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1. Introduction

A growing body of research investigates the comovement of volatility in financial se-
ries. The motivation underlying this effort is well-known. Joint movements in volatility
influence the distribution of portfolio returns, and thus play an important role in risk
management, portfolio selection, and derivative pricing. Comovements in volatility also
help our understanding of financial markets, and shed light on issues such as contagion
and the transmission of shocks through the financial system.! This motivation is par-
ticularly strong in the exchange rate literature, where first moments of currency returns
relate weakly to fundamentals at medium frequencies, and movements in volatility can
be large and persistent (e.g., Meese and Rogoff, 1983; Rogoff, 1999; Sarno and Taylor,
2002; Clarida et al., 2003).2

Multivariate GARCH, pioneered by Kraft and Engle (1982) and Bollerslev, Engle
and Wooldridge (1988), is perhaps the most commonly used class of models. A natural
extension of GARCH, these processes assume that a vector transform of the covari-
ance matrix can be written as a linear combination of its lagged values and the return
innovations. Andersen, Bollerslev and Lange (1999) show that these models perform
well relative to competing alternatives. General formulations are, however, hampered
by difficulties. The dimensionality of the parameter space grows quickly with the num-
ber of assets, and positive-definiteness of the covariance-matrix is not easily guaran-
teed. This has led to simplified versions including the constant-conditional correlation
GARCH specification introduced by Bollerslev (1990).> Multivariate stochastic volatil-
ity processes share these difficulties, although this has not prevented the growth of an
impressive literature, including work by Harvey, Ruiz, and Shephard (1994), Andersen,
Benzoni and Lund (2002), and Johannes, Polson and Stroud (2002).

We propose a new approach based on a recent advance in univariate time series, the
Markov Switching Multifractal (MSM) of Calvet and Fisher (2001, 2004). This earlier
research uses Markov-switching to develop the first weakly convergent sequence of dis-
crete filters for time-stationary multifractal diffusions. In MSM, total volatility is the
multiplicative product of a large number of random components that are independent
and statistically identical except for heterogeneity in their durations. The construction
is parsimonious and delivers volatility persistence, substantial outliers, and a decomposi-
tion of volatility into frequency-specific components. MSM compares favorably to earlier
specifications both in- and out-of-sample. Univariate multifractal forecasts slightly im-

'See for instance Engle, Ito and Lin (1990), or Edwards and Susmel (2003) and the references therein.

?See Lyons (1995, 2001) for stronger evidence at high frequency.

3Researchers have also considered weaker restrictions (Engle and Kroner, 1995; Engle and Mezrich,
1996; Engle 2002), factor structures (e.g., Engle, 1987; Diebold and Nerlove, 1989; Engle, Ng and
Rotshchild, 1990), and estimation methods other than maximum likelihood (Ledoit, Santa-Clara and
Wolf, 2003).



prove on GARCH(1,1) at daily and weekly intervals, and provide considerable gains in
accuracy at horizons of 10 to 50 days.

This paper investigates comovement in MSM volatility components across exchange
rates. We consider three series, the German Mark, the British Pound and the Japanese
Yen, all versus the US Dollar over the period 1973-2003. Our results show that compo-
nents from different series with similar frequencies tend to move together. In contrast,
components with very different frequencies display less correlation, both within and
across series. We then attempt to relate MSM volatility components to macroeconomic
indicators, and find no robust pattern using variables such as GDP, inflation, money
supply, interest rates, and stock market volatility. On the other hand, oil and gold prices
both correlate positively with currency volatility over the past three decades, consistent
with the view that these commodities act as proxies for global economic and political
risk. An MSM volatility decomposition reveals that these correlations exist only at
low frequencies. This result encourages the econometrician to be cautious about the
out-of-sample behavior of these apparent regularities.

Our findings motivate the construction of a bivariate model of currency volatil-
ity. This specification, called bivariate MSM, offers several advantages. It is relatively
parsimonious, as the number of parameters is independent of k. There is no issue of
positive semi-definiteness. The likelihood function can be written in closed-form and
ML estimation can be implemented for state spaces of reasonable size.

To accommodate larger state spaces, we develop a particle filter that permits conve-
nient inference and forecasting using simulations. The good performance of the method
is checked in Monte Carlo experiments. The algorithm broadens the range of compu-
tationally tractable models to include cases where the number of volatility components
is very large, and to cases where the state variables are drawn from continuous rather
than binomial distributions. This innovation thus opens econometric research on mul-
tifractal processes to a much wider range of specifications in both the univariate and
multivariate cases.

We estimate the bivariate model by maximum likelihood and verify that the goodness
of fit increases with the number of frequency-specific volatility components. Likelihood
ratio tests confirm that the main assumptions of the model are empirically valid. Bivari-
ate MSM compares favorably to constant correlation GARCH (CC-GARCH) in-sample.
Out-of-sample, integral transforms and the Cramer-von Mises statistic indicate that, in
contrast to CC-GARCH, bivariate MSM captures well the conditional distribution of a
variety of currency portfolios. MSM also provides reasonable measures of value at risk,
while CC-GARCH tends to underestimate the riskiness of a currency position.

We conclude the paper by examining generalizations of the model to a larger number
of assets. We show that bivariate MSM extends easily to larger economies, but can
become complicated in its general formulation. We thus propose a factor model of



multifrequency stochastic volatility, specified by a number of volatility parameters that
grows linearly in the number of assets. Estimation can be conducted by maximizing the
closed-form likelihood or by implementing the particle filter.

The rest of the paper is organized as follows. Section 2 reviews univariate MSM and
relates the volatility components to other financial and macroeconomic indicators. Sec-
tion 3 introduces the bivariate model. Section 4 develops inference methods, including
likelihood estimation and the particle filter. Empirical results are reported in Section
5. Extensions to many assets are discussed in Section 6. Unless stated otherwise, all
proofs are given in the Appendix.

2. Comovement of Univariate Volatility Components

2.1. The Univariate Stochastic Volatility Model

We begin by reviewing the Markov-Switching Multifractal (MSM), a discrete-time Markov
process with multi-frequency stochastic volatility. Consider an economic series p; defined
in discrete time on the regular grid ¢ = 0,1, 2, ...,00. In applications, p; is the log-price
of a financial asset or exchange rate. We consider an economy with % volatility com-
ponents My, May, ..., Mz ,, which decay at heterogeneous frequencies vy,..,7z. The
notation MSM (k) refers to versions of the model with % frequencies.

The innovations x; = p; — p;—1 are specified as

Ty = (Ml,tMQ,t‘--ME7t)l/2€t7 (21)

where the random variables ¢; are IID standard Gaussians N'(0, 02). The random multi-
pliers or volatility components My, ; are persistent, non-negative and satisfy E(Mj ;) = 1.
We assume for simplicity that the multipliers My ¢, Ma ... M7, at a given time ¢ are statis-
tically independent. The parameter o then equals the unconditional standard deviation
of the innovation ;.

Equation (2.1) defines a return process with stochastic volatility oy = o(M;May...
ngt)l/ 2. We conveniently stack the period t volatility components into the 1 x k row
vector

M; = (M, May, "'vME,t)'

The vector M is first-order Markov and is called the volatility state. The econometrician
observes the returns z; but not the vector M; itself. MSM is thus a hidden Markov chain
model of volatility. The latent state M, is inferred recursively by Bayesian updating, and
estimation is possible by maximum likelihood. MSM is thus a tractable high-dimensional
version of the regime-switching models advocated by Hamilton (1989).

The volatility components My, + follow processes that are identical except for time
scale. Assume that the state vector has been constructed up to date t — 1. For each



ke {l,., /2:}, the next period multiplier M}, ; is either drawn from a fixed distribution
M with probability ~,, or otherwise remains equal to its current value: My, ; = My, ;1.
The dynamics of M}, ; can be summarized as:

Mj, 4 drawn from distribution M with probability v,
Myt = My with probability 1 — ;.

The switching events and new draws from M are assumed to be independent across k
and ¢. The volatility components Mj,; thus differ in their transition probabilities v, but
not in their marginal distribution M. i

The transition probabilities are specified as v, = 1 — (1 — fy,-g)(bkik), where vj €
(0,1) and b € (1,00). This specification is introduced in Calvet and Fisher (2001) in
connection with the discretization of a Poisson arrival process. The pair (yz,b) thus
provides a numerically convenient specification for the transition probabilities.

The multifractal construction imposes only minimal restrictions on the marginal
distribution of the multipliers: M > 0 and E M = 1. While flexible parametric or even
nonparametric specifications of M can be used, this paper focuses on the parsimonious
setup in which M is drawn from a binomial random variable taking values mg € [1, 2]
or 2 —myg € [0, 1] with equal probability. The full parameter vector is then

w = (m07 g, b7 7];;) € RilH

where mg characterizes the distribution of the multipliers, ¢ is the unconditional stan-
dard deviation of returns, and b and ~y;, define the set of switching probabilities.

The multiplicative structure (2.1) is appealing to model the outliers and volatility
persistence exhibited by financial time series. Changes in low level multipliers lead to
discrete shifts in volatility that can be maintained over long periods of time. Such risks
are important, for example, to a market maker pricing long-lived options. In addition,
variations in high frequency multipliers help capture extreme tail events in short-run
returns. This has obvious implications for pricing shorter-lived options or for calculating
Value-at-Risk.

In exchange rate series, the estimated duration of the most persistent component,
1/, is typically of the same order as the length of the data. The process thus generates
volatility cycles with periods proportional to the sample size, a property also apparent
in the sample paths of long memory processes. Fractionally integrated processes gen-
erate such patterns by assuming that an innovation linearly affects future periods at
a hyperbolically declining weight. As a result, fractional integration tends to produce
smooth volatility processes. By contrast, our approach generates long cycles with a
switching mechanism that also gives abrupt volatility changes.* The combination of

*Long memory is often defined by a hyperbolic decline in the autocovariance function as the lag



long-memory behavior with sudden volatility movements in MSM has a natural appeal
for financial econometrics.

The continuous-time version of MSM can be conveniently constructed and lies out-
side the class of Ito diffusions when & — oo. The sample paths are continuous but
exhibit a high degree of heterogeneity in local behavior, which is characterized by a
continuum of local Holder exponents in any finite time interval. Calvet and Fisher
(2001, 2002) fully develop the continuous-time limit.

2.2. Comovement of Exchange Rate Volatility

The empirical analysis investigates daily returns on the Deutsche Mark (DM), Japanese
Yen (JA) and British Pound (UK), all against the US Dollar. The returns are imputed
from noon daily prices reported by the Federal Reserve Bank of New York.> The series
begin on 1 June 1973, shortly after the demise of the Bretton Woods fixed exchange rate
system. The Deutsche Mark is replaced by the Furo at the beginning of 1999. Each
series ends on 30 October 2003 and contains 7,635 observations.

For each currency, we estimate MSM by maximum likelihood on the entire sample
and report the results in Table 1. The columns correspond to the number of frequencies
k varying from 1 to 8. The first column is thus a standard Markov-switching model
with only two possible levels of volatility. As k increases, the number of states increases
at the rate 2. The multiplier value mg tends to decline with k. With a larger number
of frequencies, less variability is required from each individual component to match the
volatility fluctuations of the data. Estimates of o fluctuate across k with no apparent
trend. When k = 1, the parameter 4% indicates that the single multiplier has a duration
of a few weeks. As k increases, the switching probability of the highest frequency
multiplier increases until a switch occurs almost every day for large k. At the same
time, the growth rate b decreases steadily with k. In the DM series with k& = 8, a switch
in the lowest frequency multiplier occurs approximately once every eight years, or about
one fourth the sample size. Thus, as k increases, frequencies tend to span a wider range
while becoming more tightly spaced.

We use the ML estimates to compute, for each currency, the smoothed state prob-
abilities (Kim, 1993) and the expectation of the multipliers conditional on the entire
sample: Mkyt = E(Mj¢|x1, ...,z7). The correlations of the smoothed components Mkﬂg
are reported in Table 2. In the first panel, we see that different components of the
DM exchange rate are moderately correlated, and correlation decreases in the distance

goes to infinity. As shown in Calvet and Fisher (2004), MSM mimics the hyperbolic auocorrelation in
the size of the returns exhibited by many financial series (e.g., Ding, Granger and Engle, 1993). The
multifractal model thus illustrates the difficulty of distinguishing between long memory and structural
change in finite samples, as in Hidalgo and Robinson (1996) Diebold and Inoue (2001).

®More specifically, the data consist of buying rates for wire transfers at 12:00 PM Eastern time.



between frequencies.® We report only DM results for space constraints, but obtain sim-
ilar results with the UK and JA series. The second and third panels of Table 2 show
inferred comovement of the DM components with JA and UK. Correlation between
the smoothed beliefs M, ,‘;t and M ,f,t of two currencies tends to be high when k& and &’
are close, and is low otherwise. This suggests that the volatility components of two
exchange rates are correlated only if their frequencies are similar.

The interpretation is slightly complicated, however, by the fact that each currency
may have a different set of volatility frequencies. To address this issue, we now introduce
a simple bivariate model in which currencies are statistically independent but have
identical frequency parameters b and ~y;. The log-likelihood of the two series is then

L(zg;mg, 0a,b,7z) + L(a:tﬁ; mg, 8,0,7%), (2.2)

where L denotes the log-likelihood of univariate MSM. This specification, called the
combined univariate, is an important building block of the bivariate model introduced
in the next section.

In Table 3, we report results for the combined univariate model. Panel A shows
ML estimates for the (DM,JA) series. For low values of k, some parameter esti-
mates differ noticeably from the unrestricted univariate results in Table 1, but gener-
ally the frequency restrictions do not appear problematic. To confirm this, for k = 8
we compare the likelihood of —13063.11 with the sum of unrestricted likelihoods, i.e.
—6885.90 — 6174.96 = —13060.86. Under the combined univariate, the difference of
2.25 is asymptotically distributed as a chi-squared with two degrees of freedom. This
difference is not significant at any conventional level, confirming that the frequency
restrictions are reasonable. The second part of Panel A repeats this likelihood ratio
(LR) test for each frequency and currency combination, reporting p-values. Except for
very low values of k, the frequency restrictions are not rejected. Panel B then shows
correlations between smoothed volatility components for the (DM,JA) series under the
combined univariate model. With frequencies now identical across currencies, we ex-
pect results to be stronger than in Table 2, and this is confirmed. Results for other
currency pairs are similar. We thus find that (1) restricting frequencies to be identical
across currencies is reasonable, and (2) components of similar frequencies tend to move
together while components with very different frequencies do not. These conclusions
are useful in developing a bivariate MSM specification in Section 3.

2.3. Currency Volatility and Macroeconomic Indicators

We now investigate whether currency volatility comovement relates to other macroeco-
nomic and financial variables. Earlier research leads us to be relatively pessimistic. For

%Note, however, that because the econometrician does not directly observe changes in multipliers,
correlation in smoothed beliefs can be consistent with independence between My ¢ and My ¢, k # k'



instance, the first moments of exchange rates are weakly linked to fundamentals (e.g.,
Meese and Rogoff, 1983; Andersen and Bollerslev, 1998a; Rogoff, 1999; Sarno and Tay-
lor, 2002). Variances are also difficult to explain, at least in stock market data (e.g.,
Schwert, 1989). We examine whether the new multifrequency decomposition confirms
these negative results.

We first consider IMF monthly data for 1973-2000, including monetary aggregates
(M1, M2 and M3), short and long interest rates, producer price index, consumer price
index, wages and the growth rate of industrial production. We compute the correlation
between monthly volatility and the macro variables of each country, their difference and
the absolute value of their difference. We use several measures of volatility, such as the
absolute value of the monthly return, the realized monthly volatility, and MSM volatility
components. In unreported work using a variety of lag structures, we find no robust
link between currency volatility and these variables. These results are consistent with
the findings of Andersen and Bollerslev (1998), who show that macro announcements
induce volatility shocks that are of comparable magnitude to daily volatility. It is thus
not surprising that little impact is found at the monthly frequency.

Economic theory suggests that exchange rates might be more strongly linked to eq-
uity markets, since both classes of instruments incorporate forward-looking information
about rates of return, national economic conditions and corporate profits.” In Table
4, we investigate the comovement of each currency with volatility in domestic and US
stock markets. Daily returns are imputed from the US value-weighted CRSP index, the
German CDAX Composite Price Index, the UK FT-Actuaries All Share Index and the
Japanese Nikkei 225 Stock Average. The sum of squared daily returns measures realized
monthly stock volatility, and is compared to the currency return, absolute return, real-
ized volatility (RV) and MSM frequency-specific components. The reported correlation
is positive for the Deutsche Mark and the Yen, and weakly negative for the Pound. We
thus find no robust link between currency and stock volatility.

Oil prices are often viewed as proxies for global economic and political uncertainty
(e.g., Hamilton, 2003). As seen in Table 4, the dollar price of oil correlates positively
with the RV of DM and UK,® and the MSM decomposition further reveals that this
is primarily a low frequency phenomenon. The results become more intriguing for JA.
While the raw oil price shows little correlation with the RV of the Yen, it is again strongly
correlated with low-frequency MSM components. The MSM decomposition thus finds
evidence of a regularity that direct analysis of realized volatility would not uncover.
Similar results are obtained with gold, further suggesting that currency volatility and
certain commodity prices may be linked at low frequencies through an unidentified

"See Sarno and Taylor (2002) for a recent review of the economics of exchange rates.
8We use the domestic first purchase price of crude oil expressed in dollars per barrel provided by
Global Insight/DRI.



global risk factor. As in Stock and Watson (2003), we view these findings with caution
since it is unclear whether oil and gold prices will continue to be effective proxies for
global risk in the future.

Our results thus deepen the puzzle regarding the link between exchange rates and
fundamentals. Volatility components are strongly correlated across currencies but only
weakly related to other macroeconomic and financial variables. This motivates the
development of a multivariate multifrequency model of exchange rates.

3. A Bivariate Multifrequency Model

3.1. The Stochastic Volatility Specification

We consider two financial series a and § defined on the regular grid t = 0,1,2, ..., 0c.

Their log-returns’ z¢ and xf in period ¢ are stacked into the column vector
a:,CM
T = [ /tg S R2.
T

As in univariate MSM, volatility is stochastic and hit by shocks of heterogeneous fre-
quencies indexed by k € {1, ..., k}. For every frequency k, the currencies have volatility
components Mg, and M, kﬁ ;- Consider

Ma
My = |
kit

The period-t volatility column vectors My, ; are stacked into the 2 x k matrix

2
eR2.

Mt = <M1,t§ M27t; ceey szt).

Each row of the matrix contains the volatility components of a particular currency, while
each column corresponds to a particular frequency. As in univariate MSM, we assume
that My ¢, May... Mz, at a given time ¢ are statistically independent. The main task is
to choose approprialce dynamics for each vector My, ;.

Economic intuition suggests that volatility arrivals are correlated but not necessarily
simultaneous across currency markets. For this reason, we allow arrivals across series to
be characterized by a correlation coefficient X\. Assume that the volatility vector Mj, ,
has been constructed up to date t — 1. In period ¢, each series ¢ € {«, 5} is hit by
an arrival with probability ;. Let 17 ; denote the random variable equal to 1 if there
is an arrival on M,;t, and equal to 0 otherwise. The arrival vector 1;; = (1%7 lgt) is
specified to be IID, and its unconditional distribution is defined by three conditions.

Tf X{* denote the value of the exchange rate at date ¢, the log-return is ¢ = In(X¢/X71).



First, the arrival vector is symmetrically distributed: (15,5, 1%,) 4 (1% 4 15,5). Second,
the switching probability of a series is equal to an exogenous constant:

P( %,t =1) = v
Third, there exists A € [0, 1] such that
B(LE, = 118 = 1) = (1= Ny + 4

As shown in the Appendix, these three conditions define a unique distribution for 1 ;.
Arrivals are independent if A = 0 and simultaneous if A = 1. We easily check that A is
the unconditional correlation between 13, and 1£,t'

Given the realization of the arrival vector 1., the construction of the volatility
components My, is based on a bivariate distribution M = (M%, M”) € R2. We briefly
postpone the choice of M, and assume for now that it is defined by two parameters mg
and mg . If arrivals hit both series ( ket = 1’,2715 = 1), the state vector My, is drawn from
M. If only series ¢ € {«, B} receives an arrival, the new component Mg, is sampled
from the marginal M€ of the bivariate distribution M. Finally, M}, ; = My ;1 if there
is no arrival (1%, = 1£,t = 0). The construction thus implies that switching vectors and
draws from M are independent across k and t. In vector notation, it can be summarized
as:

My ¢+ L My g1+ Lpg * (M — My 1),

where * denote element by element multiplication. The volatility components M, ; differ
in their transition probabilities 7y}, but not in their marginal distribution M or arrival
correlation A. These features greatly contribute to the parsimony of the model.

The volatility vectors M}, are persistent, non-negative and satisfy E(My,) = 1,
where 1 = (1,1)". Consistent with previous notation, let g(M;) denote the 2 x 1 vector
My Moy * ... % ME,t' The return vector x is specified as

Tt = [Q(Mt)]1/2 * Et,y (3.1)

where the column vectors e; € R? are IID Gaussian N(0,X). The covariance matrix ¥
can be written as

E:

o2 P0a08
P0a03 a%
The construction thus permits correlation in volatility across series through the bivariate
distribution M, and correlation in returns through p,. As in the univariate case, the
transition probabilities (’yl, Yy een 'YE) are defined as

yr=1—(1—p®™), (3.2)



where vz € (0,1) and b € (1,00). This completes the specification of bivariate MSM.
We observe that under bivariate MSM, returns satisfy

o = (M Mg, M) e
1/2
v = (MpMy,.. My ).

Their univariate dynamics thus coincide with univariate MSM. In particular, the pa-
rameter o. is again the unconditional standard deviation of each univariate series
¢ € {a, f}. Bivariate MSM thus requires eight parameters

¢ = (UCH U,vagv mg: b’ Y& Pes )‘)7

where 0, and o are the unconditional standard deviations of the return series, mg and
mg determine the distribution of volatility components, 7z their transition probabilities,
p. the correlation of the Gaussian innovations, and A the correlation of arrivals across
series.

The bivariate construction imposes few restrictions on the distribution of vector
M. For the empirical applications in the remainder of this paper, we investigate a
simple specification, which assumes that each Mj; is drawn from a bivariate binomial
distribution M = (M, MP)". The first element M takes values m§ € [1,2] and
m§ = 2—mg € [0, 1] with equal probability. Similarly, M? is either mg € [1,2] or m? =
2 — mg . The random vector M can thus take four possible values, whose probabilities
are parameterized by the matrix (p; ;) = (P{M = (mg, mf )}). The conditions P(M® =

mg) = 1/2 and P(M” = mg) = 1/2 impose that

1+-p 1—p»

Poo Ppo1r | Vi Vi
= | 1—pr,  14p%

P10 P11 4” —4”“

for some p}, € [—1,1]. We easily check that p}, is the correlation between components
M and M? under the distribution M. The empirical section focuses on the specification
Py, = 1, which in unreported work is never rejected on the currency data. Because
distributions with p}, < 1 may be useful for series with weaker correlation in volatility,
we report in the next subsection all theoretical results for arbitrary values of pj,.

3.2. Properties

The dynamics of M} ; are determined by the switching vector 1;; and the bivariate
distribution M. We show in the Appendix that M} ; has a unique ergodic distribu-
tion IIj. Let lzlkH . I:If L ].:IéH and ﬁéL respectively denote the probabilities of states
(mg‘,mg), (mg‘,mﬁ), (mf‘,mﬁ), and (m?,mf) The symmetry of the construction im-
plies that ﬁkH H_ ﬁﬁL and ﬁkH L ﬁﬁH . When p7, > 0, the multipliers are more likely
to be either both high or both low: TIHH# =TILE > 1/4 > THHL = [TEH

10



Since different components are statistically independent, the ergodic distribution of
the volatility state My = (M y; ...; My, ;) is the product measure IT = IT; ®.... @ [T;. Under
this distribution, the cross-currency correlation of volatility components is given by

COT?“(Mkt,M;ft) m2 — [(1 — )‘)'Wc + )\] =

This coeflicient is large when the transition probability v, or the correlation of switching
events A are high, i.e. when arrivals tend to happen at the same time. The upper bound
Py, is reached when either A =1 or v, — 1.

The return series have unconditional means equal to zero: Ex; = 0. By the Cauchy-
Schwarz inequality, their correlation satisfies

k
Corr(afsz)) = pe [ [, BIMEM )Y < .. (3.3)

The upper bound p, is attained when the multipliers of both series are perfectly correlated.
On the other hand when p. < 1, uncorrelated changes in volatility represent additional
sources of noise that reduce the correlation of asset returns.

The econometrician does not observe the volatility state, but only the set of past
returns X; = {xs}ézl. Returns are unpredictable with this information set: E;_1x: =
0, and the model is thus consistent with some standard forms of market efficiency.!”
Comovement is quantified by the conditional covariance Covt(x?+n;a:t6 n) = P00
H:=1 E[(M t+anBt+n)1/2]’ and the conditional correlation

B[ (M, My )Y
=1 [(EtMl?tJrn)(Eth t+n )]1/

k
Corry(@fn; v)sn) = p [ [, S < 1. (3.4)

These quantities fluctuate through time with the multipliers. Thus while the construc-
tion assumes constant correlation coefficients p. and p,,, the conditional correlation of
returns is time-varying. We easily check that it is large when the volatility components
of the currencies are high.

Comovement in volatility can be similarly investigated. We observe that when p,,, >
0 and k is large, the conditional correlation of absolute returns satisfies

Et Mk t+anft+n)1/2]

kt+n)(EthBt+n)]1/2

Corre(|afy, s |2y ) ~ Ce Hk ¥ (3.5)

where C, = E(‘el €1 ‘) Consistent with previous intuition, correlation between absolute
returns is high in periods of high volatility.

10See Campbell, Lo and MacKinlay (ch2, 1997) for a discussion.
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4. Inference

We now develop inference methods for bivariate MSM. Analytical Bayesian updating
and a closed-form likelihood are practical when the number of volatility components is
not too large. Alternative computational methods are developed for high-dimensional
state spaces.

4.1. Closed-Form Likelihood

Since each frequency vector My, is drawn from a bivariate binomial, the volatility state
My = (Myyg; May; ... ME,t) takes d = 4F possible values m!, ..., m® € ]RE. The dynamics
of M, are characterized by the d x d transition matrix A = (a; ;)1<i j<d4 With components
aij = ]P)( Mt+1 = mJ‘ Mt = mz)

The econometrician does not observe the volatility state, but only the set of past
returns X; = {xs}i:y The corresponding probabilities

I =P (M; = m’ | Xy)

are computed recursively by Bayesian updating. Let IT; = (H%, o Hf) € Ri. In the next
period, state My is drawn and the econometrician observes the return vector ;1.
Conditional on the new volatility state, the joint return z;;; has bivariate Gaussian
density fe,,, (l‘t+1|Mt+1 = m’) By Bayes’ rule, the updated probability is

[ (wp41) x LA
f @) « A1

My = [ (4.1)
where 1 = (1,.,1) € R? and f (z) is the vector of conditional densities (fy,,, (zt11|Mit1
= m?'));. The belief II;; 1 is thus a function of the observation ;1 and the prior proba-
bility II;. In empirical applications, the initial vector IIy is chosen equal to the ergodic
distribution II of the Markov chain.

We easily check that the log-likelihood function has the closed-form expression:

T
InL(z1,...,x7;9) = Zln[f(a:t) - (IT—1 A)].
t=1

For fixed k, the maximum likelihood estimator (ML) is consistent and asymptotically
efficient as T' — oco. Analytical multistep forecasting can proceed using updated beliefs
and the transition matrix A as in Calvet and Fisher (2001).

4.2. Particle Filter

The transition matrix A contains 4% x 4F elements, increasing exponentially in the
number of frequencies. When k = 8, the transition matrix thus has cardinality 232 ~
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4 x 10°, and is computationally expensive to use. Following the recent literature on

11

Markov chains,”* we propose a simulation-based inference methodology. Specifically,

we introduce a particle filter, a recursive algorithm that generates independent draws

Mt(l)7 e Mt(B) from the conditional distribution IL;.
We begin at t = 0 by drawing Mél), vy éB) from the ergodic distribution II. For

any t > 0, assume that {Mt(b)}{?:1 have been independently sampled from II;. Given a
new return 41, an approximation to Bayes’ rule gives draws {Mt(jbr)1 le from the new

belief II;41. More specifically, we rewrite the updating formula (4.1) as

d
Ty o farpy (g2 [Mepr =m?) Y P (Myyq = m M, = m/) II.
=1

The vectors Mt(l), - Mt(B) are independent draws from II;. This suggests the Monte
Carlo approximation:

B
38 (s = milar = 2.
b=1

4 o
I,y X fay (@1 My = m?) =

)

As shown in the Appendix, we complete the approximation by simulating each Mt(b
one-step forward and reweighting using an importance sampler:

1. Simulate the Markov chain one-step ahead to obtain Mt(}r)l given Mt(l). Repeat

B times to generate B draws Mt(i)l, - Mt(fl). This preliminary step only uses
information available at date ¢, and must therefore be adjusted to account for the
new return.

2. Draw a random number ¢ from 1 to B with probability

~(b
P(g=b) = foo (@1 | My = Mt(Jr)})bl '
S0t foon (@1 | Mygr = Mt(d)

The vector Mt(}r)l = Mt(i)l is a draw from Il 1. Repeat B times to obtain B draws

1 B
Mt(—l—)l? s Mt(+1)'

This recursive procedure provides a discrete approximation to Bayesian updating that
is computationally convenient in large state spaces.

"See for instance Chib, Nardari and Shephard (2002), Jacquier, Polson and Rossi (1994), and Pitt
and Shephard (1999).
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4.3. Simulated Likelihood

We can use the particle filter to compute the likelihood function. Each one-step ahead
density satisfies f(x¢|X;—1) = Z?:l f(zi| My = m*) P(M; = m*|X;_1). Given simulated
draws Mt(b) from M; | X;_1, the Monte Carlo estimate of the conditional density is thus

~

B
1 .
flae| Xp—1) = B E J (x| My = Mt(b))v
b=1

and the log-likelihood is approximated by Zle In f (z¢|X¢—1). We can use these cal-
culations to carry out simulated likelihood estimation. In practice, an arbitrarily close
approximation can be achieved by increasing B. Larger state spaces require more draws
to achieve the same degree of precision.

Table 5 presents a Monte Carlo assessment of this method. We focus on the uni-
variate specification with k& = 8 components. Using the particle filter, we generate
500 approximations of the log-likelihood of the univariate DM series at the optimized
ML estimates from Table 1. Each calculation uses independent sets of Monte Carlo
draws. We then compare the mean, standard deviation, and quantiles of the estimates
with the exact value obtained in Table 1 by analytical Bayesian updating. All particle
filter evaluations use B = 10,000 random draws. The particle filter estimate of the
log-likelihood has a relatively small standard deviation and the average across simula-
tions, —6887.3, is close to the true value of —6885.9. The quantiles are tightly clustered
as well. The table also shows particle filter estimates of the forecast variance, which
are accurate and approximately unbiased. These results confirm that the particle filter
produces reasonable estimates of the likelihood and moments of the series for problems
of reasonable size.

The particle filter extends the range of computationally feasible multifractal specifi-
cations. In previous work with univariate processes, Calvet and Fisher (2004) report an
approximate computational upper bound of ten binomial state variables, or 210 states.
While this gives good results in the univariate case, multivariate models require a corre-
spondingly larger number of state variables. We will thus show in the empirical section
that the particle filter produces good results in a bivariate model with & = 8 compo-

216 states. The particle filter also permits implementation of specifications

nents, or
where the state vector M is drawn from a continuous distribution. Since earlier re-
search (Calvet and Fisher, 2002) suggest that exchange rates are best fit by lognormal
multipliers, it will be interesting in future work to revisit the lognormal specification

and compare its performance to the binomial.
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4.4. Two-Step Estimation

Two-step estimation offers additional computational benefits, permitting the econo-
metrician to decompose inference into a sequence of lower-dimensional optimization
problems. In the bivariate multifractal, each series ¢ € {a, §} follows a univariate MSM
with parameters mg, o.,b and vz. This implies that we can estimate six of the eight
parameters using the likelihood and smaller state space of the univariate model. Addi-
tionally, univariate estimation gives good precision in finite samples (Calvet and Fisher,
2004). This motivates us to develop the two-step method described below. The Ap-
pendix shows that this procedure is a special case of GMM, implying consistency and
asymptotic normality of the estimator.

In the first stage, we obtain the parameters (mg, mg ,0a,08,b,77) by optimizing the
sum of the two univariate log-likelihoods, as in (2.2). Intuitively, this gives consistent
estimates for all parameters since the gradient of this sum with respect to the true
parameters is zero. Because this objective function coincides with the likelihood of the
combined univariate, the first step has already been completed in Section 2.

The second stage gives estimates for the remaining two parameters, (p,., A), which
are unique to the bivariate model. When the state space is not too large, (I% < 5),
computation of the analytical bivariate likelihood is practical. We therefore maximize
the exact bivariate MSM probability density conditional on the first-stage estimates. For
higher-dimensional specifications, (k = 6,7,8), computation of the analytical bivariate
likelihood is difficult. We therefore use the particle filter to optimize the simulated
likelihood as described in Section 4.3.12 In this paper, the two-step procedure aids
empirical implementation of bivariate specifications with state spaces as large as 2'6.

5. Empirical Results

5.1. Bivariate MSM Estimates

We report in Table 6 full analytical ML estimates of bivariate MSM for k& < 5 and ex-
change rate pairs (DM,JA), (DM,UK) and (JA,UK). As in univariate MSM, mg declines
with k, while the standard deviations &, and o are variable but display no apparent
trend. The correlation between Gaussian innovations p, is positive and roughly con-
stant across k. The arrival correlation \ is also large and approximately invariant to
the number of volatility components. Both parameters new to the bivariate model seem
precisely estimated. Finally, the estimated N is highest when p, is highest, and lowest

20ne could of course more generally match to any relevant moments in the second stage. Our view is
that simulated likelihood is an excellent choice for intermediate problems because it potentially entails
a small loss in efficiency. For very large problems, including many assets as discussed in Section 6, it
would be natural to consider matching moments such as (3.3) and (3.5). This could potentially further
reduce computational requirements.
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when p, is lowest. We infer that volatility is most correlated when returns are most
correlated, which is intuitive.

The likelihood functions sharply increase with the number of frequencies. For in-
stance with (DM,JA), the log-likelihood increases by more than 800 when k goes from 1
to 5. Since the models are non-nested and specified by the same number of parameters,
this is a very substantial increase of fit in-sample. We also compare the goodness of fit
to the independent case in Table 3, and find that for (DM,JA) with k = 5, the gain in
likelihood is over 1300 points. Results are similar for other currencies, demonstrating
that the bivariate model improves over independent univariate models.

In Table 7, we reestimate bivariate MSM with the two-step procedure of subsection
4.4. For k < 5, the second stage uses the analytical bivariate likelihood, and for k =
6,7,8 the particle filter is implemented. Comparing the results with & < 5 to full
MLE, we observe that the parameter estimates are comparable, and two step estimation
appears to work well. For k = 6,7, 8, the results appear consistent with the univariate
MLE estimates of Table 1 as well as the estimates of the lower dimensional bivariate
models. The particle filter is thus effective in extending the range of tractable models.

We compare bivariate MSM with the constant correlation GARCH (CC-GARCH) of
Bollerslev (1990), which is a standard benchmark in the multivariate volatility literature.
Returns are specified as:

5’3? =V h?‘stav xtﬂ =YV htﬁ‘sfv

where e and Ef are two standard normals with correlation p.. The conditional variances
h{ and htﬁ satisfy the recursions h{ ; = we + aq(e§)? + boh§ and for each ¢ € {a, 3}
CC-GARCH is thus specified by 7 parameters as compared to 8 with multivariate MSM.

We report in Table 8 an in-sample comparison of bivariate MSM with k& = 5 com-
ponents against CC-GARCH. It is immediately clear that MSM gives much higher
likelihoods although it has only one additional parameter. For all three pairs of ex-
change rates, the difference in likelihood is over 1000 points. The same results hold
whether comparing full MLE results from the two models, or the likelihoods obtained
under two-step estimation. To account for the difference in the number of parameters,
we compute the BIC statistic for each model. We then test the significance of the
difference using the original method suggested by Vuong (1989), and the HAC-adjusted
version developed in Calvet and Fisher (2004). In all cases, the p-value from the test
that CC-GARCH has a superior BIC statistic to multivariate MSM is substantially less
than 1%. The in-sample evidence thus strongly favors multivariate MSM.
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5.2. Integral Transforms

We now use probability integral transforms to analyze out-of-sample properties, as in
Diebold, Gunther and Tay (1998) and Elerian, Chib and Shephard (2001). In all re-
maining empirical work, we use the MSM specification with & = 5 components. We
first estimate MSM and CC-GARCH on the 1973-1989 subsample. The out-of-sample
evaluations use the 3473 observations from 1990 to 2003. Let y;,, = Z?:l Z¢+i denote
the forward-looking n-period return at time ¢. Either MSM or CC-GARCH can be used
to define a conditional forecast distribution

Ft,n(y) = P(yt,n < y!:m, ..,{L't).

Under correct specification, the random variables U, = F}p(yt,n) are uniformly dis-
tributed on [0, 1], and if n = 1 they are also independent.

In Figure 1, we compare histograms of selected integral transforms {Uy,} for the
two models. Histograms are shown for n = 1 and n = 5 days using as portfolios DM,
JA, an equal-weighted position in the two currencies, and a hedge portfolio with weights
(1, —1).'3 We see that MSM provides approximately uniform histograms. In contrast,
CC-GARCH generates tent-shaped plots with a large concentration of values around
0 and 1. These feature are symptomatic of tails that are too thin in the estimated
CC-GARCH process. Similar results are obtained with other currencies.

The Cramer-von Mises (CVM) criterion confirms these graphical results. Let 7
denote the number of out-of-sample periods, and Fy the empirical distribution of the
transforms U ;. As T* — oo, the Cramer-von Mises criterion 7T fol ly — Fu(y))?dy
weakly converges to a weighted series of independent y? random variables:

r [y FuPir= i (E)

where the {z;} are IID N(0,1).2* We report in Table 8 the CVM statistics for all
currencies and portfolios. At the 1% level, we reject MSM in only 2 out of 12 cases,
while CC-GARCH is rejected 10 out 12 cases.'® The CVM statistics thus confirm that
CC-GARCH provides inaccurate conditional density forecasts, while MSM is broadly
consistent with exchange rate data.

13The random variables U, are constructed as follows. In every period, we use the particle filter to
draw B values yﬁ{, s ygi) from the conditional distribution of y; , given 1, ..., z:. We then approximate
Fi.n(y) by the empirical c.d.f. F} ,(y) = i Zle 1{yt(b,)l < y}. Sensitivity tests indicate that B = 10, 000
draws are more than sufficient to provide a good approximation.

' See Shorack and Wellner (1986) for further details.

'5We do not adjust the critical values for estimation error. Earlier work (e.g., Thompson, 2000)

suggests that such adjustments would only have small effects.
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5.3. Value at Risk

The tail properties of financial series are of direct interest for risk management and
financial regulation. Value at risk (VaR) is a particularly widespread method that
summarizes the expected maximum loss over a target horizon within a given confidence
interval. Given a confidence level p, we define the value at risk of a portfolio to be the
1 — pt" quantile of the conditional return distribution:

VaRy, (p) = F,,}(1 —p).

v

Thus with probability p we expect to lose no more than VaR; , (p) over the next n days.

The accuracy of a model for value at risk is most easily verified by recording the
failure rate, i.e. the number of times VaR is exceeded in a given sample (e.g., Kupiec,
1995; Jorion, 1997).'6 Table 9 reports the failure rates of MSM and CC-GARCH for
portfolios held for n = 1 and 5 days and confidence levels of 1%, 5% and 10%. As
described in the Appendix, we forecast for each bivariate process the value at risk of
individual currencies, equal-weighted portfolios, and hedge portfolios.

The results in Table 9 lead to two conclusions: MSM is more conservative and
more accurate than CC-GARCH. MSM is more conservative because it tends to fail
less than CC-GARCH. For example, when the 1-day predicted failure rate is 1%, actual
portfolio losses exceed the MSM VaR forecast more than 1% of the time for 3 out of
12 portfolios. Actual losses exceed the 1% CC-GARCH quantile more than 1% of the
time in 11 out of 12 portfolios. Of course, an excessively conservative model does not
necessarily lead to superior risk management. Statistical tests suggest that MSM is not
overly conservative. For each portfolio and VaR quantile we test the null hypothesis
that the empirical failure rate is equal to the expected failure rate. For the MSM model,
the failure rates are statistically different from the 1% prediction for only 1 out of 12
portfolios. The CC-GARCH failure rates are statistically different from 1% in 11 out of
12 portfolios. MSM thus provides more accurate quantile forecasts than CC-GARCH.

5.4. Specification Tests

Our comparisons of bivariate MSM with CC-GARCH have shown that the new model
does well. It is now natural to investigate whether, in an absolute sense, the restrictions
imposed by our model are supported by the data. We weaken one assumption at a time,
and assess improvement in fit by likelihood ratio (LR) tests. When a restriction applies
equally to the univariate and bivariate models, we choose to test on the univariate series.
This allows us to distinguish between misspecifications originating in univariate MSM
and those unique to the bivariate approach.

16The failure rate is thus the proportion of days in the out-of-sample data in which @11+ +Zt4n <
VaR:n (p).
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Heterogeneity in volatility persistence is made parsimonious by the frequency para-
meterization (3.2). We focus on univariate models with & = 8 components. For each
currency, we consider the restricted univariate MLE estimates in Table 1 and denote by
L, the corresponding likelihood. In contrast, we call unrestricted model k € {1,..,k}
the extension in which frequency parameter v, is free and all other frequencies satisfy
(3.2). We estimate the k' unrestricted model and denote by L, (k) the corresponding
likelihood. Under the restricted model, 2[L, (k) — L,] converges to x? (1) as T — oc.
This methodology generates eight LR statistics for each of the three currencies. For
space constraints, we report in the text only the salient features of the analysis. For
DM, none of the tests provides evidence against the MSM frequency restrictions at the
1% level. One statistic (k = 6) is significant for JA, and two tests (k = 6, 7) are signifi-
cant for UK. Evidence against the frequency specification is thus limited to three of the
twenty-four tests.

We similarly assess on univariate series whether volatility components have identical
distributions across frequencies. Unrestricted specification k permits component Mj,; to
have its own distribution parameter mg(k). Results are mixed. For DM, only two of the
eight tests (k = 1,6) are significant at the 1% level. For JA, the first five tests suggest
a value of mg(k) larger than for the other components. Similarly for the UK series, LR
tests of the first 4 components suggest stronger shocks at low than at high frequency
variation, while higher frequencies (k = 6,7) suggest less variability. Overall, the DM
data seems to match the MSM model exceptionally well, while JA and UK appear to
prefer stronger low-frequency variation. These results are consistent with Calvet and
Fisher (2002), who show that DM best matches the moment-scaling restrictions implied
by the multifractal model. We also note that the current analysis only considers binomial
MSM. Multivariate distributions M such as the lognormal may better accommodate the
strong low-frequency variations in UK and JA over the last three decades.

We finally test the restrictions imposed by bivariate MSM on volatility comovement.
For each currency pair, the restricted model is given by the full MLE estimates with
k =5 in Table 6. Unrestricted model k permits that component k may have its own
unique arrival correlation A\p. We report no rejections at the 1% level for JA-UK, one
significant test (k = 5) for the DM-UK pair, and two significant statistics (k = 2,5) for
the DM-JA pair. Overall, MSM incorporates empirically reasonable restrictions that
permit parsimonious specification of bivariate multifrequency volatility.

6. Extension to Many Assets

6.1. Multivariate MSM

Bivariate MSM can be readily extended to economies with an arbitrary number N of
financial prices. The construction assumes a volatility component M, € Ry for each
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frequency k € {1,...,k} and asset n € {1,..., N}. As in the bivariate case, components
My, and M ,?,:t are statistically independent if & # k’, but can be correlated if n # n'.
The dynamics of volatility components are determined by a multivariate distribution
M on RY, and an arrival vector 1; € {0,1}" for each frequency k € {1,..,k}. The
component of each asset switches with unconditional probability v,,, and arrivals across
assets are characterized by correlation coefficients A,, , :

Elk,t = ’Yk;]-a Corr(lk,t) = ()\n,n’)lgn,n’SN-

The state vector is constructed recursively. At time ¢, we draw the independent ar-
rival vector (1y.4) k=1, k> and sample the new components My, from the corresponding
marginal distribution of M.

The volatility state is fully specified by N x k matrix M; = (M} )n- The econo-
metrician again has beliefs II; over the state space that can be updated using Bayes’
rule. When the distribution of M is discrete, the likelihood function is available in
closed-form. For large state spaces, estimation can be carried out using a particle filter.
We refer the reader to the Appendix for further details.

While natural, this approach requires the specification and estimation of the multi-
variate distribution M and the arrival correlation matrix (A, n/)i1<nn<n. In a general
formulation, the number of parameter therefore grows at least as fast as a quadratic
function of N. Like other specifications such as multivariate GARCH, the model is com-
putationally expensive for a large number of assets. We now propose an overlapping
class of models that is based on the same principles as multivariate MSM and remains
tractable with many assets.

6.2. Factor MSM

A factor model for stochastic volatility gives a parsimonious multifrequency specifica-
tion. Consider L volatility factors Fy = (Flf,t)lgkgl_c € RE, which can jointly affect
all currencies. Each vector I contains k frequency-specific components and follows a
specific univariate MSM process with parameters (b, vz, mé). The volatility of each cur-
rency n is also affected by an idiosyncratic shock E}', which is specified by parameters
(b, v, mOLHL). Draws of the factors F| lf,t and idiosyncratic shocks E}, are independent,
but the timing of arrivals may be correlated. Factors and idiosyncratic components thus
follow univariate MSM with identical frequencies.

For every currency n € {1,..., N}, the volatility component M}, is the weighted

product of the factors and idiosyncratic shock of same frequency:
My, =Gy, (Fkl,t)w? (Flft)wg (El?,t)wz“-
The weights are non-negative and add up to one. The constant C,, is chosen to guarantee
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that EM}, = 1, and is thus not a free parameter.'” In logarithms, we obtain the more
familiar expression:

L
In M, =InC),, + nglnF,ft +wi In B,
=1

Returns are then defined as previously as z; = (Miy * ... * M,;t)l/ 2 x ¢, where g is a
centered multivariate Gaussian noise: ; ~ N(0,X). We show in the Appendix that as
with multivariate GARCH, the estimation of 3 can be carried out directly from sample
autocorrelations of the series.

Two special cases of this setup are of particular interest. First, when arrivals for
all factors and idiosyncratic components are simultaneous, factor MSM is a special
case of the multivariate MSM in the previous subsection. New draws of M], are then
independent of all past multipliers, and the factor model generates univariate series
that are consistent with univariate MSM. Further, when the distribution of factors
and idiosyncratic shocks is lognormal, the resulting multipliers M}, are lognormal as
well. This is convenient as we know that lognormal multipliers fit well the moment-
scaling properties of financial series, including exchange rates (Calvet and Fisher, 2002).
Stochastic volatility is now fully specified by: (1) the frequency parameters b and 7y;
(2) the distribution parameters of factors and idiosyncratic shocks (mj}, .., m0L+N ); and
(3) the factor loadings w™ = (wy,..,w}) of each asset. The model is thus defined by
N(L + 1) + L + 2 volatility parameters.

The second interesting special case is when arrivals of factors and idiosyncratic
shocks are independent. It is easy to verify that this specification has the same num-
ber of parameters as when arrivals are simultaneous. Further, this choice permits that
at time t some but not all factors and idiosyncratic components may change. The
univariate volatility components M}, then takes a new value without requiring a com-
pletely independent draw from M. Thus, the implied univariate volatility dynamics are
smoother than standard MSM, but can generate the same thick tails and long-memory
volatility persistence. These specifications are thus both practical to implement and
deserving of further empirical investigation.

7. Conclusion

This paper uses the Markov-Switching Multifractal (MSM) of Calvet and Fisher (2001,
2004) to implement a univariate frequency decomposition of volatility in several ex-
change rate series. We find that the estimated components are generally difficult to

'"We thus have C,, = 1/E[ (F,it)w?}E[(Flft)wE] E[(Eﬁt)wz+l}. This computation is particularly
easy when the marginal distribution of the shocks are multinomial or lognormal.
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relate to standard macroeconomic variables. Low frequency volatility components from
all currencies covary positively with oil and gold prices, suggesting that these commodi-
ties may act as proxies for global economic risk. Relative to previous measures of
volatility, the component decomposition increases the strength and cross-sectional ro-
bustness of our results. At the same time, our analysis encourages the econometrician
to be cautious since the source of covariation is limited to low frequencies.

We identify strong patterns in volatility comovement between currencies. Across
exchange-rate pairs, volatility components tend to have high correlation when their du-
rations are similar and low correlations otherwise. This motivates our development
of bivariate MSM, a multifrequency model of comovement in stochastic volatility and
covariation in financial prices. The model permits a parsimonious specification of bivari-
ate shocks with heterogeneous durations, capturing the economic intuition that shared
fundamentals may have different innovation frequencies. We show that Bayesian up-
dating and the likelihood function are always available in closed-form, but are practical
to implement only when the state space is of moderate size. We therefore develop a
particle filter suitable for larger state spaces, and show its good performance in inference
and forecasting. We estimate bivariate MSM on three exchange rate pairs, and show
that it performs well in- and out-of-sample relative to a standard benchmark model,
CC-GARCH. We also use likelihood ratio tests to confirm some of the principle restric-
tions of the model. We conduct inference and forecasting for good performing pure

regime-switching models with 26

states and only eight parameters.

The methods developed in this paper open a number of new directions for future
research. First, MSM offers an economically appealing and computationally tractable
alternative to previous multivariate GARCH and stochastic volatility models. Compar-
isons of the approaches in different applications can and should be developed. Addi-
tionally, the particle filter methodology opens new frontiers for conducting estimation
and inference in MSM processes with very large state spaces. The particle filter also
permits examination of processes where the volatility component distribution takes val-
ues on a continuous support. Earlier work suggests that lognormal distributions might
be particularly appealing. This specification becomes computationally accessible with
the particle filter, and can be compared to the binomial specification used in this paper
and earlier research. Finally, we propose in this paper a multifrequency factor structure
appropriate for multivariate settings with potentially large numbers of assets. This
appears promising for future empirical research.
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8. Appendix

8.1. Switching Vector

The probability of a simultaneous switch is P(1}, = 15775 =1) =P(1g, = 1)1?(15775 =
113, = 1). Overall, the vector 15 has joint distribution

Arrival on (3 No arrival on 8
Arrival on @ v, [(1 — Ny + A V(T =) (1 =)
No arrival on & 7, (1 =) (1 = A) (1 —)[1 — v, (1 = N)]

8.2. Ergodic Distribution

The bivariate process (M, M,ft) can take values s' = (H, H), s> = (H,L), s> = (L, H)
and s* = (L, L). The transition matrix is 7' = (tij), where t;; = P(sp41 = s/|s; = sh). Tt

satisfies

P I—L—pp 1-Z—pp -1+
T_ -3 —q Qe V= 1l+a 1—F —a
- —q v —1+a K 1—% —q |’
Ye—l4pe 1= —pp 1—F —p Pk
where
1+ p;
P = 1=yl = Ay + Al —,
= 1- 1= Ay N Pm
S Vi + Yl )V + Al 1

Simple manipulation implies that the characteristic polynomial of T is
Pr(z) = (1 —2)(1 — v — 2)*[2(px + ar + 7)) — 3 — .

We easily check that [2(pr + g + 7) — 3| < 1 and infer that 7" has a unique ergodic
distribution II;, = (ﬁkHH,ﬁkHL,ﬁﬁH,ﬁéL). The symmetry of the transition matrix
implies that ﬁ,lj H— ﬁﬁL and f[,lj L= ﬁﬁH . We easily check that ﬁkH H— 1—112_2(;&{%
or equivalently

cam 11— (= )1 = Ay + A2
ST -2

and finally note that Il = 1/2 — ITHH,
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8.3. Particle Filter

As discussed in the main text, the vectors Mt(}r)l, v Mt(fl) are independent draws from
the probability distribution h(m) = P(M¢y1 = m|X;). Consider a continuous func-
tion Y defined on Ri and taking values on the real line. The conditional expectation
E Y (Mi1)| Xea] = Z?:l P(M;y1 = m/|X;41) Y (m?) is conveniently rewritten as

d

BIY (M) Xiaa] = 3 hmd) e = BBy .

=1

The Monte Carlo approximation to this integral is

P(Mys1 = M| Xee1) o)
E[Y (M) Xea] = B Z Y(Mt+1)-

hOI)
Bayes’ rule implies
(Myy1 = t+1| t+1) _ fxt+1(fﬁt+1| t+1 t+1)
B h(M, t(Jr)l) B fr, 1 (Te41] X2)
Since fy,,, (Te41|X¢) ~ & Sh_, fxt+1($t+1’Mt(_?_%)7 we infer that
P(Myyq = M| X Mgy = MO
(Myp1 = My 5| Xevr)  fa (@[ Mgy = M)
~ B N
Bh(M,%) St Fovr e | Mesy = )

The right-hand side defines a probability p, for every b € {1, .., B}. We infer that the ran-
dom variable Y (M;1) has conditional expectation E [Y (My1)| Xi41] = Zb 11y Y (M, t(+)1)
Since this result is valid for any function Y, we conclude that 11,1 can be approximated
with a discrete distribution taking on the value Mt(i)l with probability p,.

8.4. Two-Step Estimation

We partition the parameter vector into ¢ = (¢4, ¢5)’, with ¢ = (04,05, m§, mg, b,vz)
and 1y = (p.,A)’. In the first step, we compute the vector 1}1 that maximizes the
combined univariate likelihood L(xf';m§,cq,b,vz) + L(xf; mg, 03,b,7%). Note that 1211
is a GMM estimator based on the moment conditions OL(x§') /09, —i—aL(:Bf )/0v;. Under
correct specification the expectation of each derivative is zero, which implies consistency
and asymptotic normality of wl In the second step, we estimate 15 by max1m1z1ng the
simulated bivariate likelihood L(z§,x; ,1/11, 1) given the first stage estimate wl The
simulated likelihood is computed using the particle filter with B = 10,000 draws.
Standard errors for the two-step estimates are obtained by restating the algorithm
as a GMM estimator based on the moment conditions 7! Zthl gt(g}) = 0, where
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g+ (1) is the column vector with components d[ln f(z¢| X5 ;) +In f(xf|Xtﬁ_1)]/6w1 and
Oln f(xf, wtﬁ | X5, Xtﬁ_l) /0. Standard GMM arguments imply asymptotic normality

VT — o) L N[0, H'V (H') 1]

with H = —Edg; (1) /O’ and V = Var [T‘l/Qth (1/)0)]. To estimate V, we ap-
proximate g; by taking finite difference derivatives of the objective function. Then we
estimate V' using the formula of Newey and West (1987) with 10 lags. When calculat-
ing finite difference derivatives using the particle filter, we use 15,000 simulations. We
estimate H by calculating the sample variance of the first derivatives:

PI _ H171A+ H172 ,\0 7
Hs Hs 5

where I?[Ll and ﬁLQ are the 6 x 6 matrices

_— Oln f(af| X)) Ol f@PIXE,)  [6PIn f(apIXEy)
o= T |
s 81nf |Xfl>alnf< X0 [P fE) X))
i = T3 o | T aaw |

Similarly, (ﬁgl, ﬁgg) are the bottom two rows of the 8 x 8 matrix

dln f 33t795t|Xt 17Xtﬁ 1)alnf($t7 ‘XtOil?XtB—l)

> z o0

The matrix H is consistent since its elements are second derivatives of the univariate or

bivariate likelihoods.

8.5. VaR Forecasts

We use the particle filter to calculate the VaR implied by MSM. The algorithm in section
3.4 is used to generate volatility draws Mt(l), e Mt(B) from the distribution II;. For
each draw Mt(b), we simulate the bivariate series forward n days to obtain B draws from
the cumulative return on the portfolio. We then estimate VaR;, (p) as the 1 — p'*
empirical quantile.

For 1 day forecasts CC-GARCH provides a closed form expression for value at risk,
namely VaR;1 (p) = —Q1-p 0yr—1, where Q1 is the (1 —p)th quantile of a standard
normal variable and oy;_; is the standard deviation implied by CC-GARCH. The 5-day
CC-GARCH forecasts are calculated by simulation. In all cases we use B = 10000

simulated draws.
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8.6. Inference in the Multivariate Model

For either multivariate MSM or factor MSM, we seek to estimate the covariance matrix
> and the vector of volatility parameters . One possibility is to choose a tight spec-
ification for 3 and use the particle filter to optimize the simulated likelihood over all
parameters. For example, our bivariate estimates show that currency pairs with strong
volatility comovement also have high correlation in innovations. This suggests using the
same factor structure that controls volatility to parsimoniously specify 3.

In the general case, estimation can be conducted in two steps: (1) Estimate the
covariance matrix of the Gaussian noises; (2) Use the particle filter to estimate the
volatility parameters ¢ by simulated maximum likelihood. Step (2) is straightforward,
and step (1) can be conducted as follows. For any two assets n and p, we know that

Elz{Vz("] = T Blefel”] and Bla{"z(P| = T, ,Ble{Ve)|,
k
where Ty = [, B{[M},M[)'/?}. We infer

Y2 o BleVel”)
Y leiVaP| Bl

= (P(/On,p)a

where p,, , = Corr[aﬁn);egp )] and ¢(p) = T ———=L——_ The function ¢ is strictly

T 2., /1—p2+parcsinp

increasing and maps [—1,1] onto [—1,1]. A consistent estimator of the correlation coef-
SRR
n7p :
el

The variance of the Gaussians is consistently estimated by 62 = + Zt[:c?)]?. The

ficient is therefore

covariance matrix defined by &i and p,, ,, may not be positive-definite. We thus apply
the methodology of Ledoit, Santa-Clara and Wolf (2003) to obtain a positive semi-
definite matrix 3.
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TABLE 1. — UNIVARIATE MLE
k=1 2 3 4 5 6 7 8

Deutsche Mark

o 1.617  1.556 1535 1.472 1445  1.396  1.365  1.338
(0.019)  (0.015)  (0.012)  (0.012)  (0.013)  (0.012)  (0.011)  (0.011)
& 0.672  0.649 0594 0567 0504 0537 0549  0.552
(0.012)  (0.017)  (0.013)  (0.015)  (0.016)  (0.027)  (0.020)  (0.021)
o 0.074 008 0841 0779 0812 0909 0979  0.998
(0.002)  (0.018)  (0.096)  (0.082)  (0.083)  (0.103)  (0.036)  (0.008)
b - 6.85 34.31 11.86 9.02 5.83 467 3.82

(244) (1055) (1.99) (1.24) (0.82) (0.60) (0.49)
InL  -7121.92 -6975.92 -6916.81 -6900.06 -6891.67 -6888.91 -6885.60 -6885.90

Japanese Yen

g 1.783 1774 1688 1644 1579 1567  1.559  1.508
(0.011)  (0.009)  (0.011)  (0.011)  (0.010)  (0.010)  (0.010)  (0.010)
& 0632 0537 0568 0473 0473 0634 0514 0508
(0.011)  (0.009)  (0.019)  (0.017)  (0.023)  (0.023)  (0.019)  (0.017)
A 0208 0358 0276 0713 0861  0.894  0.894  0.977
(0.022)  (0.038)  (0.048)  (0.082)  (0.053)  (0.060)  (0.058)  (0.030)
b - 14747 1176 15.73 9.13 8.22 7.60 5.88

(59.61) (202 (267) (118) (0.99) (0.87)  (0.74)
InL  -6776.19 -6421.01 -6279.02 -6216.85 -6196.55 -6184.90 -6181.20 -6174.96

British Pound

g 1.708  1.666 1.640  1.612 1574 1529  1.498 1.457
(0.013)  (0.013)  (0.011)  (0.014)  (0.011) (0.012)  (0.011)  (0.010)
& 0.606 058 0523 0516 0431 0455 0385  0.380
(0.009)  (0.018)  (0.018)  (0.016)  (0.015)  (0.017)  (0.013)  (0.014)
A 0.113 0213 0271 0549 0617 0782 0817  0.959
(0.016)  (0.036)  (0.065)  (0.086)  (0.074)  (0.078)  (0.083)  (0.001)
b - 18.69 13.92 1439 1159 8.49 6.83 5.33

(4.84) (268 (267) (1.84) (1.16) (087)  (0.04)
InL  -6220.55 -5987.37 -5882.60 -5826.92 -5792.97 -5778.58 -5771.92 -5770.20

Notes: This table shows maximum likelihood estimation results for binomial MSM. Columns correspond
to the number k of volatility components. Asymptotic standard errors are in parenthesis.
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TABLE 2. — CORRELATION OF SMOOTHED

UNIVARIATE VOLATILITY COMPONENT BELIEFS

DM1
DM2
DM3
DM4
DM5
DM6
DM7
DMS8
|zpMm]|
m%)M

JA1
JA2
JA3
JA4
JAS
JAG6
JAT
JAS8
|Zal
$§A

UK1
UK2
UK3
UK4
UK5
UK6
UK7
UKS8
lzuk|
m%K

DM1

DM2

DM3 DM4 DM5 DM6

DM7

DMS8

lzom]

2
DM

1.000
0.762
0.377
0.174
0.099
0.066
0.031
0.020
0.189
0.115

0.590
0.611
0.788
0.368
0.157
0.058
0.029
0.012
0.187
0.091

0.819
0.730
0.464
0.251
0.070
0.149
0.082
0.030
0.168
0.081

0.762
1.000
0.600
0.328
0.151
0.093
0.043
0.028
0.255
0.174

0.287
0.302
0.440
0.185
0.177
0.062
0.023
0.008
0.108
0.048

0.525
0.558
0.526
0.505
0.131
0.162
0.079
0.030
0.213
0.135

0.377
0.600
1.000
0.603
0.307
0.168
0.077
0.052
0.312
0.245

0.036
0.048
0.172
0.162
0.150
0.127
0.032
0.011
0.092
0.065

0.170
0.246
0.254
0.308
0.516
0.239
0.092
0.035
0.221
0.178

0.174
0.328
0.603
1.000
0.738
0.432
0.201
0.137
0.374
0.295

0.020
0.023
0.063
0.064
0.231
0.279
0.106
0.043
0.134
0.101

0.081
0.165
0.163
0.195
0.571
0.440
0.185
0.074
0.254
0.213

0.099
0.151
0.307
0.738
1.000
0.792
0.420
0.297
0.463
0.373

0.036
0.038
0.065
0.030
0.169
0.349
0.206
0.095
0.177
0.142

0.052
0.094
0.072
0.075
0.365
0.536
0.319
0.145
0.273
0.234

0.066
0.093
0.168
0.432
0.792
1.000
0.770
0.610
0.667
0.539

0.032
0.034
0.048
0.036
0.109
0.284
0.321
0.209
0.256
0.209

0.042
0.062
0.050
0.049
0.200
0.423
0.463
0.301
0.360
0.305

0.031
0.043
0.077
0.201
0.420
0.770
1.000
0.961
0.887
0.713

0.012
0.013
0.021
0.020
0.053
0.155
0.312
0.339
0.328
0.261

0.018
0.028
0.023
0.021
0.091
0.228
0.431
0.473
0.462
0.390

0.020
0.028
0.052
0.137
0.297
0.610
0.961
1.000
0.894
0.716

0.007
0.008
0.013
0.013
0.036
0.111
0.267
0.353
0.327
0.256

0.011
0.018
0.015
0.014
0.062
0.162
0.362
0.488
0.462
0.391

0.189
0.255
0.312
0.374
0.463
0.667
0.887
0.894
1.000
0.872

0.051
0.056
0.104
0.073
0.103
0.192
0.284
0.333
0.363
0.297

0.114
0.134
0.128
0.143
0.213
0.291
0.407
0.471
0.564
0.508

0.115
0.174
0.245
0.295
0.373
0.539
0.713
0.716
0.872
1.000

0.002
0.006
0.048
0.062
0.084
0.174
0.258
0.303
0.346
0.344

0.054
0.073
0.086
0.111
0.169
0.242
0.354
0.409
0.524
0.571

Notes: This table shows correlations from a frequency decomposition of binomial MSM with k& = 8
components for the univariate DM series with itself, JA, and UK. For each series, the smoothed probabili-
ties My, = E(Mp, |z1, ..., z7) of different volatility states are calculated. For convenience, we denote these
probabilities by DM1,...,DM8,JA1,...,JA8,UK1,...,UK8. The table then shows correlations of the DM decom-
position with decompositions from all three series. Correlations are generally strongest near the diagonal

where components have similar indices.
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TABLE 3. — COMBINED UNIVARIATE RESULTS
A. MLE Estimation

k=1 2 3 4 5 6 7 8
DM-JA Parameter Estimates

M 1.643 1.618 1.515 1.474 1.445 1.405 1.397 1.367
(0.013) (0.014) (0.013) (0.013) (0.011) (0.013) (0.012) (0.011)

mgA 1.775 1.757 1.687 1.638 1.578 1.565 1.522 1.488
(0.018) (0.010) (0.010) (0.011) (0.010) (0.010) (0.010) (0.014)

M 0.669 0.577 0.597 0.569 0.504 0.565 0.449 0.472
(0.010) (0.011) (0.015) (0.018) (0.015) (0.021) (0.018) (0.018)

G1a 0.613 0.544 0.565 0.487 0.476 0.632 0.384 0.532
(0.016) (0.010) (0.018) (0.018) (0.023) (0.024) (0.016) (0.027)

A 0.129 0.257 0.301 0.756 0.844 0.872 0.959 0.982
(0.013) (0.026) (0.068) (0.057) (0.055) (0.054) (0.036) (0.022)

b - 69.57 11.97 13.21 9.14 7.16 6.16 4.93
(21.57) (2.04) (1.61) (0.95) (0.65) (0.57) (0.45)
InL -13913.86 -13424.24 -13203.13 -13119.07 -13088.39 -13077.02 -13072.22 -13063.11

LR Tests Against Unrestricted Univariate

DM-JA 0.000 0.000 0.026 0.341 0.922 0.201 0.069 0.326
DM-UK 0.369 0.049 0.021 0.192 0.062 0.062 0.065 0.334
JA-UK 0.060 0.003 0.837 0.601 0.132 0.487 0.869 0.929

B. Correlation of Smoothed Volatility Component Beliefs
DM1 DM2 DM3 DM4 DM5 DM6 DM7 DMS8 |zDMm| :EQDM

JA1 0.628 0.714 0.349 0.072 0.009 0.038 0.020 0.007 0.081 0.028
JA2 0.690 0.774 0.405 0.135 0.016 0.048 0.027 0.011 0.101 0.043
JA3 0.595 0.686 0.228 0.140 0.018 0.049 0.028 0.012 0.078 0.033
JA4 0.306 0.234 0.147 0.114 0.036 0.022 0.027 0.013 0.065 0.065
JAS -0.019  -0.034  0.052 0.113 0.302 0.227 0.116 0.056 0.117 0.102
JA6 0.028 0.023 0.040 0.084 0.255 0.352 0.258 0.145 0.206 0.186
JAT 0.008 0.009 0.007 0.021 0.103 0.224 0.342 0.294 0.299 0.274
JAS 0.004 0.004 0.002 0.009 0.048 0.123 0.287 0.353 0.333 0.304
|Z3al 0.177 0.191 0.093 0.088 0.128 0.193 0.301 0.326 0.363 0.346
72, 0.087 0.094 0.039 0.066 0.100 0.156 0.243 0.254 0.297 0.344

Notes: Panel A shows maximum likelihood estimation results for the combined univariate model, which for
two series a and # has likelihood L(z{'; m§, 0a, b, v;)+L(z?; mg, 03,b,7;). This corresponds to the likelihood
of two statistically independent univariate MSM processes constrained to have the same frequency parameters
b and v; . Columns correspond to the number of frequencies k in the estimated model, and estimation
results with asymptotic standard errors in parentheses are presented for the DM-JA currency pair only. The
second part of Panel A shows p-values from a likelihood ratio test of the combined univariate against two
unrestricted independent MSM processes. A low p-value indicates that the restrictions imposed by assuming
the frequency parameters to be identical across currencies are rejected. Panel B then shows correlations from
a frequency decomposition of the DM-JA combined univariate model with eight components. For each series,
the smoothed probabilities Mk,t = E(Mp,¢|z1, ..., z7) of volatility states are calculated. For convenience, we
denote these probabilities by DM1,....DM8,JA1,...,JA8. Correlations are strongest near the diagonal where
components have similar frequencies, and these results are strengthened relative to Table 2 where frequency
restrictions are not enforced.
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TABLE 4. — CORRELATION OF EXCHANGE
RATES WITH OTHER FINANCIAL PRICES

MSM Volatility Component Beliefs

Tt || RV k=1 2 3 4 5 6 7 8
Deutsche Mark
CRSP RV -0.0849 0.1712  0.0904 0.0930 0.0360 0.0316 0.1964 0.1421 0.0678 -0.0056 -0.0479
DAX RV -0.1515 0.0916 0.1205 0.2087 0.1296 0.1086  0.1541 0.1041 0.0111 -0.0363 -0.0395
il 0.1142 0.0235 0.2138 0.5254  0.4859 0.2685 0.1649 0.0241 -0.0178 -0.1062 -0.1137
Gold 0.0774 0.0652 0.1642 0.7378 0.4979 0.1334 0.0571 -0.0104 -0.0613 -0.0755 -0.0497

Japanese Yen

CRSP RV -0.0969 0.1696 0.2097 -0.1841 -0.1924 -0.2137 -0.1439 -0.0920 0.0011 -0.0136 0.0221
NIKKEI RV -0.0280 0.1155 0.2291 0.3069 0.3013 0.2764 -0.3071 -0.0965 -0.0526 -0.0781 -0.0400
Oil 0.0465 0.0429  0.0046 0.2803  0.2858 0.2838 0.1306 -0.1608 0.0335 -0.0422 0.0052
Gold -0.0135 0.1323  0.1444 0.5233  0.5306 0.5332 0.2071 0.0586  0.0417 -0.0633 -0.1053

British Pound
US CRSP RV 0.0480 0.0590 -0.0746 -0.0299  0.0907 0.0496 -0.0597 0.0291 0.0570 -0.0342 -0.0405

FTSE RV 0.0113  0.0390 -0.0986 -0.4642 -0.2036 -0.0865 -0.1638 0.1450 0.0405 -0.0329 -0.0518
Oil -0.0900 0.0864 0.2583 0.56495 0.3972  0.2652 0.2846 0.2087  0.0766 -0.0175 -0.0455
Gold 0.0396 0.0837 0.1466 0.6963 0.5087 0.4084 0.2824 -0.1019 0.0658 0.0083 -0.0243

Notes: This table investigates for each country the comovement between exchange rates and four financial variables:
the monthly realized volatility (RV) on the US and domestic stock market, the oil price (in USD/barrel) and the
gold price (in USD/oz). Monthly realized volatilities are imputed as the sum of squared daily returns. Correlation
between currency and equity RV is positive for DM and JA, but negative for UK. Oil and gold prices are positively
correlated to exchange rate volatility for all countries, and the MSM decomposition reveals that this result is primarily
a low-frequency phenomenon.

TABLE 5. — EVALUATION OF PARTICLE FILTER

Et E]n‘:l ‘T%+_7
InL n=1 5 10 20 50

True value -6885.9 0.432 2.194 4.442 8.991 22.66
Simulation average -6887.3 0.431 2.187 4.426 8.953 22.54
Standard deviation 1.851  0.012 0.064 0.142 0.325 0.983

1% quantile -6892.1 0.405 2.036 4.076 8.103 19.79
25% quantile -6888.4 0.423 2.147 4.338 8.747 21.97
50% quantile -6887.3 0.431 2.191 4.435 8.957 22.66
75% quantile -6886.2 0.439 2.231 4.525 9.179 23.23
99% quantile -6883.3 0.458 2330 4.739 9.633 24.42

Notes: This table compares values generated by the particle filter with their true values generated by exact
Bayesian updating. In L is the value of the log-likelihood function for the Deutsche Mark series with ¥ = 8 evaluated
at the maximum likelihood estimates in Table 1. The forecasted variance of the series is denoted E¢ 3°7_, z7,;. For
each quantity, the table provides the true value along with the average, standard deviation, and quantiles over 500
particle filter approximations using independent sets of random draws. Each approximation uses B = 10000 random
draws.
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TABLE 6. — BIVARIATE MSM ESTIMATES
MAXIMUM LIKELIHOOD

k=1 2 3 4 5
DM and JA
mPM 1.637 1.589 1.543 1.484 1.447
(0.011)  (0.013)  (0.013)  (0.013) (0.011)
g4 1.718 1.701 1.667 1.621 1.573
(0.011)  (0.009)  (0.010)  (0.010) (0.010)
Gpum 0.679 0.621 0.575 0.559 0.524
(0.009)  (0.011)  (0.014)  (0.017) (0.015)
574 0.683 0.649 0.577 0.573 0.509
(0.011)  (0.014)  (0.017)  (0.018) (0.024)
o 0.122 0.217 0.732 0.828 0.905
(0.013)  (0.022)  (0.066)  (0.049) (0.038)
b - 16.23 23.71 13.60 8.70
( 3.09) (4.54) (1.48) (0.83)
pe 0.580 0.589 0.576 0.580 0.580
(0.008)  (0.009)  (0.010)  (0.009) (0.009)
A 0.647 0.641 0.589 0.634 0.637
(0.041)  (0.039)  (0.056)  (0.048) (0.049)
InL -12519.99 -12001.70 -11797.05 -11688.44 -11655.80
DM and UK
mPM 1.651 1.570 1.522 1.492 1.484
(0.012)  (0.010)  (0.012)  (0.012) (0.011)
my K 1.731 1.656 1.624 1.588 1.564
(0.010)  (0.010)  (0.009)  (0.017) (0.010)
Gpum 0.681 0.706 0.626 0.560 0.498
(0.009)  (0.014)  (0.011)  (0.031) (0.012)
Uk 0.629 0.658 0.573 0.506 0.458
(0.009)  (0.015)  (0.012)  (0.042) (0.015)
o7 0.227 0.422 0.746 0.791 0.864
(0.021)  (0.052)  (0.057)  (0.067) (0.040)
b - 13.29 15.24 1.7 10.83
(2.28) (2.26) (1.68) (1.35)
Pe 0.707 0.714 0.707 0.708 0.710
(0.007)  (0.007)  (0.007)  (0.007) (0.007)
A 0.837 0.852 0.833 0.822 0.827
(0.023)  (0.023)  (0.026)  (0.027) (0.025)
InL -10894.41 -10513.18 -10335.82 -10270.90 -10240.51
JA and UK
mi4 1.764 1.718 1.693 1.629 1.608
(0.014)  (0.008)  (0.009)  (0.010) (0.010)
my K 1.729 1.661 1.633 1.595 1.571
(0.005)  (0.012)  (0.012)  (0.011) (0.010)
Gia 0.655 0.619 0.531 0.489 0.709
(0.008)  (0.014)  (0.015)  (0.014) (0.021)
UK 0.603 0.578 0.514 0.474 0.385
(0.006)  (0.012)  (0.018)  (0.011) (0.009)
i 0.219 0.304 0.449 0.748 0.791
(0.011)  (0.027)  (0.054)  (0.046) (0.043)
b - 21.50 15.08 13.21 11.91
(4.32) (2.08) (1.43) ( 1.40)
Pe 0.447 0.453 0.449 0.438 0.440
(0.007)  (0.004)  (0.011)  (0.012) (0.011)
A 0.499 0.565 0.560 0.544 0.535
(0.048)  (0.047)  (0.054)  (0.056) (0.059)
InL -12247.45 -11647.36  -11404.09 -11266.91 -11211.52

Notes: This table shows maximum likelihood estimation results for bivariate MSM. Columns correspond
to the number k of volatility components. Asymptotic standard errors are in parenthesis.
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TABLE 7.

— BIVARIATE MSM ESTIMATES

Two-STEP
k=1 2 3 4 5 6 7 8
DM and JA
g 1.643 1.618 1.515 1.474 1.445 1.405 1.397 1.367
(0.020) (0.019) (0.022) (0.023) (0.022) (0.022) (0.022) (0.022)
e 1.775 1.757 1.687 1.638 1.578 1.565 1.522 1.488
(0.013) (0.012) (0.016) (0.017) (0.020) (0.018) (0.019) (0.021)
o1 0.669 0.577 0.597 0.569 0.504 0.565 0.449 0.472
(0.014) (0.011) (0.019) (0.020) (0.021) (0.018) (0.027) (0.035)
09 0.613 0.544 0.565 0.487 0.476 0.632 0.384 0.532
(0.010) (0.010) (0.018) (0.016) (0.021) (0.017) (0.022) (0.041)
Ve 0.129 0.257 0.301 0.756 0.844 0.872 0.959 0.982
(0.014) (0.024) (0.037) (0.072) (0.075) (0.081) (0.047) (0.027)
b - 69.57 11.97 13.21 9.14 7.16 6.16 4.93
(21.80) (2.20) (2.11) (1.32) (1.29) (0.86)  (0.56)
Pe 0.566 0.570 0.581 0.574 0.578 0.581 0.581 0.618
(0.013) (0.014) (0.016) (0.017) (0.017) (0.049) (0.009) (0.010)
X 0.587 0.544 0.646 0.585 0.624 0.633 0.659 0.633
(0.065) (0.067) (0.064) (0.082) (0.080) (0.032) (0.038) (0.023)
DM and UK
g 1.626 1.565 1.519 1.473 1.452 1.406 1.401 1.370
(0.020) (0.021) (0.022) (0.023) (0.022) (0.022) (0.023) (0.022)
'fﬁg 1.697 1.657 1.641 1.602 1.573 1.521 1.492 1.454
(0.016)  (0.017) (0.019) (0.021) (0.022) (0.022) (0.022) (0.022)
o1 0.671 0.645 0.599 0.568 0.493 0.563 0.471 0.474
(0.013) (0.017) (0.018) (0.021) (0.018) (0.018) (0.028) (0.033)
D) 0.605 0.588 0.515 0.468 0.422 0.457 0.391 0.385
(0.011) (0.015) (0.015) (0.016) (0.017) (0.020) (0.019) (0.026)
Ve 0.090 0.151 0.388 0.683 0.672 0.798 0.844 0.969
(0.011) (0.019) (0.052) (0.082) (0.087) (0.093) (0.092) (0.043)
b - 12.33 15.25 11.97 10.09 6.97 6.23 5.02
(3.38) (3.02) (2.07) (1.68) (1.48) (0.88)  (0.65)
De 0.697 0.703 0.704 0.709 0.711 0.700 0.689 0.704
(0.010) (0.011) (0.012) (0.013) (0.012) (0.011) (0.012) (0.010)
X 0.814 0.818 0.826 0.802 0.820 0.790 0.844 0.800
(0.041) (0.037) (0.042) (0.048) (0.045) (0.050) (0.022) (0.027)
JA and UK
r’h(l) 1.776 1.762 1.688 1.645 1.631 1.568 1.558 1.507
(0.062) (0.031) (0.032) (0.025) (0.024) (0.024) (0.021) (0.023)
i 1.728 1.680 1.640 1.607 1.575 1.525 1.499 1.458
(0.016) (0.016) (0.019) (0.020) (0.021) (0.022) (0.021) (0.021)
o1 0.624 0.546 0.569 0.471 0.702 0.631 0.514 0.509
(0.011) (0.011) (0.017) (0.014) (0.028) (0.030) (0.025) (0.031)
09 0.606 0.561 0.522 0.508 0.432 0.457 0.384 0.379
(0.012) (0.012) (0.015) (0.015) (0.016) (0.021) (0.018) (0.023)
Vi 0.161 0.303 0.275 0.635 0.697 0.847 0.864 0.970
(0.015) (0.027) (0.030) (0.062) (0.068) (0.064) (0.067) (0.034)
b - 43.46 12.73 14.55 13.60 8.22 7.24 5.60
(10.62) (2.27) (2.14) (2.08) (1.04) (0.91)  (0.70)
Pe 0.439 0.439 0.448 0.439 0.439 0.436 0.414 0.436
(0.017) (0.018) (0.019) (0.021) (0.021) (0.010) (0.018) (0.017)
h) 0.494 0.519 0.570 0.549 0.524 0.575 0.625 0.561
(0.068) (0.071) (0.063) (0.076) (0.080) (0.049) (0.027) (0.015)

Notes: This table shows two-step estimates for bivariate MSM. Columns correspond to the number k
of volatility components. First stage estimates are obtained by optimizing the combined univariate likeli-
hood as in Table 3A. As described in the Appendix, this provides consistent estimates for the parameters

(mg,mg ,0a,08,b,7;). For k < 5, the second stage optimizes the analytically calculated bivariate MSM
likelihood conditional on the first stage estimates. For k = 6,7, 8, the optimization of the likelihood is nu-
merically implemented using the particle filter approximation. Standard errors in parentheses are calculated
by recasting the optimization in a GMM context, as described in the Appendix, and are HAC adjusted using

Newey and West (1987).
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TABLE 8. — IN-SAMPLE MODEL COMPARISON

BIC p-value
vs. Multifractal

No. of Vuong HAC
Parameters InL BIC (1989) Adj
A. Full MLE Estimates

DM and JA

Bivariate MSM 8 -11655.80  3.0626

CC GARCH 7 -12825.63  3.3679 < 0.001 < 0.001
DM and UK

Bivariate MSM 8 -10240.51 2.6919

CC GARCH 7 -11331.00 2.9764 < 0.001 < 0.001
JA and UK

Bivariate MSM 8 -11211.52  2.9462

CC GARCH 7 -12550.49  3.2958 < 0.001 < 0.001

B. Two-Step Estimates

DM and JA

Bivariate MSM 8 -11658.89  3.0634

CC GARCH 7 -12830.98 3.3693 < 0.001 < 0.001
DM and UK

Bivariate MSM 8 -10262.05 2.6975

CC GARCH 7 -11434.17 3.0034 < 0.001 < 0.001
JA and UK

Bivariate MSM 8 -11233.59  2.9521

CC GARCH 7 -12559.72  3.2982 < 0.001 < 0.001

Notes: This table summarizes information about in-sample goodness of fit. The Bayesian Information
Criterion is given by BIC = T~ !(—2In L + NPInT). The last two columns give p-values from a test that
the corresponding model dominates the multifractal model by the BIC criterion. The first value uses the
Vuong (1989) methodology, and the second value adjusts the test for heteroskedasticity and autocorrelation
as described in Calvet and Fisher (2004). A low p-value indicates that the CC GARCH model would be
rejected in favor of the multifractal model. Panel A presents the results when both models have been
estimated by Full MLE. Panel B presents results where both models are estimated by two-step procedures.

37



TABLE 9. — GOODNESS OF FIT
ONE-DAY FORECASTS

Bivariate MSM CC GARCH
DM,JA DM,UK JA,UK | DM,JA DM,UK JA,UK
Currency « 0.22 0.16 0.54 1.07 1.07 1.70
Currency 0.47 0.51 0.29 1.70 2.57 2.56
Equal-Weight 0.67 0.05 0.23 2.48 1.06 2.51
Hedge 2.27 0.59 1.06 0.56 5.93 0.52

Notes: This table shows the Cramer-vonMises distance between a uniform distribution and the empirical
distribution of the probability integral transform of the corresponding model forecast. The bivariate MSM
specification uses k = 5 components. Currency a and 3 refer to the first currency and second currency in
each pair. Equal-Weight is an equal weighted portfolio, and Hedge is a zero investment portfolio of a — f.
Under correct specification, the reported statistics are greater than 0.73 in about 1% of samples. A high
value of the statistic thus indicates rejection of the corresponding model. Rejections at the 1% level are
indicated by bold face.
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TABLE 10. — FAILURE RATES
VALUE AT RISK FORECASTS

Bivariate MSM CC GARCH
% 5% 10% 1% 5% 10%
A. One Day Horizon

DM and JA
Currency a 0.69 4.35 9.10 1.81 5.13 9.01
Currency 0.95 4.81 9.56 2.30 5.38 9.10
Equal-Weight 0.86 3.92 8.32 1.30 4.66 8.21
Hedge 0.69 5.64 12.21 2.25 6.68 11.81
DM and UK
Currency o 092 492 10.14 1.81 5.13 9.01
Currency 0.72 527 10.68 1.44 461 8.29
Equal-Weight 1.07 4.69 1028 1.87 5.18 8.98
Hedge 0.55 4.72 9.13 092 4.00 7.00
JA and UK
Currency a 1.01  5.04 9.88 2.30 5.38 9.10
Currency 0.60 4.41 9.70 1.44 461 8.29
Equal-Weight 0.84 4.55 8.78 1.64 4.69 8.03
Hedge 1.15 5.64 11.37 2.25 6.25 10.34

B. Five-Day Horizon

DM and JA
Currency a 0.78 4.21 9.57 1.61 548 10.72
Currency 1.07 530 10.55 2.31 7.06 11.62
Equal-Weight 0.72 4.44 8.50 1.64 5.25 9.14
Hedge 0.92 542 1216 3.29 8.39 13.46
DM and UK
Currency a 095 5.13 10.35 1.64 5.51 10.72
Currency 3 0.75 528 11.01 098 4.79 9.77
Equal-Weight 0.84 5.07 1093 1.27 594 10.61
Hedge 0.69 4.01 8.76 0.86 3.86 8.48
JA and UK
Currency a 1.21 553 10.75 2.36 6.86 11.70
Currency 0.46 4.67 9.02 1.53  4.93 9.57
Equal-Weight 0.84 4.12 9.02 1.53 4.93 9.57
Hedge 1.73 640 11.24 1.76 6.34 11.53

Notes: This table displays the frequency of returns that exceed the Value at Risk forecasted by the
model. The bivariate MSM specification uses k = 5 components. For quantile p% the number reported is
the frequency of portfolio returns below quantile p predicted by the model. If the VaR forecast is correct, the
observed failure rate should be close to the prediction. Boldface numbers are statistically different from « at
the 1% level. Panel A shows results for a one day horizon, while Panel B shows a five-day horizon. Currency
a and B refer to the first currency and second currency in each pair. Equal-Weight is an equal weighted
portfolio, and Hedge is a zero investment portfolio of & — 3. Standard errors in Panel A are computed by
p* (1 — p)/3473, where 3473 is the number of out-of-sample observations. Standard errors in Panel B are
computed using Newey and West (1987).
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Figure 1: Probability Integral Transforms. These figures show histograms of the probability integral
transforms {Uy,, } for horizons (in rows) of n = 1 and n = 5 days and portfolios (in columns) of DM, JA, an equal-
weighted portfolio of the two currencies, and a hedge portfolio with weights (1, —1). The models considered are
bivariate MSM with k£ = 5 components and CC-GARCH. Under correct specification, the integral transforms are
uniformly distributed.





