
TECHNICAL WORKING PAPER SERIES

AVOIDING THE CURSE OF DIMENSIONALITY
IN DYNAMIC STOCHASTIC GAMES

Ulrich Doraszelski
Kenneth L. Judd

Technical Working Paper 304
http://www.nber.org/papers/T0304

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
November 2004

The views expressed in this paper are those of the author(s) and not necessarily those of the National Bureau
of Economic Research.

© 2005 by Ulrich Doraszelski and Kenneth L. Judd. All rights reserved. Short sections of text, not to exceed two
paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to
the source.

Avoiding the Curse of Dimensionality in Dynamic Stochastic Games
Ulrich Doraszelski and Kenneth L. Judd
NBER Technical Working Paper No. 304
January 2005
JEL No. C63

ABSTRACT

Continuous-time stochastic games with a finite number of states have substantial computational and

conceptual advantages over the more common discrete-time model. In particular, continuous time

avoids a curse of dimensionality and speeds up computations by orders of magnitude in games with

more than a few state variables. The continuous-time approach opens the way to analyze more

complex and realistic stochastic games than is feasible in discrete-time models.

Ulrich Doraszelski

Department of Economics

Harvard University

Cambridge, MA 02138

doraszelski@harvard.edu

Kenneth L. Judd

Hoover Institution

Stanford, CA 94305-6010

and NBER

judd@hoover.stanford.edu

1 Introduction∗

The usefulness of discrete-time stochastic games with a finite number of states is

limited by their computational burden; in particular, there is a “curse of dimension-

ality” since the cost of computing players’ expectations over all possible future states

increases exponentially in the number of state variables. We examine the alternative

of continuous-time games with a finite number of states and show that they avoid the

curse of dimensionality. Hence, continuous-time games with more than a few state

variables are orders of magnitude faster to solve than their discrete-time counterparts.

In addition, we argue that continuous-time formulations of games are as natural, if

not more natural, than discrete-time specifications. Overall, continuous time offers a

computationally and conceptually promising approach to modeling dynamic strategic

interactions.

Discrete-time stochastic games with a finite number of states have a long tradition

in economics. Dating back to Shapley (1953), they have become central to the analy-

sis of strategic interactions among forward-looking players in dynamic environments.

A well-known example is the Ericson & Pakes (1995) (hereafter, EP) model of dy-

namic competition in an oligopolistic industry with investment, entry, and exit, which

has triggered a large and active literature in industrial organization (see Pakes (2000)

for a survey) and, most recently, has been used also in other fields such as interna-

tional trade (Erdem & Tybout 2003) and finance (Goettler, Parlour & Rajan 2004).

Since models like these are generally too complex to be solved analytically, Pakes

& McGuire (1994) (hereafter, PM1) present an algorithm to solve numerically for a

Markov perfect equilibrium.

Unfortunately, the range of applications of discrete-time, finite-state stochastic

games is limited by their high computational cost. As Pakes & McGuire (2001)

(hereafter, PM2) point out, computing players’ expectations over all possible future

states of the game is subject to a curse of dimensionality in that the computational

burden is increasing exponentially in the number of state variables, i.e., the dimen-

sion of the state vector. Suppose that a player can move to one of K states from one

period to the next. Given that there are K possibilities for each of N players, there

are KN possibilities for the future state of the game, and computing the expectation

over all these successor states therefore involves summing over KN terms. Because

of this exponential increase of the computational burden, applications of discrete-

∗We thank Ken Arrow, Lanier Benkard, Michaela Draganska, Sarit Markovich, Ariel Pakes, Katja
Seim, Gabriel Weintraub, and the participants of SITE 2004 for their comments and suggestions.

1

time games are constrained to a handful of players. The computational burden also

restricts heterogeneity among players. For example, a typical application of EP’s

framework may allow the competing firms to differ from each other in terms of either

their production capacity or their product quality, but not both. In short, the com-

putational constraints are often binding in important problems and, as Pakes (2000)

contends, this causes modeling choices to “become dominated by their computational

(rather than their substantive) implications” (p. 38).

In this paper we develop the alternative of continuous-time stochastic games with

a finite number of states and propose suitable algorithms.1 To the extent that

continuous-time, finite-state Markov processes are less familiar than their discrete-

time counterparts, continuous-time games may be slightly more cumbersome to for-

mulate. However, they have substantial advantages. First, continuous time avoids

the curse of dimensionality in computing expectations. In contrast to a discrete-time

game, the possibility of two or more players’ states changing simultaneously disap-

pears in a continuous-time game under standard assumptions on the transition laws.

This is not a restriction on the behavior of players; rather it reflects the fact that

changes happen one by one as time passes. The absence of simultaneous changes im-

plies that the expectation over successor states in the discrete-time game is replaced

by a much smaller sum in the continuous-time game and results in a simpler, and

computationally much more tractable, model: while computing the expectation over

successor states in the discrete-time game involves summing over KN terms, it merely

requires adding up (K−1)N terms in the continuous-time game. This eliminates the

curse of dimensionality and accelerates the computations by orders of magnitude for

games with more than a few state variables. For example, the discrete-time algorithm

uses over 84 hours per iteration in a model with N = 14 state variables and K = 3

possible transitions per state variable while our continuous-time algorithm uses 4.27

seconds per iteration, over 70, 000 times faster.

Second, prior to adding them up, both the continuous- and the discrete-time

algorithms need to look up in computer memory each of the terms that enter in

the expectation over successor states. This requires the algorithms to compute the

addresses of the successor states in computer memory and imposes a further cost.

One way to speed up the computations is to compute these addresses once and then

store them for future reference. Precomputed addresses decrease running times but

1Our approach differs from continuous-time games with a continuum of states which date back
to Isaacs (1954) (zero-sum games) and Starr & Ho (1969) (nonzero-sum games); see Basar & Olsder
(1999) for a standard presentation of differential games and Dockner, Jorgensen, Van Long & Sorger
(2000) for a survey of applications.

2

increase memory requirements. Therefore, this computational strategy is infeasible in

all but the smallest discrete-time games since the number of successor states, KN , is

quite large, but it is feasible in continuous-time games since the number of successor

states, (K − 1) N , is much smaller. Precomputed addresses give a further advantage

to continuous time: with precomputed addresses the continuous-time algorithm uses

2.93 seconds per iteration in the above example with N = 14 state variables compared

to 4.27 seconds without precomputed addresses. Combining these gains, continuous

time is over 100, 000 times faster than discrete time.

In sum, each iteration of the continuous-time algorithm is far faster than its

discrete-time equivalent. Partly offsetting this is the fact that for comparable games

the continuous-time algorithm needs more iterations to converge to the equilibrium.

However, the loss in the number of iterations is small when compared to the gains

from avoiding the curse of dimensionality and precomputed addresses. In the above

example with N = 14 state variables, continuous time beats discrete time by a factor

of almost 30, 000. To put this number in perspective, while it takes about 20 minutes

to compute the equilibrium of the continuous-time game, it would take over a year

to do the same in discrete time!

The curse of dimensionality in integration is recognized as an important problem

in numerical analysis in general (see, e.g., Davis & Rabinowitz (1984) on integration).

To alleviate its impact on computing equilibria of discrete-time, finite-state stochastic

games, PM2 develop a stochastic approximation algorithm. Their idea is to create

approximations to players’ expectations over all possible future states and update

them each time a state is visited by a random draw from the set of successor states.

Similar to Monte Carlo integration, many visits to a state are required to reduce

the approximation error to an acceptable level and obtain useful estimates of these

expectations.

In addition to breaking the curse of dimensionality in computing expectations

over successor states, PM2 address another issue in computing equilibria of dynamic

stochastic games, namely the large size of the state space. If the states of the game

are given by the Cartesian product of the states of the players, then the number of

states suffers from yet another curse of dimensionality. However, many games, in

particular all applications of EP’s framework, make additional assumptions on the

model’s primitives (i.e., payoff functions and transition laws) and restrict attention to

symmetric and anonymous equilibria. The number of states that have to be examined

to compute a symmetric and anonymous equilibrium grows polynomially instead of

exponentially in the number of state variables (see Section 3.4 for details). Even

3

though there is no curse of dimensionality in the formal sense, the polynomial growth

is arguably a challenge. The PM2 algorithm addresses it by tracking the states that

appear to be visited frequently in equilibrium, i.e., are in the ergodic set, and ignoring

the rest.

In this paper we compute players’ values (i.e., payoffs) and policies (i.e., strategies)

at all states, making no attempt to address the large size of the state space. We do this

for a variety of reasons. First, many applications require knowledge of the equilibrium

on states outside the ergodic set. For example, in any model of a young and growing

industry, it is unlikely that the initial state and the transition path are in the ergodic

set. Similarly, if the goal is to study the effect of a change in antitrust policy, then

the initial state generated by the old regime may not be in the ergodic set induced

by the equilibrium under the new regime, so that the transition from the old to the

new regime cannot be accurately captured unless the equilibrium is computed on the

transient states. In practice, this can be done via multiple restarts of the algorithm,

but at additional cost. Second, as PM2 acknowledge, their algorithm needs to be

significantly altered in order to solve models in which behavior depends on players’

values and policies “off the equilibrium path,” as is typically the case in models of

collusion, since off-path states are by definition never visited in equilibrium (PM2,

p. 1278). Third, the ergodic set is large in many dynamic stochastic games, so that

there is little gain from focusing on the ergodic set. For example, in Doraszelski

& Markovich (2004) the ergodic set consists of the entire state space. Fourth, the

number of states is independent of the concept of time. In order to contrast the

discrete- and continuous-time approaches to stochastic games, we attend to issues

such as those related to computing the expectation over successor states that are

specific to the concept of time. We note, however, that our continuous-time algorithm

can be extended to focus on the ergodic set and that this may result in improvements

similar to those reported in PM2 in some applications.

Since PM2 exploit other ideas besides stochastic approximation whereas we re-

strict attention to the problem of computing the expectation over successor states, it

is difficult to compare their algorithm with our continuous-time approach. However,

to give the reader some basis for comparison, we note that PM2 report that their

algorithm cuts running time roughly in half (relative to PM1) in a model with 6 state

variables where the ergodic set comprises about 3.3% of all states. They also project

that it reduces running time by a factor of 250 in a model with 10 state variables

and an ergodic set containing 0.4% of all states. In contrast, our continuous-time

approach avoids approximations altogether, computes the equilibrium on the entire

4

state space, and still reduces running time by a factor of 12 and 524, respectively, in

similar models with 6 and 10 state variables.

Besides their computational advantages, continuous-time games have a number

of features that may be useful in modeling dynamic strategic interactions. First,

continuous time gives the researcher more freedom to choose functional forms that

are not only tractable but also easy to interpret. For example, one can more easily

specify proportional depreciation in continuous-time models. Second, in continuous-

time models there is no limit to the number of changes in the state of the game that

can occur in any finite interval of time. This makes it easier to interpret data that does

not arrive at fixed points in time. In general, the frequency of changes in the state

of the game is governed by players’ actions in equilibrium and not predetermined by

the unit of time as in discrete-time models. Third, in continuous-time models players

are able to react swiftly to changes in the strategic situation. To the extent that the

state space is fairly coarse in many applications, changes typically have a significant

impact on the environment and a swift reaction may thus be deemed more realistic

than the delayed response of discrete-time models.

From the standpoint of theory a continuous-time model is similar to a discrete-time

model with short periods. Indeed, as the length of a period goes to zero, the differences

between continuous- and discrete-time models disappear. Practical considerations,

however, prohibit short periods in discrete-time models. In a discrete-time model the

period length is implicitly determined by the discount rate, and the lower the discount

rate, the slower is the convergence of the discrete-time algorithm (see Section 5.2 for

details). In a continuous-time model, on the other hand, the length of a period is

essentially zero, but we show that this does not pose a problem for the continuous-

time algorithm. Moreover, it is precisely in the limit that the curse of dimensionality

disappears and we obtain a dramatic reduction in the computational burden. Thus,

from the standpoint of computation, continuous-time models are often superior to

discrete-time models.

Overall, the computational and conceptual advantages of continuous-time games

are substantial and open the way to study more complex and realistic stochastic

games than currently feasible. In addition, the much smaller computational burden

of continuous-time games has at least two other benefits. First, the quite large com-

putational burden of discrete-time games often limits the researcher to computing the

equilibrium for just a few sets or, in the extreme, for just one set of parameter values

(e.g., Fershtman & Pakes 2000). While one parameterization is sufficient to demon-

strate that something can happen in equilibrium, one parameterization is insufficient

5

to delineate the conditions under which it does. Neither does one parameterization

suffice to explore the comparative statics/dynamics properties of the equilibrium.

Gaining a more thorough understanding of strategic behavior in dynamic settings

therefore requires the ability to compute equilibria quickly for many different param-

eterizations. Second, our continuous-time approach may be useful in empirical work

on stochastic games since many standard estimation procedures require computing

the equilibrium hundreds or even thousands of times.2 But even if the goal is simply

to conduct policy experiments based on estimated parameters, the ability to compute

equilibria quickly is key to establishing the robustness of the conclusions.

The remainder of the paper is organized as follows. Section 2 describes the basic

elements of discrete- and continuous-time stochastic games with a finite number of

states. Section 3 presents the computational strategies for both models and shows

that continuous time avoids the curse of dimensionality inherent in discrete-time

models. Section 4 formulates discrete- and continuous-time versions of the quality

ladder model used in PM1. Section 5 compares the performance of the discrete- and

continuous-time algorithms and Section 6 argues that continuous-time models have

a number of conceptual advantages in addition to their computational advantages.

Section 7 concludes.

2 Models

In this section we describe the discrete- and continuous-time approaches to finite-state

stochastic games.

2.1 Discrete-Time Model

A discrete-time stochastic game with a finite number of states is often just called

a “stochastic game” (Filar & Vrieze 1997, Basar & Olsder 1999). The EP model

of industry dynamics is an example of this type of game. Time is discrete and the

horizon is infinite. We let Ω denote the finite set of possible states; the state of

the game in period t is ωt ∈ Ω. We assume that there are N players. Player i’s

action (also called his control or policy) in period t is xi
t ∈ X

i (ωt), where X
i (ωt) is

the set of feasible actions for player i in state ωt. We make no specific assumptions

about X
i (ωt), which may be one- or multidimensional, discrete or continuous. The

2Recently two-step estimation procedures have been proposed (Aguirregabiria & Mira 2002, Ba-
jari, Benkard & Levin 2004, Pakes, Ostrovsky & Berry 2004, Pesendorfer & Schmidt-Dengler 2003)
that avoid computing the equilibrium but entail a loss of efficiency.

6

collection of players’ actions in period t is xt =
(
x1

t , . . . , x
N
t

)
. We follow the usual

convention of letting x−i
t denote

(
x1

t , . . . , x
i−1
t , xi+1

t , . . . , xN
t

)
.

The state follows a controlled discrete-time, finite-state, first-order Markov pro-

cess. Specifically, if the state in period t is ωt and the players choose actions xt, then

the probability that the state in period t + 1 is ω′ is Pr (ω′|ωt, xt). In applications

such as EP, ωt is a vector partitioned into (ω1
t , . . . , ω

N
t), where ωi

t denotes the (one

or more) coordinates of the state that describe player i (e.g., the player’s production

capacity and/or product quality). We refer to ωi
t as the state of player i and to ωt as

the state of the game. Many applications assume that transitions in player i’s state

are controlled by player i’s actions and are independent of the actions of other players

and transitions in their states. In this case the law of motion can be written as

Pr (ω′|ωt, xt) =
N∏

i=1

Pri
(
(ω′)i |ωi

t, x
i
t

)
,

where Pri
(
(ω′)i |ωi

t, x
i
t

)
is the transition probability for player i’s state. Our example

in Section 4 assumes independent transitions since this allows us to cleanly illustrate

the computational advantages of continuous time but, as we point out in Section 3.3,

our insights are not limited to this special case.

We decompose payoffs into two components. First, in period t player i receives

a payoff equal to πi(xt, ωt) when players’ actions are xt and the state is ωt. For

example, if ωt is a list of firms’ capacities and xt lists their output and investment

decisions, then πi(xt, ωt) represents firm i’s profit from product market competition

net of investment expenses. Second, at the end of period t player i receives a payoff if

there is a change in the state. Specifically, Φi (xt, ωt, ωt+1) is the change in the wealth

of player i at the end of period t if the state moves from ωt to ωt+1 �= ωt (think of the

transition as occurring at the end of the period) and players’ actions were xt.
3 For

example, if a firm searches for a buyer of a piece of equipment it wants to sell and

sets a reservation price, both the search effort and the reservation price are coded in

xi
t. If the firm succeeds in finding an acceptable buyer, the state changes and the firm

receives a payment equal to Φi(xt, ωt, ωt+1). In general, Φi (xt, ωt, ωt+1) depends on

the nature of the transition (e.g., selling some or all equipment) and may be affected

by the search effort of the firm prior to the sale as well as its reservation price. While

πi(xt, ωt) is paid out at the beginning of the period, we assume that Φi(xt, ωt, ωt+1)

accrues at the end. This representation of payoffs allows us to capture many features

3We set Φi(xt, ωt, ωt) = 0 without loss of generality.

7

of models of industry dynamics, including entry and exit.

Players discount future payoffs using a discount factor β ∈ [0, 1). The objective

of player i is to maximize the expected net present value of its future cash flows

E

{ ∞∑
t=0

βt
(
πi (xt, ωt) + βΦi (xt, ωt, ωt+1)

)}
,

where Φi(xt, ωt, ωt+1) is discounted (relative to πi(xt, ωt)) due to our assumption that

it accrues at the end of the period after a change in the state has occurred.4

As is done in many applications of dynamic stochastic games, we focus on Markov

perfect (a.k.a., feedback) equilibria. Hence, player i’s strategy maps the set of possible

states Ω into his set of feasible actions X
i(ωt). Let V i(ω) denote the expected net

present value of future cash flows to player i if the current state is ω. Suppose that

the other players use strategies X−i (ω). Then the Bellman equation for player i is

V i (ω) = max
xi

πi
(
xi, X−i (ω) , ω

)
+βEω′

{
Φi

(
xi, X−i (ω) , ω, ω′) + V i (ω′) |ω, xi, X−i (ω)

}
.

(1)

The Bellman equation adds the current cash flow of player i, πi(xi, X−i (ω) , ω), to

the appropriately discounted expected future cash flow,

Eω′
{
Φi(xi, X−i (ω) , ω, ω′) + V i (ω′) |ω, xi, X−i (ω)

}
,

where the expectation is taken over the successor states ω′. Player i’s strategy is

given by

X i (ω) = arg max
xi

πi
(
xi, X−i (ω) , ω

)
+βEω′

{
Φi

(
xi, X−i (ω) , ω, ω′) + V i (ω′) |ω, xi, X−i (ω)

}
.

(2)

Each player has his own version of equations (1) and (2). The system of equations

defined by the collection of (1) and (2) for each player i = 1, . . . , N and each state

ω ∈ Ω defines a Markov perfect equilibrium.5

4Discounting Φi(·) is without loss of generality because it can always be replaced by Φ̃i(·) =
βΦi(·), the net present value of Φi(·) at the beginning of the period.

5Similar to PM1 and PM2, we restrict attention to pure-strategy equilibria. Doraszelski &
Satterthwaite (2003) establish the existence of such equilibria in EP’s framework.

8

2.2 Continuous-Time Model

We next describe the continuous-time stochastic game with a finite number of states.

As with the discrete-time model, the horizon is infinite, the state of the game at

time t is ωt ∈ Ω, there are N players, and player i’s action at time t is denoted

by xi
t ∈ X

i (ωt). The key difference is that the state in the continuous-time model

follows a controlled continuous-time, finite-state Markov process. In discrete time the

time path of the state is a sequence, but in continuous time the path is a piecewise-

constant, right-continuous function of time. Jumps occur at random times according

to a controlled nonhomogenous Poisson process. At time t the hazard rate of a

jump occurring is φ(xt, ωt). If a jump occurs at time t, then the probability that

the state moves to ω′ is f (ω′|ωt− , xt−), where ωt− = lims→t− ωs is the state just

before the jump and xt− = lims→t− xs are players’ actions just before the jump. That

is, f (ω′|ωt− , xt−) characterizes the transitions of the embedded first-order Markov

process. Since a jump from a state to itself does not change the game, we simply

ignore it and instead adjust, without loss of generality, the hazard rate of a jump

occurring so that f (ωt−|ωt− , xt−) = 0.

This decomposition of jumps into a hazard rate and a transition probability is

a convenient representation of the controlled continuous-time, finite-state Markov

process. Over a short interval of time of length ∆ > 0 the law of motion is

Pr (ωt+∆ �= ωt|ωt, xt) = φ (xt, ωt) ∆ + O
(
∆2

)
,

Pr (ωt+∆ = ω′|ωt, xt, ωt+∆ �= ωt) = f (ω′|ωt, xt) + O (∆) .

In the special case of independent transitions, player i’s state evolves according to

Pri
(
ωi

t+∆ �= ωi
t|ωi

t, x
i
t

)
= φi

(
xi

t, ω
i
t

)
∆ + O

(
∆2

)
,

Pri
(
ωi

t+∆ = (ω′)i |ωi
t, x

i
t, ω

i
t+∆ �= ωi

t

)
= f i

(
(ω′)i |ωi

t, x
i
t

)
+ O (∆) ,

and φ (xt, ωt) =
∑N

i=1 φi (xi
t, ω

i
t) is the hazard rate of a change in the state of the game.

This last equality reveals a critical fact about continuous-time Markov processes:

during a short interval of time, there will be (with probability infinitesimally close to

one) at most one jump. In the discrete-time model we must keep track of all possible

combinations of players’ transitions between time t and time t + 1. The possibility of

two or more players’ states changing simultaneously disappears in the continuous-time

model; this results in a simpler, and computationally much more tractable, model.

The remaining aspects of the continuous-time model are essentially the same as

9

in the discrete-time model. The payoff of player i consists of two components. First,

player i receives a payoff flow equal to πi (xt, ωt) when players’ actions are xt and

the state is ωt. Second, Φi(xt− , ωt− , ωt) is the instantaneous change in the wealth

of player i at time t if the state moves from ωt− to ωt �= ωt− and players’ actions

just before the jump were xt− . Similar to the discrete-time model, πi(xt, ωt) may

capture firm i’s profit from product market competition net of investment expenses

and Φi(xt− , ωt− , ωt) the scrap value that the firm receives upon exiting the industry

or the setup cost that it incurs upon entering the industry. Unlike the discrete-time

model, there is a clear-cut distinction between πi(xt, ωt) and Φi(xt− , ωt− , ωt) in the

continuous-time model: πi(xt, ωt) represents a flow of money, expressed in dollars

per unit of time, whereas Φi(xt− , ωt− , ωt) represents a change in the stock of wealth,

expressed in dollars. As in the discrete-time game, this representation of payoffs

can represent many dynamic phenomena; for example, the Appendix gives details on

modeling entry and exit in our continuous-time game.

Players discount future payoffs using a discount rate ρ > 0. The objective of

player i is to maximize the expected net present value of its future cash flows

E

{∫ ∞

0

e−ρtπi (xt, ωt) dt +
∞∑

m=1

e−ρTmΦi
(
xT−

m
, ωT−

m
, ωTm

)}
,

where Tm is the random time of the m’th jump in the state, xT−
m

are players’ actions

just before the m’th jump, ωT−
m

is the state just before the m’th jump, and ωTm is the

state just after the m’th jump.

The Bellman equation for player i is similar to the one in discrete time. To see

this note that over a short interval of time of length ∆ > 0 player i solves the dynamic

programming problem given by

V i (ω) = max
xi

πi
(
xi, X−i(ω), ω

)
∆

+ (1− ρ∆)

{ (
1− φ

(
xi, X−i (ω) , ω

)
∆−O

(
∆2

))
V i (ω)

+
(
φ

(
xi, X−i (ω) , ω

)
∆ + O

(
∆2

))
×

(
Eω′

{
Φi

(
xi, X−i (ω) , ω, ω′) + V i (ω′) |ω, xi, X−i (ω)

}
+ O (∆)

)}
,

10

which, as ∆→ 0, simplifies to the Bellman equation

ρV i (ω) = max
xi

πi
(
xi, X−i (ω) , ω

)− φ
(
xi, X−i (ω) , ω

)
V i (ω)

+φ
(
xi, X−i (ω) , ω

)
Eω′

{
Φi(xi, X−i (ω) , ω, ω′) + V i (ω′) |ω, xi, X−i (ω)

}
.

(3)

Hence, V i(ω) can be interpreted as the asset value to player i of participating in

the game. This asset is priced by requiring that the opportunity cost of holding it,

ρV i(ω), equals the current cash flow, πi(xi, X−i (ω) , ω), plus the expected capital

gain or loss conditional on a jump occurring,

Eω′
{
Φi(xi, X−i (ω) , ω, ω′) + V i (ω′) |ω, xi, X−i (ω)

}− V i(ω),

times the hazard rate of a jump occurring, φ(xi, X−i (ω) , ω).
In the special case of independent transitions, player i solves the problem

V i (ω) = max
xi

πi
(
xi,X−i (ω) , ω

)
∆

+ (1− ρ∆)

{ (
1− φ

(
xi,X−i (ω) , ω

)
∆−O

(
∆2

))
V i (ω)

+
(
φi

(
xi, ωi

)
∆ + O

(
∆2

))
×

(
E(ω′)i

{
Φi

(
xi,X−i (ω) , ω, (ω′)i

, ω−i
)

+ V i
(
(ω′)i

, ω−i
)
|ωi, xi

}
+ O (∆)

)
+

∑
j �=i

(
φj

(
Xj(ω), ωj

)
∆ + O

(
∆2

))

×
(
E(ω′)j

{
Φi

(
xi,X−i (ω) , ω, (ω′)j

, ω−j
)

+ V i
(
(ω′)j

, ω−j
)
|ωj ,Xj(ω)

}
+ O (∆)

)}
,

which, as ∆→ 0, simplifies to the Bellman equation

ρV i (ω) = max
xi

πi
(
xi,X−i(ω), ω

)− φ
(
xi,X−i (ω) , ω

)
V i (ω)

+φi
(
xi, ωi

)
E(ω′)i

{
Φi

(
xi,X−i (ω) , ω, (ω′)i

, ω−i
)

+ V i
(
(ω′)i

, ω−i
)
|ωi, xi

}
+

∑
j �=i

φj
(
Xj(ω), ωj

)
E(ω′)j

{
Φi

(
xi,X−i (ω) , ω, (ω′)j

, ω−j
)

+ V i
(
(ω′)j

, ω−j
)
|ωj ,Xj(ω))

}
.

(4)

Similar to the discrete-time model, player i’s strategy is found by carrying out the
maximization on the RHS of equation (3) or (4).

11

3 Computational Strategies

Next we present the computational strategies for the discrete- and continuous-time

models and show that continuous time avoids the curse of dimensionality inherent in

discrete-time models.

3.1 Discrete-Time Algorithm

The algorithm is iterative. First we order the states in Ω and make initial guesses

for the value V i(ω) and the policy X i(ω) of each player i = 1, . . . , N in each state

ω ∈ Ω. Then we update these guesses as we proceed through the state space in the

pre-specified order. Specifically, in state ω ∈ Ω, given old guesses V i(ω) and X i(ω)

we compute new guesses V̂ i(ω) and X̂ i(ω) for each player i = 1, . . . , N as follows:

X̂ i (ω) ← arg max
xi

πi
(
xi, X−i (ω) , ω

)
+βEω′

{
Φi

(
xi, X−i(ω), ω, ω′) + V i (ω′) |ω, xi, X−i (ω)

}
, (5)

V̂ i (ω) ← πi
(
X̂ i(ω), X−i (ω) , ω

)
+βEω′

{
Φi

(
X̂ i(ω), X−i(ω), ω, ω′

)
+ V i (ω′) |ω, X̂ i(ω), X−i (ω)

}
. (6)

Note that the old guesses for the policies of player i’s opponents, X−i(ω), and the old

guess for player i’s value, V i (ω), are used when computing the new guesses V̂ i (ω)

and X̂ i (ω). This procedure is, therefore, a Gauss-Jacobi scheme at each state ω ∈ Ω.

There are two ways to update V i(ω) and X i(ω). PM1 suggest a Gauss-Jacobi

scheme that computes V̂ i (ω) and X̂ i (ω) for all players i = 1, . . . , N and all states

ω ∈ Ω before replacing the old guesses with the new guesses, as in

X i (ω) ← X̂ i (ω) ,

V i (ω) ← V̂ i (ω) .

Their value function iteration approach is also called a pre-Gauss-Jacobi method in

the literature on nonlinear equations (see Judd (1998) for a more extensive discussion

of Gauss-Jacobi and Gauss-Seidel methods). In contrast to PM1, we employ the

block Gauss-Seidel scheme that is typically used for discrete-time stochastic games

with a finite number of states (e.g., Benkard 2004). In our block Gauss-Seidel scheme,

immediately after computing V̂ i (ω) and X̂ i (ω) for all players i = 1, . . . , N and a given

state ω ∈ Ω, we replace the old guesses with the new guesses for that state. This

12

has the advantage that “information” is used as soon as it becomes available. The

algorithm cycles through the state space until the changes in the value and policy

functions are deemed small.

3.2 Continuous-Time Algorithm

In its basic form our computational strategy adapts the block Gauss-Seidel scheme

to the continuous-time model. The sole change is that to update players’ values and

policies in state ω ∈ Ω, we replace equations (5) and (6) by

X̂ i (ω) ← arg max
xi

πi
(
xi, X−i (ω) , ω

)− φ
(
xi, X−i(ω), ω

)
V i

(
xi, X−i(ω), ω

)
+φ

(
xi, X−i(ω), ω

)
Eω′

{
Φi

(
xi, X−i(ω), ω, ω′) + V i (ω′) |ω, xi, X−i (ω)

}
,(7)

V̂ i (ω) ← 1

ρ + φ
(
X̂ i(ω), X−i(ω), ω

)πi
(
X̂ i(ω), X−i (ω) , ω

)

+
φ

(
X̂ i(ω), X−i(ω), ω

)
ρ + φ

(
X̂ i(ω), X−i(ω), ω

)
×Eω′

{
Φi

(
X̂ i(ω), X−i(ω), ω, ω′

)
+ V i (ω′) |ω, X̂ i(ω), X−i (ω)

}
. (8)

The remainder of the algorithm proceeds as before. Note that by dividing through by

ρ + φ(X̂ i(ω), X−i(ω), ω), we ensure that equation (8) is contractive for a given player

(holding fixed the policies of all players) since

φ(X̂ i(ω), X−i(ω), ω)

ρ + φ(X̂ i(ω), X−i(ω), ω)
< 1

as long as the hazard rate is bounded above. Note that the contraction factor varies

with players’ policies. In the discrete-time model, by contrast, the contraction factor

equals the discount factor β. Unfortunately, the system of equations that defines the

equilibrium is not contractive, and hence neither our continuous- nor our discrete-time

algorithm is guaranteed to converge.

3.3 Avoiding the Curse of Dimensionality

The key difficulty of the discrete-time model is computing the expectation over suc-

cessor states in equations (5) and (6). Dropping the distinction between old and new

13

guesses and setting Φi(X(ω), ω, ω′) = 0 to simplify the notation, this expectation is

Eω′
{
V i (ω′) |ω, X(ω)

}
=

∑
{ω′:Pr(ω′|ω,X(ω))>0}

V i (ω′) Pr (ω′|ω, X(ω)) , (9)

which involves summing over all states ω′ such that Pr (ω′|ω, X(ω)) > 0. A clean

case arises if transitions are independent across players and each transition is re-

stricted to going one level up, one level down, or staying the same, i.e., (ω′)i ∈
{ωi − 1, ωi, ωi + 1}. Then the expectation consists of 3N terms,

Eω′
{
V i (ω′) |ω, X(ω)

}
=

∑
{ω′:(ω′)i∈{ωi−1,ωi,ωi+1},i=1,...,N}

V i (ω′)
N∏

i=1

Pri
(
(ω′)i |ωi, X i(ω)

)
.

More generally, if each player can move to one of K states, then the expectation

involves summing over KN terms and grows exponentially in N .

The main advantage of the continuous-time model now becomes clear. If tran-

sitions are independent across players and each transition is limited to going one

level up or down, i.e., ωi
t+1 ∈ {ωi

t − 1, ωi
t + 1}, then the N -dimensional expectation

over successor states decomposes into N one-dimensional expectations, each of which

consists of 2 terms.6 In fact, we have

E(ω′)j

{
V i

(
(ω′)j

, ω−j
)
|ωj, Xj(ω)

}
=

∑
(ω′)j∈{ωj−1,ωj+1}

V i
(
(ω′)j

, ω−j
)

f j
(
(ω′)j |ωj, Xj(ω)

)
.

In the continuous-time model, we need to sum over a total of 2N terms compared

to 3N terms in the discrete-time model. More generally, if each player can move

to one of K states, then computing the expectation over successor states involves

summing over (K − 1)N terms in the continuous-time model but KN terms in the

discrete-time model. Since (K − 1)N grows linearly rather than exponentially with

N , computing the expectation over successor states is no longer subject to the curse

of dimensionality.

The curse of dimensionality becomes even more severe in applications where each

player is described by D > 1 coordinates of the state (e.g., Benkard 2004, Langohr

2003). In this case computing the expectation over successor states in the discrete-

time model involves summing over KND terms compared to (K − 1)ND terms in

the continuous-time model. What matters is the total number of coordinates of the

6Here we exploit the fact that, unlike in the discrete-time model, there is no need to explicitly
consider the possibility of remaining in the same state.

14

state vector. The curse of dimensionality is just as severe in a single-agent dynamic

programming problem with a ND-dimensional state vector as in a N -player discrete-

time stochastic game with a ND-dimensional state vector. Similarly, common states

that affect the current payoffs of all players are computationally more burdensome

in the discrete- than in the continuous-time model. Suppose, for example, that in

addition to players’ states that describe firm-specific production capacities there is a

common state such as industry demand (e.g., Besanko & Doraszelski 2004). If the

common state can move to L possible levels and each player can move to one of K

states, then the summation is over LKN terms in discrete time but L−1+(K−1)N

terms in continuous time.

In contrast to common states, common shocks that affect the states the players

can move to in a uniform fashion contribute equally to the number of summands in

both models. EP, for example, assume that firm i’s state evolves according to the law

of motion (ω′)i = ωi + τ i− η, where τ i ∈ {0, 1} is a binary random variable governed

by firm i’s investment decision and η ∈ {0, 1} is an industry-wide depreciation shock.

Hence, computing the expectation over successor states in the discrete-time model

involves summing over 2×2N terms compared to 2×2N terms in the continuous-time

model. Nevertheless, as long as the transition probabilities for the coordinates of the

state exhibit less than perfect correlation the continuous-time model has a significant

advantage over the discrete-time model.7

3.4 Precomputed Addresses, Symmetry, and Anonymity

The first advantage of continuous time is that it avoids the curse of dimensionality in

computing the expectation over successor states. We next describe a way to further

speed up this computation. To understand this suggestion we need to briefly discuss

the nuts-and-bolts of computer storage. Any algorithm must store the value and

policy functions in some table that we denote M. Each row of this table corresponds

to a state ω ∈ Ω and contains the vector
(
V 1(ω), . . . , V N(ω), X1(ω), . . . , XN(ω)

)
of values and policies for all players in that state. Consider the expectation over

successor states in the discrete-time model as given by equation (9). To compute this

sum, the algorithm must find the rows and columns with the relevant information in

7It is possible to specify models that are as demanding in continuous time than they are in
discrete time. Consider, for example, the law of motion that assigns equal probability to transitions
from any state ω ∈ Ω to any other state ω′ ∈ Ω, where ω′ �= ω: Pr (ω′|ω, x) = 1

|Ω|−1 in discrete time
translates into φ(x, ω) = 1 and f (ω′|ω, x) = 1

|Ω|−1 in continuous time, and the expectation over
successor states involves |Ω| − 1 terms in both cases. We are, however, not aware of an economic
problem that leads to such a specification.

15

table M, implying that the sum is really

∑
{ω′:Pr(ω′|ω,M[R(ω),(N+1,...,2N)])>0}

M [R (ω′) , C (ω′, i)] Pr (ω′|ω, M [R (ω) , (N + 1, . . . , 2N)]) ,

(10)

where C (ω′, i) is the column in row R (ω′) that contains the value for player i in

state ω′ and N + 1, . . . , 2N are the columns in row R(ω) that contain the policies

for players j = 1, . . . , N in state ω. In the continuous-time model the expression

for the expectation over successor states is analogous except that Pr(·) is replaced

by f(·). Equation (10) displays all the computations that must occur in evaluating

Eω′ {V i (ω′) |ω, X(ω)} and emphasizes that there are two kinds of costs involved. The

first is the summation over all states ω′ such that Pr(ω′|ω, X(ω)) > 0 and the second

is the computation of the address, R(ω′) and C(ω′, i), of the value of player i at each

of them. One way to reduce running times is to precompute these addresses and store

them along with the values and policies for state ω. More precisely, for each successor

state ω′ of state ω we append a vector (R(ω′), C(ω′, 1), . . . , C(ω′, N)) of precomputed

addresses to the vector
(
V 1(ω), . . . , V N(ω), X1(ω), . . . , XN(ω)

)
of values and policies.

Precomputed addresses decrease running times but increase memory requirements

since N+1 numbers need to be stored for each successor state. The practicality of this

computational strategy hinges on the number of successor states. As we have shown in

Section 3.3, this number is much smaller in the continuous- than in the discrete-time

model. For example, if transitions are independent across players and each transition

is restricted to going one level up, one level down, or staying the same, then there are

2N successor states in the continuous-time model but 3N in the discrete-time model.

Hence, this computational strategy is infeasible except in the smallest discrete-time

models. Precomputed addresses are therefore another advantage that is essentially

only available in continuous time.

The usefulness of precomputed addresses further depends on how hard it is to

evaluate R(ω) and C(ω, i). In some cases, this is quite easy and there is little to be

gained from this computational strategy. For example, suppose that the set of player

i’s possible states is {1, . . . , M}. In the absence of restrictions such as symmetry and

anonymity the state space is Ω = {1, . . . , M}N . Hence, ω is the base M representation

of

R (ω) = ω1 +
(
ω2 − 1

)
M +

(
ω3 − 1

)
M2 + . . . +

(
ωN − 1

)
MN−1

and C(ω, i) = i.

Evaluating R(ω) and C(ω, i), however, becomes much harder once symmetry and

16

anonymity are invoked, as is always done in applications of EP’s framework in order

to slow down the growth of the state space in N and M . Under suitable conditions

on the model’s primitives (i.e., payoff functions and transition laws), it is possible to

restrict attention to symmetric and anonymous equilibria. In a symmetric equilibria,

if V 1(ω) denotes player 1’s value in state ω =
(
ω1, ω2, . . . , ωN

)
, then player i’s value

is given by

V i(ω) = V 1(ωi, ω2, . . . , ωi−1, ω1, ωi+1, . . .)

and similarly for player i’s policy. Therefore, symmetry allows us to focus on the

problem of player 1. Furthermore, anonymity (also called exchangeability) says that

player 1 does not care about the identity of its competitors, only about the distribution

of their states. Hence, for all 2 ≤ j < k,

V 1(ω) = V 1(ω1, . . . , ωj−1, ωk, ωj+1, . . . , ωk−1, ωj, ωk+1, . . .)

and similarly for player i’s policy (see Doraszelski & Satterthwaite (2003) for a detailed

discussion of symmetry and anonymity).

In practice, symmetry and anonymity are imposed by limiting the computation of

players’ values and policies to states in the set Ω̄ = {(ω1, ω2, . . . , ωN) ∈ Ω : ω1 ≤ ω2 ≤ . . . ≤ ωN}.8
Whereas Ω grows exponentially in N , Ω̄ grows polynomially. More specifically, im-

posing symmetry and anonymity reduces the number of states to be examined from

|Ω| = MN to |Ω̄| = (N+M−1)!
N !(M−1)!

, but makes R(ω) and C(ω, i) much harder to compute.

Pakes, Gowrisankaran & McGuire (1993) and Gowrisankaran (1999) propose slightly

different methods for mapping the elements of Ω̄ into consecutive integers. These

methods form the basis for computing R(ω), but require that ω ∈ Ω̄. While this is

achieved by sorting the coordinates of the vector ω, sorting implies that C(ω, i) is

no longer always equal to i. Suppose that the state of the game is (1, 1, 3) and that

firm 1 moves to state 2. Hence, the state becomes (2, 1, 3) or, after sorting, (1, 2, 3)

so that C((2, 1, 3), 1) = 2, C((2, 1, 3), 2) = 1, and C((2, 1, 3), 3) = 3. Since evaluating

R(ω) and C(ω, i) is rather involved, there is a lot to be gained from precomputed

addresses, see Section 5.

8Some additional restrictions are needed to obtain a symmetric and anonymous equilibria. If
N = 2, for example, symmetry requires that V 1(1, 1) = V 2(1, 1).

17

4 Example: The Pakes & McGuire (1994) Quality

Ladder Model

We use the quality ladder model developed in PM1 to demonstrate the computational

advantages of continuous time in Section 5. Below we first describe their model and

then we reformulate it in continuous time. We want to focus on a simple example

that highlights the numerical issues. We also want to avoid existence problems that

may arise from the discrete nature of firms’ entry and exit decision (see Doraszelski

& Satterthwaite (2003) for details and a way to resolve these difficulties). Therefore,

we abstract from entry and exit, and set Φi(x, ω, ω′) = 0. This allows us to make

clean performance comparisons between the discrete- and continuous-time algorithms.

Since entry and exit are important features of the EP model of industry dynamics we

describe in the Appendix how to add them to the continuous-time model.

4.1 Discrete-Time Model

The quality ladder model assumes that there are N firms with vertically differentiated

products engaged in price competition. Firm i produces a product of quality ωi.

Quality is assumed to be discrete, i.e., ωi ∈ {1, . . . , M}, and evolves over time in

response to investment and depreciation. The state space is Ω = {1, . . . , M}N . We

first describe price competition and then turn to quality dynamics.

Demand Each consumer purchases at most one unit of one product. The utility

consumer k derives from purchasing product i is g(ωi)− pi + εik, where

g(ωi) =

{
3ωi − 4, ωi ≤ 5,

12 + ln (2− exp (16− 3ωi)) , ωi > 5

maps the quality of the product into the consumer’s valuation for it and εik repre-

sents taste differences among consumers. There is a no-purchase alternative, product

0, which has utility ε0k. We assume that the idiosyncratic shocks ε0k, ε1k, . . . , εNk

are independently and identically extreme value distributed across products and con-

sumers; therefore, the demand for firm i’s product is

qi(p1, . . . , pN ; ω) = m
exp (g(ωi)− pi)

1 +
∑N

j=1 exp (g(ωj)− pj)
,

where m > 0 is the size of the market (the measure of consumers).

18

Price competition In each period, firm i observes the quality of its and its rivals’

products and chooses the price pi of product i to maximize profits, thereby solving

max
pi≥0

qi(p1, . . . , pN ; ω)
(
pi − c

)
,

where c ≥ 0 is the marginal cost of production. The first-order condition of firm i is

0 =
∂

∂pi
qi(p1, . . . , pN ; ω)

(
pi − c

)
+ qi(p1, . . . , pN ; ω).

It can be shown that in a given state ω there exists a unique Nash equilibrium(
p1(ω), . . . , pN(ω)

)
of the product market game (see Caplin & Nalebuff 1991). The

Nash equilibrium is found easily by numerically solving the system of first-order

conditions.

Law of motion Firm i’s state ωi represents the quality of its product in the present

period. The quality of firm i’s product in the subsequent period is determined by

its investment xi ≥ 0 in quality improvements and by depreciation. The outcomes

of the investment and depreciation processes are assumed to be stochastic. If the

investment is successful, then the quality increases by one level. Expenditures in

investment enhance the probability of success; more specifically, the probability of

success is αxi

1+αxi , where α > 0 is a measure of the effectiveness of investment. If

the firm is hit by a depreciation shock, then the quality decreases by one level; this

happens with probability δ ∈ [0, 1]. Note that we differ from the original quality

ladder model of PM1 in that our depreciation shocks are independent across firms

whereas PM1 assume an industry-wide depreciation shock. We do this to focus on

the key issue related to the curse of dimensionality in discrete-time models.

Combining the investment and depreciation processes, if ωi ∈ {2, . . . , M − 1},
then the quality of firm i’s product changes according to the transition probability

Pri((ω′)i |ωi, xi) =

(1−δ)αxi

1+αxi , (ω′)i = ωi + 1,
1−δ+δαxi

1+αxi , (ω′)i = ωi,
δ

1+αxi , (ω′)i = ωi − 1.

Since firm i cannot move further down (up) from the lowest (highest) product quality,

19

we set

Pri((ω′)i |1, xi) =

{
(1−δ)αxi

1+αxi , (ω′)i = 2,
1+δαxi

1+αxi , (ω′)i = 1,

Pri((ω′)i |M, xi) =

{
1−δ+αxi

1+αxi , (ω′)i = M,
δ

1+αxi , (ω′)i = M − 1.

Payoff function The per-period payoff of firm i is derived from the Nash equilib-

rium of the product market game and given by

πi(x, ω) ≡ qi(p1(ω), . . . , pN(ω); ω)(pi(ω)− c)− xi,

where we have subtracted investment xi from the profit from price competition.

Parameterization We use the same parameter values as PM1. The size of the

market is m = 5, the marginal cost of production is c = 5, the effectiveness of

investment is α = 3, and the depreciation probability is δ = 0.7. We follow PM1 in

first assuming that the discount factor is β = 0.925, which corresponds to a yearly

interest rate of 8.1%, and that the number of quality levels per firm is M = 18, but

we also examine other values for β and M in Section 5.

4.2 Continuous-Time Model

In the interest of brevity, we start by noting that the details of price competition

remain unchanged. In the continuous-time model we can thus reinterpret πi(x, ω) as

the payoff flow of firm i.

Law of motion To make the continuous- and discrete-time models comparable, we

use the same law of motion as described for the discrete-time model. Therefore, the

hazard rate for the investment project of firm i being successful is given by αxi

1+αxi ,

the same choice as for the success probability in the discrete-time model. This is

appropriate since the expected time to the first success is 1+αxi

αxi in both models. Sim-

ilarly, the depreciation hazard in the continuous-time model equals the depreciation

probability, δ, in the discrete-time model.

Jumps in firm i’s state thus occur according to a Poisson process with hazard rate

φi(xi, ωi) =
αxi

1 + αxi
+ δ,

20

and when a jump occurs, firm i’s state changes according to the transition probability

f i((ω′)i |ωi, xi) =

{
αxi

(1+αxi)φi(xi,ωi)
, (ω′)i = ωi + 1,

δ
φi(xi,ωi)

, (ω′)i = ωi − 1

if ωi ∈ {2, . . . , M − 1}. Since firm i cannot move further down (up) from the lowest

(highest) product quality, we set

φi(xi, 1) =
αxi

1 + αxi
, f i(2|1, xi) = 1,

φi(xi, M) = δ, f i(M − 1|M, xi) = 1.

Parameterization Whenever possible we use the same parameter values in the

continuous- as in the discrete-time model. Moreover, we can easily match the discrete-

time discount factor β to the continuous-time discount rate ρ: if ∆ is the unit of time

in the discrete-time model, then β and ρ are related by β = e−ρ∆ or, equivalently, by

ρ = − ln β
∆

. We take ∆ = 1 to obtain ρ = − ln β.

5 Computational Advantages of Continuous Time

This section illustrates the computational advantages of continuous time using the

quality ladder model of Section 4 as an example. Even though this is one specific

example, it is useful for many purposes. First, the results related to the curse of

dimensionality are clearly robust since they simply involve floating point operations

related to computing the expectation over successor states. The burden of such

computations depends on neither functional forms nor parameter values. Also, as

we have pointed out in Section 3.3, what matters is the total number of coordinates

of the state vector. Hence, the N -firm quality ladder model should be viewed as

representative of dynamic stochastic games with N -dimensional state vectors. Second,

the results related to the rate of convergence may depend on functional forms and

parameter values but there is no reason to believe that our example is atypical.

Third, we use our example to illustrate a strategy for diagnosing convergence. Our

systematic approach to devising stopping rules contrasts with the commonly used

ad hoc approaches and is thus in itself a contribution to the economics literature on

numerically solving dynamic stochastic games.

21

5.1 Time per Iteration

Continuous time avoids the curse of dimensionality in the expectation over succes-

sor states. Since the algorithms for both discrete and continuous time perform this

computation once for each state and each firm in each iteration, we divide the time

it takes to complete one iteration by the number of states and the number of firms.

Tables 1 and 2 summarize the results for the three algorithms presented in Section 3

– the discrete-time algorithm, the continuous-time algorithm without precomputed

addresses, and the continuous-time algorithm with precomputed addresses.9 Table 1

assumes M = 18 quality levels per firm and up to N = 8 firms just as PM1 do; Table

2 reduces M to 9 in order to accommodate a larger number of firms. Both tables also

report the number of states after symmetry and anonymity are invoked, (N+M−1)!
N !(M−1)!

,

and the number of unknowns, which equals one value and one policy per state and

firm, along with the ratio of discrete to continuous time without precomputed ad-

dresses, the ratio of continuous time without to with precomputed addresses, and the

ratio of discrete time to continuous time with precomputed addresses.

Avoiding the curse of dimensionality in the expectation over successor states yields

a significant advantage only if this particular computation takes up a large fraction

of the running time. Tables 1 and 2 show that this is the case: the discrete-time

algorithm spends more than 50% of its time on it if N = 2, about 90% if N = 4,

and essentially 100% if N ≥ 6. Hence, computing the expectation over successor

states is indeed the bottleneck of the discrete-time algorithm. The continuous-time

algorithms, in contrast, spend between 33% and 72% of their time on it.

Even in its basic form the continuous-time algorithm is far faster than the discrete-

time algorithm. The gain from continuous time increases from 50% if N = 2 to a

factor of 200 if N = 8 in case of M = 18 (Table 1) and from 42% if N = 2 to

a factor of 70,947 if N = 14 in case of M = 9 (Table 2). In line with theory the

computational burden grows exponentially in N in discrete time but approximately

linearly in continuous time. Consequently, the gain from continuous time explodes in

the dimension of the state vector.

Precomputed addresses yield further gains: the continuous-time algorithm without

precomputed addresses takes about 20% to 50% more time per iteration than the

continuous-time algorithm with precomputed addresses. Compounding the gains from

continuous time and precomputed addresses yields a total gain over discrete time that

9The programs are written in ANSI C and compiled with Microsoft Visual C++ .NET 2003 (code
optimization enabled). All computations are carried out on an IBM ThinkPad T40 with a 1.6GHz
Intel Pentium M processor and 1.5GB memory running Microsoft Windows XP Professional.

22

ra
ti

o
d
is

cr
et

e
ti

m
e

co
n
ti

n
u
ou

s
ti

m
e

w
it

h
ou

t
p
re

co
m

p
u
te

d
ad

d
re

ss
es

co
n
ti

n
u
ou

s
ti

m
e

w
it

h
p
re

co
m

p
u
te

d
ad

d
re

ss
es

d
is

cr
et

e
to

co
n
-

ti
n
u
ou

s
ti

m
e

w
it

h
ou

t
p
re

co
m

-
p
u
te

d

co
n
ti

n
u
ou

s
ti

m
e

w
it

h
ou

t
to

w
it

h
p
re

co
m

-
p
u
te

d
ad

-

d
is

cr
et

e
to

co
n
-

ti
n
u
ou

s
ti

m
e

w
it

h
p
re

co
m

-
p
u
te

d
#

fi
rm

s
#

st
at

es
#

u
n
k
n
ow

n
s

se
cs

.
p
er

ct
.

se
cs

.
p
er

ct
.

se
cs

.
p
er

ct
.

ad
d
re

ss
es

d
re

ss
es

ad
d
re

ss
es

2
17

1
68

4
1.

07
(-

6)
55

%
7.

13
(-

7)
41

%
5.

85
(-

7)
36

%
1.

50
1.

22
1.

83
3

11
40

68
40

1.
61

(-
6)

76
%

6.
67

(-
7)

44
%

5.
26

(-
7)

38
%

2.
41

1.
27

3.
06

4
59

85
47

88
0

3.
30

(-
6)

87
%

6.
68

(-
7)

49
%

5.
10

(-
7)

41
%

4.
94

1.
31

6.
48

5
26

33
4

26
33

40
8.

05
(-

6)
98

%
7.

06
(-

7)
49

%
5.

24
(-

7)
43

%
11

.4
0

1.
35

15
.3

6
6

10
09

47
12

11
36

4
2.

15
(-

5)
97

%
7.

51
(-

7)
52

%
5.

37
(-

7)
46

%
28

.5
7

1.
40

40
.0

0
7

34
61

04
48

45
45

6
6.

19
(-

5)
10

0%
7.

74
(-

7)
56

%
5.

47
(-

7)
49

%
80

.0
0

1.
42

11
3.

21
8

10
81

57
5

17
30

52
00

1.
65

(-
4)

10
0%

8.
23

(-
7)

58
%

5.
92

(-
7)

56
%

20
0.

28
1.

39
27

8.
44

T
ab

le
1:

T
im

e
p
er

it
er

at
io

n
p
er

st
at

e
p
er

fi
rm

an
d

p
er

ce
n
ta

ge
of

ti
m

e
sp

en
t

on
co

m
p
u
ti

n
g

th
e

ex
p
ec

ta
ti

on
.

(k
)

is
sh

or
th

an
d

fo
r

×1
0k

.
Q

u
al

it
y

la
d
d
er

m
o
d
el

w
it

h
M

=
18

q
u
al

it
y

le
ve

ls
p
er

fi
rm

an
d

a
d
is

co
u
n
t

fa
ct

or
of

0.
92

5.

23

ra
ti

o
d
is

cr
et

e
ti

m
e

co
n
ti

n
u
ou

s
ti

m
e

w
it

h
ou

t
p
re

co
m

p
u
te

d
ad

d
re

ss
es

co
n
ti

n
u
ou

s
ti

m
e

w
it

h
p
re

co
m

p
u
te

d
ad

d
re

ss
es

d
is

cr
et

e
to

co
n
-

ti
n
u
ou

s
ti

m
e

w
it

h
ou

t
p
re

co
m

-
p
u
te

d

co
n
ti

n
u
ou

s
ti

m
e

w
it

h
ou

t
to

w
it

h
p
re

co
m

-
p
u
te

d
ad

-

d
is

cr
et

e
to

co
n
-

ti
n
u
ou

s
ti

m
e

w
it

h
p
re

co
m

-
p
u
te

d
#

fi
rm

s
#

st
at

es
#

u
n
k
n
ow

n
s

se
cs

.
p
er

ct
.

se
cs

.
p
er

ct
.

se
cs

.
p
er

ct
.

ad
d
re

ss
es

d
re

ss
es

ad
d
re

ss
es

2
45

18
0

9.
78

(-
7)

52
%

6.
89

(-
7)

42
%

5.
67

(-
7)

33
%

1.
42

1.
22

1.
73

3
16

5
99

0
1.

45
(-

6)
74

%
6.

36
(-

7)
44

%
5.

05
(-

7)
38

%
2.

29
1.

26
2.

88
4

49
5

39
60

2.
90

(-
6)

88
%

6.
36

(-
7)

48
%

4.
75

(-
7)

43
%

4.
55

1.
34

6.
10

5
12

87
12

87
0

6.
94

(-
6)

96
%

6.
42

(-
7)

53
%

4.
77

(-
7)

46
%

10
.8

1
1.

35
14

.5
7

6
30

03
36

03
6

1.
81

(-
5)

98
%

6.
88

(-
7)

55
%

4.
88

(-
7)

45
%

26
.3

4
1.

41
37

.1
2

7
64

35
90

09
0

5.
02

(-
5)

10
0%

7.
33

(-
7)

53
%

5.
11

(-
7)

48
%

68
.4

8
1.

43
98

.2
6

8
12

87
0

20
59

20
1.

31
(-

4)
10

0%
7.

77
(-

7)
55

%
5.

24
(-

7)
50

%
16

8.
33

1.
48

24
9.

38
9

24
31

0
43

75
80

3.
82

(-
4)

10
0%

7.
77

(-
7)

62
%

5.
39

(-
7)

53
%

49
2.

16
1.

44
70

9.
04

10
43

75
8

87
51

60
1.

07
(-

3)
10

0%
8.

34
(-

7)
64

%
5.

94
(-

7)
44

%
12

82
.1

9
1.

40
18

00
.0

0
11

75
58

2
16

62
80

4
2.

99
(-

3)
10

0%
8.

42
(-

7)
67

%
5.

77
(-

7)
56

%
35

57
.1

4
1.

46
51

87
.5

0
12

12
59

70
30

23
28

0
8.

20
(-

3)
10

0%
8.

60
(-

7)
68

%
5.

95
(-

7)
60

%
95

33
.0

8
1.

44
13

77
0.

00
13

20
34

90
52

90
74

0
2.

42
(-

2)
10

0%
9.

22
(-

7)
69

%
6.

20
(-

7)
61

%
26

23
5.

65
1.

49
39

03
3.

56
14

31
97

70
89

53
56

0
6.

76
(-

2)
10

0%
9.

53
(-

7)
72

%
6.

55
(-

7)
59

%
70

94
6.

70
1.

45
10

31
95

.2
7

T
ab

le
2:

T
im

e
p
er

it
er

at
io

n
p
er

st
at

e
p
er

fi
rm

an
d

p
er

ce
n
ta

ge
of

ti
m

e
sp

en
t

on
co

m
p
u
ti

n
g

th
e

ex
p
ec

ta
ti

on
.

(k
)

is
sh

or
th

an
d

fo
r

×1
0k

.
Q

u
al

it
y

la
d
d
er

m
o
d
el

w
it

h
M

=
9

q
u
al

it
y

le
ve

ls
p
er

fi
rm

an
d

a
d
is

co
u
n
t

fa
ct

or
of

0.
92

5.

24

ranges from 83% if N = 2 to a factor of 278 if N = 8 in case of M = 18 (Table 1)

and from 73% if N = 2 to a factor of 103,195 if N = 14 in case of M = 9 (Table 2).

In sum, the continuous-time algorithms are orders of magnitude faster than their

discrete-time counterpart for games with more than a few state variables. Most of the

gain is from avoiding the curse of dimensionality, but the precomputed addresses, a

computational strategy that is effectively constrained to continuous time, also make

a significant contribution.

5.2 Number of Iterations

While each iteration is far faster in the continuous- than in the discrete-time algo-

rithm, this does not prove that the equilibrium of continuous-time models is faster to

compute since the model is not solved until the iterations of the algorithm converge.

Indeed, there are good reasons to think that the continuous-time algorithm will need

more iterations to converge. Suppose that the strategic elements in the stochastic

game were eliminated; in that case, the stochastic game reduces to a disjoint set of

single-agent dynamic programming problems. Hence, a value function iteration ap-

proach (also called a pre-Gauss-Jacobi method) would converge at rate β in discrete

time. As we have pointed out in Section 3.2, the continuous-time contraction factor

η(X(ω), ω) =
φ (X(ω), ω)

ρ + φ (X(ω), ω)
,

is not constant but varies with players’ policies from state to state. It has a simple

interpretation: η(X(ω), ω) is the expected net present value of a dollar delivered at

the next time the state changes if the current state is ω and players’ policies are X(ω).

This is easily seen in the special case of ρ	 φ(X(ω), ω) = 1 since

η(X(ω), ω) =
1

ρ + 1
≈ 1− ρ = 1 + ln β ≈ β.

In general, if the discount rate ρ is large or if the hazard rate φ (X (ω) , ω) is small,

then η(X(ω), ω) is small and there is a strong contraction aspect to a value function

iteration approach. However, η(X(ω), ω) could be close to one if the discount rate is

small or if the hazard rate is large, in which case a value function iteration approach

would converge slowly. Since φ (X (ω) , ω) =
∑N

i=1 φi (X i (ω) , ωi) in the special case

of independent transitions, this in particular suggests that convergence could be slow

if the number of players N is large.

The above facts lead us to worry about the rate of convergence of the continuous-

25

time algorithm. A fair comparison between the discrete- and continuous-time algo-

rithms requires a careful application of accuracy estimates and stopping rules. Let

V i(ω) and X i(ω) denote the value and policy of player i in state ω at the beginning

of an iteration and V̂ i(ω) and X̂ i(ω) his value and policy at the end of the iteration.

We need a measure of the distance between two sets of value functions. We want this

measure to be unit-free and to describe the relative difference. Therefore, we define

the L∞-relative difference between V̂ and V to be

E
(
V̂ , V

)
=

∥∥∥∥∥ V̂ − V

1 + |V̂ |

∥∥∥∥∥ = max
i=1,...,N

max
ω∈Ω

∣∣∣∣∣ V̂
i(ω)− V i(ω)

1 + |V̂ i(ω)|

∣∣∣∣∣ .

We similarly define E
(
X̂, X

)
.

Table 3 compares the discrete- and continuous-time algorithms.10 It presents the

number of iterations until the distance between subsequent iterates as measured by

E
(
V̂ , V

)
and E

(
X̂, X

)
are below a prespecified tolerance of either 10−4 or 10−8.11

In addition, Table 3 presents the number of iterations until the distance between the

current iterate V̂ and X̂ and the “true” solution V∞ and X∞ is below a prespecified

tolerance. To obtain V∞ and X∞ we ran the algorithm until the distance between

subsequent iterates failed to decrease any further. The iterations continued until both

E
(
V̂ , V

)
and E

(
X̂, X

)
were less than 10−13 and, in some cases, less than 10−15.

The final iterates were considered the true solution since they satisfied the equilibrium

conditions essentially up to machine precision.

In light of our previous discussion we expect the number of iterations to be

sensitive to the number of firms and the discount factor. Hence, Table 3 assumes

N ∈ {3, 6, 9, 12} and β = e−ρ ∈ {0.925, 0.98, 0.99, 0.995}. We omit the cases with

N = 12 in discrete time because one iteration takes more than 3 hours, thus mak-

ing it impractical to compute the true solution. We see that the continuous-time

algorithm needs more iterations to converge than its discrete-time counterpart, and

that this gap widens very slightly as we increase β (decrease ρ). On the other hand,

the number of iterations needed by the discrete-time algorithm remains more or less

constant as we increase the number of firms whereas the number of iterations needed

by the continuous-time algorithm increases rapidly as we go from N = 3 to N = 6.

Fortunately, the number of iterations increases slowly as we go from N = 6 to N = 9

10Whether or not we use precomputed addresses in continuous time is immaterial for the number
of iterations to convergence.

11The starting values are V (ω) = π(ω)
1−β and X(ω) = 0 in discrete time and V (ω) = π(ω)

ρ and
X(ω) = 0 in continuous time.

26

d
is

cr
et

e
ti

m
e

co
n
ti

n
u
ou

s
ti

m
e

ra
ti

o
#

fi
rm

s
d
is

co
u
n
t

fa
ct

or
d
is

ta
n
ce

b
et

w
.

it
er

a-
ti

on
s

< 10
−4

d
is

ta
n
ce

to tr
u
th

< 10
−4

d
is

ta
n
ce

b
et

w
.

it
er

a-
ti

on
s

< 10
−8

d
is

ta
n
ce

to tr
u
th

< 10
−8

d
is

ta
n
ce

b
et

w
.

it
er

a-
ti

on
s

< 10
−4

d
is

ta
n
ce

to tr
u
th

< 10
−4

d
is

ta
n
ce

b
et

w
.

it
er

a-
ti

on
s

< 10
−8

d
is

ta
n
ce

to tr
u
th

< 10
−8

d
is

ta
n
ce

b
et

w
.

it
er

a-
ti

on
s

< 10
−4

d
is

ta
n
ce

to tr
u
th

< 10
−4

d
is

ta
n
ce

b
et

w
.

it
er

a-
ti

on
s

< 10
−8

d
is

ta
n
ce

to tr
u
th

< 10
−8

3
0.

92
5

99
11

8
18

2
20

1
13

1
21

2
36

4
44

6
0.

76
0.

56
0.

50
0.

45
3

0.
98

30
4

41
2

59
4

70
2

31
3

77
6

12
38

16
99

0.
97

0.
53

0.
48

0.
41

3
0.

99
51

9
78

2
11

04
13

67
45

5
15

31
23

20
33

93
1.

14
0.

51
0.

48
0.

40
3

0.
99

5
92

3
15

43
21

00
27

19
58

9
30

42
43

43
67

79
1.

57
0.

51
0.

48
0.

40
6

0.
92

5
99

11
8

18
2

20
1

22
0

36
4

58
1

72
5

0.
45

0.
32

0.
31

0.
28

6
0.

98
38

7
49

4
67

3
78

0
74

2
16

74
23

95
33

24
0.

52
0.

30
0.

28
0.

23
6

0.
99

74
3

98
3

12
86

15
25

11
98

33
79

45
93

67
61

0.
62

0.
29

0.
28

0.
23

6
0.

99
5

13
62

19
00

24
08

29
45

18
32

67
97

87
29

13
63

7
0.

74
0.

28
0.

28
0.

22
9

0.
92

5
10

0
11

9
18

2
20

1
23

2
40

4
64

7
81

8
0.

43
0.

29
0.

28
0.

25
9

0.
98

38
6

49
2

67
0

77
5

11
00

23
63

32
35

44
93

0.
35

0.
21

0.
21

0.
17

9
0.

99
75

1
98

8
12

89
15

26
19

27
49

73
64

47
94

69
0.

39
0.

20
0.

20
0.

16
9

0.
99

5
14

69
20

03
25

09
30

42
31

29
10

14
8

12
45

2
19

36
5

0.
47

0.
20

0.
20

0.
16

12
0.

92
5

22
7

41
2

66
9

85
4

12
0.

98
12

76
27

21
36

68
51

06
12

0.
99

24
47

60
23

76
37

11
18

1
12

0.
99

5
42

17
12

58
0

15
08

5
23

30
4

T
ab

le
3:

N
u
m

b
er

of
it

er
at

io
n
s

to
co

n
ve

rg
en

ce
.

Q
u
al

it
y

la
d
d
er

m
o
d
el

w
it

h
M

=
9

q
u
al

it
y

le
ve

ls
p
er

fi
rm

.

27

and remains more or less constant thereafter, so that the gap between the algorithms

stabilizes.

5.3 Time to Convergence

The continuous-time algorithm suffers an “iteration penalty” because η(X(ω), ω) sub-

stantially exceeds the discrete-time discount factor β. Even though the continuous-

time algorithm needs more iterations, the loss in the number of iterations is small

when compared to the gain from avoiding the curse of dimensionality. Table 4 il-

lustrates this comparison and the total gain from continuous time. Continuous time

beats discrete time by 60% if N = 3, a factor of 12 if N = 6, a factor of 209 if N = 9,

a factor of 3, 977 if N = 12, and a factor of 29, 734 if N = 14. To put these numbers

in perspective, in case of the 14-firm quality ladder model it takes about 20 minutes

to compute the equilibrium of the continuous-time game, but it would take over a

year to do the same in discrete time!

ratio
#firms discrete

time
(mins.)

continuous
time
(mins.)

time per
iteration

number
of itera-
tions

time to
conver-
gence

2 1.80(-4) 1.12(-4) 1.73 0.93 1.61
3 1.42(-3) 8.83(-4) 2.88 0.56 1.60
4 1.13(-2) 4.43(-3) 6.10 0.42 2.54
5 8.78(-2) 1.70(-2) 14.57 0.36 5.18
6 6.42(-1) 5.34(-2) 37.12 0.32 12.03
7 4.44(0) 1.47(-1) 98.26 0.31 30.19
8 2.67(1) 3.56(-1) 249.38 0.30 74.94
9 1.66(2) 7.95(-1) 709.04 0.29 208.85

10 9.28(2) 1.77(0) 1800.00 0.29 523.72
11 4.94(3) 3.30(0) 5187.50 0.29 1498.33
12 2.46(4) 6.18(0) 13770.00 0.29 3977.26
13 1.27(5) 1.13(1) 39033.56 0.29 11246.96
14 6.00(5) 2.02(1) 103195.27 0.29 29734.23

Table 4: Time to convergence. (k) is shorthand for ×10k. Convergence criterion is
“distance to truth< 10−4.” Entries in italics are based on an estimated 119 iterations
to convergence in discrete time. Quality ladder model with M = 9 quality levels per
firm and a discount factor of 0.925.

28

5.4 Stopping Rules

In practice it is rarely feasible to compute the true solution V∞ and X∞. Rather

we compute the distance between subsequent iterates and terminate the algorithm

once E
(
V̂ , V

)
and E

(
X̂, X

)
is below a prespecified tolerance. Yet we really want

to know E
(
V̂ , V∞

)
and E

(
X̂, X∞

)
in order to assess the accuracy of our computa-

tions. Table 3 suggests that the distance to the true solution may be far greater than

the distance between subsequent iterates. Fortunately, as we show below, the two

concepts are closely related, and we exploit this fact in devising stopping rules. Note

that the choice of stopping rule is especially important since convergence is linear in

the Gauss-Seidel schemes that we use to compute equilibria.

Our approach to devising stopping rules applies some ideas from the theory of

sequences. Consider a sequence of points {zl}∞l=0 that satisfies

‖zl+1 − zl‖ ≤ θ ‖zl − zl−1‖ ,

where θ < 1 is a contraction factor that determines the rate of convergence. Then

the distance to the limit z∞ satisfies

‖zl+1 − z∞‖ ≤ ‖zl − zl−1‖
1− θ

.

First, define δl = ‖zl − zl−1‖ and suppose that δl+1 = θδl. Then, for all l and all

k, δl = θkδl−k or

θ =

(
δl

δl−k

) 1
k

. (11)

In our computations we observe δl but not θ. Equation (11) gives us a way to estimate

θ from δl, the distance between iterates l and l − 1, and δl−k, the distance between

iterates l − k and l − k − 1.

Next, define εl = ‖zl − z∞‖. Then, approximately, we have εl = δl/ (1− θ). With

δl and θ in hand our task is to determine the number of additional iterations k that

are required to ensure that the distance between iterate l + k and the limit is below

a prespecified tolerance ε̄:

εl+k =
δl+k

1− θ
=

θkδl

1− θ
= ε̄.

29

Hence, the number of additional iterations as a function of the rate of convergence is

K (θ) =
ln (ε̄/δl) + ln (1− θ)

ln θ
. (12)

It is common practice to terminate the algorithm once the distance between sub-

sequent iterates is below ε̄. However, the distance to the true solution could be a

factor (1− θ)−1 greater than ε̄. Equation (12) relates E
(
V̂ , V

)
and E

(
X̂, X

)
with

E
(
V̂ , V∞

)
and E

(
X̂, X∞

)
and, along with equation (11), forms the basis of our

strategy for diagnosing convergence.

The first step is to use equation (11) to estimate the rate of convergence θ. Table 5

presents the results for discrete as well as continuous time assuming N ∈ {3, 6, 9, 12}
and β = e−ρ ∈ {0.925, 0.98, 0.99, 0.995}. Several remarks are in order. First, while

the estimate in principle could vary from one iteration to the next, it turns out to

be nearly constant after the first several iterations. Second, for any given N and β,

the continuous-time rate of convergence exceeds its discrete-time counterpart. This

is in line with the “iteration penalty” of the continuous-time algorithm. Third, the

discrete-time rate of convergence is smaller than the discount factor β. This reflects

the fact that we are using Gauss-Seidel schemes instead of Gauss-Jacobi schemes such

as value function iteration to compute equilibria.

The second step is to use equation (12) to predict the number of additional itera-

tions required to reduce the distance to the true solution to ε̄. Equation (12) does an

excellent job here. For example, if N = 6 and β = 0.925, 0.98, 0.99, 0.995, then the

estimated continuous-time rates in Table 5 imply K(θ) = 144, 931, 2168, 4910. From

Table 3 the actual numbers are 144, 929, 2168, 4908. Overall, the discrepancy between

the predicted and the actual number of additional iterations is negligible. Devising

stopping rules without knowing the true solution is feasible; indeed, a careful exami-

nation of the iteration history suffices to assess the accuracy of the computations.

6 Conceptual Advantages of Continuous Time

In Section 5 we have emphasized the computational advantages of continuous time. In

addition, as we discuss below, continuous time has a number of conceptual advantages.

30

#firms discount
factor

discrete
time

continuous
time

3 0.925 0.8962 0.9611
3 0.98 0.9690 0.9901
3 0.99 0.9845 0.9951
3 0.995 0.9922 0.9975
6 0.925 0.8962 0.9747
6 0.98 0.9681 0.9944
6 0.99 0.9832 0.9973
6 0.995 0.9912 0.9987
9 0.925 0.8962 0.9779
9 0.98 0.9681 0.9957
9 0.99 0.9830 0.9980
9 0.995 0.9912 0.9990

12 0.925 0.9793
12 0.98 0.9961
12 0.99 0.9982
12 0.995 0.9991

Table 5: Estimated rate of convergence. Estimated from the distance between itera-
tions at 10−8. Quality ladder model with M = 9 quality levels per firm.

6.1 Flexibility and Interpretability of Model Specifications

Discrete-time models often have difficulty capturing dynamic phenomena. Consider,

for example, depreciation of machinery. Suppose that firm i owns ωi machines in the

present period and that each machine has a probability of 0.2 per period of breaking

down independent of other machines. Then (ω′)i ∈ {0, 1, . . . , ωi} is binomially dis-

tributed, and firm i will own anywhere between 0 and ωi machines in the subsequent

period. While this is a natural way to model stochastic depreciation, it aggravates

the curse of dimensionality in discrete-time models because in an industry with N

firms the expectation over successor states is comprised of
∏N

i=1(1 + ωi) terms. A

possible shortcut is to focus on the expected number of machines rather than their

entire distribution (e.g., Benkard 2004). If a firm has 5 machines this period, then

in expectation it will have 4 next period. The case of, say, 7 machines is not as easy

to model since 7(1 − 0.2) = 5.6 is not an integer. One could assume that the firm

will have either 5 or 6 machines next period and adjust the transition probabilities so

that the expectation equals 5.6. In this case, however, the variance of the depreciation

shock varies from state to state. In general, discrete time forces one to choose be-

31

tween making a peculiar assumption about the nature of transitions or exacerbating

the curse of dimensionality.

In continuous time, by contrast, depreciation is easy to model. We just say that

each machine has a hazard rate of 0.2 of breaking down independent of other machines,

so that the hazard rate of a jump occurring in firm i’s state is 0.2ωi. This exactly

models a stochastic exponential depreciation rate, but it does not affect the number

of terms that enter the expectation over successor states: since the machines owned

by the N firms break down one at a time, computing the expectation over successor

states involves summing over N terms.

Besides allowing for more flexible model specifications, continuous time also facili-

tates their interpretation. In a discrete-time model the transition probabilities cannot

exceed one. This forces one to look for tractable functional forms. A popular choice

is to assume that the probability of an investment success is αxi

1+αxi (e.g., PM1). This

form is highly stylized and the parameter α is hard to interpret. In a continuous-time

model it suffices to ensure that the hazard rates are nonnegative. For example, (xi)
γ

is a familiar constant elasticity form for the success hazard which can be used in

continuous- but not in discrete-time models. The parameter γ is simply the elasticity

of the success hazard with respect to investment expenditures or, equivalently, (the

negative of) the elasticity of the expected time to an investment success. Since they

are often used in empirical studies, easy-to-interpret functional forms such as constant

elasticity may also facilitate parameterizing the model.

6.2 Richness of Stochastic Outcomes

Many dynamic stochastic games such as the quality ladder model of Section 4 restrict

a player’s transitions to immediately adjacent states. This imposes a sense of conti-

nuity – the player cannot go from state 3 to state 5 without passing through state

4 – although the number of states is finite. While often natural, this “continuity”

assumption has different consequences for discrete- and continuous-time models.

In discrete-time models it implies that the state changes by at most one unit in

any given period. Hence, the minimum amount of time that is required to change

the state by n units is n periods. Discrete-time models have limited flexibility in

modeling the frequency of changes. In continuous-time models, by contrast, this

“continuity” assumption just says that the state changes by one unit at a time, but

that does not constrain the number of changes that can occur in any finite interval

of time. The frequency of changes is governed by players’ actions in equilibrium and

32

not predetermined by the unit of time. Continuous time thus allows for a much richer

range of stochastic outcomes over any finite interval of time.

Figure 1 illustrates this point by comparing the equilibrium value function for

the discrete- and continuous-time version of the quality ladder model with N = 1

firm. The difference is largest in state ω = 1 with V (1) = 69.59 in discrete time

and V (1) = 112.92 in continuous time. The reason is that the monopolist is stuck

with low quality and thus low profits for a very long time in the discrete-time model

whereas it is able to quickly reach states with high quality in the continuous-time

model.

1 5 10 15 18
0

50

100

150

200

250

300

350

ω

V
(ω

)

Discrete Time

1 5 10 15 18
0

50

100

150

200

250

300

350

ω

V
(ω

)

Continuous Time

Figure 1: Equilibrium value function. Quality ladder model with N = 1 firm, M = 18
quality levels, and a discount factor of 0.925.

In discrete-time models β determines both the discount rate and the period length.

Hence, in order to enrich the range of outcomes over a given interval of time, one could

think about shortening the length of a period by taking the discount factor close to

one. However, as Table 3 shows, the number of iterations to convergence increases

with β. Taking β close to one is thus not a practical way to model short periods.

In contrast, in continuous-time models the length of a period is essentially zero and

completely independent of the discount rate ρ.

6.3 Realism of Strategic Interactions

Discrete time may result in unrealistic patterns of strategic interactions. For example,

consider two firms that are both trying to expand their capacity and assume that each

would want to cease its investment once the other succeeds. As long as the success of

an investment project is uncertain, in a discrete-time model there is some chance that

both firms succeed in a given period. This results in excess capacity that makes both

33

firms regret their previous investments and perhaps spurns some efforts to disinvest.

In a continuous-time model, by contrast, this cannot happen since at most one firm

succeeds at a given point in time and the other promptly adjusts and ceases its

investment. In short, there will be no “mistakes” in a continuous-time model.

In a discrete-time model players are also able to respond quickly to changes in the

strategic situation provided that the length of a period is sufficiently short. However,

as we have pointed out above, practical considerations dictate high discount rates and

thus long response times. In many applications of EP’s framework such as the quality

ladder model of Section 4 the state space is fairly coarse. Thus, changes typically have

a large effect on the environment and while a response time of a few days, weeks, or

even months may be plausible, a response time of one or more years is not. In this

case continuous time yields a more realistic description of players’ ability to react

swiftly to changes.

7 Concluding Remarks

Discrete-time stochastic games with a finite number of states suffer from a curse

of dimensionality in computing players’ expectations over all possible future states

in that their computational burden increases exponentially in the number of state

variables. We develop the alternative of continuous-time stochastic games with a

finite number of states and demonstrate that continuous-time games avoid the curse

of dimensionality, thereby speeding up the computations by orders of magnitude for

games with more than a few state variables. We further speed up the computations

with precomputed addresses, a computational strategy that is effectively constrained

to continuous time. Besides their computational advantages, continuous-time games

have conceptual advantages in terms of the flexibility and interpretability of the model

specifications, the richness of stochastic outcomes over any finite interval of time,

and the realism of strategic interactions. Overall, the computational and conceptual

advantages of continuous-time games are substantial and open the way to study more

complex and realistic stochastic games than currently feasible.

The methods in this paper are just the beginning of what can be done to speed up

the computation of equilibria of dynamic stochastic games. In particular, extending

our continuous-time algorithms to focus on the ergodic set as suggested by PM2

may lead to further gains in some applications. The more general observation is that

computing equilibria is just a problem of solving a large system of nonlinear equations.

While the number of unknowns is large, each unknown appears in a rather small subset

34

of equations. This sparse structure is implicitly used in all available methods and can

be further exploited. Since the size of the problem is typically very large, a direct

application of Newton’s method or other solution methods for nonlinear equations

is impractical, and some type of Gaussian scheme is necessary. However, there are

many variations of the block Gauss-Seidel scheme that have not been explored and it

is highly likely that there are some superior approaches available. In future work we

plan to examine alternative block structures, methods within blocks, and acceleration

methods.

Appendix

Below we show how to add entry and exit to the continuous-time quality ladder model
of Section 4. Recall that ωi ∈ {1, . . . , M} describes the quality of firm i’s product. To
model entry and exit, we add M + 1 to the set of firm i’s feasible states and assume
that ωi = M + 1 designates firm i as being inactive in the product market game.
The state space thus becomes Ω = {1, . . . , M, M + 1}N . Once an incumbent firm
exits the industry, it transits from state ωi �= M + 1 to state (ω′)i = M + 1. It then
becomes a potential entrant that, upon entry, transits from state ωi = M +1 to state
(ω′)i �= M + 1. These transitions are under the control of firms. Specifically, firm i’s
action xi = (xi,1, xi,2) is now a vector instead of a scalar. Let xi,1 ≥ 0 denote firm
i’s investment in quality improvements and let h1(xi,1) denote the hazard rate of an
investment success. In addition, let xi,2 ≥ 0 denote firm i’s “exit intensity” if it is an
incumbent firm or its “entry intensity” if it is a potential entrant. The exit (entry)
intensity xi,2 translates into a hazard rate h2(xi,2) of exiting (entering) the industry.
If an incumbent firm exits the industry, it receives a scrap value. We make the scrap
value a decreasing function of the exit intensity. That is, if a firm is in a hurry to
exit, it receives less for its assets. Hence, xi,2 can be thought of as reducing the firm’s
reservation price for selling its assets. Conversely, if a potential entrant enters the
industry, it pays a setup cost, which we take to be an increasing function of the entry
intensity.

The details of entry and exit are as follows: Suppose first that firm i is an in-
cumbent firm, i.e., ωi �= M + 1. Jumps in firm i’s state occur according to a Poisson
process with hazard rate

φi(xi, ωi) = h1(xi,1) + δ + h2(xi,2),

and when a jump occurs, firm i’s state changes according to the transition probability

f i((ω′)i |ωi, xi) =

h1(xi,1)
φi(xi,ωi)

, (ω′)i = ωi + 1,
δ

φi(xi,ωi)
, (ω′)i = ωi − 1,

h2(xi,2)
φi(xi,ωi)

, (ω′)i = M + 1

35

if ωi ∈ {2, . . . , M−1}.12 Note that the last line captures the possibility of exit. Upon
exit the incumbent firm receives a scrap value and the instantaneous change in wealth
is

Φi(x, ωi, ω−i, M + 1, (ω′)−i
) = κ− xi,2.

More elaborate specifications are possible, e.g., the value of a firm’s assets may de-
pend on its state as in Φi(x, ωi, ω−i, M + 1, (ω′)−i) = κ(ωi) − xi,2, where κ(ωi) is a
(presumably increasing) function of ωi.

Suppose next that firm i is a potential entrant, i.e., ωi = M + 1. It is natural
to assume that a potential entrant cannot invest in order to improve the quality of
its product before it has actually entered the industry. Jumps in firm i’s state thus
occur according to a Poisson process with hazard rate

φi(xi, M + 1) = h2(xi,2),

and when a jump occurs, firm i’s state changes according to the transition probability

f i(ωe|M + 1, xi) = 1,

where ωe ∈ {1, . . . , M} is the (exogenously given) initial quality of a firm’s product.
Upon entry the potential entrant pays a setup cost and the instantaneous change in
wealth is

Φi(x, M + 1, ω−i, ωe, (ω′)−i
) = − (

κe + xi,2
)
.

Finally, since a potential entrant is inactive in the product market game, its payoff
flow is

πi(x, M + 1, ω−i) = 0.

The above formulation of entry and exit differs from the one proposed by PM1.
In the background of their model is an infinite pool of potential entrants. Among
these potential entrants one is selected at random in each period and given a chance
to enter the industry. The potential entrant is therefore short-lived and bases its
entry decision solely on the value of immediate entry; it does not take into account
the value of deferred entry. In addition, PM1 assume that by exiting the industry
an incumbent firm de facto exits the game. In contrast, we assume that there is
a fixed number of firms and that each firm may be either an incumbent firm or a
potential entrant at any given point in time. Moreover, when exiting the firm takes
the possibility that it may enter the industry at some later point into account and,
conversely, when entering the firm takes the possibility that it may exit the industry
at some later point into account. Exiting is thus tantamount to “mothballing” and
entering to resuming operations. The advantage of this formulation of entry and exit
is that it leads to a game with a finite and constant number of players. Whether
one uses our formulation or the one proposed by PM1 is immaterial for the purposes
of this paper since the computational advantages of continuous time are exactly the
same in both.

12As discussed in Section 4, if ωi = 1 or if ωi = M , then the hazard rate and the transition
probability need to be adjusted.

36

References

Aguirregabiria, V. & Mira, P. (2002), Sequential simulation-based estimation of dy-
namic discrete games, Working paper, Boston University, Boston.

Bajari, P., Benkard, L. & Levin, J. (2004), Estimating dynamic models of imperfect
competition, Working paper no. 10450, NBER, Cambridge.

Basar, T. & Olsder, J. (1999), Dynamic noncooperative game theory, 2nd edn, Society
for Industrial and Applied Mathematics, Philadelphia.

Benkard, L. (2004), ‘A dynamic analysis of the market for wide-bodied commercial
aircraft’, Review of Economic Studies 71(3), 581–611.

Besanko, D. & Doraszelski, U. (2004), ‘Capacity dynamics and endogenous asymme-
tries in firm size’, Rand Journal of Economics 35(1), 23–49.

Caplin, A. & Nalebuff, B. (1991), ‘Aggregation and imperfect competition: On the
existence of equilibrium’, Econometrica 59(1), 26–59.

Davis, P. & Rabinowitz, P. (1984), Methods of numerical integration, 2nd edn, Aca-
demic Press, New York.

Dockner, E., Jorgensen, S., Van Long, N. & Sorger, G. (2000), Differential games in
economics and management science, Cambridge University Press, Cambridge.

Doraszelski, U. & Markovich, S. (2004), Advertising dynamics and competitive ad-
vantage, Working paper, Hoover Institution, Stanford.

Doraszelski, U. & Satterthwaite, M. (2003), Foundations of Markov-perfect indus-
try dynamics: Existence, purification, and multiplicity, Working paper, Hoover
Institution, Stanford.

Erdem, E. & Tybout, J. (2003), Trade policy and industrial sector reponses: Using
evolutionary models to interpret the evidence, Working paper no. 9947, NBER,
Cambridge.

Ericson, R. & Pakes, A. (1995), ‘Markov-perfect industry dynamics: A framework for
empirical work’, Review of Economic Studies 62, 53–82.

Fershtman, C. & Pakes, A. (2000), ‘A dynamic oligopoly with collusion and price
wars’, Rand Journal of Economics 31, 294–326.

Filar, J. & Vrieze, K. (1997), Competitive Markov decision processes, Springer, New
York.

Goettler, R., Parlour, C. & Rajan, U. (2004), ‘Equilibrium in a dynamic limit order
market’, Journal of Finance forthcoming.

37

Gowrisankaran, G. (1999), ‘Efficient representation of state spaces for some dynamic
models’, Journal of Economic Dynamics and Control 23, 1077–1098.

Isaacs, R. (1954), Differential games, John Wiley & Sons, New York.

Judd, K. (1998), Numerical methods in economics, MIT Press, Cambridge.

Langohr, P. (2003), Competitive convergence and divergence: Capability and position
dynamics, Working paper, Northwestern University, Evanston.

Pakes, A. (2000), A framework for applied dynamic analysis in I.O., Working paper
no. 8024, NBER, Cambridge.

Pakes, A., Gowrisankaran, G. & McGuire, P. (1993), Implementing the Pakes-
McGuire algorithm for computing Markov perfect equilibria in Gauss, Working
paper, Yale University, New Haven.

Pakes, A. & McGuire, P. (1994), ‘Computing Markov-perfect Nash equilibria: Nu-
merical implications of a dynamic differentiated product model’, Rand Journal
of Economics 25(4), 555–589.

Pakes, A. & McGuire, P. (2001), ‘Stochastic algorithms, symmetric Markov perfect
equilibrium, and the “curse” of dimensionality’, Econometrica 69(5), 1261–1281.

Pakes, A., Ostrovsky, M. & Berry, S. (2004), Simple estimators for the parameters of
discrete dynamic games (with entry/exit examples), Working paper no. 10506,
NBER, Cambridge.

Pesendorfer, M. & Schmidt-Dengler, P. (2003), Identification and estimation of dy-
namic games, Working paper no. 9726, NBER, Cambridge.

Shapley, L. (1953), ‘Stochastic games’, Proceedings of the National Academy of Sci-
ences 39, 1095–1100.

Starr, A. & Ho, Y. (1969), ‘Nonzero-sum differential games’, Journal of Optimization
Theory and Applications 3(3), 184–206.

38

