2SLS estimator also fares well in these simulations.

There has been recent research on Bayes estimators for the model of (2.1)-(2.2)
that is relevant for weak IV contexts. Kleibergen and van Dijk (1998) consider
a diffuse prior that is designed to handle lack of identification due to weak IVs.
Kleibergen and Zivot (2003) consider priors that yield posteriors that are of the same
form as the densities of 2SLS and LIML. Chao and Phillips (1998, 2002) construct
the Jeffreys prior Bayes estimator for the limited information model. Zellner (1998)
introduces a Bayesian method of moments estimator (BMOM), which is in the family
of double k class estimators. Unlike the other Bayes estimators mentioned above,
BMOM is not equivariant to shifts in β. Gao and Lahiri (1999) carry out a Monte
Carlo comparisons of several of these Bayes estimators under weak IV parameter
configurations.

By standard results, Bayes estimators based on proper priors and their limits
yield a complete class of estimators for the model with iid homoskedastic normal
errors and known Ω. Hence, these estimators also form an asymptotically complete
class under weak IV asymptotics when Ω is unknown and is replaced by a consistent
estimator.

We conclude this section by noting that there does not seem to be any dominant
estimation method for the linear model with weak IVs. At this time, we recommend
Fuller’s (1977) modified LIML estimator with a = 1 or 4 as a good choice in terms
of overall properties.

9 Estimation with Many Weak IVs

To date the literature concerning models with many weak IVs has focussed on
estimation. Chao and Swanson (2005) consider asymptotics in which k → ∞ and
π → 0 as n → ∞. The idea of their paper is that a sufficient number of weak IVs
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may provide enough additional information regarding β to yield consistent estimation.
Indeed, they establish that consistent estimation of β is possible even if π = C/

√
n (as

in weak IV asymptotics) provided k →∞. For consistency of LIML or the jackknife
IV estimator (JIVE), one needs λ/k1/2 → ∞ as n → ∞, where λ = πZ �Zπ indexes
the strength of the IVs. For consistency of 2SLS, on the other hand, one needs a
faster growth rate of λ: λ/k → ∞ as n → ∞. This advantage of LIML over 2SLS
is consistent with the higher-order bias properties of LIML and 2SLS under many
(non-weak) IV asymptotics, see HHK.

Han and Phillips (2003) consider fixed weight-matrix GMM estimators for non-
linear moment condition models. Their results show that many different types of
asymptotic behavior of such estimators is possible depending on the rates of growth
of the strength of the IVs relative to k. They provide conditions for convergence in
probability to a constant, which is not necessarily true value. They provide results
based on high-level conditions that indicate that the asymptotic distributions of fixed
weight-matrix GMM estimators can be normal or non-normal.

Newey (2004b) analyzes the continuous updating GMM (CUE-GMM) estimator
when λ/k → c as n → ∞ for some constant c > 0. He shows that the CUE-GMM
estimator is asymptotically normal, but with a variance matrix has an additional term
compared to usual fixed k case. He provides a new asymptotic variance estimator
that is asymptotically correct under many weak IV asymptotics when λ/k → c and
under strong IV asymptotics with k fixed. Although this variance estimator helps
to robustify inference to many weak IVs, tests and CIs based on this asymptotic
approximation are not fully robust to weak IVs or large k.

Chamberlain and Imbens (2004) develop a random-effects quasi-ML estimator
based on a random coefficients structure on the relation between the rhs endogenous
variable and the IVs. This structure reduces the number of parameters to be esti-
mated. (They do not consider the asymptotic distribution of the estimator under
many weak IV asymptotics.)

Chao and Swanson (2003) introduce bias-corrected linear IV estimators based on
sequential asymptotics in which n→∞ and then λconc/k →∞.

10 Testing with Many Weak Instruments

In this section, we present new results concerning tests in the asymptotic frame-
work of many weak IVs. We are interested in the relative performance of the AR, LM,
and CLR tests and in their performance relative to an asymptotic power envelope.

10.1 Asymptotic Distribution of Q for Large λ and k

We consider the model of (2.1)-(2.2) with iid homoskedastic normal errors. The
hypotheses of interest are given in (7.1). The statistics S and T are defined in (7.13).
As in AMS, we focus on invariant tests, which are functions of the maximal invariant
Q defined in (7.14). Our goal is to obtain an asymptotic two-sided power envelope for
invariant tests concerning β when (λ, k)→∞. To achieve this, we need to determine
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the asymptotic distribution of Q as (λ, k)→∞. For clarity, we sometimes denote Q
by Qλ,k.

The means of S and T depend on the following quantities:

μπ = (Z �Z)1/2π ∈ Rk, cβ = (β − β0) · (b�0Ωb0)−1/2 ∈ R, and
dβ = a�Ω−1a0 · (a�0Ω−1a0)−1/2 ∈ R, where a = (β, 1)�. (10.1)

The distributions of S and T are S ∼ N(cβμπ, Ik), T ∼ N(dβμπ, Ik),and S and T are
independent, see Lemma 2 of AMS.

Under the model specification given above, the following assumption holds.

Assumption 1. Q = Qλ,k = [S:T ]
�[S:T ], where S ∼ N(cβμπ, Ik), T ∼ N(dβμπ, Ik),

S and T are independent, and (μπ, cβ, dβ) are defined in (10.1).

By definition, under Assumption 1, Q has a noncentral Wishart distribution with
mean matrix M = μπ(cβ, dβ)

� (of rank one) and identity covariance matrix. The
distribution of Q only depends on μπ through λ = μ�πμπ. The density of Q is given
in Lemma 3 of AMS.

Next, we specify the rate at which λ and k diverge to infinity. Our results allow
for a wide range of possibilities. All limits are as (λ, k)→∞.
Assumption 2. λ/kτ → rτ for some constants τ ∈ (0,∞) and rτ ∈ [0,∞).

The asymptotic distribution of Q depends on the following quantities:

V3,τ =

⎧⎪⎪⎨⎪⎪⎩
Diag{2, 1, 2} if 0 < τ ≤ 1/2
Diag{2, 1, 0} if 1/2 < τ < 1
Diag{2, 1 + d2β0r1, 0} if τ = 1
Diag{2, d2β0rτ , 0} if τ > 1 and

γB = (b�0Ωb0)
−1/2dβ0B (10.2)

for a scalar constant B.
The asymptotic distribution of Q is given in the following theorem.

Theorem 1 Suppose Assumptions 1 and 2 hold.
(a) If 0 < τ < 1/2 and β is fixed,⎛⎝ (S�S − k)/k1/2

S�T/k1/2

(T �T − k)/k1/2

⎞⎠→d

⎛⎝ QS,∞
QST,∞
QT,∞

⎞⎠ ∼ N
⎛⎝⎛⎝ 0

0
0

⎞⎠ , V3,τ
⎞⎠ ,

(AR− 1)k1/2 →d QS,∞ ∼ N(0, 2), LM →d Q
2
ST,∞ ∼ χ21, and

LR/k1/2 →d
1

2

�
QS,∞ −QT,∞ +

t
(QT,∞ −QS,∞)2 + 4Q2ST,∞

�
.

(b) If τ = 1/2 and β is fixed,⎛⎝ (S�S − k)/k1/2
S�T/k1/2

(T �T − k)/k1/2

⎞⎠→d

⎛⎝ QS,∞
QST,∞
QT,∞

⎞⎠ ∼ N
⎛⎝⎛⎝ c2βr1/2

cβdβr1/2
d2βr1/2

⎞⎠ , V3,1/2
⎞⎠ ,
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(AR− 1)k1/2 →d QS,∞ ∼ N(c2βr1/2, 2),
LM →d Q

2
ST,∞ ∼ χ21(c

2
βd
2
βr
2
1/2), and

LR/k1/2 →d
1

2

�
QS,∞ −QT,∞ +

t
(QT,∞ −QS,∞)2 + 4Q2ST,∞

�
.

(c) If 1/2 < τ ≤ 1 and β = β0 +Bk
1/2−τ for a scalar constant B,⎛⎝ (S�S − k)/k1/2

S�T/k1/2

(T �T − k)/kτ

⎞⎠→d

⎛⎝ QS,∞
QST,∞
QT,∞

⎞⎠ ∼ N
⎛⎝⎛⎝ 0

γBrτ
d2β0rτ

⎞⎠ , V3,τ
⎞⎠ ,

(AR− 1)k1/2 →d QS,∞ ∼ N(0, 2),
LM →d Q

2
ST,∞ ∼ χ21(γ

2
Br

2
τ ) when 1/2 < τ < 1,

LM →d Q
2
ST,∞/(1 + d

2
β0
r1) ∼ χ21(γ

2
Br

2
τ/(1 + d

2
β0
r1)) when τ = 1,

LR = (1/(d2β0rτ ))k
1−τLM(1 + op(1)) when 1/2 < τ < 1, and

LR = ((1 + d2β0r1)/(d
2
β0
r1))LM + op(1) when τ = 1.

(d) If τ > 1, rτ > 0, and β = β0 +Bk
−τ/2,⎛⎝ (S�S − k)/k1/2

S�T/kτ/2

(T �T − k)/kτ

⎞⎠→d

⎛⎝ QS,∞
QST,∞
QT,∞

⎞⎠ ∼ N
⎛⎝⎛⎝ 0

γBrτ
d2β0rτ

⎞⎠ , V3,τ
⎞⎠ ,

(AR− 1)k1/2 →d QS,∞ ∼ N(0, 2),
LM →d Q

2
ST,∞/(d

2
β0
rτ ) ∼ χ21(γ

2
Brτ/d

2
β0
)) provided dβ0 9= 0, and

LR = LM + op(1).

Comments. 1. An interesting feature of Theorem 1 is that the statistics S�S, S�T,
and T �T are asymptotically independent.

2. Part (a) of the Theorem shows that when the concentration parameter λ grows
at a rate slower than k1/2 the statistic Q has an asymptotic distribution that does not
depend on the parameter β. Hence, in this case, no test has non-trivial asymptotic
power.

3. The result of part (a) also holds when λ is fixed and k →∞.
4. Part (b) of the Theorem is the most interesting case. When the concentration

parameter λ grows at the rate k1/2, all three normalized statistics S�S, S�T, and T �T
have asymptotic distributions that depend on β. In this case, the growth in λ is
not sufficiently fast that consistent estimation of β is possible (otherwise, tests with
asymptotic power one against fixed alternatives would be available).

5. Parts (c) and (d) show that when λ grows at a rate faster than k1/2 the AR
statistic has trivial asymptotic power against local alternatives for which the LM
and LR statistics have non-trivial power. Furthermore, in this case the LM and LR
statistics are asymptotically equivalent.
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6. The cases considered in Chao and Swanson (2005) and Han and Phillips (2002)
correspond to τ > 1/2. Those considered in Stock and Yogo (2005a) and Newey (2004)
correspond to the case where τ = 1.

10.2 Two-sided Asymptotic Power Envelopes

In the next several subsections, we determine asymptotic power envelopes for
two-sided tests. We start with the most interesting case in which λ/k1/2 → r1/2, i.e.,
the case τ = 1/2. Subsequently, we consider the case τ > 1/2. In contrast to the
results in AMS, we do not restrict attention to tests that are asymptotically similar.
Rather, we allow for both asymptotically similar and non-similar tests and show that
the power envelope is determined by tests that are asymptotically similar.

There are several ways of constructing a two-sided power envelope depending on
how one imposes the two-sidedness condition. The approach we take here is based on
determining the highest possible average power against a point (β,λ) = (β∗,λ∗) and
another point, say (β∗2,λ

∗
2), for which β∗2 lies on the other side of the null value β0

than β∗. (The power envelope then is a function of (β,λ) = (β∗,λ∗).) Given (β∗,λ∗),
we select (β∗2,λ

∗
2) in the same way as in AMS. In particular, the point (β

∗
2,λ

∗
2) has

the property that the test that maximizes average power against these two points is
asymptotically efficient under strong IV asymptotics when the number of IVs k is
fixed as λ → ∞. Furthermore, the power of the test that maximizes average power
against these two points is the same for each of the two points. This choice also has
the desirable properties that (a) the marginal distributions of QS, QST, and QT under
(β∗2,λ

∗
2) are the same as under (β

∗,λ∗), (b) the joint distribution of (QS , QST,QT )
under (β∗2,λ

∗
2) equals that of (QS,−QST,QT ) under (β∗,λ∗), which corresponds to β∗2

being on the other side of the null from β∗, and (c) the distribution of [−S : T ] under
(β∗2,λ

∗
2) equals that of [S : T ] under (β

∗,λ∗).
Given (β∗,λ∗), the point (β∗2,λ

∗
2) that has these properties is shown in AMS to

satisfy (λ∗2)1/2cβ∗2 = −(λ∗)1/2cβ∗ (9= 0) and (λ∗2)1/2dβ∗2 = (λ∗)1/2dβ∗ and is given by

β∗2 = β0 −
dβ0(β

∗ − β0)

dβ0 + 2g(β
∗ − β0)

and λ∗2 = λ∗
(dβ0 + 2g(β

∗ − β0))
2

d2β0
, where

g = e�1Ω
−1a0 · (a�0Ω−1a0)−1/2 and e1 = (1, 0)�. (10.3)

(provided β∗ 9= βAR, where βAR denotes the point β at which dβ = 0, see AMS).
The average power of a test φ(Q) against the two points (β∗,λ∗) and (β∗2,λ

∗
2) is

given by

K(φ;β∗,λ∗) =
1

2

�
Eβ∗,λ∗φ(Q) +Eβ∗2,λ

∗
2
φ(Q)

�
= E∗β∗,λ∗φ(Q), (10.4)

where Eβ,λ denotes expectation with respect to the density fQ1,QT (q1, qT ;β,λ), which
is the joint density of (Q1,QT ) at (q1, qT ) when (β,λ) are the true parameters, and
E∗β∗,λ∗ denotes expectation with respect to the density

f∗Q1,QT (q1, qT ;β
∗,λ∗) =

1

2
[fQ1,QT (q1, qT ;β

∗,λ∗) + fQ1,QT (q1, qT ;β
∗
2,λ

∗
2)] . (10.5)
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Hence, the average power (AP) of φ(Q) against (β∗,λ∗) and (β∗2,λ
∗
2) can be written

as the power against the single density f∗Q1,QT (q1, qT ;β
∗,λ∗).

10.3 Asymptotic Power Envelope for τ = 1/2

We now consider the case where τ = 1/2. We restrict ourselves to invariant tests
that depend on the data only through

Qλ,k = (Qλ,k − kI2)/k1/2, where
vech(Qλ,k) = (QS,k,QST,k, QT,k)

�. (10.6)

A test φk(Qλ,k) is {0, 1}-valued and rejects the null hypothesis when φk = 1. We
say that a sequence of tests {φk : k ≥ 1} is a convergent sequence of asymptotically
level α tests for τ = 1/2 if there exists a {0, 1}-valued function φ such that under
Assumption 1, under any sequence λ/k1/2 → r1/2 for any r1/2 in some non-empty
subset of [0,∞), and for any β in some set that includes {β0,β∗,β∗2}, we have

φk(Qλ,k) →d φ(Q∞), where

vech(Q∞) =

⎛⎝ QS,∞
QST,∞
QT,∞

⎞⎠ ∼ N
⎛⎝⎛⎝ c2βr1/2

cβdβr1/2
d2βr1/2

⎞⎠ , V3,1/2
⎞⎠ , and

Pβ0,r1/2(φ(Q∞) = 1) ≤ α, (10.7)

where Pβ,r1/2(·) denotes probability when the true parameters are (β, r1/2). By The-
orem 1, examples of convergent sequences of asymptotically level α tests include
sequences of CLR, LM, and AR tests. Standard Wald and LR tests are not asymp-
totically level α.

We now determine the average power envelope for the asymptotic testing problem.
Let Q∞ be distributed as in (10.7). The unknown parameters are β and r1/2. We
are interested in average power against two points (β∗, r∗1/2) and (β

∗
2, r

∗
2,1/2), where

β∗2 is as defined in (10.3) and r∗2,1/2 is the asymptotic analogue of λ
∗
2 and is defined

in (10.3) with λ∗ replaced by r∗1/2. As in (10.4), the average power of a test based
on Q∞ equals its power against the single alternative whose density is the average of
the densities for the points (β∗, r∗1/2) and (β

∗
2, r

∗
2,1/2).

The null hypothesis is composite and the alternative is simple, so we use the “least
favorable” approach of Lehmann (1986, Sec. 3.8) to find a best test of level α. The
idea is as follows. Given a distribution over the parameters in the null hypothesis,
say G(·), one obtains a single distribution by integrating the null distribution with
respect to G(·). For any G(·), one can construct the level α LR test for the simple
null versus the simple alternative and it is best according to the Neyman-Pearson
Lemma. If one can find a distribution, GLF (·), called a least favorable distribution,
for which the simple versus simple LR test is of level α not just for the simple null
but for the underlying composite null as well, then this LR test is the best level α
test for the composite null versus the simple alternative. The reason is that this
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test is best against the simple alternative subject to the constraint that the average
null rejection rate weighted by GLF (·) is less than or equal to α, which is a weaker
constraint than the constraint that the pointwise rejection rate is less than or equal
to α for all points in the composite null.

The key step in the implementation of the least favorable approach is the de-
termination of a least favorable distribution. In the present case, the parameter
that appears under the null hypothesis is r1/2 and it only affects the distribution of
QT,∞ because cβ0 = 0 implies that QS,∞ and QST,∞ have mean zero under H0 (see
(10.7)). The distribution of QT,∞ under (β

∗, r∗1/2) and (β
∗
2, r

∗
2,1/2) is the same because

d2β∗r
∗
1/2 = d2β∗2

r∗2,1/2, see (10.3), and QT,∞ ∼ N(d2βr1/2, 2) under (β, r1/2) by (10.7).
Hence, the distribution of QT,∞ under the simple alternative whose density is the
average of the densities for the points (β∗, r∗1/2) and (β

∗
2, r

∗
2,1/2) is just N(d

2
β∗r

∗
1/2, 2).

Under the null hypothesis, QT,∞ ∼ N(d2β0r1/2, 2). Hence, if we take the least
favorable distribution to be a point mass at rLF1/2, where d

2
β0
rLF1/2 = d

2
β∗r

∗
1/2 or equiva-

lently
rLF1/2 = d

2
β∗r

∗
1/2/d

2
β0
, (10.8)

then QT,∞ has the same distribution under the simple null hypothesis as under the
simple alternative hypothesis. Given the independence of (QS,∞, QST,∞) and QT,∞,
the simple versus simple LR test statistic does not depend on QT,∞. This implies
that the pointmass distribution at rLF1/2 is indeed least favorable because the simple

versus simple LR statistic depends only on (QS,∞, QST,∞), the null distribution of
latter does not depend on r1/2, and hence the pointwise null rejection rate of the
simple versus simple level α LR test is α for each point in the null hypothesis.

The above discussion establishes that the best test for testing the composite null
against the simple alternative based on the average density determined by (β∗, r∗1/2)
and (β∗2, r∗2,1/2) is given by the likelihood ratio for (QS,∞, QST,∞). This likelihood
ratio statistic is given by

LR∗(Q∞;β
∗, r∗1/2) = LR

∗(QS,∞, QST,∞;β
∗, r∗1/2)

= exp(−1
4
(QS,∞ − c2β∗r∗1/2)2)×

(exp(−12(QST,∞ − cβ∗dβ∗r∗1/2)2) + exp(−12(QST,∞ + cβ∗dβ∗r∗1/2)2))
2 exp(−14Q

2
S,∞ − 1

2Q
2
ST,∞))

= exp(−c4β∗r∗21/2/4− c2β∗d2β∗r∗21/2/2) exp(c2β∗r∗1/2QS,∞/2)× (10.9)�
exp(cβ∗dβ∗r

∗
1/2QST,∞) + exp(−cβ∗dβ∗r∗1/2QST,∞)

�
/2

= exp(−c4β∗r∗21/2/4− c2β∗d2β∗r∗21/2/2) exp(c2β∗r∗1/2QS,∞/2) cosh(cβ∗dβ∗r∗1/2QST,∞).
The critical value, κ∗α(β

∗, r∗1/2), for the LR
∗ test is defined by

P (LR∗(N1, N2;β∗, r∗1/2) > κ∗α(β
∗, r∗1/2)) = α, where

(N1, N2)
� ∼ N(0,Diag{2, 1}). (10.10)
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By varying (β∗, r∗1/2), the power of the LR
∗(Q∞;β

∗, r∗1/2) test traces out the average
power envelope for level α similar tests for the asymptotic testing problem.

The results above lead to the following Theorem, which provides an upper bound
on asymptotic average power.

Theorem 2 The average power over (β∗,λ∗) and (β∗2,λ
∗
2) of any convergent sequence

of invariant and asymptotically level α tests for τ = 1/2, {φk(Qλ,k) : k ≥ 1}, satisfies

lim
k→∞

(1/2)[Pβ∗,λ∗(φk(Qλ,k) = 1) + Pβ∗2,λ∗2(φk(Qλ,k) = 1)]

=P ∗β∗,r∗
1/2
(φ(Q∞) = 1)

≤P ∗β∗,r∗
1/2
(LR∗(Q∞;β

∗, r∗1/2) > κα(β
∗, r∗1/2)),

where Pβ,λ(·) denotes probability when Qλ,k has the distribution specified in Assump-
tion 1 with parameters (β,λ), Pβ,r1/2(·) denotes probability when Q∞ has the distri-
bution in (10.7), and P ∗β∗,r∗

1/2
(·) = (1/2)[Pβ∗,r∗

1/2
(·) + Pβ∗2,r∗2,1/2(·)].

The upper bound on average asymptotic power given in Theorem 2 is attained
by a point optimal invariant two-sided (POI2) test that rejects H0 if

LR∗(QS,k, QST,k;β
∗, r∗1/2) > κ∗α(β

∗, r∗1/2). (10.11)

This test is asymptotically similar. Hence, the asymptotic power envelope for similar
and non-similar invariant tests is the same. The asymptotic distribution of the test
statistic in (10.11) is given in the following Corollary to Theorem 1(b) (which holds
by the continuous mapping theorem).

Corollary 1 Suppose Assumptions 1 and 2 hold with τ = 1/2 and β is fixed. Then,

LR∗(Qλ,k;β
∗, r∗1/2)→d LR

∗(Q∞;β
∗, r∗1/2),

where Q∞ is distributed as in (10.7).

Comments. 1. Corollary 1 implies that the POI2 test of (10.11) is a convergent
sequence of invariant and asymptotically level α tests that attains the upper bound
on asymptotic average power given in Theorem 2 at (β∗, r∗1/2).

2. Corollary 1 shows that the upper bound in Theorem 2 is attainable and, hence,
that the upper bound is the asymptotic power envelope when τ = 1/2.

10.4 Numerical Results for Many Weak Instruments

We now turn to a brief summary of numerical properties of the many weak instru-
ment power envelope and the AR, LM, and CLR tests under the τ = 1/2 sequence.
The limiting power envelope and power functions for various values of r1/2 are pre-
sented in Figure 2 for ρ = .95 and in Figure 3 for ρ = .5. These figures, and unreported
additional numerical work, support three main conclusions. First, the power function
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of the CLR test is effectively on the limiting asymptotically efficient power envelope,
so the CLR test is, in effect, UMP among asymptotically efficient invariant tests un-
der the τ = 1/2 sequence. Second, the power function of the LM test sometimes falls
well below the power envelope and is not monotonic in the many-instrument limit.
Third, the performance of the AR test, relative to the power envelope and the CLR
and LM tests, depends heavily on the strength of the instruments. For very weak
instruments, the AR power function is below the power envelope but the AR test still
exhibits nontrivial power. As the strength of the instruments increases (that is, as
r1/2 increases), the power of the AR test, relative to the other tests, is increasingly
poor, and the power function is nearly flat in the case of panel (d) in both figures.

These results apply to the limit of the sequence (λ, k) as λ/k1/2 → r1/2. It is
of interest to examine numerically the speed of convergence of the finite-k power
envelopes and power functions to this limit. This is done in Figures 4 and 5, which
present the power envelope and the CLR power function for various values of k
and for the k → ∞ limit. Evidently the speed of convergence, and the quality of
the k → ∞ approximation, depends on the strength of the instruments. For very
weak instruments (panels (a) and (b)), the rate of convergence is fairly fast and the
limiting functions are close to the finite-k approximations. For stronger instruments,
the limiting approximation is less good and is achieved less quickly. An important
point to note in Figures 4 and 5 is that for each parameter value and for each value
of k, the CLR power function is effectively on the power envelope. Whether or not
the k → ∞ approximation is a good one for finite k, the CLR power function is in
effect on the power envelope for asymptotically efficient two-sided invariant similar
tests.

Figures 6 and 7 present a final set of numerical results, in which we consider
performance of the CLR and AR tests along the sequence τ = 0; this corresponds
to the addition of irrelevant instruments as k increases. In the limit that k → ∞,
these tests have trivial power, but this result does not tell us directly how costly it
is to err on the side of adding an irrelevant instrument. Perhaps surprisingly, for
these and other cases not reported, adding a few irrelevant instruments is not very
costly in terms of power for the CLR test; less surprisingly, adding a great number
of irrelevant instruments drives the power to zero.

10.5 Asymptotic Power Envelope When τ > 1/2

We now consider the asymptotic power envelope for the case where τ > 1/2. In
this case, the alternatives that we consider are local to the null hypothesis and signif-
icant simplifications occur. By Theorem 1(c) and (d), the asymptotic distribution of
the normalized Qλ,k matrix only depends on the unknown localization parameter B
through the distribution of QST,∞ (because QS,∞ ∼ N(0, 2) and QT,∞ = d2β0rτ ). The
asymptotic testing problem concerns the hypotheses H �0 : B = 0 versus H �1 : B 9= 0
with no nuisance parameter (because QT,∞ = d2β0rτ implies that rτ is known asymp-
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totically). An asymptotic sufficient statistic for B is QST,∞, which has distribution

QST,∞ ∼

⎧⎪⎨⎪⎩
N(γBrτ , 1) when 1/2 < τ < 1
N(γBr1, 1 + d

2
β0
r1) when τ = 1

N(γBr
1/2
τ , d2β0rτ ) when τ > 1.

(10.12)

Using the same sort of argument as in Section 10.3, by the Neyman-Pearson
Lemma, the level α test based on QST,∞ that maximizes average power against B∗

and −B∗ is constructed using the following likelihood ratio statistic:

LR∗∗ =
exp(−12(QST,∞ − γB∗rτ )

2) + exp(−12(QST,∞ + γB∗rτ )
2)

2 exp(−12Q
2
ST,∞)

= exp(−γ2B∗r2τ/2)
�
exp(γB∗rτQST,∞) + exp(−γB∗rτQST,∞)

�
/2

= exp(−γ2B∗r2τ/2) cosh(γB∗rτQST,∞) (10.13)

for the case 1/2 < τ < 1. The test that rejects when LR∗∗ is large is equivalent to the
test that rejects when Q

2
ST,∞ is large (because cosh(x) is increasing in |x|). Hence,

the level α test that maximizes average power against B∗ and −B∗ does not depend
on B∗. The test rejects H �0 if

Q
2
ST,∞ > χ21(α), (10.14)

where χ21(α) denotes the 1−α quantile of a chi-squared distribution with one degree
of freedom. Similar calculations for the cases τ = 1 and τ > 1 yield the same test as
delivering maximal average power for any B∗.

Returning now to the finite sample testing problem, we restrict attention to in-
variant tests φk(Qλ,k) that depend on the normalized data matrix

Qλ,k =

⎛⎝ (S�S − k)/k1/2
S�T/k1/2

(T �T − k)/kτ

⎞⎠ or Qλ,k =

⎛⎝ (S�S − k)/k1/2
S�T/kτ/2

(T �T − k)/kτ

⎞⎠ (10.15)

for 1/2 < τ ≤ 1 or τ > 1, respectively. We say that a sequence of tests {φk(Qλ,k) :
k ≥ 1} is a convergent sequence of asymptotically level α tests for τ > 1/2 if there
exists a {0, 1}-valued function φ such that under Assumption 1, under any sequence
λ/kτ → rτ for any rτ in some non-empty subset of [0,∞), for β = β0 + Bk

1/2−τ

when 1/2 < τ ≤ 1 and β = β0 +Bk
−τ/2 when τ > 1, and for any B in some set that

includes {0, B∗,−B∗}, we have
φk(Qλ,k) →d φ(Q∞), where

vech(Q∞) =

⎛⎝ QS,∞
QST,∞
QT,∞

⎞⎠ ∼ N
⎛⎝⎛⎝ 0

γBrτ
d2β0rτ

⎞⎠ , V3,τ
⎞⎠ ,

rτ =

+
rτ when 1/2 < τ ≤ 1
r
1/2
τ when τ > 1,

Pβ0(φ(Q∞) = 1) ≤ α, (10.16)
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and Pβ0(·) denotes probability when the true parameter is β0. By Theorem 1, the
CLR, LM, and AR tests are examples of convergent sequences of asymptotically level
α tests for τ > 1/2.

The next result provides an upper bound on average power for convergent se-
quences of invariant asymptotically level α tests.

Theorem 3 The average power over B∗ and −B∗ of any convergent sequence of
invariant asymptotically level α tests for τ > 1/2, {φk(Qλ,k) : k ≥ 1}, satisfies

lim
k→∞

(1/2)[Pβ∗k,λ(φk(Qλ,k) = 1) + Pβ∗2,k,λ(φk(Qλ,k) = 1)]

=P ∗B∗(φ(Q∞) = 1) ≤ P ∗B∗(Q2ST,∞ > χ21(α)),

where Pβ,λ(·) denotes probability when Qλ,k has the distribution specified in As-
sumption 1 with parameters (β,λ), λ/kτ → rτ , β

∗
k = β0 + B

∗k1/2−τ and β∗2,k =
β0 − B∗k1/2−τ when 1/2 < τ ≤ 1, β∗k = β0 + B

∗k−τ/2 and β∗2,k = β0 − B∗k−τ/2
when τ > 1, PB(·) denotes probability when QST,∞ ∼ N(γBrτ , 1), and P

∗
B(·) =

(1/2)[PB(·) + P−B(·)].

Comment. 1. The upper bound on average asymptotic power given in Theorem 3
is attained for all B∗ and −B∗ by the LM and CLR tests by Theorem 1(c) and (d)
(because the LM and LR test statistics are scalar multiples of Q

2
ST,∞ asymptotically).

In consequence, we say that these tests are asymptotically efficient when τ > 1/2.

10.6 Asymptotic Power Envelope for Unknown Ω

The asymptotic power envelopes provided in the preceding sections presume that
the covariance matrix Ω of the reduced form errors in (2.2) is known. Tests based
on Qλ,k have asymptotic level α only if the true Ω is used in their construction. In
this section, we show that under fairly weak conditions on the growth rate of the
number of IVs, k, these asymptotic power envelopes also apply when Ω is unknown.
Obviously, an upper bound on asymptotic average power for known Ω is also an
upper bound when Ω is unknown. Hence, to show that the upper bound is the power
envelope, it suffices to show that it is attainable at each point by some sequence of
tests.

We estimate Ω (∈ R2×2) via
eΩn = (n− k − p)−1eV � eV , where eV = Y − PZY − PXY. (10.17)

We define analogues of S, T, and Qλ,k with Ω replaced by eΩn:
eSn = (Z �Z)−1/2Z �Y b0 · (b�0eΩnb0)−1/2,eTn = (Z �Z)−1/2Z �Y eΩ−1n a0 · (a�0eΩ−1n a0)−1/2,eQλ,k,n = [eSn : eTn]�[eSn : eTn], and eQλ,k,n = ( eQλ,k,n − kI2)/k1/2. (10.18)
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The LR, LM, AR, and POIS2 test statistics for the case of unknown Ω are defined
in the same way as when Ω is known, but with eQλ,k,n in place of Qλ,k. Denote these

test statistics bygLRn, gLMn,gARn, andgLR∗n = LR∗(eQλ,k,n;β
∗,λ∗), respectively.

Consistency of eΩn with rate k1/2 is established in the following Lemma.
Lemma 1 Suppose {Vi : i ≥ 1} are iid with mean zero, variance Ω, and finite fourth
moment, and k3/2/n→ 0. Then, k1/2(eΩn − Ω)→p 0 as n→∞.

Lemma 1 can be used to show that eQλ,k,n and Qλ,k have the same asymptotic
distributions.

Theorem 4 Theorem 1 holds under the given assumptions with (eSn, eTn) in place of
(S, T ) provided (k, n)→∞ such that k3/2/n→ 0.

Comments. 1. Theorem 4 and the continuous mapping theorem combine to show
that when τ = 1/2 and β is fixed, then

gLR∗n = LR∗(eQλ,k,n;β
∗, r∗1/2)→d LR

∗(Q∞;β
∗, r∗1/2). (10.19)

In consequence, thegLR∗n and LR∗ statistics are asymptotically equivalent under the
null and fixed alternatives. Thus, the upper bound on asymptotic average power
for τ = 1/2 given in Theorem 2 is attained by the tests based on gLR∗n, which are
asymptotically level α and similar, by varying (β∗, r∗1/2). In turn, this implies that
the upper bound in Theorem 2 is the asymptotic power envelope whether or not Ω
is known.

2. Similarly, Theorem 4 implies that when τ > 1/2, gLMn →d Q
2
ST,∞ under the

null hypothesis and local alternatives. Hence, the upper bound on average power
given in Theorem 3 is attained for all B∗ and −B∗ by the tests based on gLMn andgLRn. The upper bound in Theorem 3 is the asymptotic power envelope whether or
not Ω is known and the tests based on gLMn andgLRn are asymptotically efficient.
10.7 Asymptotics with Non-normal Errors

In this section, we investigate the asymptotic properties of the statistic eQλ,k,n

and the test statistics gLRn, gLMn, and gARn when the errors are not necessarily
normally distributed. We treat the IVs and exogenous variables as random.

Let Yi ∈ R2, hZi ∈ Rk, Xi ∈ Rp, and Vi ∈ R2 denote the i-th rows of Y, hZ, X, and
V, respectively. Define

Z∗i = hZi −E hZiX �i(EXiX �i)−1Xi and
λ∗n,k = nπ�EZ∗i Z

∗�
i π. (10.1)

Note that Z∗i differs from the i-th row of Z, which is Zi = hZi − hZ �X(X �X)−1Xi.
Assumption 3. (a) The reduced-form equations are Yi = aπ� hZi+η�Xi+Vi for i ≤ n,
where Yi, Vi ∈ R2, hZi,π ∈ Rk, k = kn, Xi ∈ Rp, p does not depend on n, η ∈ Rp×2,
and a = (1,β)�.
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(b) {(Vi,Xi) : i ≤ n;n ≥ 1} are iid across i and n and {(Vi,Xi, hZi) : i ≤ n} are
iid across i for each n.

(c) EVi hZ �i = 0, EViX
�
i = 0, EXiX

�
i is pd, lim infn→∞ λmin(EZ

∗
i Z

∗�
i ) > 0, and

supj≤k;n≥1(E||Vi||4 hZ4ij +E||Vi||4 +E hZ4ij +E||Xi||4) <∞, where hZi = ( hZi1, ..., hZik)�.
(d) E(ViV �i ⊗ Z∗i Z∗�i ) = Ω⊗EZ∗i Z∗�i for all n ≥ 1, where Ω is pd.
(e) k →∞ and k3/n→ 0 as n→∞.
(f) λ∗n,k/kτ → rτ as n→∞ for some constants rτ ∈ [0,∞) and τ ∈ (0,∞).
(g) β is fixed for all n when τ ≤ 1/2; β = β0 + Bk

1/2−τ when τ ∈ (1/2, 1]; and
β = β0 +Bk

−τ/2 when τ ≥ 1.
For example, Assumptions 3(f) holds if π = C(kτ/n)1/2 for some C ∈ Rk with

||C|| = 1 and CEZ∗i Z∗�i C → rτ .

In Assumption 3(b), (Vi,Xi, hZi) cannot be iid across n because the dimension, k,
of hZi depends on n.

Note that Assumptions 3(c) and (f) imply that π�π = O(kτ/n), see (12.6) below.
The following Theorem shows that one obtains the same limit distribution when

the errors are non-normal and Ω is estimated as when the errors are normal and Ω
is known for the case where τ ∈ [0, 2].

Theorem 5 Suppose Assumption 3 holds. Then, the results of Theorem 1(a)-(d) for
τ ∈ (0, 2] hold with S, T, AR, LM, and LR replaced by eSn, eTn,gARn, gLMn, andgLRn,
respectively.

In sum, for the case of τ ∈ [0, 2], one obtains the same limit distributions for the
statistic eQλ,k,n and the test statistics gLRn, gLMn, and gARn (given in Theorem 1)
when the errors are non-normal and Ω is estimated as when the errors are normal
and Ω is known provided k3/n→ 0 as n→∞.

To conclude, the many weak IV results given in this section show that the signif-
icance level of the CLR test is completely robust to weak IVs. The test, however, is
not completely robust to many IVs. One cannot employ too many IVs relative to the
sample size. For normal errors, the CLR test has correct asymptotic significance level
provided k3/2/n→ 0 as n→∞ regardless of the strength of the IVs. For non-normal
errors, the restriction is greater: k3/n → 0 as n → ∞. The power results show that
the CLR test is essentially on the two-sided power envelope for invariant tests for any
value of τ when the errors are iid homoskedastic normal.

These level and power results established for many IV asymptotics, combined with
the properties of the CLR test under weak IV asymptotics, lead us to recommend
the CLR test (or heteroskedasticity and/or autocorrelation robust versions of it) for
general use in scenarios where the IVs may be weak.

32



11 Appendix A of Proofs

In this Appendix, we prove the results stated in Section 10.1.
Proof of Theorem 1. First, we determine the means, variances, and covariances
of the components of Q. Let S = (S1, ..., Sk)

�, μS = ES = cβμπ = (μS1, ...,μSk)
�,

S∗ = S − μS = (S∗1 , ..., S∗k)
� ∼ N(0, Ik). Define Tj , μT , T ∗, and T ∗j for j = 1, ..., k

analogously. We have

ES�S =
k[
j=1

E(S∗j + μSj)
2 =

k[
j=1

(1 + μ2Sj) = k + c
2
βλ,

E(S�S)2 = E(
k[
j=1

S2j )
2 =

k[
j=1

ES4j+
k[ k[
j �=�

ES2jES
2
�

=
k[
j=1

E(S∗j + μSj)
4 +

k[
j=1

k[
�=1

(1 + μ2Sj)(1 + μ2S�)−
k[
j=1

(1 + μ2Sj)
2

=
k[
j=1

(3 + 6μ2Sj + μ4Sj) +

⎛⎝ k[
j=1

(1 + μ2Sj)

⎞⎠2 − k[
j=1

(1 + μ2Sj)
2

= 2k + 4c2βλ+
�
ES�S

�2
, and

V ar(S�S) = 2(k + 2c2βλ). (11.1)

Analogously,
ET �T = k + d2βλ and V ar(T

�T ) = 2(k + 2c2βλ). (11.2)

Next, we have

ES�T = ES�ET = cβdβλ

E(S�T )2 = E(
k[
j=1

SjTj)
2 =

k[
j=1

ES2jET
2
j +

k[ k[
j �=�

ESjETjES�ET�

=
k[
j=1

(1 + μ2Sj)(1 + μ2Tj) +

⎛⎝ k[
j=1

ESjETj

⎞⎠2 − k[
j=1

(ESjETj)
2

=
k[
j=1

(1 + μ2Sj + μ2Tj + μ2Sjμ
2
Tj) + (ES

�T )2 −
k[
j=1

μ2Sjμ
2
Tj

= k + (c2β + d
2
β)λ+ (ES

�T )2

V ar(S�T ) = k + (c2β + d
2
β)λ. (11.3)

Finally, we have

E(S�SS�T ) =
k[
j=1

k[
�=1

ES2jES�ET�

33



=
k[
j=1

ES3jETj +
k[
j=1

k[
�=1

ES2jES�ET� −
k[
j=1

ES2jESjETj

=
k[
j=1

E(S∗j + μSj)
3μTj +ES

�S ·ES�T −
k[
j=1

ES2jESjETj

=
k[
j=1

(3μSjμTj + μ3SjμTj) +ES
�S ·ES�T −

k[
j=1

(1 + μ2Sj)μSjμTj

Cov(S�S, S�T ) = 2cβdβλ. (11.4)

Using the Cramer-Wold device and the Liapounov CLT, we show that⎛⎜⎝ (S�S − (k + c2βλ))/(2(k + 2c2βλ))1/2
(S�T − cβdβλ)/(k + (c2β + d2β)λ)1/2
(T �T − (k + d2βλ))/(2(k + 2d2βλ))1/2

⎞⎟⎠→d N(0, I3) (11.5)

under the conditions of the Theorem. The proof is as follows. Wlog we can take
μπ = (λ/k)1/21k, where 1k = (1, 1, ..., 1)� ∈ Rk (because the distribution of Q only
depends on μπ through λ). Then, μSj = cβ(λ/k)

1/2 and μTj = dβ(λ/k)
1/2 for all j.

We have

S�S − (k + c2βλ) =
k[
j=1

((S∗j + μSj)
2 − 1− μ2Sj) =

k[
j=1

[(S∗2j − 1) + 2μS1S∗j ]. (11.6)

By the Liapounov CLT, if {Xkj : j ≤ k, k ≥ 1} is a triangular array of mean zero
row-wise iid random variables with

Sk
j=1 V ar(Xkj) = 1 and kE|Xkj |2+2δ = o(1) for

some δ > 0, then
Sk
j=1Xkj →d N(0, 1), e.g., see Chow and Teicher (1978, Cor.

9.1.1, p. 293). If Xkj = Xkj1 +Xkj2, where {Xkjs : j ≤ k, k ≥ 1} are iid across j for
s = 1, 2, then by Minkowski’s inequality it suffices to show that kE|Xkjs|2+2δ = o(1)
for s = 1, 2. We apply this CLT with

Xkj1 = (S
∗2
j − 1)/(2(k + 2c2βλ))1/2 and Xkj2 = 2μS1S∗j /(2(k + 2c2βλ))1/2. (11.7)

We have

kE|Xkj1|2+2δ =
kE|S∗2j − 1|2+2δ
(2(k + 2c2βλ))

1+δ
= o(1) as k →∞ and

kE|Xkj2|2+2δ =
kE|2μS1S∗j |2+2δ
(2(k + 2c2βλ))

1+δ
=
k(λ/k)1+δ|2cβ|2+2δE|S∗j |2+2δ

(2(k + 2c2βλ))
1+δ

(11.8)

using the fact that S∗j ∼ N(0, 1) has all moments finite. The term kE|Xkj2|2+2δ is
o(1) if τ < 1/2 because then cβ is fixed. It is o(1) when 1/2 < τ ≤ 1 because then
λ/k = O(1) and cβ = O(1). It is o(1) when τ > 1 because then cβ ∝ k−τ/2 and
(λ/k)1+δ|cβ|2+2δ = O((λ/k)1+δk−τ(1+δ)) = O((λ/kτ )1+δk−(1+δ)) = o(1). Hence, the
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first element in (11.5) is asymptotically N(0, 1). Analogous arguments apply to the
second and third elements in (11.5).

To obtain the joint result in (11.5), we consider an arbitrary linear combination,
say α = (α1,α2,α3)� with ||α|| = 1, of the three terms in (11.5) and apply the above
CLT. We have

Cov(S�S, S�T )
V ar1/2(S�S)V ar1/2(S�T )

=
2cβdβλ

(2(k + 2c2βλ))
1/2(k + (c2β + d

2
β)λ)

1/2
. (11.9)

The rhs converges to zero because (i) λ/k → 0 when τ < 1 and (ii) cβ = O(k−τ/2) =
o(1) when τ ≥ 1. The same result holds with S�S replaced by T �T. Hence, the
asymptotic covariances between the three terms in (11.5) are all zero. In consequence,
although the variance of the inner product of α with the three terms in (11.5) is not
one, it converges to one as k →∞ (which is sufficient for the CLT by rescaling). We
establish the Liapounov condition kE|Xkj |2+2δ = o(1) for the linear combination by
the same method as above. This concludes the proof of (11.5).

Now, using (11.5), the first result in parts (a), (b), (c), and (d) of the Theorem hold
because (a) when τ < 1/2, λ/k1/2 → 0, (b) when τ = 1/2, λ/k → 0 and λ/k1/2 →
r1/2, (c) when 1/2 < τ ≤ 1, (11.5) implies that (T �T −k)/kτ →p d

2
β0
rτ , cβdβλ/k

1/2 =

(b�0Ωb0)−1/2Bk1/2−τdβλ/k1/2 → γBrτ , and c
2
βλ/k

1/2 = γ2Bk
1−2τλ/k1/2 = o(1); when

1/2 < τ < 1, (k + (c2β + d
2
β)λ)/k → 1; when τ = 1, (k + (c2β + d

2
β)λ)/k → 1 + d2β0r1,

and (d) when τ > 1 and rτ > 0, (11.5) implies that (T �T −k)/kτ →p d
2
β0
rτ , (k+(c

2
β+

d2β)λ)/λ→ d2β0 , cβdβλ
1/2 = (b�0Ωb0)−1/2Bk−τ/2dβλ

1/2 = (b�0Ωb0)−1/2Bdβ(λ/kτ )1/2 →
γBr

1/2
τ , and c2βλ

1/2 → 0.
Next, we establish the results for the AR, LM, and LR statistics. The results of

parts (a)-(d) for AR hold because (AR − 1)k1/2 = (S�S − k)/k1/2. For parts (a)-(d)
of the Theorem, we have

(a) & (b) LM =
(S�T )2

T �T
=

(S�T/k1/2)2

k−1/2
�
T �T−k
k1/2

�
+ 1

= (S�T/k1/2)2(1 + op(1)),

(c) LM =
(S�T/k1/2)2

kτ−1
�
T �T−k
kτ

�
+ 1

=

+
(S�T/k1/2)2(1 + op(1)) if 1/2 < τ < 1
(S�T/k1/2)2

d2β0
r1+1+op(1)

if τ = 1

(d) LM =
(S�T/kτ/2)2�
T �T−k
kτ

�
+ k1−τ

=
(S�T/kτ/2)2

d2β0
rτ + op(1)

→d (Q
2
ST,∞/(dβ0r

1/2
τ ))2. (11.10)

Combining these expressions with the asymptotic results for Q given in the Theorem
gives the stated asymptotic results for LM.

For the LR statistic, we use (7.18) and write

LR =
1

2

�
(QS − k)− (QT − k) +

t
((QS − k)− (QT − k))2 + 4Q2ST

�
. (11.11)

The results of parts (a) and (b) follow from (11.11) by dividing through by k1/2 and
applying the results of parts (a) and (b) for the asymptotic distribution of Q.
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Next, for the case where τ > 1/2, by parts(c) and (d) for the asymptotic distrib-
ution of Q, we have

(T �T − k)k−τ →p d
2
β0
rτ and (S�S − k)k−τ →p 0, and so (11.12)

QT
(QT −QS)2 =

(QT − k)k−2τ + k1−2τ
((QT − k)k−τ − (QS − k)k−τ )2 =

op(1)

(d2β0
rτ + op(1))2

= op(1).

By a mean-value expansion
√
1 + x = 1 + (1/2)x(1 + o(1)) as x→ 0. Hence,

LR =
1

2

#
QS −QT + |QT −QS |

v
1 +

4QT
(QT −QS)2LM

$

=
1

2

�
QS −QT + |QT −QS |

�
1 +

2QT (1 + op(1))

(QT −QS)2 LM

��
=
QT (1 + op(1))

QT −QS LM, (11.13)

where the third equality uses |QT − QS| = QT − QS with probability that goes to
one by the calculation in the denominator of (11.12). By results of parts (c) and (d)
for Q, we have

QT
QT −QS =

(QT − k)k−τ + k1−τ
(QT − k)k−τ − (QS − k)k−τ =

d2β0rτ + op(1) + k
1−τ

d2β0
rτ + op(1)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + op(1) if τ > 1
1+d2β0

r1

d2β0
r1

+ op(1) if τ = 1
1+op(1)

d2β0
rτ
k1−τ if 1/2 < τ < 1.

(11.14)

Equations (11.13) and (11.14) combine to give the results for LR stated in parts (c)
and (d) of the Theorem.

Proof of Lemma 1. Let eΩn,rs and Ωrs denote the (r, s) elements of eΩn and Ω,
respectively, for r, s = 1, 2. Let nk = n− k − p. We have

k1/2(eΩn,rs − Ωrs) = k1/2

nk
(v�rvs − nΩrs)−

k1/2

nk
v�rPZvs −

k1/2

nk
v�rPXvs

+ k1/2(1− n

nk
)Ωrs. (11.15)

Next, we have

0 ≤ k
1/2

nk
Ev�rPZvs =

k1/2

nk
tr(PZEvrv

�
s) =

k1/2

nk
tr(PZ)Ωrs =

k3/2

nk
Ωrs → 0 (11.16)

provided k3/2/n → 0. L1-convergence implies convergence in probability. Hence,
(k1/2/nk)v

�
rPZvs →p 0. Analogously, (k1/2/nk)v�rPXvs →p 0. In addition, k1/2(1 −

n/nk)→ 0.
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Lastly, by Markov’s inequality, for any ε > 0,

P

#
k1/2

nk

��v�rvs−nΩrs�� > ε

$
≤ kE(

Sn
i=1(vi,rvi,s− Ωrs))2

n2kε
2

=
knE(vi,rvi,s−Ωrs)2

n2kε
2

→ 0

(11.17)
provided k/n→ 0. The above results combine to prove the Lemma.

Proof of Theorem 4. It suffices to show that

k−1/2( eQλ,k,n − kI2)− k−1/2(Qλ,k − kI2)→p 0 or

k−1/2( eQλ,k,n −Qλ,k)→p 0. (11.18)

Using (7.13), we have

eS�n eSn − S�S = b�0Y
�Z(Z �Z)−1Z �Y b0 · [(b�0eΩnb0)−1 − (b�0Ωb0)−1] and

k−1/2(eS�n eSn − S�S) = (S�S/k)

#
k1/2(b�0Ωb0 − b�0eΩnb0)

b�0eΩnb0
$
= op(1), (11.19)

where the last equality uses Theorem 1 and Lemma 1. Similar arguments, but with
more steps because Ω enters T in two places, yield k−1/2(eS�n eTn − S�T ) = op(1) and
k−1/2(eT �n eTn − T �T ) = op(1). This completes the proof.
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12 Appendix B of Proofs

In this Appendix, we prove the results of Section 10.7. We start by stating several
Lemmas, the purposes of which are discussed following Lemma 2 below. Lemma 2
is a CLT for multivariate degenerate U-statistics. The CLT is proved by using the
Cramer-Wold device and verifying the conditions of Hall’s (1984, Thm. 1) univariate
CLT for degenerate U-statistics. Newey (2004, Lem. A2) makes a similar use of Hall’s
result when establishing the asymptotic distribution of the continuous updating GMM
estimator with many weak IVs.

Lemma 2 Let {(ξni, ηni) : i ≤ n;n ≥ 1} be a triangular array of random vectors that
satisfies (i) ξni, ηni ∈ Rk, for all i ≤ n, where k = kn; (ii) for each n ≥ 1, (ξni, ηni)
are iid across i ≤ n; (iii) Eξni = Eηni = 0; (iv) V ar(ξni) = Ik, V ar(ηni) = Ik, and
Cov(ξni, ηni) = 0; (v) sup�≤k,n≥1(Eξ

4
ni� + Eη

4
ni�) < ∞, where ξni = (ξni1, ..., ξnik)

�

and ηni = (ηni1, ..., ηnik)
�; (vi) k → ∞ as n → ∞; and (vii) k2/n → 0 as n → ∞.

Then,

(a)
1

nk1/2

[[
1≤i<j≤n

⎛⎝ 2ξ�niξnj
ξ�niηnj + ξ�njηni

2η�niηnj

⎞⎠→d N(0, V3), where V3 = Diag{2, 1, 2},

(b)
1

nk1/2

n[
i=1

⎛⎝ ξ�niξni − k
ξ�niηni

η�niηni − k

⎞⎠→p 0, and

(c)
1

k1/2
vech

⎛⎝ 1

n1/2

n[
i=1

[ξni:ηni]
� 1

n1/2

n[
j=1

�
ξnj :ηnj

�− kI2
⎞⎠→d N(0, V3).

Comment. In Lemma 2 (and Lemma 3 below), Assumption (vii) can be relaxed
if assumption (v) is strengthened. We do not state such a result because a stronger
condition than assumption (vii) is needed anyway in Lemmas 4 and 5 below.

We now summarize the purpose of Lemma 2 and the Lemmas that follow. The
result of Theorem 5 concerns [eSn : eTn]. The k × 2 matrix [eSn : eTn] is roughly
of the form n−1/2

Sn
i=1[ξni : ηni], which appears in Lemma 2(c), with ξni = Z∗i ·

Y �i b0(b�0Ωb0)−1/2 and ηni = Z∗i ·Y �i a0(a�0Ω−1a0)−1/2. Since the means of these random
vectors are not zero, assumption (iii) of Lemma 2 does not hold. Hence, Lemma 2 is
extended in Lemma 3 below to allow for non-zero means that are of a magnitude that
corresponds to τ < 1 in Theorem 5. Since the variance matrices of ξni and ηni as
defined above are not Ik and are unknown, assumption (iv) of Lemma 2 does not hold.
Hence, Lemma 3 is extended in Lemma 4 below to allow for general variance matrices
that are estimated. Next, [eSn : eTn] are based on Zi = hZi − [n−1 hZ �X(n−1X �X)−1]Xi,
not Z∗i = hZi − [E hZiX �i(EXiX �i)−1]Xi, so Lemma 4 is extended in Lemma 5 to allow
ξni and ηni to be linear combinations of iid random vectors, such as hZi and Xi,
with coefficient matrices for the linear combinations that converge in probability to
constant matrices. Thus, Lemma 5 is needed when the model includes exogenous
variables. All of the Lemmas mentioned above apply when the means of ξni and
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ηni are of a magnitude that corresponds to τ < 1. Lemmas 6 and 7 provide results
analogous to those of Lemmas 2-5 for the case in which the means are of a magnitude
that corresponds to τ ∈ [1, 2]. Finally, Lemma 8 provides results on the asymptotic
behavior of the sample matrices hZ � hZ, X �X, X � hZ, and Z �Z.
Lemma 3 Let {(ξni, ηni) : i ≤ n;n ≥ 1} be a triangular array of random vectors
that satisfies the assumptions of Lemma 2, but with assumption (iii) replaced by
(iii)� Eξni = μnξ, Eηni = μnη, and (λnξ + λnη)/k → 0, where λnξ = nμ�nξμnξ,
λnη = nμ

�
nημnη, and λnξη = nμ

�
nξμnη. Then,

(a)
1

nk1/2

[[
1≤i<j≤n

⎛⎝ 2ξ�niξnj
ξ�niηnj + ξ�njηni

2η�niηnj

⎞⎠−
⎛⎝ λnξ/k

1/2

λnξη/k
1/2

λnη/k
1/2

⎞⎠→d N(0, V3),

(b)
1

nk1/2

n[
i=1

⎛⎝ ξ�niξni − k
ξ�niηni

η�niηni − k

⎞⎠→p 0, and

(c)
1

k1/2
vech

⎛⎝ 1

n1/2

n[
i=1

[ξni:ηni]
� 1

n1/2

n[
j=1

�
ξnj :ηnj

�− kI2
⎞⎠−

⎛⎝ λnξ/k
1/2

λnξη/k
1/2

λnη/k
1/2

⎞⎠
→d N(0, V3), where V3 = Diag{2, 1, 2}.

Let || · || denote the Euclidean norm of a vector or matrix.

Lemma 4 Let {(ξni, ηni) : i ≤ n;n ≥ 1} be a triangular array of random vectors
that satisfies the assumptions of Lemma 2, but with assumption (iv) replaced by
(iv)� V ar(ξni) = Σnξ ∈ Rk×k, V ar(ηni) = Σnη ∈ Rk×k, Cov(ξni, ηni) = 0, andeΣnξ and eΣnη are random k × k matrices that satisfy ||eΣnξ − Σnξ|| = op(k

−1/2) and
||eΣnη−Σnη|| = op(k−1/2), with assumption (iii) replaced by (iii)�� Eξni = μnξ, Eηni =

μnη, and (λ
∗
nξ + λ∗nη)/k → 0, where λ∗nξ = nμ�nξΣ

−1
nξ μnξ, λ

∗
nη = nμ�nηΣ−1nημnη, and

λ∗nξη = nμ�nξΣ
−1/2
nξ Σ

−1/2
nη μnη, with assumption (vii) replaced by (vii)

� k3/n → 0, and
with the addition of assumption (viii) infn≥1 λmin(Σnξ) > 0 and infn≥1 λmin(Σnη) > 0.
Then,

1

k1/2
vech

⎛⎝ 1

n1/2

n[
i=1

keΣ−1/2nξ ξni:eΣ−1/2nη ηni

l� 1

n1/2

n[
j=1

keΣ−1/2nξ ξnj :eΣ−1/2nη ηnj

l
− kI2

⎞⎠
−
⎛⎝ λ∗nξ/k1/2

λ∗nξη/k1/2

λ∗nη/k1/2

⎞⎠ →d N(0, V3), where V3 = Diag{2, 1, 2}.

Lemma 5 Suppose (a) (ξni, ηni, eΣnξ, eΣnη) satisfy the conditions of Lemma 4,
(b) ξni = ξn1i + Dnξξn2i and ηni = ηn1i + Dnηηn2i, where Dnξ,Dnη ∈ Rk×k are
non-random matrices, (c) {(ξn2i, ηn2i) : i ≤ n} are iid across i ≤ n with ||Eξn2i||2 =
O(k2/n) and ||Eηn2i||2 = O(k2/n), (d) eDnξ, eDnη ∈ Rk×k are random matrices
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that satisfy || eDnξ − Dnξ|| = op(k
−1) and || eDnη − Dnη|| = op(k

−1), and (e) eξni =
ξn1i + eDnξξn2i and eηni = ηn1i + eDnηηn2i. Then, the result of Lemma 4 holds with
(eξni,eηni) in place of (ξni, ηni).

The next Lemma is an extension of Lemma 2 that is needed when τ ≥ 1.
Lemma 6 Let {(ξni, ηni) : i ≤ n;n ≥ 1} be a triangular array of random vectors
that satisfies the conditions of Lemma 2. Let {hn : n ≥ 1} be a sequence of constant
k-vectors that satisfies nh�nhn/kτ → m as n → ∞ for some constants τ > 0 and
m ≥ 0. Then,⎛⎜⎜⎜⎜⎝

1
nk1/2

SS
1≤i<j≤n

⎛⎝ 2ξ�niξnj
ξ�niηnj + ξ�njηni

2η�niηnj

⎞⎠
1

kτ/2

Sn
i=1

�
h�nξni
h�nηni

�
⎞⎟⎟⎟⎟⎠→d N(0, V5), where V5 = Diag{2, 1, 2,m,m}.

Comment. The proof of Lemma 6 is quite similar to Newey’s (2004) proof of his
Lemma A.2, which is an extension of Hall’s (1984) CLT for degenerate U-statistics
to cover joint convergence with sums of iid random variables. However, Newey’s
Lemma A.2 does not cover the terms ξ�niξni and η�niηni in the Lemma 6 (because of
his assumption that EYiZi = 0).

The next result is employed when τ ∈ [1, 2]. For a constant κητ ≥ 0, define

V ∗3,τ =
�
Diag{2, 1 + κητ , 2 + 4κητ} if τ = 1
Diag{2,κητ , 4κητ} if τ > 1.

(12.1)

Lemma 7 Suppose τ ∈ [1, 2] and (ξn1i, ξn2i, ηn1i, ηn2i, eDnξ, eDnη, eΣnξ, eΣnη) satisfy the
conditions of Lemma 5 but with ||Eηn2i||2 = O(k1+τ/n), rather than ||Eηn2i||2 =
O(k2/n), and with λnξ/k → 0 and λnη/k

τ → κητ for some constant κητ ≥ 0, rather
than (λnξ + λnη)/k → 0. Then,

(a)
1

n

[[
1≤i<j≤n

⎛⎜⎝ k−1/2[2ξni�eΣ−1nξ ξnj ]
k−τ/2[(eΣ−1/2nξ ξni)

�eΣ−1/2nη ηnj + (eΣ−1/2nξ ξnj)
�eΣ−1/2nη ηni]

k−τ/2[2η�nieΣ−1nη ηnj ]
⎞⎟⎠

−
⎛⎝ λnξ/k

1/2

λnξη/k
τ/2

λnη/k
τ/2

⎞⎠→d N(0, V
∗
3,τ ),

(b)
1

n

n[
i=1

⎛⎜⎝ k−1/2[ξ�nieΣ−1nξ ξni − k]
k−τ/2(eΣ−1/2nξ ξni)

�eΣ−1/2nη ηni
k−τ/2[η�nieΣ−1nη ηni − k]

⎞⎟⎠→p 0, and

(c)

⎛⎜⎝ k−1/2[n−1/2
Sn
i=1(

eΣ−1/2nξ ξni)
�n−1/2

Sn
j=1

eΣ−1/2nξ ξnj − k]
k−τ/2[n−1/2

Sn
i=1(

eΣ−1/2nξ ξni)
�n−1/2

Sn
j=1

eΣ−1/2nη ηnj ]

k−τ/2[n−1/2
Sn
i=1(

eΣ−1/2nη ηni)
�n−1/2

Sn
j=1

eΣ−1/2nη ηnj − k]

⎞⎟⎠−
⎛⎝ λnξ/k

1/2

λnξη/k
τ/2

λnη/k
τ/2

⎞⎠
→d N(0, V

∗
3,τ ).
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Comment. In the proof of Lemma 7, the constraint that τ ≤ 2 is used only at the
end of the proof when showing that an analogue of Lemma 5 holds. In addition, the
proof of part (b) uses τ < 6 at an earlier stage of the proof.

Lemma 8 Suppose Assumption 3 holds, then (a) ||n−1 hZ � hZ − E hZi hZ �i|| = op(k−1/2),
(b) ||(n−1X �X)−1−(EXiX �i)−1|| = Op(n−1/2), (c) ||EXi hZ �i|| = O(k1/2), (d) ||n−1X � hZ
−EXi hZ �i|| = op(k−1), and (e) ||n−1Z �Z −EZ∗i Z∗�i || = op(k−1/2).
Proof of Theorem 5. First, we show that the results of Theorem 1 hold (with limits
as n→∞) for τ ∈ [0, 1] under Assumption 3 (which does not impose normality) with
S and T defined as in (7.13) (i.e., with the true Ω, not eΩn). The statistics (S, T ) are
invariant to the coefficient η onXi. Hence, wlog we take η = 0. Let b∗ = b0(b�0Ωb0)−1/2

and a∗ = Ω−1a0(a�0Ω−1a0)−1/2. We apply Lemma 5 with

ξni = Z∗i · Y �i b∗, ξn1i = hZi · Y �i b∗, ξn2i = (X �i · Y �i b∗, 0�k−p)� ∈ Rk,eΣnξ = eΣnη = n−1Z �Z, Dnξ = Dnη = [E hZiX �i(EXiX �i)−1 : 0k×(k−p)] ∈ Rk×k,eDnξ = eDnη = [n−1 hZ �X(n−1X �X)−1 : 0k×(k−p)] ∈ Rk×k, (12.2)

ηni = Z∗i · Y �i a∗, ηn1i = hZi · Y �i a∗, and ηn2i = (X
�
i · Y �i a∗, 0�k−p)� ∈ Rk.

Assumptions (b) and (e) of Lemma 5 follow immediately from (12.2).
Assumption (a) of Lemma 5 requires that Assumptions (i), (ii), (iii)��, (iv)�, and

(v)-(viii) of Lemmas 2-4 hold. Assumptions (i), (ii), and (v)-(viii) hold immediately
by Assumption 3.

Assumption (iv)� holds because ||eΣnξ − Σnξ|| = ||eΣnη − Σnη|| = op(k
−1/2) by

Lemma 8(e), where

Σnξ = V ar(ξni) = EZ
∗
i Z

∗�
i ·E(V �i b0)2(b�0Ωb0)−1 = EZ∗i Z∗�i ,

Σnη = V ar(ηni) = EZ
∗
i Z

∗�
i ·E(V �iΩ−1a0)2(a�0Ω−1a0)−1 = EZ∗i Z∗�i ,

Cov(ξni, ηni) = EZ∗i Z
∗�
i ·E(b�0ViV �iΩ−1a0)(b�0Ωb0)−1/2(a�0Ω−1a0)−1/2 = 0, (12.3)

each equation uses Assumption 3(d), and the last equality uses b�0a0 = 0.
Assumption (iii)�� holds using Assumption 3(f) because

μnξ = Eξni = EZ
∗
i Y

�
i b∗ = EZ

∗
i ( hZ �iπa� +X �iη)b∗ = EZ∗i Z∗�i πa�b∗ = EZ∗i Z∗�i πcβ,

μnη = Eηni = EZ
∗
i Y

�
i a∗ = EZ

∗
i Z

∗�
i πa

�Ω−1a∗ = EZ∗i Z
∗�
i πdβ, (12.4)

(λ∗nξ,λ
∗
nξη,λ

∗
nη) = nπ

�EZ∗i Z
∗�
i π · (c2β, cβdβ, d2β),

(λ∗nξ + λ∗nη)/k = (λ
∗
n,k/k

τ )kτ−1(c2β + d
2
β) = O(k

τ−1) = o(1),

where λ∗n,k is defined in (10.1) and the last equality holds because τ < 1.
To show assumption (c) of Lemma 5, we write

||Eξn2i||2 = ||EXi · Y �i b∗||2 = ||EXi hZ �iπ||2(a�b∗)2 ≤ ||EXi hZ �i||2 · ||π||2(a�b∗)2, (12.5)
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where the second equality uses the assumption above that the coefficient, η, on Xi is
0 wlog. Now, ||EXi hZ �i||2 = O(k) by Lemma 8(c). Also, Assumption 3(f) gives

O(1) = λ∗n,k/k
τ = nπ�EZ∗i Z

∗�
i π/k

τ ≥ nπ�πλmin(EZ∗i Z∗�i )/kτ . (12.6)

This, Assumption 3(c), and τ < 1 yield π�π = O(kτ/n) ≤ O(k/n). Combining these
results gives ||Eξn2i||2 = O(k2/n), as desired. The same argument gives ||Eηn2i||2 =
O(k2/n). Thus, assumption (c) holds.

Assumption (d) of Lemma 5 holds because

|| eDnξ −Dnξ|| = ||n−1 hZ �X(n−1X �X)−1 −E hZiX �i(n−1X �X)−1
+E hZiX �i(n−1X �X)−1 −E hZiX �i(EXiX �i)−1||

≤ ||n−1 hZ �X −E hZiX �i|| · ||(n−1X �X)−1||
+||E hZiX �i|| · ||(n−1X �X)−1 − (EXiX �i)−1||

= op(k
−1)Op(1) +O(k1/2)Op(n−1/2) = op(k−1), (12.7)

where the second equality holds by Lemma 8(b)-(d) and the fact that (n−1X �X)−1 =
Op(1) by the WLLNs, Slutsky’s Theorem, and EXiX �i > 0 and the third equality
uses Assumption 3(e).

The means of the asymptotic normal distributions given in Theorem 1(a)-(c) arise
in the present case because, by (12.4) and Assumptions 3(f) and 3(g), we have

(λ∗nξ/k
1/2,λ∗nξη/k

1/2,λ∗nη/k
1/2)� = (λ∗n,k/k

1/2) · (c2β, cβdβ, d2β)�

→
�
r1/2(c

2
β, cβdβ, d

2
β)
� when τ = 1/2

(0, 0, 0)� when τ < 1/2.
(12.8)

When τ ∈ (1/2, 1), (12.4) and Assumptions 3(f) and 3(g) lead to
cβ = Bk

1/2−τb0, b0 = (b�0Ωb0)
−1/2, dβ = dβ0(1 + o(1)), and

(λ∗nξ/k
1/2,λ∗nξη/k

1/2,λ∗nη/k
τ )� = (c2βλ

∗
n,kk

−1/2, cβdβλ∗n,kk
−1/2, d2βλ

∗
n,kk

−τ )�

= (B2b
2
0k
1−2τλ∗n,kk

−1/2, Bb0dβk1/2−τλ∗n,kk
−1/2, d2βλ

∗
n,kk

−τ )�

→ (0, Bb0dβ0rτ , d
2
β0
rτ )

� = (0, γBrτ , d
2
β0
rτ )

�. (12.9)

Hence, when τ ∈ (1/2, 1), Lemma 5 shows that ((S�S − k)/k1/2, S�T/k1/2) →d

(QS,∞, QST,∞) and (T �T − k)/kτ − d2βλ∗n,k/kτ = op(1) because τ > 1/2. The lat-
ter, combined with d2βλ

∗
n,k/k

τ → d2β0rτ , gives the desired result that (T
�T −k)/kτ →p

d2β0rτ when τ ∈ (1/2, 1).
To complete the proof for τ < 1, we extend the results to the case where S, T,

etc. are replaced by eSn, eTn, etc. (so Ω is replaced by eΩn). This extension holds by
the result of Lemma 1 that k1/2(eΩn −Ω) = op(1) (which holds under Assumption 3)
and the proof of Theorem 4.

Next, we consider the case where τ ∈ [1, 2]. The proof is the same as for τ < 1 with
the following changes. First, we apply Lemma 7 instead of Lemma 5. Second, the
last line of (12.4) does not hold because τ ≥ 1. Instead, we have c2β = O((β−β0)2) =
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O(k−τ ), λ∗nξ/k = (λ∗n,k/kτ )kτ−1c2β = O(k−1) = o(1) as required by Lemma 7, and
λ∗nη/kτ = (λ∗n,k/kτ )d2β → rτd

2
β0
, which verifies an assumption in Lemma 7 with

κητ = rτd
2
β0
. Third, by (12.5) and (12.6) with ξ replaced by η, we have ||Eηn2i||2 ≤

O(||EXi hZ �i||2 · ||π||2) = O(k1+τ/n) as is assumed in Lemma 7.
Fourth, when τ = [1, 2], (12.4) and Assumptions 3(f) and 3(g) lead to

cβ = Bk
−τ/2b0, b0 = (b�0Ωb0)

−1/2, dβ = dβ0(1 + o(1)), and

(λ∗nξ/k
1/2,λ∗nξη/k

τ/2,λ∗nη/k
τ )� = (c2βλ

∗
n,kk

−1/2, cβdβλ∗n,kk
−τ/2, d2βλ

∗
n,kk

−τ )�

= (B2b
2
0k
−τλ∗n,kk

−1/2, Bb0dβkτ/2λ∗n,kk
−τ/2, d2βλ

∗
n,kk

−τ )�

→ (0, Bb0dβ0rτ , d
2
β0
rτ )

� = (0, γBrτ , d
2
β0
rτ )

�. (12.10)

Hence, Lemma 7 shows that ((S�S − k)/k1/2, S�T/kτ/2)→d (QS,∞, QST,∞). In addi-
tion, Lemma 7 implies that (T �T −k)/kτ −d2βλ∗n,k/kτ = op(1) because τ > τ/2. This,
combined with d2βλ

∗
n,k/k

τ → d2β0rτ , gives the desired result that (T
�T − k)/kτ →p

d2β0rτ .

Proof of Lemma 2. To prove part (a), by the Cramer-Wold device, it suffices to
show that for any α = (α1,α2,α3)� ∈ R3 with α 9= 0,

α�Un =
[[
1≤i<j≤n

Snij =
n[
j=2

Mnj →d N(0,α
�V3α), where Mnj =

j−1[
i=1

Snij and

Snij =
1

nk1/2
(2α1ξ

�
niξnj + α2(ξ

�
niηnj + ξ�njηni) + 2α3η

�
niηnj). (12.11)

We establish this result using Hall’s (1984, Thm. 1) univariate CLT for degenerate
U-statistics. Hall’s CLT is established by writing the U-statistic as a martingale (with
martingale differences {Mnj : j ≥ 1}) and applying Brown’s (1971) martingale CLT.

We apply Hall’s Thm. 1 with his Xni = (ξ�ni, η�ni)
� and his Hn(x, y) equal to

Hn(x, x∗) =
3[
s=1

αsHsn(x, x∗), where x = (ξ�, η�)� ∈ R2k, x∗ = (ξ�∗, η�∗)� ∈ R2k,

H1n(x, x∗) = 2n−1k−1/2ξ�ξ∗, H2n(x, x∗) = n
−1k−1/2(ξ�η∗ + ξ�∗η), and

H3n(x, x∗) = 2n−1k−1/2η�η∗. (12.12)

Note that E(Hn(Xn1,Xn2)|Xn2) = 0 a.s. because Xn1 and Xn2 are independent with
mean zero. In consequence, the U-statistic α�Un in (12.11) is degenerate. Hall’s Thm.
1 states that

α�Un/
�
n2EH2

n(Xn1,Xn2)/2
�1/2 →d N(0, 1) provided

(I) n−1EH4
n(Xn1,Xn2)/(EH

2
n(Xn1,Xn2))

2 → 0 and

(II) EG2n(Xn1,Xn2)/(EH
2
n(Xn1,Xn2))

2 → 0, where

Gn(x, x∗) = EHn(Xn1, x)Hn(Xn1, x∗) for x, x∗ ∈ R2k. (12.13)
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Conditions (I) and (II) suffice for the Lindeberg condition and the conditional variance
condition, respectively, required in Brown’s martingale CLT. We verify (I) and (II)
for Hn(x, x∗) defined in (12.12). First, we have

n2EH2
n(Xn1,Xn2)/2 =

1

2k
α�E

⎛⎝ 2ξ�n1ξn2
ξ�n1ηn2 + ξ�n2ηn1

2η�n1ηn2

⎞⎠⎛⎝ 2ξ�n1ξn2
ξ�n1ηn2 + ξ�n2ηn1

2η�n1ηn2

⎞⎠� α,
(12.14)

where Xni = (ξ�ni, η�ni)
�. Next, we have

E(2ξ�n1ξn2)
2 = 4tr(Eξn2ξ

�
n2ξn1ξ

�
n1) = 4tr(Eξn2ξ

�
n2 ·Eξn1ξ�n1) = 4k,

E(ξ�n1ηn2 + ξ�n2ηn1)
2 = E(ξ�n1ηn2)

2 + 2Eξ�n1ηn2ξ
�
n2ηn1 +E(ξ

�
n2ηn1)

2

= tr(Eξn1ξ
�
n1 ·Eηn2η�n2) + 2tr(Eηn2ξ�n2 ·Eηn1ξ�n1) + tr(Eξn2ξ�n2 ·Eηn1η�n1) = 2k,

E(2ξ�n1ξn2)(ξ
�
n1ηn2 + ξ�n2ηn1) = 2Eξ

�
n1ξn2ξ

�
n1ηn2 + 2Eξ

�
n1ξn2ξ

�
n2ηn1

= 2tr(Eξn1ξ
�
n1 ·Eξn2η�n2) + 2tr(Eξn2ξ�n2 ·Eηn1ξ�n1) = 0, and (12.15)

E(2ξ�n1ξn2)(2η
�
n1ηn2) = 4tr(Eξn1η

�
n1ηn2ξ

�
n2) = 4tr(Eξn1η

�
n1 ·Eηn2ξ�n2) = 0,

using assumptions (ii) and (iv) of the Lemma. Likewise, we have E(2η�n1ηn2)2 = 4k
andE(2η�n1ηn2)(ξ

�
n1ηn2+ξ

�
n2ηn1) = 0. Combining these results with (12.14 and (12.15)

implies that
n2EH2

n(Xn1,Xn2)/2 = α�V3α > 0 for all n, (12.16)

which yields the asymptotic variance given in (12.11).
Now, to verify condition (I) of (12.13), we have

EH4
1n(Xn1,Xn2) =

16

n4k2
E(ξ�n1ξn2)

4 =
16

n4k2
E(

k[
�=1

ξn1�ξn2�)
4

=
16

n4k2

k[
�1=1

k[
�2=1

k[
�3=1

k[
�4=1

Eξn1�1ξn2�1ξn1�2ξn2�2ξn1�3ξn2�3ξn1�4ξn2�4 (12.17)

≤ 16k
2

n4
sup

�1,�2,�3,�4≤4,n≥1
Eξn1�1ξn1�2ξn1�3ξn1�4 ·Eξn2�1ξn2�2ξn2�3ξn2�4 = O(

k2

n4
),

where ξni = (ξni1, ..., ξnik)
� and the last equality holds by assumption (v) of the

Lemma and the Cauchy-Schwartz inequality. Similar calculations and the use of
Minkowski’s inequality yields EH4

sn(Xn1,Xn2) = O(k
2/n4) for s = 2, 3. These results

and Minkowski’s inequality then give EH4
n(Xn1,Xn2) = O(k2/n4). Combining this

with (12.16) establishes condition (I) of (12.13).provided n−1k2 → 0, which holds by
assumption (vii) of the Lemma.

To verify condition (II) of (12.13), by the Cauchy-Schwartz inequality, it suffices to
verify condition (II) with EG2n(Xni,Xnj) replaced by EG

2
sn(Xni,Xnj) for s = 1, 2, 3,

where Gsn(·, ·) is defined as Gn(·, ·) is defined in (12.13), but with Hsn(·, ·) in place
of Hn(·, ·). We have

G1n(x, x∗) = EH1n(Xn1, x)H1n(Xn1, x∗) =
4

n2k
Eξ�n1ξξ

�
n1ξ∗ =

4

n2k
ξ�ξ∗,
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G2n(x, x∗) = EH2n(Xn1, x)H2n(Xn1, x∗)

=
1

n2k
E(ξ�n1η + ξ�ηn1)(ξ

�
n1η∗ + ξ�∗ηn1) =

1

n2k
(ξ�ξ∗ + η�η∗), (12.18)

where x = (ξ, η)� and x∗ = (ξ∗, η∗)�. Hence,

EG21n(Xn1,Xn2) =
16

n4k2
E(ξ�n1ξn2)

2 =
16

n4k2
tr(Eξn1ξ

�
n1 ·Eξn2ξ�n2) =

16

n4k
,

EG22n(Xn1,Xn2) =
1

n4k2
E(ξ�n1ξn2 + η�n1ηn2)

2 =
2

n4k
. (12.19)

Similarly, EG23n(Xn1,Xn2) = 16/(n4k). Combining (12.16), (12.18), and (12.19)
yields condition (II) of (12.13) provided k → ∞, which holds by assumption (vi) of
the Lemma.

Part (b) of the Lemma holds because the left-hand side in part (b) has mean zero
and variance that is o(1). The latter holds because

E(ξ�n1ξn1)
2 =

k[
�1=1

k[
�2=1

Eξ2n1�1ξ
2
n1�2 ≤ k2 sup

�≤k,n≥1
Eξ4n1� = O(k

2), (12.20)

V ar(n−1k−1/2
n[
i=1

(ξ�niξni − k)) = n−1k−1V ar((ξ�niξni − k)) = n−1O(k) = o(1)

using assumptions (v) and (vii) of the Lemma. Similarly, E(ξ�niηni)2 = O(k2) and
E(η�n1ηn1)2 = O(k2) yield V ar(n−1k−1/2

Sn
i=1 ξ

�
niηni = o(1) and V ar(n

−1k−1/2
Sn
i=1

(η�niηni − k) = o(1).
Part (c) follows from parts (a) and (b) because the lhs of part (c) equals the sum

of the lhs of parts (a) and (b).

Proof of Lemma 3. To prove part (a), we write

2

nk1/2

[[
1≤i<j≤n

ξ�niξnj = A1n +A2n +A3n, where

A1n =
2

nk1/2

[[
1≤i<j≤n

(ξni − μnξ)
�(ξnj − μnξ),

A2n =
2

nk1/2

[[
1≤i<j≤n

[μ�nξ(ξni − μnξ) + μ�nξ(ξnj − μnξ)], and

A3n =
2

nk1/2

[[
1≤i<j≤n

μ�nξμnξ. (12.21)

Now, some calculations yield

A3n =
n(n− 1)
nk1/2

μ�nξμnξ =
1

k1/2
λnξ − 1

nk1/2
λnξ =

1

k1/2
λnξ + o(1),

A2n =
2(n− 1)
nk1/2

μ�nξ
n[
i=1

(ξni − μnξ), EA2n = 0, and

V ar(A2n) =
4(n− 1)2
nk

μ�nξV ar(ξni)μnξ =
4(n− 1)2
n2k

λnξ = o(1), (12.22)
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using λnξ/k → 0 and k2/n→ 0. Combining (12.21) and (12.22) gives

2

nk1/2

[[
1≤i<j≤n

ξ�niξnj −
1

k1/2
λnξ = A1n + op(1). (12.23)

Similar calculations yield

1

nk1/2

[[
1≤i<j≤n

(ξ�niηnj + ξ�njηni)−
1

k1/2
λnξη (12.24)

=
1

nk1/2

[[
1≤i<j≤n

[(ξni − μnξ)
�(ηnj − μnη) + (ξnj − μnξ)

�(ηni − μnη)] + op(1) and

2

nk1/2

[[
1≤i<j≤n

η�niηnj −
1

k1/2
λnη =

1

nk1/2

[[
1≤i<j≤n

(ηni − μnη)
�(ηnj − μnη) + op(1).

Stacking the results of (12.23) and (12.24) and applying Lemma 2(a) to the rhs of
these stacked equations yields convergence in distribution to N(0, V3), which is the
result of part (a).

To show part (b), we write

1

nk1/2

n[
i=1

(ξ�niξni − k) = F1n + F2n + F3n, where

F1n =
1

nk1/2

n[
i=1

[(ξni − μnξ)
�(ξni − μnξ)− k], F2n =

2

nk1/2

n[
i=1

μ�nξ(ξni − μnξ),

F3n =
1

nk1/2

n[
i=1

μ�nξμnξ. (12.25)

We have F1n →p 0 by Lemma 2(b). In addition,

F3n =
1

nk1/2
λnξ =

k1/2

n

λnξ
k
→ 0, EF2n = 0, and

V ar(F2n) =
4

nk
μ�nξV ar(ξni)μnξ =

4

n2k
λnξ → 0 (12.26)

using assumptions (vii) and (iii)�. These results combine to show that F1n + F2n +
F3n is op(1). Similar calculations show that n−1k−1/2

Sn
i=1(η

�
niηni − k) = op(1) and

n−1k−1/2
Sn
i=1 ξ

�
niηni = op(1), which completes the proof of part (b).

Part (c) follows from parts (a) and (b) because the lhs of part (c) equals the sum
of the lhs of parts (a) and (b).

Proof of Lemma 4. Lemma 3(c) with (ξni, ηni) of that Lemma set equal to
((Σ

−1/2
nξ ξni,Σ

−1/2
nη ηni) of the present Lemma gives the desired result but with (Σnξ,Σnη)

in place of (eΣnξ, eΣnη). Hence, it suffices to show
δn = A

�
n(Σ

−1
nξ − eΣ−1nξ )An = op(k1/2), where An = n−1/2 n[

i=1

ξni, (12.27)
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and likewise with (ξni,Σnξ) replaced by (ηni,Σnη).

Lemma 3(c) applied to (Σ−1/2nξ ξni,Σ
−1/2
nη ηni) also gives

A�nΣ
−1
nξAn = Op(k) (12.28)

(due to the centering at kI2). In addition, we have

λ−1min(eΣnξ) = Op(1) (12.29)

because |λmin(eΣnξ) − λmin(Σnξ)| ≤ ||eΣnξ − Σnξ|| = op(1) by assumption (iv)� and
λ−1min(Σnξ) = O(1) by assumption (viii).

The following are standard or hold by algebra: If H is a symmetric psd k × k
matrix, G is a k × k matrix, and c is a k-vector, then (a) ||HGH|| ≤ λ2max(H)||G||,
(b) ||Hc|| ≤ λmax(H)||c|| ≤ ||H|| · ||c||, (c) c�Gc ≤ ||G|| · ||c||2, and (d) Ik −H−1 =
H − Ik − (H − Ik)�H−1(H − Ik).

Let Cn = Σ
1/2
nξ and Dn = eΣ1/2nξ . Then, we have

δn = A�n(C
−2
n −D−2n )An

= A�nC
−1
n (Ik − CnD−2n Cn)C−1n An

= A�nC
−1
n (C−1n D2nC

−1
n − Ik)C−1n An

−A�nC−1n (C−1n D2nC
−1
n − Ik)CnD−2n Cn(C−1n D2nC

−1
n − Ik)C−1n An

≤ A�nC−1n [C−1n (D2n − C2n)C−1n ]C−1n An

+||Cn(C−1n D2nC
−1
n − Ik)C−1n An||2 · λ2max(D−1n )

≤ ||C−1n (D2n − C2n)C−1n || · ||C−1n An||2
+||(D2n − C2n)C−1n C−1n An||2 · λ−2min(Dn)

≤ ||D2n − C2n|| · λ2max(C−1n ) · ||C−1n An||2
+||D2n − C2n||2||C−1n C−1n An||2 · λ−2min(Dn)

≤ ||D2n − C2n|| · λ−1min(C2n) · ||C−1n An||2
+||D2n − C2n||2 · ||C−1n An||2 · λ2max(C−1n ) · λ−2min(Dn)

= op(k
−1/2)O(1)Op(k) + op(k−1)Op(k)O(1)Op(1)

= op(k
1/2), (12.30)

where the third equality uses (d) with H = C−1n D2nC
−1
n , the first inequality holds by

the triangle inequality and (b), the second inequality holds by (c), the third inequality
holds by (a) and (b), the fourth inequality holds by (b), and the second last equality
holds by assumptions (iv)� and (viii), (12.28), and (12.29). This establishes (12.27).

The same argument holds with (ξni, eΣnξ) replaced by (ηni, eΣnη). Hence, (12.27)
holds and the Lemma is proved.

Proof of Lemma 5. It suffices to show ∆n = op(k1/2) and an analogous result with
(ξn1i, ξn2i) replaced by (ηn1i, ηn2i), where ∆n is defined by

Gn = n−1/2
n[
i=1

ξn1i, Hn = n
−1/2

n[
i=1

ξn2i,
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∆n = |(Gn + eDnξHn)�eΣ−1nξ (Gn + eDnξHn)− (Gn +DnξHn)�eΣ−1nξ (Gn +DnξHn)|
= |H �n( eDnξ −Dnξ)�eΣ−1nξ ( eDnξ −Dnξ)Hn + 2H �n( eDnξ −Dnξ)�eΣ−1nξ (Gn +DnξHn)|
≤ P1n + 2P 1/21n P

1/2
2n ,

P1n = ||eΣ−1/2nξ ( eDnξ −Dnξ)Hn||2, P2n = (Gn +DnξHn)�eΣ−1nξ (Gn +DnξHn), (12.31)

and the inequality holds by the Cauchy-Schwarz inequality. We have P2n = Op(k)
by Lemma 4. Hence, the Lemma holds if P1n = op(1).

We have

P1n ≤ λ2max(eΣ−1/2nξ ) · ||( eDnξ −Dnξ)Hn||2 ≤ λ−1min(eΣnξ) · || eDnξ −Dnξ||2||Hn||2, (12.32)
where the two inequalities hold by inequality (b) stated following (12.29) above.

Next, we have: (I) ||Hn||2 = Op(k
2) because ||Hn|| ≤ ||Hn − EHn|| + ||EHn||,

E||Hn −EHn||2 = E(ξn2i−Eξn2i)�(ξn2i−Eξn2i) = O(k), which implies that ||Hn −
EHn||2 = Op(k), and ||EHn||2 = ||n1/2Eξn2i||2 = O(k2) by assumption (c) of the

Lemma, (II) λmax(eΣ−1/2nξ ) = λ
−1/2
min (

eΣnξ) = Op(1) by (12.29) above, and (III) || eDnξ −
Dnξ|| = op(k

−1) by assumption (d) of the Lemma. Hence, P1n = op(1) and ∆n =
op(k

1/2).
An analogous result holds with (ηn1i, ηn2i) in place of (ξn1i, ξn2i), which completes

the proof.

Proof of Lemma 6. The result is established by applying Brown’s (1973) mar-
tingale CLT to a linear combination of the 5-vector in the Lemma and then ap-
plying the Cramér-Wold device. For the former, it suffices to show that for any
α∗ = (α1,α2,α3,α4,α5)� 9= 0,

n[
j=1

(Mnj +Gnj)→d N(0,α
�
∗V5α∗), where Gnj = k

−τ/2h�n(α4ηnj + α5ξnj), (12.33)

Mnj and α are defined in (12.11), and Mn1 = 0. Note that E(Mnj +Gnj |Fj−1) = 0
a.s., where Fj−1 = σ(ξnj−1, ηnj−1, ..., ξn1, ηn1). Brown’s CLT requires the verification
of (i) the convergence of V ar(

Sn
j=1(Mnj+Gnj)) to α�∗V5α∗, (ii) a Lindeberg condition,

and (iii) a conditional variance condition. For (i), we have

V ar(
n[
j=1

(Mnj +Gnj)) =
n[
j=1

(EM2
nj +EG

2
nj)→ α�V3α+m(α24 + α25) = α�∗V5α∗,

(12.34)
where the equality uses EMnj = EGnj = EMnjGnj = 0 and the convergence holds
by (12.14)-(12.16) and EG2nj = nk

−τh�nhn(α24 + α25)→ m(α24 + α25).

The Lindeberg condition is implied by
Sn
j=1EM

4
nj → 0 and

Sn
j=1EG

4
nj → 0.

The former holds by condition (I) of (12.13) and the proof of Hall’s (1984) Thm. 1.
The latter holds because

n[
j=1

EG4nj =
n[
j=1

E[k−τ/2h�n(α4ηnj + α5ξnj)]
4

≤ n−1(nh�nhn/kτ )2E||α4ηnj + α5ξnj ||4 → 0, (12.35)
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using the Cauchy-Schwarz inequality, nk−τh�nhn → m, and E||ηnj ||4+E||ξnj ||4 <∞.
The conditional variance condition holds if

n[
j=1

E((Mnj +Gnj)
2|Fj−1)→p α

�
∗V5α∗. (12.36)

We have
Sn
j=1E(M

2
nj |Fj−1)→p α

�V3α by condition (II) of (12.13) and the proof of
Hall’s (1984) Thm. 1. In addition, E(G2nj |Fj−1) = EG2nj a.s. and

Sn
j=1EG

2
nj →

m(α24 + α25), as above. Hence, it remains to show that
Sn
j=1E(MnjGnj |Fj−1)→p 0.

We have

E(Mnjk
−τ/2h�nηnj |Fj−1)

= n−1k−1/2−τ/2E(
j−1[
i=1

(2α1ξ
�
niξnj + α2(ξ

�
niηnj + ξ�njηni) + 2α3η

�
niηnj)h

�
nηnj |Fj−1)

= n−1k−1/2−τ/2
j−1[
i=1

(α2ξ
�
nihn + 2α3η

�
nihn). (12.37)

Next, we have

E

⎛⎝ n[
j=1

n−1k−1/2−τ/2
j−1[
i=1

ξ�nihn

⎞⎠2 = n−2k−1−τE# n[
i=1

(n− i)ξ�nihn
$2

= n−3k−1(nh�nhn/k
τ )

#
n[
i=1

(n− i)
$2
= O(n−1k−1) = o(1). (12.38)

The same holds with ξni replaced by ηni. These results, combined with (12.37) and
Markov’s inequality, gives

Sn
j=1E(Mnjk

−τ/2h�nηnj |Fj−1) →p 0. Analogously,
Sn
j=1

E(Mnjk
−τ/2h�nξnj |Fj−1)→p 0. In consequence,

Sn
j=1E(MnjGnj |Fj−1)→p 0 and the

proof is complete.

Proof of Lemma 7. First, we consider the case where eΣnξ = Σnξ = Ik, eΣnη =
Σnη = Ik, eDnξ = Dnξ, and eDnη = Dnη, which is analogous to the situation in Lemma
3. We start with the proof of part (a). Because λnξ/k → 0, just as in Lemma 3,
(12.23) still holds. Next, we write

1

nkτ/2

[[
1≤i<j≤n

[ξ�niηnj + ξ�njηni] = B1n +B2n +B3n +B4n, where

B1n =
1

nkτ/2

[[
1≤i<j≤n

[(ξni − μnξ)
�(ηnj − μnη) + (ξnj − μnξ)

�(ηni − μnη)],

B2n =
1

nkτ/2

[[
1≤i<j≤n

[μ�nη(ξni − μnξ) + μ�nη(ξnj − μnξ)] =
n− 1
nkτ/2

n[
i=1

μ�nη(ξni − μnξ),
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B3n =
1

nkτ/2

[[
1≤i<j≤n

[μ�nξ(ηni − μnη) + μ�nξ(ηnj − μnη)] =
n− 1
nkτ/2

n[
i=1

μ�nξ(ηni − μnη),

B4n =
2

nkτ/2

[[
1≤i<j≤n

μ�nξμnη =
n− 1
n

λnξη/k
τ/2. (12.39)

We have: EB3n = 0, V ar(B3n) = ((n − 1)/n)2λnξ/kτ → 0, and hence B3n = op(1).
Thus,

1

nk1/2

[[
1≤i<j≤n

[ξ�niηnj + ξ�njηni]− λnξη/k
τ/2 = B1n +B2n + op(1). (12.40)

When τ > 1, B1n = op(1), because Lemma 2(a) implies that kτ/2−1/2B1n = Op(1).
As in (12.21)-(12.23), but with (η, kτ/2) in place of (ξ, k1/2), we can write

2

nkτ/2

[[
1≤i<j≤n

η�niηnj −
1

kτ/2
λnξ = C1n + C2n + op(1), where

C1n =
2

nkτ/2

[[
1≤i<j≤n

(ηni − μnη)
�(ηnj − μnη) and

C2n =
2(n− 1)
nkτ/2

μ�nη
n[
i=1

(ηni − μnη). (12.41)

In the present case C2n is not op(1) because V ar(C2n) = 4((n−1)/n)2k−τλnη → 4κητ .
When τ > 1, C1n = op(1), because Lemma 2(a) implies that kτ/2−1/2C1n = Op(1).

Now, we stack the results of (12.23), (12.40), and (12.41) and apply Lemma
6 to the rhs of these stacked equations. When τ = 1, the rhs satisfies (A1n, B1n +
B2n, C1n+C2n)

�+op(1) and we apply Lemma 6 with (ξni, ηni) equal to (ξni−μnξ, ηni−
μnη) of the present Lemma, with hn = ((n − 1)/n)μnη, and with m = κη1. Then,
Lemma 6 gives (A1n, B1n + B2n, C1n + C2n)� →d N(0,Diag{2, 1 + κη1, 2 + 4κη1})
= N(0, V ∗3,1), which is the result of part (a). When τ > 1, the rhs of the stacked
equations satisfies (A1n, B2n, C2n)� + op(1) and we apply Lemma 6 in the same way
as above to obtain (A1n, B2n, C2n)� →d N(0,Diag{2,κητ , 4κητ}) = N(0, V ∗3,τ ), as
desired. This completes the proof of part (a) for the case where eΣnξ = Σnξ, etc.

Next, we prove parts (b) and (c) for the case where eΣnξ = Σnξ = Ik, etc. The
proof that (nk1/2)−1

Sn
i=1 ξ

�
niξni = op(1) is exactly the same as in (12.25)-(12.26)

because λnξ/k → 0. The proof that (nkτ/2)−1
Sn
i=1(η

�
niηni − k) = op(1) is analo-

gous to that given in (12.25)-(12.26) with ξ replaced by η, with (nkτ/2)−1 in place
of (nk1/2)−1, and with λnη/k

τ = O(1) rather than λnξ/k = o(1). In consequence,
F3n = (nk

τ/2)−1λnη = (kτ/2/n)(λnη/kτ )→ 0 provided k3/n→ 0 and τ < 6.We have
EF2n = 0 and V ar(F2n) = 4n−2(λnη/kτ ) → 0. In addition, F1n →p 0 by Lemma
2(b). Hence, (nkτ/2)−1

Sn
i=1(η

�
niηni − k) →p 0. Similar calculations, using the fact

that λ2nξη ≤ λnξλnη by the Cauchy-Schwarz inequality and hence λnξη/k
(1+τ)/2 ≤

(λnξ/k)
1/2(λnη/k

τ )1/2 = o(1), show that (nkτ/2)−1
Sn
i=1 ξ

�
niηni = op(1), which com-

pletes the proof of part (b). Part (c) follows from parts (a) and (b) because the lhs
of part (c) equals the sum of the lhs of parts (a) and (b).
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We complete the proof by showing that the same asymptotic distributions arise
when eΣnξ 9= Σnξ, Σnξ 9= Ik, eDnξ 9= Dnξ, etc. as when eΣnξ = Σnξ, etc. using the argu-
ments in the proofs of Lemmas 4 and 5. In these proofs, exactly the same arguments
hold under the assumptions of the current Lemma when δn and ∆n are based on
ξni, because the normalization is by k

−1/2 and ||Eξn2i||2 = O(k2/n). When δn and
∆n are based on ηni, the arguments need to be altered because the normalization
is by k−τ/2, not k−1/2, and ||Eηn2i||2 = O(k1+τ/n), not ||Eηn2i||2 = O(k2/n), in
the second and third elements of the 3-vector in part (c) of the present Lemma. In
particular, in the proof of Lemma 4, it suffices to show that δn = op(kτ/2) when δn is
defined with η in place of ξ. Nevertheless, the proof of Lemma 4 goes through without
change to show that δn = op(k1/2), which is stronger than necessary. (This relies on
the fact that A�nΣ−1nηAn = ||C−1n An||2 = Op(k), due to the centering by k, by the

result proved above for the case eΣnξ = Σnξ, etc.) In the proof of Lemma 5, it suffices
to show that ∆n = op(kτ/2) when δn is defined with η in place of ξ.When τ = 1, the
same proof goes through without change. But, when τ > 1, the proof needs to be
altered. In the present case, we still have P2n = Op(k) (due to centering at k), but
||EHn||2 = ||n1/2Eηn2i||2 = O(k1+τ ) by the assumption of the present Lemma, rather
than O(k2). In consequence, using (12.32), P1n = op(k−2)Op(k1+τ ) = op(kτ−1). Us-
ing P2n = Op(k), this leads to P

1/2
1n P

1/2
2n = op(k

τ/2). Also, if τ ≤ 2, this gives
P1n = op(k

τ/2). These results and (12.31) combine to give ∆n = op(kτ/2) if τ ≤ 2.
Proof of Lemma 8. Part (a) holds because for all ε > 0

P (k||n−1 hZ � hZ −E hZi hZ �i||2 > ε)

≤ kEtr
⎛⎝#n−1 n[

i=1

hZi hZ �i −E hZ1 hZ �1
$⎛⎝n−1 n[

j=1

hZj hZ �j −E hZ1 hZ �1
⎞⎠⎞⎠ /ε

= k · tr
�
n−1E

� hZ2 hZ �2 −E hZ1 hZ �1�� hZ2 hZ �2 −E hZ1 hZ �1�� /ε
= kn−1

�
E( hZ �2 hZ2)2 − 2E( hZ �2 hZ1)2 + tr �[E hZ1 hZ �1]E hZ1 hZ �1�� /ε

≤ O(k3/n) = o(1), (12.42)

where the first inequality holds by Markov’s inequality, the first equality holds because
the expectation of terms with i 9= j is zero by independence, the second equality holds
by algebra, the second inequality holds because supj≤k;n≥1E hZ4ij <∞ by Assumption
3(c), and the third equality holds by Assumption 3(e).

Part (b) holds by the CLT and the delta method because E||Xi||4 <∞, EXiX �i
is pd, and the dimension p of Xi is fixed for all n.

Part (c) holds because ||EXi hZ �i|| ≤ k1/2p1/2 supj≤k,n≥1(E||Xi hZij ||2)1/2 = Op(k1/2)
using the fact that p is fixed for all n.

Part (d) is established as follows. By Markov’s inequality, for all ε > 0,

P (k2||n−1X � hZ −EXi hZ �i||2 > ε)

≤ k2Etr((n−1
n[
i=1

Xi hZ �i −EXi hZ �i)�n−1 n[
j=1

Xj hZ �j −EXj hZ �j))/ε
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= (k2/n)tr((E(Xi hZ �i −EXi hZ �i)�(Xi hZ �i −EXi hZ �i))/ε
≤ (k3/n)p sup

j≤k,n≥1
E||Xi hZij ||2 = o(1), (12.43)

where the first equality holds by the iid assumption, the second inequality uses the
fact that the dimensions of Xi and hZi are p and k, and the second equality uses
Assumption 3(e).

To prove part (e), we write

n−1Z �Z = n−1 hZ � hZ − n−1 hZ �X(X �X)−1X � hZ and
EZ∗i Z

∗�
i = E hZi hZ �i −E hZiX �i(EXiX �i)−1EXi hZ �i. (12.44)

By the triangle inequality, we have

||n−1 hZ �X(X �X)−1X � hZ −E hZiX �i(EXiX �i)−1EXi hZ �i|| ≤ Ln1 + Ln2 + Ln3, where
Ln1 = ||n−1 hZ �X(n−1X �X)−1(n−1X � hZ −EXi hZ �i)||,
Ln2 = ||n−1 hZ �X[(n−1X �X)−1 − (EXiX �i)−1]EXi hZ �i||, and
Ln3 = ||(n−1 hZ �X −E hZiX �i)(EXiX �i)−1EXi hZ �i||. (12.45)

Using parts (c) and (d), we have

||n−1 hZ �X|| ≤ ||n−1 hZ �X −E hZiX �i||+ ||E hZiX �i|| = op(k−1) +O(k1/2) = Op(k1/2).
(12.46)

In addition, ||(n−1X �X)−1|| = Op(1) by the LLN, Slutsky’s Theorem, and the fact
EXiX

�
i is pd. These results, the result of part (d), and ||AB|| ≤ ||A|| · ||B|| give

Ln1 ≤ ||n−1 hZ �X|| · ||(n−1X �X)−1|| · ||n−1X � hZ −EXi hZ �i||
= Op(k

1/2)Op(1)op(k
−1) = op(k−1/2). (12.47)

By similar calculations, Ln3 = op(k−1/2).
Using the results of (12.46) and parts (b) and (c), we have

Ln2 ≤ ||n−1 hZ �X|| · ||(n−1X �X)−1 − (EXiX �i)−1|| · ||EXi hZ �i||
= Op(k

1/2)Op(n
−1/2)O(k1/2) = Op((k3/n)1/2k−1/2) = op(k−1/2). (12.48)

Hence, the left-hand side in (12.45) is op(k−1/2). This, (12.44), and part (a) com-
bine to establish part (e).

52



References

Anderson, T. W. (1976): “Estimation of Linear Functional Relationships: Approx-
imate Distributions and Connections with Simultaneous Equations in Econo-
metrics,” Journal of the Royal Statistical Society, Ser. B, 38, 1-36.

Anderson, T. W. and H. Rubin (1949): “Estimators of the Parameters of a Single
Equation in a Complete Set of Stochastic Equations,” Annals of Mathematical
Statistics, 21, 570-582.

Andrews, D. W. K. and V. Marmer (2004): “Exactly Distribution-Free Inference
in Instrumental Variables Regression with Possibly Weak Instruments,” Cowles
Foundation Discussion Paper No. 1501, Yale University.

Andrews, D. W. K., M. J. Moreira, and J. H. Stock (2004a): “Optimal Invariant
Similar Tests for Instrumental Variables Regression with Weak Instruments,”
CFDP No. 1476, Yale University. Available at http://cowles.econ.yale.edu.

––– (2004b): “Supplement to ‘Optimal Invariant Similar Tests for Instrumen-
tal Variables Regression’,” unpublished manuscript, Department of Economics,
Harvard University. Available on the web at http://ksghome.harvard.edu/
∼.JStock.Academic.Ksg/ams/websupp/index.htm.

––– (2004c): “Performance of Conditional Wald Tests in IV Regression with
Weak Instruments,” working paper, Department of Economics, Harvard Uni-
versity.

––– (2004d) “Heteroskedasticity and Autocorrelation-Robust Inference withWeak
Instruments,” working paper, Cowles Foundation, Yale University.

Andrews, D. W. K. and G. Soares (2004): “Rank Tests for Instrumental Variables
Regression,” working paper, Cowles Foundation, Yale University.

Angrist, J. D. and A. B. Krueger (1991): “Does Compulsory School Attendance
Affect Schooling and Earnings?” Quarterly Journal of Economics, 106, 979-
1014.

Bekker, P. A. (1994): “Alternative Approximations to the Distributions of Instru-
mental Variable Estimators,” Econometrica, 62, 657-681.

Bound, J. D. A. Jaeger, and R. M. Baker (1995): “Problems with Instrumental
Variables Estimation When the Correlation Between the Instruments and the
Endogenous Explanatory Variable Is Weak,” Journal of the American Statistical
Association, 90, 443-450.

Brown, B. M. (1971): “Martingale Central Limit Theorems,” Annals of Mathemat-
ical Statistics, 42, 59-66.

53



Caner, M. (2003): “Exponential Tilting with Weak Instruments: Estimation and
Testing,” working paper, Department of Economics, University of Pittsburgh.

Chamberlain, G. (2003): “Instrumental Variables, Invariance, and Minimax,” un-
published manuscript, Department of Economics, Harvard University.

Chamberlain, G. and G. Imbens (2004): “Random Effects Estimators with Many
Instrumental Variables, Econometrica, 72, 295-306.

Chao, J. C. and P. C. B. Phillips (1998): “Posterior Distributions in Limited In-
formation Analysis of the Simultaneous Equations Model Using the Jeffreys
Prior,” Journal of Econometrics, 87, 49-86.

––– (2002): “Jeffreys Prior Analysis of the Simultaneous Equations Model in the
Case with n+1 Endogenous Variables,” Journal of Econometrics, 111, 251-283.

Chao, J. C. and N. R. Swanson (2003): “Alternative Approximations of the Bias and
MSE of the IV Estimator under Weak Identification with an Application to Bias
Correction,” Cowles Foundation Discussion Paper No. 1418, Yale University.

––– (2005): “Consistent Estimation with a Large Number of Weak Instruments,”
Econometrica, 73, forthcoming.

Chioda, L. and M. Jansson (2004): “Optimal Inference for Instrumental Variables
Regression,” working paper, Department of Economics, University of California,
Berkeley.

Choi, I. and P. C. B. Phillips (1992): “Asymptotic and Finite Sample Distribution
Theory for IV Estimators and Tests in Partially Identified Structural Equa-
tions,” Journal of Econometrics, 51, 113-150.

Chow Y.-C. and H. Teicher (1978): Probability Theory. New York: Springer.

Donald, S. G. and W. K. Newey (2001): “Choosing the Number of Instruments,”
Econometrica, 69, 1161-1191.

Dufour, J.-M. (1997): “Impossibility Theorems in Econometrics with Applications
to Structural and Dynamic Models,” Econometrica, 65, 1365-1387.

Dufour, J.-M. (2003): “Identification, Weak Instruments, and Statistical Inference
in Econometrics,” Canadian Journal of Economics, 36, 767-808.

Dufour, J.-M. and J. Jasiak (2001): “Finite Sample Limited Information Inference
Methods for Structural Equations and Models with Generated Regressors,”
International Economic Review, 42, 815-843.

Dufour, J.-M. and M. Taamouti (2005): “Projection-Based Statistical Inference in
Linear Structural Models with Possibly Weak Instruments,” Econometrica, 73,
forthcoming.

54



Fuller, W. A. (1977): “Some Properties of a Modification of the Limited Information
Estimator,” Econometrica, 45, 939-954.

Gao, C. and K. Lahiri (1999): “A Comparison of Some Recent Bayesian and Clas-
sical Procedures for Simulaneous Equation Models with Weak Instruments,”
working paper, Department of Economics, SUNY Albany.

Gleser, L. J. and J. T. Hwang (1987): “The Nonexistence of 100(1-α)% Confidence
Sets of Finite Expected Diameter in Errors-in-Variables and Related Models,”
Annals of Statistics, 15, 1351-1362.

Godfrey, L. (1999): “Instrument Relevance in Multivariate Linear Models,” Review
of Economics and Statistics, 81, 550-552.

Guggenberger, P. and R. J. Smith (2005a): “Generalized Empirical Likelihood Esti-
mators and Tests under Partial, Weak and Strong Identification,” Econometric
Theory, 21, forthcoming.

––– (2005b): “Generalized Empirical Likelihood Tests in Time Series Mod-
els with Potential Identification Failure,” working paper, Department of Eco-
nomics, UCLA.

Hahn, J. (2002): “Optimal Inference with Many Instruments,” Econometric Theory,
18, 140-168.

Hahn, J. and J. Hausman (2002): “A New Specification Test for the Validity of
Instrumental Variables,” Econometrica, 70, 163-189.

––– (2003): “Weak Instruments: Diagnosis and Cures in Empirical Economics,”
American Economic Review, 93, 118-125.

Hahn, J., J. Hausman, and G. Kuersteiner (2004): “Estimation with Weak Instru-
ments: Accuracy of Higher-order Bias and MSE Approximations,” Economet-
rics Journal, 7, 272-306.

Hall, A. R., G. D. Rudebusch, and D. W. Wilcox (1996): “Judging Instrument Rel-
evance in Instrumental Variables Estimation,” International Economic Review,
37, 283-298.

Hall, P. (1984): “Central Limit Theorem for Integrated Square Error of Multivariate
Nonparametric Density Estimators,” Journal of Multivariate Analysis, 14, 1-16.

Hall, R. E. (1978): “Stochastic Implications of the Life Cycle-Permanent Income
Hypothesis: Theory and Evidence,” Journal of Political Economy, 86, 971-987.

Han, C. and P. C. B. Phillips (2002): “GMM with Many Moment Conditions,”
unpublished manuscript, Cowles Foundation, Yale University.

Hausman, J., J. H. Stock, and M. Yogo (2005): “Asymptotic Properties of the
Hahn-Hausman Test for Weak Instruments,” Economics Letters, forthcoming.

55



Kleibergen, F. (2002): “Pivotal Statistics for Testing Structural Parameters in In-
strumental Variables Regression,” Econometrica, 70, 1781-1803.

––– (2004): “Testing Subsets of Structural Parameters in the Instrumental Vari-
ables Regression Model,” Review of Economics and Statistics, 86, 418-423.

Kleibergen, F. (2005a): “Generalizing Weak Instrument Robust IV Statistics To-
wards Multiple Parameters, Unrestricted Covariance Matrices and Identifica-
tion Statistics,” working paper, Departent of Economics, Brown University.

––– (2005b): “Testing Parameters in GMM without Assuming That They Are
Identified,” Econometrica, 73, forthcoming.

Kleibergen, F. and H. K. van Dijk (1998): “Bayesian Simultaneous Equation Analy-
sis Using Reduced Rank Structures,” Econometric Theory, 14, 701-743.

Kleibergen, F. and E. Zivot (2003): “Bayesian and Classical Approaches to Instru-
mental Variable Regression,” Journal of Econometrics, 114, 29-72.

Kunitomo, N. (1980): “Asymptotic Expansions of the Distribution of Estimators in
a Linear Functional Relationship and Simultaneous Equations,” Journal of the
American Statistical Association, 75, 693-700.

Lehmann, E. L. (1986): Testing Statistical Hypotheses. New York: Wiley.

Maddala, G. S. and J. Jeong (1992): “On the Exact Small Sample Distribution of
the Instrumental Variable Estimator,” Econometrica, 60, 181-183.

Mavroeidis, S. (2004): “Weak Identification of Forward-looking Models in Monetary
Models,” Oxford Bulletin of Economics and Statistics, 66, Supplement, 609-635.

Moreira, M. J. (2001): “Tests with Correct Size When Instruments Can Be Ar-
bitrarily Weak,” unpublished manuscript, Dept. of Economics, University of
California, Berkeley.

––– (2003): “A Conditional Likelihood Ratio Test for Structural Models,” Econo-
metrica, 71, 1027-1048.

––– (2005): “Towards a General Theory of Hypothesis Testing for Structural
Models, unpublished manuscript, Department of Economics, Harvard Univer-
sity.

Moreira, M. J., J. R. Porter, and G. Suarez (2004): “Bootstrap and Higher-Order
Expansion Validity When Instruments May Be Weak,” working paper, Depart-
ment of Economics, Harvard University.

Morimune, K. (1983): “Approximate Distributions of the k-class Estimators when
the Degree of Overidentifiability Is Large Compared with the Sample Size,”
Econometrica, 51,821-841.

56



Nagar, A. L. (1959): “The Bias and Moment Matrix of the General k-class Estima-
tors of the Parameters in Simultaneous Equations,” Econometrica, 27, 575-595.

Nason J. M. and G. W. Smith (2005): “Identifying the New Keynesian Phillips
Curve,” Working Paper 2005-1, Federal Reserve Bank of Atlanta.

Neeley, C. J., A. Roy, and C. H. Whiteman (2001): “Risk Aversion Versus Intertem-
poral Substitution: A Case Study of Identification Failure in the Intertemporal
Consumption Capital Asset Pricing Model,” Journal of Business and Economic
Statistics, 19, 395-403.

Nelson, C. R. and R. Startz (1990a): “Some Further Results on the Exact Small
Sample Properties of the Instrumental Variables Estimator,” Econometrica, 58,
967-976.

––– (1990b): “The Distribution of the Instrumental Variables Estimator and Its
t-Ratio When the Instrument Is a Poor One,” Journal of Business, 63, S125-
S140.

Newey, W. K. (2004a): “Many Instrument Asymptotics,” unpublished manuscript,
Department of Economics, M.I.T.

––– (2004b): “Many Weak Moment Asymptotics for the Continuously Updated
GMM Estimator,” unpublished manuscript, Department of Economics, M.I.T.

Otsu, T. (2005): “Generalized Empirical Likelihood under Weak Identification,”
Econometric Theory, 21, forthcoming.

Phillips, P. C. B. (1984): “Approximating the Distributions of Econometric Estima-
tors and Test Statistics,” in Handbook of Econometrics, Vol. 2. Amsterdam:
North Holland.

––– (1989): “Partially Identified Econometric Models,” Econometric Theory, 5,
181-240.

Rothenberg, T. J. (1984): “Approximating the Distributions of Econometric Esti-
mators and Test Statistics,” in Handbook of Econometrics, Vol. 2. Amsterdam:
North Holland.

Shea, J. (1997): “Instrument Relevance in Multivariate Linear Models: A Simple
Measure,” Review of Economics and Statistics, 79, 348-352.

Staiger, D. and J. H. Stock (1997): “Instrumental Variables Regression with Weak
Instruments,” Econometrica, 65, 557-586.

Stock, J. H. and J. H. Wright (2000): “GMM with Weak Instruments,” Economet-
rica, 68, 1055-1096.

57



Stock, J. H. and M. Yogo (2005a): “Asymptotic Distributions of Instrumental Vari-
ables Statistics with Many Instruments,” in Identification and Inference for
Econometric Models: A Festschrift in Honor of Thomas J. Rothenberg, ed. by
D. W. K. Andrews and J. H. Stock. Cambridge, UK: Cambridge University
Press, forthcoming.

––– (2005b): “Testing for Weak Instruments in Linear IV Regression,” in Iden-
tification and Inference for Econometric Models: A Festschrift in Honor of
Thomas J. Rothenberg, ed. by D. W. K. Andrews and J. H. Stock. Cambridge,
UK: Cambridge University Press, forthcoming.

Stock, J. H., J. H. Wright, and M. Yogo (2002): “A Survey of Weak Instruments and
Weak Identification in Generalized Method of Moments,” Journal of Business
and Economic Statistics, 20, 518-529.

Wang, J. and E. Zivot (1998): “Inference on Structural Parameters in Instrumental
Variables Regression with Weak Instruments,” Econometrica, 66, 1389-1404.

Yogo, M. (2004): “Estimating the Elasticity of Intertemporal Substitution When
Instruments Are Weak,” Review of Economic Studies, 86, 797-810.

Zellner, A. (1998): “The Finite Sample Properties of Simultaneous Equations’ Es-
timates and Estimators: Bayesian and Non-Bayesian Approaches,” Journal of
Econometrics, 83, 185-212.

Zivot, E., R. Startz, and C. R. Nelson (1998): “Valid Confidence Intervals and In-
ference in the Presence of Weak Instruments,” International Economic Review,
39, 1119-1144.

58




