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ABSTRACT

Using Monte Carlo simulations, this paper evaluates the bias properties of common estimators used in

growth regressions derived from the Solow model. We explicitly allow for measurement error in the

right-hand side variables, as well as country-specific effects that are correlated with the regressors. Our

results suggest that using an OLS estimator applied to a single cross-section of variables averaged over

time (the between estimator) performs best in terms of the extent of bias on each of the estimated

coefficients. The fixed-effects estimator and the Arellano-Bond estimator greatly overstate the speed

of convergence under a wide variety of assumptions concerning the type and extent of measurement

error, while between understates it somewhat. Finally, fixed effects and Arellano-Bond bias towards

zero the slope estimates on the human and physical capital accumulation variables.
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1 Introduction

In the last decade, spurred by the early work of Baumol (1986) and Barro
(1991), growth regressions have become an industry. There exists no good
alternative for addressing the fundamental question of what accounts for
vast observed differences in per capita income across countries. Detailed
case studies, while they help identify hypotheses for further testing and the-
orizing, lack the generality of large sample studies. On the other hand, the
detractors of growth regressions have stressed their numerous drawbacks.
These include an often excessive distance between measured variables and
the theoretical concepts they are meant to capture; poor grounding of esti-
mated functional forms in economic theory, and in particular the prevalence
of reduced form relationships from which structural parameters cannot be
identified; unjustified claims of causality in explanations of growth; a small
number of available observations; and the prevalence of prior-driven data-
mining. These are but a few in a growing list, resulting in numerous method-
ological debates on the proper way to run growth regressions. Many of these
debates are yet unresolved, so research evaluating the effectiveness of cur-
rent methodologies and suggesting improvements to cross-country growth
empirics appears necessary.

This paper is such a study. We use simulation methods to evaluate the
bias properties of several estimators commonly used in the empirical growth
literature.

One contribution of our approach is to consider explicitly the impact
of measurement error on estimates of the determinants of growth. Mea-
surement error is likely to be a central problem in cross-country growth
empirics. Nonetheless, this issue has received little attention in the litera-
ture.1 In the absence of measurement error and other sources of endogeneity,
a fixed-effects estimator unambiguously dominates estimators that use any
between-country variation, when omitted variables such as the initial level
of technology are correlated with included right-hand side variables. In the
presence of measurement error, however, fixed-effects estimators will tend
to exacerbate measurement error bias when the right-hand side variables
are more time persistent than the errors in measurement. The issue then is

1A notable exception is Barro (1997), chapter 1, page 36, who briefly discusses the
possible consequences of measurement error for fixed-effects estimates of the rate of con-
vergence. Consistent with our simulation results, he argues that these estimates of the
speed of convergence are likely to be overstated. See also Griliches and Hausman (1986),
who made the same point without specifically referring to growth regressions.
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whether the gains from reducing omitted variables bias are offset by an in-
crease in measurement error bias under fixed-effects. We lack any guidance
from econometric theory to evaluate the resulting net bias in the multivariate
context of growth regressions, making Monte Carlo simulations necessary to
address this issue.

A related contribution of this paper is to help resolve a long-running
methodological debate in growth empirics: whether the appropriate way to
control for time invariant cross-country heterogeneity in the level of technol-
ogy is to use a fixed-effects estimator, thereby identifying parameters solely
on the basis of within-country variation, or to retain at least some between-
country variation in the data and directly include as right-hand side variables
available proxies explaining technological differences.2 Advancing this de-
bate has profound implications for our understanding of the growth process.
Results obtained using fixed-effects differ markedly in two main ways from
those obtained by attempting to include additional correlates of growth.

First, fixed-effects lead to estimates of the speed of conditional conver-
gence that are much higher than the conventional 2% obtained in cross sec-
tional studies.3 For a given history of income shocks, a fast speed of conver-
gence indicates that most countries at any point in time are relatively close
to their steady-states, suggesting that incomes can only rise by improving
the determinants of steady-state income, a rather pessimistic conclusion. A
slow speed of convergence, in contrast, suggests there is still a lot of catching
up to do, so that the force of neoclassical convergence alone can be expected
to raise per capita incomes of less developed countries over time. Second,
the fixed-effects estimator tends to reduce the magnitudes of the estimated
coefficients on right-hand variables compared to cross-sectional alternatives,
so that it becomes harder to obtain statistically significant estimates on the
determinants of steady-state income.4 This is also a pessimistic finding, as
it suggests that given improvements in steady-state determinants such as

2The first approach is associated with the work of Knight, Loayza and Villanueva
(1993), Islam (1995) and Caselli, Esquivel and Lefort (1996) among others. Since the
mid 1990s, the use of dynamic panel data estimators in growth empirics has become
prevalent. The second approach can be likened to a "kitchen-sink" method, in which the
unaccounted variation in economic growth was attributed to additionnal right-hand side
variables, meant to capture institutions, policies and economic structures. See Wacziarg
(2002) for a broad discussion of fixed-effects versus the kitchen sink approach.

3Barro and Sala-i-Martin (1995), chapters 11 and 12.
4For example, human capital variables that are highly significant in cross-sectional

estimates become insignificantly different from zero in panel-fixed effects applications,
and sometimes reverse signs. See Islam (1995) and Benhabib and Spiegel (1994).
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capital accumulation will yield smaller steady-state income gains.

To evaluate methodologies for growth empirics, we start with the Solow
(1956) growth model, in its human capital-augmented version proposed by
Mankiw, Romer and Weil (1992).5 The Solow model is arguably the only
solid theoretical foundation for the specific functional form generally esti-
mated by practitioners, which involves regressing growth rates on the log
initial income and a set of steady-state income determinants. Common
specifications of growth regressions can be directly derived from this model,
and reasonable values for the exogenous parameters of the model can be
postulated. Using such values and modelling explicitly the dynamic na-
ture of the Solow growth specification, we generate simulated data with
moments resembling those of the empirical data, and perform Monte Carlo
simulations to evaluate the performance of several commonly used estima-
tors: fixed-effects, random effects, between (OLS on country means), and
the Arellano-Bond estimator first introduced to growth empirics by Caselli,
Esquivel and Lefort (1996).6

Our results suggest that using a least-squares estimator applied to a
single cross-section of variables averaged over time (the between estima-
tor) performs best to estimate the speed of conditional income convergence,
though it tends to underestimate it. The fixed-effects estimator, as well
as the Arellano-Bond estimator, greatly overstate the speed of convergence
under a variety of assumptions concerning the type and extent of measure-
ment error. The random effects estimator also tends to overstate the speed of
convergence, though much less drastically than fixed-effects. Finally, fixed-
effects seriously biases towards zero the slope estimates on the determinants
of the steady-state level of income (the accumulation and depreciation vari-
ables of the Solow model), in particular on the human capital accumulation

5A recently proposed alternative to growth regressions has been "levels" regressions,
aimed at accounting for variation in the level of income rather than in the growth rate of
income. Salient examples include, in chronological order, Hall and Jones (1999), Frankel
and Romer (1999) and Acemoglu, Johnson and Robinson (2001). Arguably, these level
specifications are even more devoid of theoretical foundations than their growth counter-
parts, which in most cases can be traced back to some version of the neoclassical growth
model. Because this lack of theoretical foundation makes simulation difficult for levels
regressions, we focus on growth regression in this paper. These also remain vastly more
prevalent in the literature on the determinants of economic development.

6 In Section 4, we also evaluate the properties of the Seemingly-Unrelated Regression
model (SUR or flexible random effects) used for example in Barro and Sala-i-Martin (1995).
It turns out that this estimator has properties close to those of random effects. Section 4
also evaluates the bias properties of the cross-sectional estimator used in Mankiw, Romer
and Weil (1992), a variant of the between estimator.
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rate. In contrast, random effects and between tend to overstate them (bias
them away from zero).

Thus, our simulations are able to replicate the basic pattern of coeffi-
cients found in the literature using alternative estimators applied to real
data. The punchline of our results is that the use of dynamic panel data
methods leads to unreliable estimates when measurement error is present: it
leads to misleading inferences on the speed of convergence, and to findings
that common determinants of the steady-state income level are insignifi-
cantly different from zero when this is in fact not the case. In this particular
application, old-fashioned OLS on cross-sectional averages performs best.

Perhaps the main contribution of this paper is methodological, and car-
ries broader implications: the type of Monte Carlo exercise we present here
should be a systematic rite of passage for studies presenting new estima-
tion methodologies in any field of empirical economics. Estimators that
may seem attractive to address a specific econometric problem need to be
evaluated in a setting where several sources of bias may coexist. When a
potential for omitted variables bias coexists with measurement error, a cure
for the first problem can be worse than the disease, as it may exacerbate
the second.

This paper is structured as follows: Section 2 discusses theoretical con-
siderations related to the methodology of growth regressions. Section 3
presents our basic simulation methodology and results, contrasting OLS,
fixed-effects, random effects and Arellano-Bond GMM estimators. Section 4
discusses extensions of our simulations to country-specific measurement er-
ror, regressor-specific measurement error, autocorrelated measurement error
and additional estimators. Section 5 concludes by presenting new estimates
of the speed of income convergence and of the effect of steady-state determi-
nants using real data, and discusses them in light of our simulation results.

2 Theoretical Framework

2.1 Growth Regressions and the Solow Model

Mankiw, Romer and Weil (1992, henceforth MRW) and Islam (1995) have
shown that the Solow growth model can be transformed in a way that allows
its estimation through a simple application of linear regression techniques.
This section reviews this well-known derivation and shows how country-
specific effects can be entered into the model.
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The Solow growth model augmented to include human capital accumu-
lation starts with a simple neoclassical production function:

Y (t) = K(t)αH(t)β(A(t)L(t))1−α−β (1)

where Y is output, K is physical capital, H is human capital, L is labor
and A is a labor-augmenting technology parameter. L and A are assumed
to grow at exogenously determined rates n and g such that L(t) = L(0)ent

and A(t) = A(0)egt. MRW and Islam also assume that n and g do not vary
between countries.

Assume that in a given period a constant fraction of output is saved
and devoted to investment in physical and human capital. If we define
ŷ = Y/AL, k = K/AL and h = H/AL to be the units per effective unit of
labor, changes in physical and human capital can be represented as:

k̇(t) = skŷ(t)− (n+ g + δ)k(t) (2)

ḣ(t) = shŷ(t)− (n+ g + δ)h(t) (3)

where sh and sk are the proportions of output devoted to investment in
human and physical capital, respectively, and δ is the depreciation rate of
both human and physical capital (which is also assumed in the literature
not to vary between countries).

The dynamics in equations (2) and (3) imply that the economy converges
to steady-state levels of physical and human capital k∗ and h∗, derived by
setting k̇ = 0 and ḣ = 0. Substituting these values back into equation (1)
and taking logs, we get:

log y(t) ≡ log
Y (t)

L(t)
= logA(0) + gt− α+ β

1− α− β
log(n+ g + δ)

+
α

1− α− β
log sk +

β

1− α− β
log sh (4)

Equation (4) describes an economy in its steady-state. If one is willing
to assume that countries are at their steady-states, this equation can be
turned into an econometric specification for a "levels" regression - but the
assumption is unlikely to hold.7

To derive a growth regression explicitly, we can approximate the model
around the steady-state y∗:

d log ŷ(t)

dt
= λ [log ŷ∗ − log ŷ(t)] (5)

7However, for recent a paper taking such an assumption seriously, see Bernanke and
Gürkaynak (2001). For a critique, see Caselli (2001).
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where λ = (n+ g + δ) (1− α− β) is the rate of convergence. That is, λ is
the percentage of the gap between a country’s steady-state and its current
income that will be closed in one period, in the absence of any other shocks.8

A convergence rate of λ would imply that, given two points in time t1 and
t2, we can measure end-of-period output as:

log ŷ (t2) =
³
1− e−λτ

´
log ŷ∗ + e−λτ log ŷ (t1) (6)

where τ = t2 − t1. The higher the convergence rate, the closer we should
expect the economy to be to its steady-state at any point in time, all else
equal.

Noting that log ŷ (t) = log y(t)−logA(0)−gt, we can substitute equation
(4) into log ŷ∗ in equation (6) and get:

log y (t2) =
³
1− e−λτ

´ α

1− α− β
log sk +

³
1− e−λτ

´ β

1− α− β
log sh

−
³
1− e−λτ

´ α+ β

1− α− β
log (n+ g + δ)

+e−λτ log y (t1) +
³
1− e−λτ

´
logA(0) + g(t2 − e−λτ t1) (7)

This equation is the basis for estimating growth regressions in discrete time,
as derived from a continuous time Solow growth model. Adding an error
term νit with mean zero conditional on all the right-hand side variables,
capturing inherent randomness in log yit, we can rewrite equation (7) as a
fixed-effects panel data regression of the form:

log yit = γ0 + γ1 log sk,it−τ + γ2 log sh,it−τ + γ3 log (n+ g + δ)it−τ
+γ4 log yit−τ + µi + ηt + νit (8)

where t denotes the end of a time period of duration τ and t− τ denotes the
beginning of that period.9 The reduced form parameters and error terms

8For example, if λ = 0.10, then the half-life of convergence to the steady state will be
approximately log(2)/0.10 = 0.69/10 = 6.9 years.

9 In our actual empirical application of equation (8) the determinants of the steady-state
level of income log sk, log sh, and log (n+ g + δ) are entered as averages over the period
t−τ to t, rather than their beginning of period values. This is consistent with the common
practice of growth regressions, as in MRW and Islam, where introducing right-hand side
variables as period averages is thought to limit the extent of classical measurement error.
Note that theory gives us no guidance on this choice, as it considers these regressors to
be exogenous and time invariant.
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are defined as:

γ1 =
¡
1− e−λτ

¢
α

1−α−β
γ2 =

¡
1− e−λτ

¢ β
1−α−β

γ3 = −
¡
1− e−λτ

¢ α+β
1−α−β

γ4 = e−λτ

γ0 + µi =
¡
1− e−λτ

¢
logAi(0) (an intercept plus a country effect)

ηt = g(t− e−λτ (t− τ)) (a time specific effect)
νit (a zero-mean error term, orthogonal to the regressors)

Equation (8) is the functional form used as the data-generating process for
the remainder of this paper. In what follows we will sometimes find it useful
to rewrite equation (8) as:

log yit = γ0xit + µi + ηt + νit (9)

where we define x0it = [1, log sk,it−τ , log sh,it−τ , log (n+ g + δ)it−τ , log yit−τ ]
and γ0 = [γ0, γ1, γ2, γ3, γ4], with the dimension of these vectors denoted
Q = 5.

2.2 Country-level heterogeneity

The A(0) term constitutes a stumbling block for growth regressions. This
term captures the initial level of technology, which can be proxied for using
variables such as resource endowments, climate, institutions, government
type, and so on. These variables vary widely across countries, so that we
can index A(0) by i. Hence, we define γ0+µi ≡

¡
1− e−λτ

¢
logAi(0), where

γ0 is a constant capturing the average level of the initial technology term
across countries and µi is a zero-mean country-specific effect. There have
been three basic ways of dealing with country-level heterogeneity (i.e. the
µi =

¡
1− e−λτ

¢
logAi(0)−γ0 term) in estimating growth regressions. These

methods are associated with the contributions of MRW (1992), Islam (1995)
and Caselli, Esquivel and Lefort (1996), respectively.

MRW (1992) and Islam (1995) MRW assumed the µi term had mean
zero conditional on the other right hand side variables. As a result, they
ran simple OLS regressions of growth on the log of initial income and
time-averaged steady-state determinants (i.e. a single cross-section), in-
cluding an intercept in the regression to account for the mean γ0 of the¡
1− e−λτ

¢
logAi(0) term. A major drawback of this approach is that it
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causes the estimated coefficients to be biased if the orthogonality assump-
tion is untrue - which is likely to be the case in practice.

Assume that we want to estimate the parameters of the panel data re-
gression model of equation (9):

log yit = γ0xit + µi + εit (10)

where µi is not assumed to be independent from xit and εit = ηt + vit is a
well-behaved random-noise term.

If a pooled OLS (POLS) regression is run on the stacked data, standard
omitted variables bias will result:10

plim γ̂POLS = γ +Σ−1xxΣµx (11)

Define X as the NT ×Q matrix that stacks xit over time periods t = 1...T
and countries i = 1...N , and µ as the NT × 1 vector that similarly stacks
µi. Then, in equation (11), Σxx refers to the Q ×Q covariance matrix of
columns of X, and Σµx is the Q ×1 vector of the covariances of µ with the
columns of X.

Equation (11) implies that slope estimates will be biased if the country-
specific effect is correlated with the regressors. In our particular application,
the Solow model states that the omitted term captures some positive mul-
tiple of the initial level of technology logAi(0). The observed data in X
are initial income, rates of human and physical capital accumulation and
population growth. While the Solow model strictly speaking is silent about
the correlation between the logAi(0) term and the right-hand side variables,
there is a strong presumption that these four variables will be potentially
highly correlated with logAi(0). Hence, estimated coefficients could be sig-
nificantly biased when the correlation between logAi(0) and the steady-state
determinants is ignored.

This is the point originally made by Islam (1995) in advocating the use
of fixed-effects estimation instead of OLS on country means. Islam averaged
annual data from the available sample of countries across time, into 5-year
periods. µi is a time-invariant effect if λ is treated as a constant and τ does
not vary with time (i.e. the panel involves equally spaced periods). Hence,
it can be represented as a country-fixed effect in a panel regression, while
the term g(t− e−λτ (t− τ)) is a time effect. Using a fixed-effects estimator,

10This bias is also known as heterogeneity bias. In what follows, we will use the terms
heterogeneity bias and omitted variables bias interchangeably.
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Islam found the estimated rate of convergence to be much higher than had
been estimated by MRW, and the effect of some right-hand side variables
smaller (particularly human capital).

Caselli, Esquivel and Lefort (1996). Going one step further, Caselli,
Esquivel and Lefort (1996, henceforth CEL) pointed out the necessary cor-
relation between the country-specific effect µi and the log of initial income
resulting from the dynamic nature of the specification. The strong presump-
tion that Ai(0) will be correlated with some right-hand side variable is in
fact a necessity. Note that we can rewrite equation (9) as:

log yit = γ0 + γ0swit + γ4 log yit−τ + µi + ηt + vit (12)

where γ0s = [γ1, γ2, γ3] and wit =
£
log sk,it−τ , log sh,it−τ , log (n+ g + δ)it−τ

¤
.

Lagging equation (12) by one period, it is evident that log yit−τ contains
µi. Thus, log yit−τ must be correlated with the error term unless µi is
appropriately accounted for.

CEL transformed all variables used in the regressions into deviations
from period means (thereby removing the need for a time-specific inter-
cept ηt) and then eliminate the country-specific effects µi by taking first-
differences. Their transformed regression is:

glog yi,t − glog yi,t−τ = γ0s ( ewi,t − ewi,t−τ )

+γ4

³glog yi,t−τ − glog yi,t−2τ´+ (eνi,t − eνi,t−τ )(13)
where "˜" denotes deviations of variables from period means. The prob-
lem with this specification is that, while µi and ηt have been differenced
away, the term glog yi,t−τ is clearly not independent from eνi,t−τ .11 Hence,
some sort of instrumental variables approach is called for. CEL proposed a
GMM estimator similar to the Arellano and Bond (1991) estimator to deal
with the problems of heterogeneity bias and endogeneity of the differenced
lagged income term in equation (13). Their estimator results in a con-
sistent estimator for the unknown parameters under the moment condition
E [eνi,teνi,t−τ ] = 0. They instrument for the differenced independent variables
using all predetermined independent variables (in levels). For example, their

panel consists of four time-periods, and their variables
³glog yi,1 − glog yi,0´

and ( ewi,1 − ewi,0) for period 1 are instrumented using yi,0 and wi,0. Then,

11We will refer to this source of bias as endogeneity bias, to differentiate it from hetero-
geneity bias, resulting when country-specific effects are not differenced away completely.
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³glog yi,2 − glog yi,1´ and ( ewi,2 − ewi,1) are instrumented using yi,0, yi,1, wi,0

and wi,1 and so on. The exclusion of the current period ewi,t term from the
list of instruments is meant to deal with the possible endogeneity of the
variables in wit, a valid procedure under the assumption that all the instru-
mental variables are predetermined.12 Consistent estimates will result even
in the presence of measurement error on the right-hand side variables, as
long as the instruments are not correlated with the errors in measurement,
for example if these are white noise (as in the classical case).

Estimators in the class of Arellano and Bond’s GMM estimator may have
an advantage since they address several problems with the cross-sectional
approach to growth regressions. However, they require losing at least two
periods of data in order to implement the IV procedure, which could affect
estimates in an unknown direction when T is small (in our case, we group
observations into only eight time periods).

Another recently identified drawback of the Arellano-Bond method is the
problem of weak instruments: the first stage relationship between differenced
independent variables and lagged level variables may be weak, biasing GMM
estimates towards their fixed-effects counterparts. There is now a sizable
literature on this point. For example, Stock, Wright and Yogo (2002) show
that in a two-stage least squares (2SLS) context, if the instruments in the
first stage do not help at all in predicting the endogenous regressors, 2SLS
reduces to OLS.13 Staiger and Stock (1997) provide a rule of thumb for
determining whether instruments are weak in the linear IV case with one
endogenous regressor: if the first stage F-test for the joint significance of
the instruments is smaller than 10, then the instruments are declared to be
weak. For the case of multiple endogenous regressors, Stock and Yogo (2003)
propose using the Cragg-Donald (1993) test statistic for underidentification,
but using appropriately corrected critical values in order to use the statistic
for a test of the null hypothesis of weak instruments. We apply this test
in Section 3 in order to assess whether the Arellano-Bond estimates of the
12The Solow model, however, treats the wit variables as exogenous, so the endogeneity

of wit should not be a problem within the strict confines of the model. Moreover, whether
these variables are in fact predetermined is subject to debate.
13Stock, Wright and Yogo (2002) define the concentration parameter µ2 as a measure

of goodness of fit of the first stage regression, or equivalently a measure of the strength of
the instruments. They state that: "When µ2 = 0 (...), the instruments are not just weak,
but irrelevant. In this case, the mean of the 2SLS estimator is the probability limit of
the ordinary least squares (OLS) estimator, plim(β̂

OLS
). (...) When the instruments are

relevant but weak, the 2SLS estimator is biased toward plim(β̂
OLS

)." (p. 519).
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Solow model are subject to the weak instruments problem.

The three estimators discussed here have their own strengths and weak-
nesses. However, one topic that has received little attention in the previous
literature is what happens to these estimators in the presence of measure-
ment error.

2.3 Measurement Error and Heterogeneity Bias

2.3.1 Measurement error without heterogeneity bias

In this subsection, we examine what happens once we allow for measurement
error in the independent variables. In order to deal with various sources
of bias one by one, we will ignore for the moment the omitted variables
and endogeneity problems identified above, and return to them later. In
a univariate setting, when measurement error is white noise, pooled OLS
estimates will exhibit attenuation bias. However, in the more general mul-
tivariate case, it is impossible to sign the effect of measurement error on the
slope estimates.

Klepper and Leamer (1984) point out that in the presence of classical
measurement error in a multivariate context, few substantive restrictions can
be placed on the sign and magnitude of the resulting bias unless stringent
assumptions are made. They consider a regression model where a dependent
variable, in our notation log yit, is drawn from a normal distribution with
mean γ0xit (where xit is a Q ×1 column vector) and variance σ2ε conditional
on xit. Thus:

log yit = γ0xit + εit (14)

where εit = ηt + vit is a noise term with E [εit|xit] = 0. They assume
that xit cannot be perfectly observed, but rather that we can only observe
x∗it = xit + dit, where E [dit|xit] = 0.14 Define:

var [dit|xit] = D = diag
n
σ2d0 , σ

2
d1 , ..., σ

2
dQ−1

o
(15)

14 In our simulations, we will consider alternative specifications for the form of mea-
surement error. Note that in this section we are abstracting from measurement error in
the dependent variable log yit. It is well-known that, in the classical measurement error
case, this would be equivalent to raising the variance of the error term νit, reducing the
efficiency of the estimates without introducing bias. In our simulations, we will need to
consider measurement error in log yit explicitly because of the dynamic nature of the Solow
specification (log yit−τ appears on the right-hand side of the regression). Again, we are
ignoring this dynamic characteristic for now.
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In our application, we will set σ2d0 = 0, i.e. we will not shock the intercept
column in X. Defining x̄ ≡ E(xit), (log yit, x∗0it) has a multivariate normal
distribution with moments:

E
¡
log yit, x

∗0
it

¢
= (γ0x̄, x̄) (16)

V
¡
log yit, x

∗0
it

¢
=

·
σ2ε + γ0Σxxγ γ0Σxx
Σxxγ Σxx +D

¸
(17)

Now, performing a pooled OLS regression of log yit on x∗it, we can easily
show:

plim
¡
γ̂POLS

¢
= (Σxx +D)−1Σxxγ (18)

where X∗ stacks the x∗0it vectors over time and countries and y does the same
for log yit. Obviously, if D = 0, then pooled OLS will produce a consistent
estimator. But in the generic case where this assumption does not hold,
the estimator will be inconsistent. We cannot say anything more about the
sign of the bias unless we can make assumptions about the correlation struc-
ture among the various independent variables, and the covariance matrix of
measurement error. That is, if we can place restrictions on (Σxx +D) and
Σxx, based on some knowledge of the nature of the measurement error, then
we may be able to make statements on the sign and magnitude of the bias.
This is in general a tall order.

2.3.2 Measurement error with heterogeneity bias

Assume now that the conditional expectation of log yit is γ0xit+µi where µi
is unobserved and not necessarily orthogonal to the variables in xit.15 Thus,
the true model is:

log yit = γ0xit + µi + εit (19)

where all the variables are still defined as above. In this case, estimating the
model using OLS will involve two separate problems: 1) An omitted variables
bias problem due to the fact that µi is potentially correlated with the right
hand side variables in xit. 2) A measurement error problem due to the
fact that xit is imperfectly observed. As argued above it is already difficult
to make statements about the sign and magnitude of the bias when only
measurement error is present. Such statements become even more difficult

15 In the remainder of this section we continue to ignore the problem that arises from
using a fixed-effects estimator in the presence of a lagged dependent variable in xit - i.e.
the problem identified in the discussion following equation (13). We will however take this
issue into account in our simulations, which explictly model the dynamic nature of the
empirical Solow model.
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when correlated country effects are considered in addition. To illustrate this
formally, we can derive the probability limit of the pooled OLS estimator in
the presence of both measurement error and heterogeneity bias.

The unconditional expectations of log yit, x∗it and µi are:

E (log yit, x
∗
it, µi) =

¡
x̄0γ + µ̄, x̄, µ̄

¢
(20)

where µ̄ = E(µi) and x̄ = E(xit) = E(x∗it), and the variance of µi is denoted
σ2µ. Then:

V (log yit, x
∗
it, µi) =

 σ2ε + γ0Σxxγ + 2γ0Σµx + σ2µ γ0Σxx +Σ0µx γ0Σµx + σ2µ
Σxxγ +Σµx Σxx +D Σµx
γ0Σµx + σ2µ Σ0µx σ2µ


(21)

Suppose that we estimate γ using pooled OLS, with x∗it as our observed
regressor. Then the limiting value of the pooled OLS estimator for γ is:

plim γ̂POLS = (Σxx +D)−1Σxxγ + (Σxx +D)−1Σµx (22)

Obviously, this estimator is inconsistent, for two reasons: the first is mea-
surement error bias, and the second is heterogeneity bias. If D = 0, we
would recover equation (11), showing that pooled OLS would not involve
measurement error bias. On the other hand, if Σµx = 0, we would recover
equation (18), showing that pooled OLS regression would not involve any
heterogeneity bias. If neither of these two issues were a problem, pooled
OLS would be a consistent estimator for γ.

In a context where both problems coexist, there may be a trade-off be-
tween reducing the extent of bias due to measurement error and reducing
the bias attributable to heterogeneity. The common way to deal with het-
erogeneity, as explained above, is to estimate γ using the fixed-effects (FE)
estimator γ̂FE. Appendix 1 derives the limiting value of γ̂FE in the presence
of measurement error, showing that it gets rid entirely of heterogeneity bias.
It also derives the limiting value of the between (BE) estimator γ̂BEobtained
by computing country means of the data over time and running OLS regres-
sions on these country means. It is difficult to make general statements
about what happens to the bias from measurement error under FE and BE
estimation in the multivariate case. Measurement error bias when using FE
may or may not be exacerbated. This is the main justification for a Monte
Carlo approach to evaluating the properties of these estimators.16

16 In subsection 2.3.3 below, and in tthe appendix, we discuss conditions under which
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There are, however, a few things we can say when comparing the prop-
erties of pooled OLS, BE and FE estimators.17 Appendix 1 derives the
probability limits of the latter two estimators:

plim γ̂BE =

µ
ΣBxx +

1

T
D

¶−1
ΣBxxγ +

µ
ΣBxx +

1

T
D

¶−1
Σµx (23)

plim γ̂FE =

µ
ΣWxx +

T − 1
T

D

¶−1
ΣWxxγ (24)

where ΣBxx denotes the between country variation in X, ΣWxx denotes the
within country variation (as defined in the Appendix 1), and Σxx = ΣWxx +
ΣBxx. Several observations are in order concerning equations (22), (23) and
(24):

1). As noted above, FE gets rid entirely of the heterogeneity bias while
there is in general both measurement error and heterogeneity bias when
using the BE and pooled OLS estimators.

2). The BE estimator tends to reduce the extent of measurement error
bias compared to the other estimators due to the averaging of the imperfectly
measured variables over time, which reduces the variance of the measure-
ment error relative to the true signal. Moreover, the greater is T , the smaller
the bias from measurement error.

3). Both pooled OLS and BE will involve smaller heterogeneity bias,
the greater the extent of measurement error. In other words, there is an
interaction between these two sources of bias. This is because all other things
equal, measurement error reduces the correlation between the regressors and
the country effects, and hence alleviates the omitted variables problem. For
this reason, BE will on average involve larger heterogeneity bias compared
to pooled OLS, holding constant D.

4) Comparing FE and BE, if ΣWxx relative to
T−1
T D is "smaller" in a

matrix sense than ΣBxx is relative to
1
TD, then the bias arising from mea-

surement error will tend to be smaller under BE compared to FE. This is
likely to be the case if the within variation is small compared to the between
variation (most of the variation in the panel arises from the cross-section

measurement error is exacerbated under FE in the specific case of univariate regression.
We argue these conditions are likely to hold in our particular application, as in most. But
only a Monte Carlo simulation can provide definitive answers.
17Appendix 1 also derives the plim of the random effects (RE) estimator γ̂RE , which is

a matrix-weighted average of the BE and FE estimator.
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rather than the time dimension - which is the case in growth applications),
or if T is large.

To conclude, despite these general lessons, we can say little about the
net biases to individual parameter estimates as they would result from each
estimation method. Given the multivariate nature of growth regressions,
only simulations can determine which estimator dominates in terms of bias
under alternative assumptions about the covariance structure of the true
data Σxx, the covariances between the true variables and the country-specific
effects Σµx and the covariance matrix of the measurement error D.

2.3.3 Autocorrelated Measurement Error: Univariate Example

Appendix 2 analyzes in detail a simple case illustrating the trade-offs iden-
tified above in a case where net biases can be signed: the case of Q = 2
(a single regressor xit plus an intercept). This example is also useful to
illustrate what happens when measurement errors are autocorrelated.

The example shows clearly that, under FE estimation, eliminating het-
erogeneity bias may come at the cost of exacerbating measurement error
bias. The greater the time persistence in xit, the greater the extent to
which measurement error bias is exacerbated, as the variance of the true
signal gets differenced away relative to the variance of the error in measure-
ment. In the context of growth regressions, where right-hand side variables
are highly time persistent, this point is particularly central. We cannot say
analytically whether this increase in measurement error bias is worth the
elimination of heterogeneity bias unless we know the moments of the true
underlying data and of the measurement error.

As argued in Section 2.2, a GMM procedure such as Arellano and Bond’s
(AB) could in principle deal with both sources of bias if measurement error
is white noise, since measurement error in the instruments will be uncorre-
lated with measurement error in the regressors. However, introducing mea-
surement error weakens the first stage relationship between predetermined
regressors and the instruments, potentially making the weak instruments
problem worse. Moreover, the validity of this procedure relies heavily on
the assumption of non-autocorrelated errors in measurement.

Appendix 2 shows that when measurement error is autocorrelated, where
we define ρd = corr(dit, dit−τ ), FE will exacerbate measurement error bias
compared to pooled OLS whenever ρd < ρx, where ρx is the autocorrela-
tion coefficient in xit. In this case, instrumenting for differenced xit using

15



its lagged levels values (as in the AB procedure) will no longer get rid of
measurement error bias. In words, as long as ρd > 0, we cannot produce a
consistent estimator of the desired parameters using AB’s GMM approach.
We will consider the case of autocorrelated measurement error in our simu-
lations.

2.4 Summary

Four factors can cause inconsistent estimates of γ in panel growth regres-
sions. The first is an omitted-variables bias resulting from the possible
correlation between country-specific effects and the regressors, affecting the
consistency of pooled OLS, BE and RE estimates. The second is the endo-
geneity problem specific to dynamic panels, identified after equation (13),
which will make FE and RE estimates inconsistent.18 The third is classical
measurement error on the independent variables, which affects the consis-
tency of pooled OLS, BE, RE and FE estimator, though the bias tends to
be exacerbated in the latter case and partly averaged away under BE. The
fourth is possible autocorrelation in measurement errors, which results in
inconsistency for all estimators we consider here including the AB estima-
tor. In addition the AB estimator may be subject to a weak instruments
problem.

Each of the estimators under consideration involves a trade-off: pooled
OLS suffers from heterogeneity bias but limits the incidence of measure-
ment error bias relative to FE; the BE estimator reduces measurement error
through time averaging of the regressors, but does not deal with hetero-
geneity bias; FE addresses the problem of heterogeneity bias, but tends to
exacerbate the problem of measurement error. The AB estimator will be
inconsistent when instruments are weak or when measurement error is auto-
correlated. As a result, we cannot say a priori which estimator will produce
the smaller total bias. Simulations are necessary to evaluate the properties
of these estimators.

3 Monte Carlo Simulations

3.1 Simulation Methodology

Since it is impossible to derive analytical results about the extent and sign
of omitted variables and measurement error biases in a multivariate context,
18For the sake of space and because this source of bias is well-known, we have abstracted

from it in this subsection, but we will take it into account explicitly in our simulations.

16



we use Monte Carlo simulations to evaluate the bias properties of of FE, BE,
RE and AB estimators.19

The starting point for our simulations is equation (8). The data-generating
process for the true data (that is, the data that is not measured with error)
is:

log yit =
³
1− e−λτ

´ α

1− α− β
log sk,it−τ +

³
1− e−λτ

´ β

1− α− β
log sh,it−τ

−
³
1− e−λt

´ α+ β

1− α− β
log (n+ g + δ)it−τ + e−λt log yit−τ

+
³
1− e−λτ

´
logAi(0) + g(t− e−λτ (t− τ)) + νit (25)

3.1.1 Simulated Data

Underlying data. We define a period by a five year interval of time (i.e.
τ = 5). Our underlying data spans 40 years, from 1960 to 2000, and our 8 five
year periods are defined as 1960-1965, 1965-1970, ..., 1995-2000. In equation
(25), the variables log sk,it−τ , log sh,it−τ , log(n + g + δ)i,t−τ and log yit−τ
are simulated data with moments resembling those of the corresponding
observed variables. To obtain these moments, we captured log sk using the
log of investment rates as a share of real GDP from the Penn World Tables,
version 6.1 (Heston, Summers and Aten, 2002 - henceforth, PWT6.1). log sh
is the log if the secondary school gross enrollment ratio from Barro and Lee
(2000) and n is the rate of population growth calculated from the PWT6.1
population series. In calculating log(n+g+δ), we postulated (as above) that
g+ δ = 0.07. Finally, log yit−τ is the log of per capita income in purchasing
power parity from PWT6.1, measured at the beginning of the first time
period (1960).20

We averaged the variables over each of these time periods and arrayed
them in a N × (T (Q− 1) + 1) matrix. Specifying each variable at separate
time periods instead of stacking them over time allows us to simulate explic-
itly their time persistence characteristics. Finally, since our underlying data

19Results for pooled OLS estimates are available upon request. However, the pooled
OLS estimator is rarely used in cross-sectional growth regressions since it is less efficient
than random effects.
20Since the model is dynamic, subsequent values of the initial income term log yit−τ

will be generated by iterating on income using the Solow specification, starting from a
drawn value for the first period. We will, however, calibrate the parameters so that
subsequent generated values of the income variables bear characteristics resembling those
of the corresponding real data, as explained below.
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was available in all periods for 69 countries, and we are seeking a balanced
panel, we set N = 69 for the rest of this study.

We assumed that these variables are measured without error. In other
words, we take their resulting first and second moments to be those of the
"true" variables, which we will later shock by adding a white noise measure-
ment error. As the observed data surely incorporates classical measurement
error, we will be understating the magnitude of the covariances among the
underlying "true" variables and overstating their variances.

Simulating the fixed effects term µi. One difficulty we face is sim-
ulating the country fixed effects µi =

¡
1− e−λτ

¢
logAi(0) − γ0.

21 Theory
provides no guidance as to the values of Ai(0) for different countries, since
it is taken as exogenous. The problem is important because the covari-
ance structure linking the country-specific effects to the observed regressors
determines how much heterogeneity bias will be present. To obtain sim-
ulated fixed effects and their corresponding covariance structure with the
right-hand side variables, we used our observed panel data set to run an
FE regression on the specification in equation (25). We computed the fitted
fixed effects from this regression. We then used this series and treated it as
an additional variable, as if it were observed, to generate the moments of
the simulated data.

Obviously, given that the underlying data must incorporate measurement
error, this procedure will lead to biased estimates of the country-specific ef-
fects, as discussed in Section 2. If this is the case, the moments of µi and
especially its covariance structure with the other right-hand side variables
will also be flawed. Since this is the case, we will also present results with
alternative assumptions about the covariance structure between the simu-
lated fixed effects and the simulated regressors in xit: in our simulations we
will also set the correlation between µi and the observed regressors to values
other than those implied by the fitted country-effects.

Moments of the underlying data. Table 1, panel A presents the ma-
trix of correlations among our Q +1 variables of interest in the pooled data
used to generate our simulated datasets. For example, once stacked over
time and countries, log sk,it bears a correlation of 0.60 with log sh,it. The

21The time fixed effect g(t − e−λτ (t − τ)), which is identical for all countries at each
date, was generated for each period t simply by setting the parameters g and λ to their
assumed values, and τ = 5.

18



estimated country-specific effect bears high correlations with the right hand
side variables, suggesting a big scope for heterogeneity bias when using es-
timators that do not correct for it. For instance, the correlation between
initial income log yi,t−τ and µi is 0.93.

22 Panel B isolates the between cor-
relations among these variables, by taking time means (x̄i, µ̄i) of all the
variables (where obviously µ̄i = µi) and computing their correlation matrix.
The between correlations are quite close to the pooled data correlations, sug-
gesting that cross-sectional variation dominates in our data. For example,
the between correlation between log sk,it and log sh,it is 0.72. Finally, Panel
C displays the within correlations, obtained by computing (xit− x̄i, µi− µ̄i).
These correlations are always much lower than either the pooled or between
correlations, again suggesting that the cross-country variation dominates in
the pooled data. For example, the within correlation between log sk,it and
log sh,it is 0.21.

Draws of simulated data. We are now in the presence of N observations
for T (Q − 1) + 2 variables.23 We computed the (T (Q −1) + 2) × 1 vector
of means for these variables, denoted m̂x,µ and their variance covariance
matrix, denoted Ω̂x,µ.24 Stacking the data in this way (in wide format)
allows us to provide a realistic simulation of the relative weights of between
and within variations - by specifying explicitly the autocorrelation structure
of the right-hand side variables in addition to their cross-correlations. For
each run of our simulation, we then drew N observations for the T (Q −1)+
2 variables from a multivariate normal distribution with mean m̂x,µ and
variance Ω̂x,µ.

The last part of the data generation procedure is to simulate the residu-
als νit. We opted to let the variance of the residual differ across time periods,
and the residuals covary across time periods. To do this, we generated the
fitted residuals from the fixed-effects regression using observed data for each
period, and arrayed them in a N ×T matrix. We computed their T ×T co-
variance matrix Ω̂ν . Finally, we generated N sets of T normally distributed
residuals with mean zero and covariance matrix Ω̂ν . An interesting aspect

22For the sake of illustration, in Table 1 we used every 5-year time-interval observation
between 1960 and 1995 for the real data on log yit−τ . In contrast, in our simulations, we
are generating log yit−τ from the model, for all but the first period - due to the dynamic
nature of equation (25). The generated data on log yit−τ and their observed counterparts
are very closely correlated (these correlations are available upon request).
23 i.e. N observations per period for log sk,it−τ , log sh,it−τ , log(n+ g+ δ)i,t−τ , N obser-

vations for log yit−τ in 1960 and N observations on the time invariant country effects.
24m̂x,µ is a (T (k− 1)+2)× 1 vector, while Ω̂x,µ (T (k− 1)+2)× (T (k− 1)+2) matrix.
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of this exercise is that the variance of the fixed-effects estimated residual
term ν̂it was found to be a small fraction of the variance of log yit, on the
order of 1%.

Using all the parameters and simulated data, we computed the simulated
dependent variable log yi,1965 for period 2, using equation (25) and the sim-
ulated data on log yi,1960. We used this generated value of log yi,1965 to simi-
larly generate log yi,1970, and so on iteratively until we obtained log yi,2000.25

Formally, log income in period t for country i was simulated as:

log yit = γs

t−1X
j=0

γj4wi,t−j−1 + γt4 log yi0 + µi

t−1X
j=0

γj4 +
t−1X
j=0

γj4νit−j (26)

3.1.2 Parameter Values

One issue we face is that there is no guarantee that the generated income
data on income resembles in any way the underlying real world data. Equa-
tion (26) shows that simulated income is a function of past values of the
steady-state determinants in wit, the log of income at the beginning of the
first period log yi0, the fixed effects µi and a weighted sum of the current
and past residuals νit, as well as the model’s reduced form parameters in γ.
As t increases, the moments of the generated values of income might diverge
more and more from those observed in the true income data.

To address this issue we calibrated the model’s parameters α and β
so that the generated income variables in a typical draw of the data have
moments resembling those of the observed variables. We found that we did
not need to diverge greatly from commonly assumed values of α and β to
obtain a good calibration: in a typical draw of the data, setting α = β = 0.27
delivers moments of generated income variables that look similar to those
seen in the PWT6.1 data.26 These variables are conventionally both set to
1/3 in the context of the Solow model (as discussed for instance in Barro
and Sala-i-Martin, 1995).

25There are several reasons for implementing a dynamic method for simulating income
rather than treating log yit−τ on the right hand side of equation (25) in the same way
as we treat steady-state determinants. First, internal consistency requires that income
be modelled in conformity with the dynamics of the Solow model. Second, this dynamic
method will allow us to isolate and quantify the extent of the endogeneity bias arising
under fixed effects, as identified by CEL and discussed above in section 2.2. Third, this is
computationally required for the implementation of the Arellano and Bond estimator.
26Details of our calibration exercise, including a detailed comparison of the moments of

the generated data with those of the observed data, are available upon request.

20



The other parameters of the structural model, g, δ and n are set to their
conventional values as in Barro and Sala-i-Martin (1995):

g = 0.02; n = 0.01; δ = 0.05

These parameters imply a convergence parameter λ = (n+ g + δ) (1− α− β)
= 3.68%, which is slightly higher than the value of 2.67% implied by the
conventional values of α and β.27 With these assumed structural parameters
and τ = 5, the implied reduced form parameters are as follows:

γ1 ≈ 0.099; γ2 ≈ 0.099; γ3 ≈ −0.197; γ4 ≈ 0.832
Note that in empirical applications of the Solow growth model, a small con-
tradiction exists between the theoretically derived estimating equation and
the linear specification actually estimated: insofar as the rate of population
growth n enters the equation as a variable (in the term log (n+ g + δ)),
then terms such as

¡
1− e−λt

¢
, where λ depends in part on n, should not be

treated as constant.28

3.1.3 Measurement Error

The dataset generated above is free from measurement error. If we were
to run fixed-effects regressions of log yit on log sk,it−τ , log sh,it−τ , log(n +
g + δ)i,t−τ and log yit−τ using repeated draws of the simulated data, the
only source of bias in the fixed-effects regression would be the endogeneity
problem that stems from the dynamic nature of the model, identified in the
discussion that follows equation (13).29 If we were to run between regressions
on simulated data, we would obtain estimated coefficients tainted only by
heterogeneity bias, i.e. the term

¡
ΣBx
¢−1
Σµx in equation (23), where D is

set to 0.

To evaluate the merits of various estimators used to estimate growth
regressions in the presence of measurement error, we shock our simulated
27We have rerun all our simulations assuming α = β = 1/3 and all the results were

qualitatively unchanged. These results are available upon request.
28However, doing so is an acceptable approximation since variation in n is likely to have

a small impact on variation in e−(1−α−β)(n+g+δ)τ , so treating e−λτ as a constant is likely
to be immaterial. On the other hand, variation in n will have a larger impact on variation
in log(n+ g + δ), which justifies not treating this variable as a constant. At any rate, we
follow common practice in treating e−λτ as a constant and log(n+ g + δ) as a variable.
29Additionally, if we remove the error term νit from the model (i.e. we simulate the

income data without this term), fixed effects would lead us to recover exactly the reduced
form theoretical parameters γ of the model. We did this as a check on our simulation
program, and the corresponding results are available upon request.
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variables by adding white-noise.30 This can be done in several ways. In
our baseline simulations, we simply add a normally distributed, zero mean
shock with variance equal to some fraction F < 1 of the variance of the
underlying variable (we will refer to F as the error-to-truth ratio). This was
applied to simulated variables period-by period. Formally, consider first the
determinants of the steady-state level of income, log sk,it−τ , log sh,it−τ and
log(n+g+δ)i,t−τ . For independent variable xq in period t, we compute x∗q,it
as:

x∗q,it = xq,it + dq,it (27)

with dq,it ∼ N
¡
0, F σ̂2qt

¢
for all i and q = 2...4, where σ̂2qt is the sample

variance of xq,it in period t. We proceeded in exactly the same way for the
income variable log yit:

log y∗it = log yit + dy,it (28)

where dy,it ∼ N
¡
0, F σ̂2yt

¢
for all i, where σ̂2yt is the sample variance of log yit

in period t.

In the specifications above, the variance of the measurement error can
vary period-by-period insofar as the variance of the underlying true data
does. In other words, the T (Q−1)×T (Q−1) variance covariance matrix of
the errors-in-variables, Ω̂d, is diagonal, with the diagonal elements allowed to
differ across regressors and time. The fraction F , however, is common to all
variables in all periods. We relax some of these assumptions on measurement
error in the robustness tests presented in Section 4.

The parameter F is set to four values - 0%, 5%, 10%, and 15%.31 It
is, of course, difficult to know what the appropriate extent of measurement
error is in reality. Hence, it is essential to vary F to assess the robustness of
our results. However, clues about whether our chosen range of values for F
is reasonable can be obtained. Notice first that all variables are entered in
logs, so even a value of F = 5% may imply rather large shocks, especially on
the underlying income variable yit. Our additive term dy,it translates into
some multiplicative term edy,it applied to yit (income in 1996 PPP dollars).

We can display draws of the mismeasured variables pooled across time
periods and compute the average absolute value deviation from their true
(unshocked) values, as a summary measure of the extent of measurement

30Obviously, we did not shock the fixed-effects µi nor the intercept.
31As an additional check, we also did our simulations with extreme values of F - 25%

and 50%. The qualitative properties of our results were unchanged, but the extent of bias
quickly became unreasonably large.
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error. Table 2 displays these values as well as the pooled sample averages of
the underlying "true" (unshocked) variables, for comparison. To construct
Table 2, we drew simulated data for 2, 000 countries in the 8-period panel,
i.e. 16, 000 observations.

Consider first measurement error on income yit. For F = 5%, the average
absolute value of measurement error was $1, 332, for F = 10% it was $2, 134
and for F = 15% it was $2, 703. These are to be compared to the pooled
sample mean of simulated income, which is $4, 997.32 The magnitudes we
obtain on the other variables seem more moderate, due to the fact that their
values are between 0 and 1. Consider for instance the rate of physical capital
accumulation sk: for F = 5%, the average absolute value of measurement
error was 2.03 percentage points, for F = 10% it was 2.95 percentage points
and for F = 15% it was 3.67 percentage points. The pooled sample mean
of sk was roughly 17%. Similar relative orders of magnitudes hold for sh
and (n + δ + g), as shown in Table 2. While it is hard to know what
the appropriate level of measurement error would be, the range of values
displayed in Table 2 does not seem unreasonable.

3.1.4 Regressions on Simulated Data

Having generated our simulated true data and shocked it with classical mea-
surement error, we are now in a position to evaluate the bias properties of
alternative estimators in the presence of correlated country-specific effects
and measurement error. We estimated equation (8) on our draw of simulated
data using four estimators: fixed-effects (FE), the between estimator (BE),
random effects (RE) and the Arellano-Bond estimator (AB). We stored the
estimated slope coefficients from each run, and repeated this procedure 1000
times. We then computed the means of the resulting estimates, and com-
pared those to the known true parameters. The difference between the mean
estimates and the corresponding true parameters gives a measure of bias for
each estimates of the slope parameters in γ. The average absolute value
of these individual parameter biases is used as summary measures of bias
across the slope elements of γ. Although our discussion of the results focuses
on bias, the standard errors of the estimates from simulated data are also
available to examine the efficiency properties of the estimators.

32Since the average absolute value of the shock on income may seem too large, we
examine in Section 4.1 what happens when we reduce the extent of measurement error on
income without changing it for the other variables.
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3.2 Baseline Simulation Results

3.2.1 10% Measurement Error

In our baseline case, we set the error-to-truth ratio F equal to 10% for all
the right-hand side variables in the model, and the extent of the correlations
between the fixed effects and the regressors is as described in Table 1. Table
3, column 3 presents the resulting estimates based on averages over 1000
runs. In terms of the average absolute value of bias on the slope parameters,
our results reveal that the BE estimator dominates by a wide margin: average
absolute bias is 33%, versus a value in the neighborhood of 200% for the
other three estimators. As suggested by econometric theory, estimators that
use the within variation exacerbate measurement error bias, and between
averages it out.

Turning to individual coefficient estimates, BE tends to bias the estimate
of the convergence parameter γ4 upward by 19% - the average simulated co-
efficient is 0.990 versus a true coefficient of 0.832 (the implied speeds of
convergence, i.e. λ parameter, are respectively 3.68% and 0.2%).33 In con-
trast, both the FE and AB severely bias this coefficient downwards, with
average biases of −78% and −89% respectively, implying very high speeds
of convergence (respectively 33.99% and 47.10%). In terms of the pattern
of coefficients, this broadly replicates the finding of the literature - where
the FE or AB estimates of the convergence speed are an order of magnitude
higher than the between estimate. CEL, for example, report a speed of con-
vergence of 10% per year based on the AB estimator - 5 times larger than the
2% cross-sectional estimate in MRW.34 Our results suggest that the finding
of fast convergence in the literature employing fixed-effects estimators may
be traceable to the incidence of exacerbated measurement error bias.

Turning to the other slope parameters of the Solow model, interesting
33To calculate λ from the estimate of γ4, simply compute λ = − log(γ4)/τ where τ = 5.
34The precise extent to which γ4 is biased downwards when using the fixed-effects and

Arellano-Bond in our simulations obviously depends on the postulated extent of measure-
ment error and the postulated correlations between µi and the elements of xit. If the
error-to-truth ratio is brought down to 5%, the estimated speed of convergence is brought
down to 22.05% for the fixed effects estimator and to 32.50% for the Arellano-Bond esti-
mator. These values remain higher than those reported in the literature. In Section 4.1
we discuss how to obtain more reasonable values of the fixed effects and Arellano-Bond
estimates of the convergence speed by reducing the extent of measurement error on the
income term log yit - Section 3.2.3 suggested that the average absolute value of the shock
to yit might be too high, on the order of $2, 000 for the pooled sample in the baseline
simulation with F = 10%. This is to be compared for a pooled sample mean of simulated
income equal to roughly $5000.
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results also emerge from our simulations. While all the estimators involve
some bias in these parameters, the direction and magnitudes of the biases
differs sharply. BE tends to bias the human capital parameter slightly away
from zero: the coefficient on log sh,it is biased upward by 6%. The corre-
sponding bias when using FE is a downward bias of −209% - the coefficient
switches signs. Again, our simulation account for differences between es-
timators found in the literature - where FE typically lead to a coefficient
estimate on the human capital accumulation variable that is closer to zero
than BE. For example, Islam (1995) shows that the estimated BE coeffi-
cient on log sh,it is roughly 0.182, and equals −0.071 when using FE. Our
corresponding BE estimate is 0.105, and our FE estimate is −0.108. Similar
comparisons would hold when we turn to AB rather than FE - the accumula-
tion parameters are both severely biased towards zero, and the depreciation
parameter γ3 is biased away from zero. Again, our results suggest that the
finding of smaller effects of the accumulation variables in the fixed-effects
literature compared to the cross-sectional literature may be largely attribut-
able to measurement error bias.

AB estimates are very close to the FE estimates, suggesting, as detailed
in Section 2, that the weak instruments problem may be prevalent in this
application. To evaluate this more formally, we implemented the test of the
null hypothesis of weak instruments suggested by Stock and Yogo (2003),
using the real world data that serves as a basis for our simulations. This test
is based on computing the Cragg-Donald (1993) statistic, a generalization of
the first-stage F-test for the case of multiple endogenous regressors.35 The
statistic is then compared to the critical values in Stock and Yogo (2003).
The critical values depend on parameter b, the maximum amount of squared
bias that the researcher is willing to accept relative to squared OLS bias (in
our case, FE bias). For instance, a value b = 0.1 indicates that the maximal
allowable bias of the IV estimates is 10% of the maximum OLS bias. In
our case, the value of the Cragg-Donald statistic was 1.513, which is smaller
than all critical values whatever the value of b presented in Stock and Yogo
(2003) (these range from 5% to 30%). Thus, we fail to reject the null of
weak instruments at the 5% significance level even when we are willing to

35 In our application we allow all the right hand side variables to be predetermined -
so that all four regressors are instrumented for. In doing this we follow the practice in
CEL. Strictly speaking however, in our simulation only lagged income is endogenous. See
the discussion after equation (13). Formally, the Cragg-Donald statistic is the smallest
eigenvalue of the matrix analog of the F-statistic from the first stage regression. See Stock
and Yogo (2003).
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accept a high level of GMM bias relative to FE bias.36

Finally, Table 3 also reveals that RE performs more poorly than the
other three estimators when the summary measure of bias is the average
absolute value of the bias (here 235% compared to 33% for the between
estimator). This is significant because this estimator is frequently used by
growth regression practitioners who wish to retain the panel dimension but
are unwilling to discard all the between variation in the data. However, RE
does quite well in estimating the convergence parameter, displaying a bias of
−16%. The other slope parameters are all biased upwards. For instance the
coefficient on log sk,it is biased upward by 107%. One possible reason is that,
contrary to between, RE does not average measurement error over time, nor
does it address the problem of heterogeneity bias. The interaction of these
two biases, which is hard if not impossible to characterize analytically, turns
out to result in large net biases in this particular application.

3.2.2 Varying the Extent of Measurement Error

Increasing the error-to-truth ratio to 15% or reducing it to 5% does not
generally change the conclusions reached above (Table 3, columns 2 and 4).
As expected, the average absolute bias tends to (weakly) increase with the
error-to-truth ratio for most estimators, though this is not necessarily true
for individual parameter estimates. An interesting feature of our simulations
is how increases in the extent of measurement error across columns of Table
3 seem to little affect the BE estimate of the coefficient on lagged income per
capita - in fact the upward bias on γ4 remains equal to 18− 19% whatever
the value of F .

Interesting lessons can also be learnt when measurement error is shut
down entirely. While unrealistic, this exercise allows us to isolate the in-
cidence of heterogeneity bias in the BE estimator, and of endogeneity bias
in the FE estimator. Table 3, column (1) presents simulation results when
F = 0. As predicted, BE still tends to create an upward bias on the lagged
income coefficient, an upward bias on the effect of human capital, and a
small downward bias on the depreciation term. Clearly, the strong positive

36We also implemented the Staiger and Stock (1997) rule of thumb based on the first
stage F-statistics. Strictly speaking, the rule of thumb is only valid for the case of one
endogenous regressor. But the values of our first stage F-statistics were sufficiently below
10 to reinforce our confidence that the weak instruments problem is important here. The
F-statistics for the first-stage regression of lagged first-differenced initial income on its
instruments was 4.73, and the corresponding values for savings on physical capital, savings
on human capital and the depreciation term were, respectively, 4.03, 2.71 and 2.22.
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correlation between the country-specific effect and the lagged income term,
built into our simulations, accounts for the upward bias on log yit−τ when
country fixed effects are not included in the regression. The results suggest
that most of the bias in the BE estimates seen when F is set to a value
different from zero is attributable to heterogeneity bias, as the biases on
individual coefficients change little as F is increased. In other words, BE
does a good job at averaging away measurement error.

When F = 0, FE estimates are also biased. This is dues to the endogene-
ity problem inherent in this type of dynamic panel. Our simulations allow
us to quantify this problem. The biases are relatively small, especially on
the main parameter of interest γ4 (biased downwards by −5%). This bias
quickly gets swamped by measurement error bias when F is increased. The
AB estimator, which is supposed to get rid of endogeneity bias, does display
biases of similar magnitudes as FE. Moreover the biases on the various slope
parameters are similar in signs and relative magnitudes to the FE biases. As
discussed above, this is due to the weak instruments problem, which tends
to bias AB estimates towards FE.

To summarize, as predicted by theory, when measurement error is not
present, BE is tainted by heterogeneity bias, the other estimators perform
better and the AB estimator in particular performs best. However, this case
is unrealistic since we are unable to replicate the broad findings obtained
across estimators with real data when setting F = 0. Even in the presence
of a small amount of measurement error (F = 5%), large biases appear when
using fixed-effects, and the between estimator asserts itself as the dominant
estimator in terms of average absolute bias. Moreover, in that case we are
able to broadly replicate the pattern of estimates found in the literature
across estimators.

3.2.3 Varying the Extent of Heterogeneity Bias

We now examine how our results change when we vary the extent of het-
erogeneity bias, holding measurement error fixed at some baseline level. As
described in Section 3.1.2, the assumed correlations between the right hand
side variables and the country fixed effect µi used to draw simulated data
were based on estimated values of µi from an FE regression. We know from
econometric theory that in the presence of measurement error, these esti-
mated µis will be inconsistent estimates of the true country fixed-effects,
therefore their sample correlations with the regressors will themselves be
flawed. Hence, it is critical to examine what happens when we change these
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assumed correlations.

Table 4 displays simulation results when varying the correlations between
the country-specific effects and the regressors, while setting F = 10%. Table
1 showed that the correlations used for our baseline simulations were high.
For example, in the pooled sample the correlation between our estimated µi
and log yit−τ was 0.93, and the correlation with log sh,it−τ was 0.80. Here
we simply multiply all these assumed correlations, variable-by-variable and
period-by-period, by a single constant C < 1, prior to generating the simu-
lated data.37 We allowed C to take on the values 0%, 5% and 75%. For the
sake of comparison, column (5) of Table 4 also reports the results obtained
when C = 100% (i.e. column (3) of Table 3).

Table 4 demonstrates that the biases obtained under FE when varying
C do not change drastically, suggesting that most of the FE bias comes from
measurement error.38 Notably, the estimate of γ4 changes relatively little
(from −56% when C = 0% to −78% when C = 100%). As expected from
econometric theory, the AB estimate of γ4 exhibits an even greater degree
of stability across values of C.

We now turn to the BE estimator in the extreme case where C = 0.
Again, this is an unrealistic assumption, but it allows us to evaluate the
incidence of measurement error in isolation from heterogeneity bias. We ob-
serve that the average absolute value bias is increased (to 157% compared to
33% when C = 100%), but that the pattern of signs and relative magnitudes
for the bias is roughly in line with the results in column (3) of Table 3. The
convergence parameter γ4 now exhibits a larger bias (34% rather than 19%).
The same pattern holds for all the other slope parameters: as C rises, the
extent of bias is progressively reduced, illustrating nicely a main message
of this paper: as the incidence of heterogeneity bias rises, it increasingly
mitigates the problem of measurement error for the BE estimator. In this
case, the two sources of bias tend to cancel each other out.

As C is increased to 50% and then to 75%, the mean estimated slope
parameters from BE progressively converge to the values in column (5), and
mean absolute value bias decreases steadily. To summarize, variations in

37That is, we modified the relevant entries of the data covariance matrix Ω̂x,µ used to
generate the simulated series.
38We should not expect the FE estimates to remain unchanged when varying the value of

C. While it is true that this estimator eliminates the country specific effect by differencing
the data from country means, the extent of bias may vary as C is modified, as such a change
will affect the properties of the simulated µi and thus those of the simulated log yit−τ .
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the incidence of heterogeneity bias do not change the lessons of our baseline
simulations regarding convergence: even when we change the incidence of
heterogeneity bias, BE and RE provides the closest estimates of the speed of
convergence. The signs of the biases on the parameters of the steady-state
determinants are robust to changes in C for all estimators. As before FE
and AB always bias downwards estimates on the accumulation variables,
bias upwards the estimate on log(n+ g+ δ)it−τ and result in much too fast
an estimated speed of convergence.

4 Extensions

This section considers various modifications of our basic simulation method.
We consider what happens when we change assumptions on the nature of
measurement error. We also examine the properties of two additional esti-
mators frequently used in the empirical literature on economic growth.

4.1 Varying measurement error on income

While our baseline simulation results replicate the broad differences in past
findings on convergence and the determinants of steady-state income level
across estimators, the estimated speed of convergence under the FE and AB
estimators was too high relative to the BE estimate - we obtained an FE
estimate of λ = 33.99% and a BE estimate of λ = 0.21%, while the literature
finds values in the neighborhood of 10% and 2%, respectively. Moreover, in
Section 3.1.3 we showed that an error-to-truth ratio of F = 10% implies an
average absolute value error in measurement of roughly $2, 000, while the
mean of simulated income was $5, 000. While it is difficult to know what
the appropriate extent of measurement error is, this is probably too big.39

In this subsection we examine whether reducing the extent of measurement
error on log income can help match convergence speeds estimated in the
literature: we reduce the extent of measurement error on the income term
39 In contrast, the extent of measurement error on the other variables, implied by setting

F = 10%, seemed more realistic. Some have argued that per capita income may be better
measured than savings rates on human capital sh, physical capital sk and the depreciation
variable (n + g + δ). In principle population growth n will be well-measured, but recall
that we had to make an assumption of constancy across time and countries for δ and
g, which surely introduces error. Similarly, sh in the Solow model should be measured
by dollars saved per unit of time for the purpose of financing education, but we followed
the literature in proxying for this using gross enrollment rates in secondary education.
However, it is well-known that different methods of computing price indices and PPP
exchange rates can deliver vastly different estimates of PPP income.
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(Fy), while maintaining F = 10% on the other variable. We consider values
of Fy equal to 0%, 1%, 2.5%, and 5%.

We might expect reduced measurement error on log yit to reduce atten-
uation bias on its coefficient and thereby improve the performance of the
FE and AB estimators (though this of course is not always true in the pres-
ence of measurement error on the other variables). Our intuition turns out
to be borne out: Table 5 demonstrates that with a value of Fy = 1%, we
obtain FE and AB estimates of λ that are much closer to those found in
the past literature: 9.19% and 10.81%, respectively. With Fy = 1%, the
average absolute value of the error in measurement on yit is $618, which is
perhaps a more realistic value than those implied by Fy = 5% and more.
The BE estimate of γ4 is unchanged compared to our baseline simulations,
with a 19% upward bias, confirming our suggestion that most of this bias is
attributable to the omission of the country-specific effect µi.

In general, the average absolute value bias becomes much lower for the
AB and FE estimators, largely because the bias on the income term is now
reduced. In fact, when we set Fy = 0, these estimators get convergence
almost right, suggesting that measurement error in this variable is important
to replicate the pattern of γ4 estimates found in the literature.

To summarize, when we allow for a smaller error-to-truth ratio on in-
come, we are able to obtain FE and AB estimated speeds of convergence
that are much closer to those obtained when using real data. The extent of
bias on the other parameters is not affected very much by measurement error
on income. We still get BE estimates of γ4 that are too large (and therefore
BE estimates of λ that are too small) relative to the existing cross-country
literature. We will see why in Section 4.4.

4.2 Country-specific measurement error

The extent of measurement error probably varies from country to country,
and is correlated with country characteristics such as per capita income.
Fortunately, we do have some information on the accuracy of statistics used
in most empirical growth studies: PWT6.1, acknowledging that all of their
PPP adjusted data is probably measured with some error, includes a data
quality rating for each country. The scale of the rating runs from A to D,
which we recode as running from 1 to 4, so that countries with less accurate
data have a higher rating.

We exploited this information by adjusting the error-to-truth ratio to
allow it to vary across countries in proportion to the PWT6.1 data qual-
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ity rating. Since the extent of measurement error is probably correlated
with some of the other variables used as regressors, we added the PWT
data quality indicator as another variable for the purpose of computing the
covariance matrix of the observed right-hand side variables, thus allowing
simulated data quality ratings to covary with the other simulated variables.
For example, lower income is associated with lower data quality. This ex-
panded covariance matrix for the actual data was then used to draw the
simulated data, including a simulated data quality rating. Finally, after
drawing the errors in measurement, we multiplied them by the country’s
normalized simulated data quality rating. The simulated data quality rat-
ing is normalized by its average. So if F = 10%, a country with the average
level of data quality would have an error-to-truth ratio of 10%, while a coun-
try with twice the average data quality rating would have an error-to-truth
ratio of 20%.

Results displayed in Table 6 show that this extension does not change
our basic results. With F = 10%, BE still performs best at estimating the
rate of convergence with an upwards bias of 19% on γ4. On the other hand,
FE displays a downwards bias of 78% and AB leads to a downwards bias of
89%. BE still outperforms the other estimators in general, with an average
absolute bias of 33% compared to 212% for the fixed-effects estimator and
213% for the AB estimator. In fact, a comparison of the entries of Table
6 with those of Table 3 reveals very little difference. Thus, allowing the
variance of measurement error to depend on observables does not change
our findings.

4.3 Autocorrelated measurement error

So far, we have assumed classical measurement error, i.e. the error in mea-
surement was purely white noise. However, errors in measurement could
be autocorrelated across time. For instance, if a country has over-reported
the amount of savings in physical capital in one period, it may be more
likely to do so in subsequent periods. Hence, measurement error can be ex-
pected to persist over time. Moreover, as discussed in Section 2, persistent
measurement error invalidates the IV procedure of the AB estimator when it
comes to addressing measurement error bias, since the error in measurement
in lagged regressors (the instruments) is no longer independent from error
in measurement in the regressors. In this subsection, we run simulations
where autocorrelation is built into measurement error, as a further robust-
ness check. Specifically, for each regressor xq (q = 2...4) and for the income
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term log yit, we set: ½
dq,it = ρddq,it−τ + ζit
dy,it = ρddy,it−τ + ϑit

(29)

where we still maintain dq,it ∼ N
¡
0, F σ̂2qt

¢
and dy,it ∼ N

¡
0, F σ̂2yt

¢
. In other

words, the T (Q− 1)×T (Q− 1) variance covariance matrix of the errors-in-
variables, Ω̂d, is now block diagonal, with the diagonal elements identical to
what they were before and the off-diagonal elements of each T × T block as
implied by equation (29). Errors are then drawn from a multivariate normal
distribution with mean zero and covariance matrix Ω̂d, as before.

In this case, we do have some theoretical priors as to how persistence in
measurement error might affect the results. If measurement error is highly
persistent over time, we would expect FE to perform better relative to the
case of ρd = 0, for two reasons: first, with persistence in dq,it, some of the
measurement error will be differenced away when the data is differenced
from its country means. In other words, the greater the autocorrelation in
measurement error, the larger the between component of measurement error
and the smaller the within component. Since FE will difference away the
between variation, we expect greater autocorrelation in the measurement
error term, all else equal, to improve the performance of FE relative to BE.
In the limit, when the autocorrelation coefficient ρd is 1, we would expect FE
to get rid of all of the measurement error, as it will get entirely differenced
away.40

We ran simulations when the measurement error autocorrelation term
was ρd = 0.5, ρd = 0.75 and ρd = 0.90, setting F = 10%. The results in
Table 7 show that our theory-driven priors are confirmed by the simulations.
Average absolute value bias declines with ρd in FE and AB estimators.
When the autocorrelation term is only 50%, the convergence coefficient γ4
exhibits a 20% bias using the BE estimator and a −49% bias using the FE
estimator (in the baseline case of ρd = 0, the corresponding numbers were
19% and −78%, respectively). When the autocorrelation term is increased
to 75%, the bias on the BE estimate of γ4 rises to only 21%, and the bias
on the FE estimate declines to −35%. Finally, when the autocorrelation
term is increased all the way to 90%, which is probably much too high,
the BE coefficient has a bias of 21% and the FE bias of −25%. Therefore,
while we confirm our intuition that the FE estimator improves relative to
the BE estimator when we increase persistence in measurement error, BE
tends to do better or as well as alternative estimators even as ρd is raised to

40We checked that this is the case, and the results are available upon request.
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implausibly high levels. Even high persistence in measurement error does
not invalidate the overall conclusions reached in the baseline case.

4.4 Other Estimators

4.4.1 Flexible random effects (SUR)

In this subsection, we evaluate the bias properties of the Seemingly Unre-
lated Regressions (SUR) estimator, which is commonly used in the empirical
growth literature (see, for example, Barro and Sala-i-Martin 1995, chap. 12).

This estimator is computationally close to the RE estimator in that it
also weighs the between and within variations in the data. However, in
contrast to RE, the SUR estimator does not assume the within-country cor-
relation in the error term to be the same across subsequent time periods,
but instead allows it to vary. For example, the covariance between εi1 and
εi2 is allowed to differ from the covariance between εi2 and εi3, a possibility
precluded in RE. Thus, we refer to the SUR estimator as a flexible RE esti-
mator, as the residual covariance matrix is less restrictive. This is expected
to lead to efficiency gains. Moreover, the weighing of the between and within
variations will now differ from the RE weighing scheme, and be a compli-
cated function of the variance of the fixed-effects, the variance of the error
term µi+ νit and its autocorrelation structure. Thus, the bias properties of
SUR may differ from those of random effects if the country-specific effects
are correlated with the regressors, since it will weigh the within and between
variations differently.

Results in Table 8 show that the estimates are not very different from
RE (for the sake of comparison Table 8 also includes the RE results already
presented in Table 3), but SUR does better overall than RE across values
of F . For example, the convergence coefficient γ4 displays a bias of −4%
with SUR and −16% with RE when F = 10%. In fact, SUR overall is the
best estimator when it comes to estimating the speed of convergence λ. In
terms of average absolute bias, SUR does better than RE whatever the level
of measurement error. Both estimators do particularly well in estimating
the speed of convergence, but both tend to greatly bias away from zero the
estimates on steady-state determinants.

4.4.2 The Mankiw, Romer and Weil Estimator

The BE estimator does not strictly correspond to the cross-sectional estima-
tor often used in the cross-country growth literature. Indeed, it involves the
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time averaging of all variables, including the income term on the left-hand
side and lagged income on the right-hand side. In contrast, cross-sectional
estimators in the class of MRW’s OLS estimator are based on the following
regression:

log yi,2000 = γ0+γ1log sk,i+γ2log sh,i+γ3log (n+ g + δ)i+γ4 log yi,1960+ϑit
(30)

where "̄." denotes averages computed over the whole period. As in the BE
estimator, the determinants of the steady-state level of income appear as
averages computed over the whole period. However, income enters as end
and beginning of period values (our total period spans 1960-2000). Hence,
contrary to BE, measurement error in initial income does not get averaged
on the right-hand side. Note also that in this application τ is set to 40,
requiring a correction to ensure the comparability of the estimated reduced
form coefficients with BE estimates.

Table 8 displays the simulation results, with the appropriate correction.
For comparability, we also reproduce the BE results from Table 3. The
MRW and BE biases are very similar in terms of magnitudes and signs.
However, MRW does slightly better than BE in terms of average absolute
bias across values of F . This partly reflects a lower bias on the convergence
parameter γ4. Since lagged income does not get averaged, measurement
error on this variable counteracts the upward bias from the omission of
µi to a greater degree than BE. These results confirm that simple OLS
cross-sectional estimators are best at limiting net overall bias resulting from
heterogeneity and measurement error.

5 Conclusion

In this paper, we have used Monte Carlo simulations to evaluate the econo-
metric methods commonly used to estimate growth regressions. Our results
suggest that, in the presence of measurement error, fixed-effects and the
Arellano-Bond GMM estimator lead researchers to overestimate the speed
of convergence and to underestimate the impact of several common determi-
nants of the steady-state level of income, such as human capital. Simple OLS
on variables averaged over time provides a closer estimate of the speed of
convergence, but overestimates the magnitude of the effect of steady-state
determinants. These findings were shown to be robust to changes in the
specification of measurement error and to varying assumptions about the
incidence of heterogeneity bias.
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Until now, differences in speeds of convergence across estimators were in-
terpreted as implying that heterogeneity bias was prevalent in cross-sectional
growth regressions, since fixed-effects methods were thought to correct for
this bias and led to a speed of convergence roughly 5 times higher than
that estimated using a between estimator. This paper has overturned this
interpretation, showing instead that the difference in estimated convergence
speeds is in fact attributable to greater bias from measurement error when
using this class of estimators. The estimated speed from traditional cross-
sectional regressions is in all likelihood closer to the true speed of conver-
gence.

Of course, our simulations can only characterize the properties of the
estimators. They cannot inform us as to the actual speed of convergence
or the impact of steady-state determinants, since we simulated our data
by assuming values for these parameters implied by a strict application of
the Solow model. This strict application led to postulated parameters that
may or may not hold true in actual data. Table 9 displays the results from
estimating our basic specification using the new PWT version 6.1 data and
updated series for the secondary school enrollment rate from Barro and
Lee. We are able to replicate the basic findings of the past literature in
this data: the speed of convergence is roughly 5 times larger under FE and
AB (respectively 4.6% and 5.3%) compared to BE (0.8%). Our simulation
results suggest the latter number is likely to be much closer to the truth.
All the other estimators, that do not isolate the within variation in the
data (namely MRW, SUR and RE) lead to estimated speeds of convergence
that lie between 0.8% and 1.6%, while FE and AB lead to estimates in the
neighborhood of 5%.

The speed of convergence we report based on the application of the BE
estimator, less than 1%, falls short of the number typically reported in the
cross-sectional literature. Barro and Sala-i-Martin (1995) cite a number
closer to 2%, based on the previous version of PWT.41 This difference is not
attributable to our use of new and extended data.42 Past cross-sectional es-
timates rely on an OLS specification closer to the MRW estimator described
above, where the current and lagged income terms do not get averaged over
41This is also true for the (biased) FE estimated speed, which at 5% is about half of

the convergence speeds reported in CEL (1996) and Islam (1995).
42We removed the 1990-1999 decade to check this, and our results were unchanged. In

an effort to maintain a balanced panel and cover as wide a time period as possible, our
regressions also feature only 69 countries. This was not responsible either for the reduced
speed of convergence, as results obtained with more countries using an unbalanced panel
were essentially the same. All these results are available upon request.
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time. Implementing this estimator, we obtain a convergence speed of 1.62%,
which is closer to existing estimates. Given that BE and MRW have been
shown above to somewhat understate the speed of convergence, a number
in the neighborhood of 2% for λ does not seem unreasonable.

The slope parameters on the determinants of the steady-state level of
income are reduced in magnitude when using FE or the AB estimator. They
are similar across estimators that use at least some between variation in the
data (BE, SUR, RE and MRW). For example, the impact of the log of the
enrollment rate is equal to 0.04 using the BE estimator, and is significant
at the 1% level. As in Islam, this estimate switches signs (to −0.03) when
using the FE estimator, and is statistically insignificant.

Our paper illustrates an econometric second best property: by addressing
one source of bias (stemming from omitted variables), the application of a
certain class of estimators makes another source of bias worse (measurement
error). Unfortunately, simulation exercises such as ours almost always come
too late in empirical economics.
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Appendix 1 - Limiting Values of the Between,
Fixed-Effects and Random Effects Estimators

This appendix derives the limiting values of the BE, FE and RE esti-
mators in the multivariate case. As in the text, assume that the true model
is:

log yit = γ0xit + µi + εit (31)

where all these variables are as defined in Section 2. As in subsection 2.3,
we also abstract from the dynamic nature of the model.

Assume also that xit is imperfectly measured. Instead of observing xit,
we can only see x∗it = xit + dit, where E [dit|xit] = 0 for all observations

and var [dit|xit] = D = diag
n
σ2d1 , σ

2
d2
, ..., σ2dk

o
. We can derive the following

unconditional expectations for three variables of interest:

E (yit, x
∗
it, µi) =

¡
γ0x̄+ µ̄, x̄, µ̄

¢
(32)

Their unconditional variance is:

V (yit, x
∗
it, µi) =

 σ2ε + γ0Σxxγ + 2γ0Σµx + σ2µ γ0Σxx +Σ0µx γ0Σµx + σ2µ
Σxxγ +Σµx Σxx +D Σµx
γ0Σµx + σ2µ Σ0µx σ2µ


(33)

In order to analyze the properties of the BE and FE estimators further, it is
useful to break down the variation on each variable into within-country vari-
ation and between-country variation. Define the between-country variance
for xit as:
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and the within-country variance to be:
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It is well-known that:
Σxx = Σ

W
xx +Σ

B
xx (36)
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It is also easy to show that, for the covariance between xit and µ, Σµx = ΣBµx.
Finally, ΣBxx∗ , the between covariance matrix of the imperfectly observed
data x∗, is defined as:

ΣBxx∗ ≡ E

"Ã
1

T

TX
t=1

xit + dit

!Ã
1

T

TX
t=1

x0it + d0it

!
−E [xit + dit]E

£
x0it + d0it

¤#
= ΣBxx +

1

T
D (37)

It is also easy to show that:

ΣWxx∗ = Σ
W
xx +

T − 1
T

D (38)

We are now ready to derive the plims of the BE and FE estimators in the
presence of measurement error and in the multivariate case.

First consider the BE estimator (OLS on country means across time).
Using standard OLS results, we can derive:

plim γ̂BE =

µ
ΣBxx +

1

T
D

¶−1
ΣBxxγ +

µ
ΣBxx +

1

T
D

¶−1
Σµx (39)

Now consider FE. To eliminate the heterogeneity bias arising through the
correlation between the time invariant country-specific effects and the re-
gressors, the most obvious solution is to use the FE estimator. By the
Frisch-Waugh theorem, we can show that:

γ̂FE =
¡
X∗0McX

∗¢−1X∗0Mcy (40)

where:
Mc = I − C

¡
C 0C

¢−1
C 0 (41)

and C is an (NT ×N) matrix that stacks dummy variables for the different
countries (with subvectors of T ones along the diagonals, zero elsewhere).
Then:

plim γ̂FE =

µ
ΣWxx +

T − 1
T

D

¶−1
ΣWxxγ (42)

Finally, as is well-known, RE is simply a matrix-weighted average of BE and
FE estimates:

γ̂RE =
³
Σ̂Wxx∗ + θ̂Σ̂Bxx∗

´−1 ³
Σ̂Wxx∗ γ̂

FE + θ̂Σ̂Bxx∗ γ̂
BE
´

(43)
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where Σ̂Wxx∗ and Σ̂
B
xx∗ are the sample estimates of Σ

W
xx∗ and Σ

B
xx∗ , respectively,

and θ̂ is an estimate of θ where:

θ =
σ2ε

Tσ2µ + σ2ε
(44)

i.e. θ is the weights given to the BE estimator. Then:

plim γ̂RE =

·µ
ΣWxx +

T − 1
T

D

¶
+ θ

µ
ΣBxx +

1

T
D

¶¸−1
×
·µ
ΣWxx +

T − 1
T

D

¶
γFE + θ

µ
ΣBxx +

1

T
D

¶
γBE

¸
(45)

Note that when the variance of the error term εit is zero, RE reduces to FE.

To summarize, we have derived the following:

plimbγPOLS = (Σxx +D)−1Σxxγ + (Σxx +D)−1Σµx
plim γ̂BE =

¡
ΣBxx +

1
TD

¢−1
ΣBxxγ +

¡
ΣBxx +

1
TD

¢−1
Σµx

plim γ̂FE =
¡
ΣWxx +

T−1
T D

¢−1
ΣWxxγ

plim γ̂RE =
£¡
ΣWxx +

T−1
T D

¢
+ θ

¡
ΣBxx +

1
TD

¢¤−1
× £¡ΣWxx + T−1

T D
¢
γFE + θ

¡
ΣBxx +

1
TD

¢
γBE

¤

Appendix 2 - A Simple Univariate Example

To illustrate the effects at play in the presence of both heterogeneity bias
and measurement error, we consider the case where xit is unidimensional,
and contrast estimation by pooled OLS and FE. Consider the following
relationship with a single observed regressor and an intercept term:

yit = γ0 + γ1xit + µi + εit (46)

Suppose that the observed variable x∗it incorporates measurement error:

x∗it = xit + dit (47)

where dit is independent of the true xit. The variance of the measurement
error and of xit are, respectively, σ2d and σ2x.
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By estimating (46) using pooled OLS, we get both an omitted variables
bias due to the fact that µi is potentially correlated with xit, and a mea-
surement error bias due to the correlation between εit and x∗it. The limiting
value of the pooled OLS estimate of γ1 is as follows:

plimbγPOLS1 =
γ1

1 +
σ2d
σ2x

+
cov(xit, µi)

σ2x + σ2d
(48)

In equation (48), the two sources of bias appear clearly. The variance of
measurement error contributes to lessen the extent of heterogeneity bias, as
it appears in the denominator of the expression on the right hand side of
(48).

Consider now FE estimation, still in the univariate case. To simplify
things and without loss of generality, assume that we difference away the
time invariant individual effects by taking first differences, rather than by
taking differences from country means of the data. The limiting value of the
FE estimate of γ1 is then:

plim bγFE1 =
γ1

1 +
σ2∆d
σ2∆x

(49)

where σ2∆d is the variance of the first differenced measurement error, and
σ2∆x is the same for the "true" regressor xit.

We have derived formal expressions for our estimate of interest in two
cases. The second method, FE, allows us to remove the heterogeneity bias
but will exacerbate measurement error bias. To see why, note that the error-
to-truth ratio in the denominator of equation (49) will always have increased
compared to that under pooled OLS:

σ2∆d = var dit + var dit−τ − 2 cov(dit, dit−τ ) = 2σ2d (50)

σ2∆x = varxit + varxit−τ − 2 cov(xit, xit−τ ) = 2σ2x(1− ρx) (51)

where ρx = corr(xit, xit−τ ) is the autocorrelation of xit. Thus,

σ2∆d

σ2∆x

=
σ2d

σ2x(1− ρx)
>

σ2d
σ2x

(52)

In words, σ2∆x will be smaller relative to σ
2
x the greater the time persistence

in xit (i.e. the higher is ρx).
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We have assumed until now that there was no time persistence in mea-
surement error (i.e. we had white noise errors-in-variables). This assumption
is problematic in the context of data used for growth regressions, where er-
rors in measurement from one period are likely to carry over to the next.
In the case of autocorrelated measurement error, where we define ρd =
corr(dit, dit−τ ), the error-to-truth ratio under FE is:

σ2∆d

σ2∆x

=
σ2d(1− ρd)

σ2x(1− ρx)
(53)

It is then trivial to show that FE will exacerbate measurement error bias
compared to pooled OLS whenever ρd < ρx.
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Table 1 – Correlation Structure Among Regressors and Fixed-Effects 
 

 log sk,it-τ log sh,it-τ log(n+g+δ)it-τ log yit-τ µi 
Panel A – Pooled Data 

log sk,it-τ 1.0000     
log sh,it-τ 0.6046 1.0000    
log(n+g+δ)it-τ -0.3800 -0.5763 1.0000   
log yit-τ 0.6220 0.8086 -0.6640 1.0000  
µi 0.6248 0.8031 -0.5957 0.9273 1.0000 

Panel B – Between Variation 
log sk,it-τ 1.0000     
log sh,it-τ 0.7160 1.0000    
log(n+g+δ)it-τ -0.5004 -0.6594 1.0000   
log yit-τ 0.7107 0.8691 -0.7154 1.0000  
µi 0.7096 0.9070 -0.6629 0.9622 1.0000 

Panel C – Within Variation 
log sk,it-τ 1.0000     
log sh,it-τ 0.2104 1.0000    
log(n+g+δ)it-τ 0.0763 -0.2531 1.0000   
log yit-τ 0.1497 0.5400 -0.3799 1.0000  
µi 0.0000 0.0000 0.0000 0.0000 1.0000 

 
 
 

Table 2 – Magnitude of Measurement Error on the Underlying Data  
(based on various values of F) 

 
  Income ($) Investment 

Rate  
(% GDP) 

Secondary 
Enrollment 
Rate (%) 

Population 
growth (%) 

Average Value of 
Unshocked Variable  

4997.15 17.17% 51.40% 1.59% 

1% 617.646 0.92% 4.33% 0.06% 

2.5% 1010.391 1.46% 6.52% 0.10% 

5% 1332.400 2.03% 8.84% 0.14% 

10% 2134.202 2.95% 13.94% 0.20% 

Average Absolute Value 
of Shock  
with F= 

15% 2702.867 3.67% 16.05% 0.25% 
Averages computed from simulated data for 2,000 countries in the 8-period panel, i.e. 16,000 pooled 
observations.
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Table 3 – Baseline Simulation Results – Average Estimated Coefficients and Bias (1000 runs) 
 

  (1) (2) (3) (4) 
Error-to-Truth Ratio  F=0% F=5% F=10% F=15% 

Variable True Coeffs Mean Bias (%) Avg Coeff Bias (%) Avg Coeff Bias (%) Avg Coeff Bias (%) 
Fixed Effects 

log sk,it-τ 0.099 0.093 -5% 0.026 -74% 0.003 -97% -0.007 -107% 
log sh,it-τ 0.099 0.076 -23% -0.095 -197% -0.108 -209% -0.103 -204% 
log(n+g+δ)it-τ -0.197 -0.287 46% -0.991 402% -1.107 461% -1.069 442% 
log yit-τ 0.832 0.787 -5% 0.332 -60% 0.183 -78% 0.110 -87% 
Avg. Abs. Bias   20%  183%  211%  210% 
Implied λ 3.68% 4.79% 30% 22.07% 500% 33.99% 824% 44.11% 1099% 

Between 
log sk,it-τ 0.099 0.081 -18% 0.079 -19% 0.079 -20% 0.078 -21% 
log sh,it-τ 0.099 0.114 16% 0.110 12% 0.105 6% 0.100 1% 
log(n+g+δ)it-τ -0.197 -0.031 -84% -0.033 -83% -0.027 -86% -0.031 -84% 
log yit-τ 0.832 0.983 18% 0.986 18% 0.990 19% 0.993 19% 
Avg. Abs. Bias   34%  33%  33%  31% 
Implied λ 3.68% 0.35% -91% 0.29% -92% 0.21% -94% 0.14% -96% 

Random Effects 
log sk,it-τ 0.099 0.110 12% 0.163 65% 0.204 107% 0.234 137% 
log sh,it-τ 0.099 0.171 74% 0.268 172% 0.322 226% 0.347 252% 
log(n+g+δ)it-τ -0.197 -0.182 -8% -0.899 355% -1.361 590% -1.666 744% 
log yit-τ 0.832 0.924 11% 0.789 -5% 0.699 -16% 0.639 -23% 
Avg. Abs. Bias   26%  150%  235%  289% 
Implied λ 3.68% 1.58% -57% 4.75% 29% 7.17% 95% 8.96% 143% 

Arellano-Bond 
log sk,it-τ 0.099 0.095 -4% -0.038 -139% -0.072 -173% -0.083 -185% 
log sh,it-τ 0.099 0.068 -31% -0.280 -384% -0.254 -357% -0.221 -325% 
log(n+g+δ)it-τ -0.197 -0.243 23% -0.695 252% -0.642 225% -0.553 180% 
log yit-τ 0.832 0.795 -4% 0.207 -75% 0.095 -89% 0.046 -94% 
Avg. Abs. Bias   16%  213%  211%  196% 
Implied λ 3.68% 4.58% 24% 31.52% 756% 47.10% 1180% 61.45% 1570% 
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Table 4 - Varying Heterogeneity Bias (alternative correlations between µi and the regressors) – F = 10%, 1000 runs. 
 

  (1) (2) (3) (4) 
FE Correlation:  C=0% C=50% C=75% C=100% 

Variable True Coeffs Mean Bias (%) Mean Bias (%) Mean Bias (%) Mean Bias (%) 
Fixed Effects 

log sk,it-τ 0.099 0.070 -29% 0.037 -63% 0.022 -78% 0.003 -97% 
log sh,it-τ 0.099 0.049 -50% -0.018 -118% -0.061 -162% -0.108 -209% 
log(n+g+δ)it-τ -0.197 -0.234 19% -0.577 192% -0.845 328% -1.107 461% 
log yit-τ 0.832 0.363 -56% 0.275 -67% 0.228 -73% 0.183 -78% 
Avg. Abs. Bias   39%  110%  160%  211% 
Implied λ 3.68% 20.27% 451% 25.85% 602% 29.60% 704% 33.99% 824% 

Between 
log sk,it-τ 0.099 0.010 -90% 0.027 -73% 0.043 -57% 0.079 -20% 
log sh,it-τ 0.099 -0.069 -170% -0.026 -127% 0.019 -81% 0.105 6% 
log(n+g+δ)it-τ -0.197 0.462 -334% 0.349 -277% 0.221 -212% -0.027 -86% 
log yit-τ 0.832 1.118 34% 1.092 31% 1.059 27% 0.990 19% 
Avg. Abs. Bias   157%  127%  94%  33% 
Implied λ 3.68% -2.23% -161% -1.77% -148% -1.14% -131% 0.21% -94% 

Random Effects 
log sk,it-τ 0.099 0.090 -9% 0.134 36% 0.165 67% 0.204 107% 
log sh,it-τ 0.099 0.078 -21% 0.172 75% 0.239 142% 0.322 226% 
log(n+g+δ)it-τ -0.197 -0.196 0% -0.595 201% -0.927 370% -1.361 590% 
log yit-τ 0.832 0.854 3% 0.802 -4% 0.758 -9% 0.699 -16% 
Avg. Abs. Bias   8%  79%  147%  235% 
Implied λ 3.68% 3.15% -14% 4.41% 20% 5.54% 51% 7.17% 95% 

Arellano-Bond 
log sk,it-τ 0.099 0.011 -89% -0.049 -150% -0.061 -162% -0.072 -173% 
log sh,it-τ 0.099 0.032 -67% -0.120 -221% -0.195 -298% -0.254 -357% 
log(n+g+δ)it-τ -0.197 -0.494 150% -0.613 211% -0.646 228% -0.642 225% 
log yit-τ 0.832 0.060 -93% 0.003 -100% 0.038 -95% 0.095 -89% 
Avg. Abs. Bias   100%  170%  196%  211% 
Implied λ 3.68% 56.25% 1429% 114.83% 3020% 65.32% 1675% 47.10% 1180% 
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Table 5 - Varying Measurement Error on Initial Income, 1000 runs (F=10% on the other variables) 
 

  Fy=0% Fy=1% Fy=2.5% Fy=5% 
Variable True Coeffs Mean Bias (%) Mean Bias (%) Mean Bias (%) Mean Bias (%) 

Fixed Effects 
log sk,it-τ 0.099 0.066 -33% 0.052 -47% 0.035 -64% 0.018 -81% 
log sh,it-τ 0.099 0.030 -69% -0.003 -103% -0.038 -139% -0.072 -173% 
log(n+g+δ)it-τ -0.197 -0.140 -29% -0.371 88% -0.606 207% -0.844 328% 
log yit-τ 0.832 0.773 -7% 0.632 -24% 0.486 -42% 0.337 -59% 
Avg. Abs. Bias   35%  66%  113%  160% 
Implied λ 3.68% 5.15% 40% 9.19% 150% 14.42% 292% 21.74% 491% 

Between 
log sk,it-τ 0.099 0.078 -21% 0.079 -20% 0.079 -19% 0.079 -20% 
log sh,it-τ 0.099 0.107 8% 0.106 7% 0.106 7% 0.105 6% 
log(n+g+δ)it-τ -0.197 -0.031 -84% -0.031 -84% -0.029 -85% -0.034 -83% 
log yit-τ 0.832 0.989 19% 0.989 19% 0.988 19% 0.989 19% 
Avg. Abs. Bias   33%  33%  33%  32% 
Implied λ 3.68% 0.23% -94% 0.22% -94% 0.23% -94% 0.22% -94% 

Random Effects 
log sk,it-τ 0.099 0.104 5% 0.116 18% 0.134 36% 0.160 62% 
log sh,it-τ 0.099 0.127 29% 0.151 53% 0.186 89% 0.239 142% 
log(n+g+δ)it-τ -0.197 -0.155 -22% -0.298 51% -0.516 161% -0.850 331% 
log yit-τ 0.832 0.951 14% 0.922 11% 0.876 5% 0.808 -3% 
Avg. Abs. Bias   17%  33%  73%  135% 
Implied λ 3.68% 1.00% -73% 1.62% -56% 2.65% -28% 4.27% 16% 

Arellano-Bond 
log sk,it-τ 0.099 0.064 -36% 0.036 -63% -0.007 -107% -0.042 -143% 
log sh,it-τ 0.099 0.016 -84% -0.048 -149% -0.128 -230% -0.198 -301% 
log(n+g+δ)it-τ -0.197 -0.123 -38% -0.319 62% -0.448 127% -0.556 182% 
log yit-τ 0.832 0.770 -7% 0.582 -30% 0.386 -54% 0.223 -73% 
Avg. Abs. Bias   41%  76%  130%  175% 
Implied λ 3.68% 5.24% 42% 10.81% 194% 19.04% 417% 29.97% 714% 
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Table 6 – Country-Specific Measurement Error, 1000 runs 
 

Error-to-Truth Ratio: F=5% F=10% F=15% 
Variable True 

Coeffs 
Mean Bias (%) Mean Bias (%) Mean Bias (%) 

Fixed Effects 
log sk,it-τ 0.099 0.022 -77% 0.003 -97% -0.015 -115% 
log sh,it-τ 0.099 -0.100 -201% -0.110 -211% -0.096 -198% 
log(n+g+δ)it-τ -0.197 -1.019 417% -1.106 461% -1.035 425% 
log yit-τ 0.832 0.328 -61% 0.183 -78% 0.110 -87% 
Avg. Abs. Bias   189%  212%  206% 
Implied λ 3.68% 22.28% 506% 33.93% 822% 44.21% 1101% 

Between 
log sk,it-τ 0.099 0.080 -19% 0.079 -20% 0.077 -22% 
log sh,it-τ 0.099 0.109 11% 0.104 6% 0.101 2% 
log(n+g+δ)it-τ -0.197 -0.025 -87% -0.025 -87% -0.029 -85% 
log yit-τ 0.832 0.987 19% 0.990 19% 0.993 19% 
Avg. Abs. Bias   34%  33%  32% 
Implied λ 3.68% 0.27% -93% 0.20% -95% 0.15% -96% 

Random Effects 
log sk,it-τ 0.099 0.163 66% 0.204 107% 0.230 134% 
log sh,it-τ 0.099 0.268 172% 0.321 225% 0.350 255% 
log(n+g+δ)it-τ -0.197 -0.893 353% -1.357 588% -1.666 744% 
log yit-τ 0.832 0.789 -5% 0.700 -16% 0.638 -23% 
Avg. Abs. Bias   149%  234%  289% 
Implied λ 3.68% 4.73% 29% 7.14% 94% 9.00% 145% 

Arellano-Bond 
log sk,it-τ 0.099 -0.045 -145% -0.071 -172% -0.091 -192% 
log sh,it-τ 0.099 -0.286 -390% -0.257 -361% -0.215 -318% 
log(n+g+δ)it-τ -0.197 -0.710 260% -0.651 230% -0.526 167% 
log yit-τ 0.832 0.200 -76% 0.091 -89% 0.042 -95% 
Avg. Abs. Bias   218%  213%  193% 
Implied λ 3.68% 32.23% 776% 47.91% 1202% 63.45% 1624% 
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Table 7 – Autocorrelated Measurement Error (F=10%, 1000 runs) 
 

  ρd=50% ρd=75% ρd=90% 

Variable 
True 

Coeffs Mean Bias (%) Mean Bias (%) Mean Bias (%) 
Fixed Effects 

log sk,it-τ 0.099 0.029 -71% 0.047 -52% 0.066 -33% 
log sh,it-τ 0.099 -0.060 -161% -0.035 -135% -0.002 -102% 
log(n+g+δ)it-τ -0.197 -0.818 315% -0.627 218% -0.537 172% 
log yit-τ 0.832 0.425 -49% 0.538 -35% 0.627 -25% 
Avg. Abs. Bias   149%  110%  83% 
Implied λ 3.68% 17.13% 366% 12.40% 237% 9.33% 153% 

Between 
log sk,it-τ 0.099 0.075 -24% 0.074 -25% 0.072 -27% 
log sh,it-τ 0.099 0.094 -5% 0.086 -13% 0.078 -21% 
log(n+g+δ)it-τ -0.197 -0.031 -84% -0.027 -86% -0.044 -78% 
log yit-τ 0.832 0.998 20% 1.003 21% 1.007 21% 
Avg. Abs. Bias   33%  36%  37% 
Implied λ 3.68% 0.05% -99% -0.06% -102% -0.14% -104% 

Random Effects 
log sk,it-τ 0.099 0.157 59% 0.132 33% 0.115 16% 
log sh,it-τ 0.099 0.231 134% 0.184 87% 0.151 53% 
log(n+g+δ)it-τ -0.197 -0.826 319% -0.493 150% -0.300 52% 
log yit-τ 0.832 0.817 -2% 0.880 6% 0.923 11% 
Avg. Abs. Bias   129%  69%  33% 
Implied λ 3.68% 4.05% 10% 2.56% -30% 1.60% -57% 

Arellano-Bond 
log sk,it-τ 0.099 -0.017 -118% 0.007 -93% 0.032 -68% 
log sh,it-τ 0.099 -0.177 -279% -0.146 -248% -0.107 -208% 
log(n+g+δ)it-τ -0.197 -0.367 86% -0.202 3% -0.206 5% 
log yit-τ 0.832 0.426 -49% 0.537 -35% 0.599 -28% 
Avg. Abs. Bias   133%  95%  77% 
Implied λ 3.68% 17.09% 364% 12.43% 238% 10.24% 178% 
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Table 8 – Simulation Results for Alternative Estimators– 1000 runs 
 

Error-to-Truth Ratio: F=5% F=10% F=15% 
Variable True 

Coeffs 
Mean Bias (%) Mean Bias (%) Mean Bias (%) 

Random Effects 
log sk,it-τ 0.099 0.163 65% 0.204 107% 0.234 137% 
log sh,it-τ 0.099 0.268 172% 0.322 226% 0.347 252% 
log(n+g+δ)it-τ -0.197 -0.899 355% -1.361 590% -1.666 744% 
log yit-τ 0.832 0.789 -5% 0.699 -16% 0.639 -23% 
Avg. Abs. Bias   150%  235%  289% 
Implied λ 3.68% 4.75% 29% 7.17% 95% 8.96% 143% 

SUR (Flexible Random Effects) 
log sk,it-τ 0.099 0.133 35% 0.160 62% 0.183 85% 
log sh,it-τ 0.099 0.210 113% 0.244 148% 0.268 171% 
log(n+g+δ)it-τ -0.197 -0.531 169% -0.857 334% -1.092 454% 
log yit-τ 0.832 0.865 4% 0.802 -4% 0.751 -10% 
Avg. Abs. Bias   80%  137%  180% 
Implied λ 3.68% 2.91% -21% 4.40% 20% 5.74% 56% 

Between 
log sk,it-τ 0.099 0.079 -19% 0.079 -20% 0.078 -21% 
log sh,it-τ 0.099 0.110 12% 0.105 6% 0.100 1% 
log(n+g+δ)it-τ -0.197 -0.033 -83% -0.027 -86% -0.031 -84% 
log yit-τ 0.832 0.986 18% 0.990 19% 0.993 19% 
Avg. Abs. Bias   33%  33%  31% 
Implied λ 3.68% 0.29% -92% 0.21% -94% 0.14% -96% 

Mankiw-Romer-Weil (modified Between)a 
log sk,it-τ 0.099 0.087 -12% 0.085 -14% 0.083 -16% 
log sh,it-τ 0.099 0.134 35% 0.126 27% 0.121 22% 
log(n+g+δ)it-τ -0.197 -0.109 -45% -0.099 -50% -0.087 -56% 
log yit-τ 0.832 0.959 15% 0.966 16% 0.971 17% 
Avg. Abs. Bias   27%  27%  28% 
Implied λ 3.68% 0.84% -77% 0.69% -81% 0.60% -84% 

a: MRW estimates adjusted with τ=5 instead of τ=40 to ensure comparability of the point estimates with the 
other estimators. 
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Table 9 – Growth Regressions on Actual Data – Dependent Variable: Log Per Capita Income – 1960-
1999. 

 
 (1) (2) (2’) (3) (4) (5) (6) 
 BE MRW MRW 

adj.b 
RE SUR FE AB 

log sk,it-τ 0.058 0.382 0.062 0.065 0.066 0.062 0.061 
 (0.016)** (0.104)**  (0.012)** (0.011)** (0.017)** (0.023)** 
log sh,it-τ 0.041 0.405 0.066 0.040 0.038 -0.028 -0.087 
 (0.014)** (0.085)**  (0.011)** (0.010)** (0.020) (0.030)** 
log(n+g+δ)it-τ -0.214 -2.173 -0.355 -0.385 -0.284 -0.421 -0.016 
 (0.111)* (0.734)**  (0.091)** (0.078)** (0.153)** (0.222) 
log yit-τ 0.960 0.523 0.922 0.940 0.948 0.796 0.766 
 (0.014)** (0.078)**  (0.011)** (0.010)** (0.026)** (0.039)** 
# of Observations - - - 552 552 552 414 
Number of 
Countries 

69 69 69 69 69 69 69 

Implied λ 0.82% 1.62% 1.62% 1.24% 1.07% 4.56% 5.33% 
Standard errors in parentheses 
* significant at 10%; ** significant at 1% 
All regressions include time effects (except columns 1 and 2). Regressions include a constant term (not 
reported), where applicable. 
a: Income at the end of each 5-year period in all but columns 2 and 2’, where the dependent variable is 
income in 1999. 
b: MRW estimates adjusted with τ=5 instead of τ=40 to ensure comparability of the point estimates with the 
other columns. 




