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ABSTRACT

There are two broad classes of models used to address the econometric problems caused by skewness
in data commonly encountered in health care applications: (1) transformation to deal with skewness
(e.g., OLS on ln(y)); and (2) alternative weighting approaches based on exponential conditional models
(ECM) and generalized linear model (GLM) approaches. In this paper, we encompass these two classes
of models using the three parameter generalized gamma (GGM) distribution, which includes several
of the standard alternatives as special cases  n OLS with a normal error, OLS for the log normal, the
standard gamma and exponential with a log link, and the Weibull. Using simulation methods, we find
the tests of identifying distributions to be robust. The GGM also provides a potentially more robust
alternative estimator to the standard alternatives. An example using inpatient expenditures is also
analyzed.
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1.   INTRODUCTION 

Many past studies of health care costs and their responses to health insurance, treatment 
modalities or patient characteristics indicate that estimates of mean responses may be quite 
sensitive to how estimators treat the skewness in the outcome (y) and other statistical problems 
that are common in such data.   Some of the solutions that have been used in the literature rely on 
transformation to deal with skewness (most commonly, OLS on ln(y)), alternative weighting 
approaches based on exponential conditional models (ECM) and generalized linear model 
(GLM) approaches, the decomposition of the response into a series of estimation models that 
deal with specific parts of the distribution (e.g., multi-part models), or various combinations of 
these. The default alternative has been to ignore the data characteristics and to apply OLS 
without further modification.  

 In two recent papers, we have explored the performance of some of the alternatives found 
in the literature.  In Manning and Mullahy (2001), we compared models for estimating the 
exponential conditional mean – how the log of the expected value of y varied with observed 
covariates x.  That analysis compared OLS on log transformed dependent variables and a range 
of GLM alternatives with log links under a variety of data conditions that researchers often 
encounter in health care cost data.  In Basu, Manning, and Mullahy (2003), we compared log 
OLS, the gamma with a log link, and an alternative from the survival model literature, the Cox 
proportional hazard regression.   In both papers, we proposed a set of tests that can be employed 
to select among the competing estimators, because we found no single estimator dominates the 
other alternatives or is a close second best.   

 In this paper, we again compare exponential conditional mean models.1  Our primary 
interest is in the marginal effect of a covariate x1 on E(y|x), where x1 could be a treatment or 
behavioral variable of interest.2  If  E(y|x) is exponential conditional mean, then the marginal 
effect is  

          0 1
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which is nonlinear in x.  But if we log both sides, then we can summarize the marginal effect by 
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In what follows, we focus on this as a summary of the response of y to x.  

 This time, we examine regression modeling using the generalized gamma distribution.  
The generalized gamma is appealing because it includes several of the standard alternatives as 
                                                           
1 This focus rules out situations where the analyst is interested in some latent variable construct. 
2 In practice, the vector of covariates x may include other explanatory variables. 
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special cases – OLS with a normal error, OLS for the log normal, the standard gamma and 
exponential with a log link, and the Weibull.   We see two potential advantages to using this 
distribution.  First, it provides nested comparisons for some alternative estimators, and hence a 
formal alternative to the somewhat cumbersome and incomplete testing procedure in Manning 
and Mullahy (2001).   Second, if none of the standard approaches is appropriate for the data, then 
the generalized gamma provides an alternative estimator that will be more robust to violations of 
distributional assumptions.    

The plan for the paper is as follows.   In the next section, we describe the generalized 
gamma in greater detail, showing its connection to more commonly used estimators.  Section 3 
describes the general modeling approaches that we consider, and our simulation framework.  
Section 4 summarizes the results of the simulations and examines an application: (1) a study of 
inpatient expenditures that we have used in previous papers.    The final section contains our 
discussion and conclusions. 

 

2.  GENERALIZED GAMMA MODELLING FRAMEWORK 

We confine our discussion here to the case with strictly positive values of y to streamline 
the analysis.  We do not address issues related to truncation, censoring, or the “zeros” aspects of 
data (or "part one of a two-part model").  The focus is on the exponential conditional mean (log 
link) model because of its widespread use in health economics and health services research.  
However, the estimation approaches examined here can be extended to include Box-Cox models 
and alternative power links for GLM and generalized gamma models.  

Our modeling framework compares the generalized gamma estimator to several 
alternative estimators that are most commonly used to model health care costs.  We give a list of 
these alternative estimators below.  But before that, we describe the generalized gamma  
distribution in detail.  The generalized gamma distribution has one scale parameter and two 
shape parameters.  This form is also referred to as the family of generalized gamma distributions 
because the standard gamma, Weibull, exponential and the log normal are all special cases of 
this distribution.  Hence, it provides a convenient form to identify the data generating mechanism 
of the dependent variable and in turn helps to select the best estimator by applying maximum 
likelihood methods to estimate a regression model based on the generalized gamma distribution.   

2.1.  The Standard Version.  

 The probability density function for the generalized gamma is parameterized as a 
function of κ, µ, and σ:  

 f( y; κ, µ, σ) = exp
( )

z
y

γγ γ
σ γ γ

u − Γ
 y ≥ 0                      (1)                       
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where γ = |κ|-2, z = sign(κ){ln(y) - µ}/σ, and u = γ exp(|κ|z).3   The parameter µ is replaced by 
x β′ = β0 + β1x1, where x is the matrix of the covariates including an intercept, and the β’s are 
coefficients to be estimated.  As an extension, we can allow σ to also depend on x.   

For the generalized gamma distribution, the expected value of y conditional on x is given 
by: 

 E(y|x) = exp[         (2)             2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( / ) ln( ) ln( {(1/ ) ( / )}) ln( {1/ })]X β σ κ κ κ σ κ κ+ + Γ + − Γ 2

The other moments of this distribution are: 

rth moment = E(yr) = { }
2

2 2ˆ ˆ ˆ ˆxp( ) } {(1/ ) ( / )} (1/ )r r
σ
κµ κ κ σ κ κ⋅ ⋅ Γ + Γ{e  

Variance    =  E(y2)–E(y)2                                                         

       = { }
ˆ2

22 2 2 2 2ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆexp( ) } ((1/ ) (2 / )) (1/ ) ((1/ ) ( / )) (1/ )
σ
κµ κ κ σ κ κ κ σ κ κ  ⋅ Γ + Γ − Γ + Γ   ˆ {    

            (3)                

We can also extend the GGM to allow for heteroscedasticity (GGM-het) by parameterizing ln(σ) 
as α0 + α1ln(f(x)) so that σ is estimated as σ 0 1

i

ˆ ˆ ˆ = (1/n) exp{ ln( ( ))}if xα α+∑ . The marginal 

effect of a covariate (xk) on the expected value of y is then given by: 
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where z = [( , 2ˆ ˆ ˆ1/ ) ( / )]κ σ κ+ 1ˆ ˆ ˆ/ [ ( ) / (x f x f xσ σ α ′∂ ∂ , and = ( ) / ( )z z′Γ Γ
ˆ

is the digamma function.  

When σ is not modeled as a function of x, then ∂ln(E(y|x))/∂x = β .   

 

2.2. Special cases. 

The specific values for the shape parameters of the generalized gamma distribution yield 
several possible distributions as special cases. Table I lists the special cases.  Using the 
maximum likelihood estimates of parameter σ and κ and the likelihood function, we can perform 
hypothesis tests of the appropriateness of each special case.  

                                                           

3  This formulation is consistent with the formulation used by Stata Corp Inc., Version 7. An 
alternative formulation of the three-parameter generalized gamma distribution was proposed by 
Stacy (1962) and the form commonly used in practice was suggested by Stacy and Minhram 
(1965). Appendix A contains a crosswalk between the form in (1) and the Stacy and Minhram 
parameterization. 
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           This formulation can also be modified to deal with a series of issues. 

2.2.1.  Heteroscedastic log normal distribution.  The error terms in models for ln(y) are often 
heteroscedastic in at least one of the covariates.  In such situations, heteroscedastic 
retransformation of log-scale prediction from OLS based model is necessary to obtain unbiased 
estimators of E(y|x) (Manning 1998).  If ln(y) ~ Normal (µ=xδ, σ2=f(x)), then E(y|x) = exp(xδ + 
0.5f(x)).  The generalized gamma regression provides an opportunity to simultaneously model 
both the full response of E(y) to covariates x.  Thus, a direct test of the presence of 
heteroscedasticity can be performed with the parameter estimates of the model.  For example, in 
the generalized gamma regression if ln(σ) is parameterized as α0 + α1ln(f(x)), the test of α1 = 0 is 
a test for heteroscedasticity on the log-scale, as long as α1 can be identified with respect to the 
specification used in the main model.  Moreover, E(y|x) can be obtained directly using parameter 
estimates of the model without any retransformation.   

2.2.2.  Mixture models.  Some studies deal with dependent measures and error terms that are 
heavier tailed (on the log-scale) than even the log normal.  In these scenarios, a mixture of log-
normals may better approximate the appropriate distribution.  However, GLM models tend to be 
inefficient in the presence of heavier tails.  Log OLS models seem to provide a more precise fit 
to these data (Manning and Mullahy 2001), baring other problems.  We expect that the 
generalized gamma regression to have results equivalent to the log OLS.   

However, if we can identify the process behind the generation of the mixture, then we 
can incorporate these into the specification of the generalized gamma regression.  For example, 
let the error (ε ) on the log scale be a mixture of two normal distributions, N(0, v1) and N(0, v2).  
Let δi be an indicator for the first of the two distributions. Then, ε i | iδ  ~ N(0, δiv1 + (1-δi)v2).   

δi could be stochastic (e.g. Bernoulli) or deterministic (a dummy variable).  If this δi is 
observable, then one can model ln(σ) = α0 + α1δ, indicating that exp(2α0) = v2 and exp(2α0 + 2α1) 
=v1.  Significant efficiency gains may accrue from such a formulation if the error terms are 
homoscedastic in x, but heavy-tailed on the log scale.   

To achieve these gains, the iδ  must be observable, rather than latent. However, both in 

the case of heteroscedasticity and mixture model, the true variance function are seldom known a 
priori. Nevertheless, modeling ln(σ) as a linear function of observable covariates may overcome 
the biases in many applications and may also result in efficiency gains compared to GLM 
models. 
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3.  METHODS 

To evaluate the performance of the generalized gamma estimator, we rely on Monte Carlo 
simulation of how this estimator behaves over a range of data circumstances and compare it with 
the behavior of alternative estimators from the literature, including one that is optimal in terms of 
bias and efficiency for the given data generating mechanism.  We consider a broad range of data 
circumstances that are common in health economics and health services research.  They are: (1) 
skewness in the raw-scale dependent variable y; (2) a log-scale error that is heteroscedastic; (3)  
a pdf that is monotonically declining rather than bell shaped; and (4) heavy tailed distributions 
(even after the use of log transformations to reduce skewness on the raw scale).  This set of 
generating mechanisms includes many of the alternatives from Manning and Mullahy (2001).4  
The following describes the data generating processes that exhibit these four properties, and each 
of the estimation methods that we use to estimate the mean response E(y|x)).  

 

3.1. Data generating processes. 

 In this work, we consider several different data generating processes that yield strictly 
positive outcomes that are skewed to the right and exhibit the exponential conditional mean 
property.  They differ in their degree of skewness, kurtosis and also in their dependence on a 
linear combination of covariate x.  We evenly spaced the single covariate x over the [0, 1] 
interval.5  The first data generating processes is ln(y) = β0 + β1x + ε , ε  is N(0, v) with variance 
v = 1.0 and 2.0.  The greater the error variance, the more skewed y becomes on the raw scale.  
E(x′ ε ) = 0 and β1 equals 1.0, which is also the slope of the log of the marginal effect.  The value 
of the intercept (β0) is selected so that the unconditional mean of y is one. 

Heteroscedasticity in the log-scale error term of a linear specification for E(ln(y|x)) is a 
common feature in health economics data.  Estimates based on OLS on the log-scale can provide 
a biased assessment of the impact of the covariate x on E(y|x) (Manning 1998).  In this case, the 
constant variance v from above is replaced by some log-scale variance function v(x).  The 
expectation of y on the raw-scale becomes:  E(y|x) = exp(β0 + β1x + 0.5v(x)).   To construct the 
heteroscedastic log normal data, we generate the error term ε as the product of a N(0, 1) variable 
and either (1+x) or its square root.  The latter has error variance that is linear is x (v = 1+x), 

                                                           
4  We do not deal with either truncation or censoring. Nor do we consider models based on 
survival methods, such as those with the proportional hazards property; see Basu, Manning, and 
Mullahy (2003) for a comparison of survival based estimators with exponential conditional mean 
estimators. 
5 For each sample, there are 10 subsamples of 1000 with values for x, with x evenly spaced at the 
0.001 times the observation number, less 0.0005 
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while the former is quadratic in x ( v = 1 + 2x + x2). Again, β1 equals 1.0 and β0 is selected so 
that E(y) = 1. 

The third data generating process is based on the gamma distribution.  The gamma has a 
pdf that can be either monotonically declining throughout the range of support or bell shaped, but 
skewed to the right.  The pdf for the standard gamma variate is given in Table I. The scale 
parameter µ equals β0 + β1x, where β1 equals 1.0 and β0 is selected so that E(y|x) = 1.  The shape 
parameter 1/|κ|2 = 0.5, 1.0, or 2.0.  The first and second values of the shape parameter yield 
monotonically declining pdfs conditional on x, while the last is the bell-shaped but skewed right.  
If the shape parameter equals 1.0, then we have the exponential distribution. 

We also consider data generating process based on the Weibull distribution, which (like 
the exponential distribution) exhibits both exponential conditional mean and proportional hazard 
properties.  The Weibull variate has two parameters. The scale parameter µ equals β0 + β1x, 
where β1 equals 1.0 and β0 is selected so that E(y) = 1.  We set the shape parameter σ to 0.5, 
which yields a linearly increasing hazard function with y.  

As noted earlier, some studies deal with dependent measures and error terms that are 
heavier tailed (on the log-scale) than even the log normal.  We consider two alternative data 
generating mechanisms with ε being heavy tailed (kurtosis > 3).  In the first, ε is drawn from a 
mixture of normals, each with mean zero.  The (p ×100%) of the population have a log-scale 
variance of 1, and (1-p) × 100% have a higher variance.  In the first case, the higher variance is 
3.3 and p = 0.9, yielding a log-scale error term with a coefficient of kurtosis of 4.0. In the second 
case, the higher variance is 4.6 and p = 0.9, giving a log-scale error term with a coefficient of 
kurtosis of 5.0. 

 Table II summarizes the data generating mechanisms that we consider. 

 

3.2.  Estimators. 

 We employ several different estimators for each type of data generated.  The first 
estimator is a regression model based on the generalized gamma distribution.  We employ three 
versions of the generalized gamma regression. The first version is the regular regression where σ 
is estimated as a constant; we refer to this model as “GGM.”  In the second version, we model a 
‘working’ version of the variance function that may not represent the true underlying variance 
function; we refer to this model as “GGM-het1.”  Specifically, for GGM-het1, we model ln(σ) as 
a linear function of x, i.e. ln(σ) = α0 + α1x.  Both the GGM and GGM-het1 models are run on all 
data generating processes, whether heteroscedasticity is present or not.  Finally, we also employ 
a third model only for heteroscedastic and heavy tailed data where the true underlying model of 
σ is used to illustrate the best case scenario; we refer to this model as GGM_het2. Several 
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methods exist for the estimation of the parameters of this distribution (Hagen and Bain 1970, 
Lawless 1980, Wingo 1987, Cohen and Whitten 1988, Stacy and Mihram 1965, Balakrishnan 
and Chan 1994).  We employ full-information maximum likelihood method to estimate the 
parameters of the model.  Full information maximum likelihood is implemented in Stata 7’s -
streg- option, to obtain MLE estimates for β, σ and κ. 

 The other estimators that we employ include: ordinary least square (OLS) regression of 
ln(y) on x and an intercept with a homoscedastic smearing factor for the retransformation (Duan 
1983); the gamma generalized linear model (GLM) for y with a log link function (McCullagh 
and Nelder, 1989); and a maximum-likelihood estimator of Weibull model for y.  

3.2.1.  Least Squares on ln(y).  By far the most prevalent estimation approach used in health 
economics and health services research is to use ordinary least squares or a least-squares variant 
with ln(y) as the dependent variable.  One rationale for this transformation is that the resulting 
error term is often approximately normal.   If that were the case, the regression model would be 
ln( )y xβ ε= + , where x is a matrix of observations on covariates, β is a column vector of 
coefficients to be estimated, and ε is the column vector of error terms.  We assume that E(ε ) = 0 
and E(x′ ε ) = 0, but the error term ε need not be i.i.d.  If the error term is normally distributed 
N(0, 2

εσ ), then E(y|x) = exp ( 0 2.5x )εδ σ+ .  If ε  is not normally distributed, but is i.i.d., or if 
exp(ε) has constant mean and variance, then E(y|x)= s×exp ( )xβ , where s = E(exp(ε )).6  In 
either case, the expectation of y is proportional to the exponential of the log-scale prediction 
from the LS-based estimator.  

However, if the error term is heteroscedastic in x – i.e. E(exp(ε |x)) is some function f(x) 
-- then E(y|x) = f(x) × exp ( )xβ , or, equivalently,  

ln( ( | )) ln( ( ))E y x x f xβ= +                                      (5)            

and in the log normal case,  
2ln( ( | )) 0.5 ( )E y x x xεβ σ= +                 (6)          

where the last term in Equation 6 is the error variance as a function of x on the log scale 
(Manning, 1998). 

 

3.2.2.  Gamma Models.   In GLM modeling, one specifies a mean and variance function for the 
observed raw scale variable y, conditional on x (McCullagh and Nelder, 1989).   Because of the 
work by Blough, Madden, and Hornbook (1999), we will focus on the gamma regression model 
with a log link.  Like the log normal, the gamma distribution has a variance function that is 
                                                           
6  Duan (1983) shows that one can use the average of the exponentiated residuals to provide a 
consistent estimate of the smearing factor. 
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proportional to the square of the mean function, a property approximately characteristic of many 
health data sets.   The exponential distribution is a limiting case of the standard gamma when κ = 
1. 

 

3.2.3.  Weibull Models.   The last estimator that we consider is the Weibull, which is frequently 
used as a parametric alternative for dealing with survival or failure time data.  Here, the Weibull 
is implemented as a GLM model where E(y|x) = µ = exp(xβ) and v(y|x) = ξ (µ(x))2, where ξ = 
[Γ(1 + 2σ) - Γ(1 + σ)].   The Weibull is the only distribution in the generalized gamma family of 
distributions that has this property.   

 

3.2.4.  Estimators Not Considered.   In principle, we could have adapted the OLS model for 
ln(y) to allow for heteroscedastic retransformation (Manning, 1998; Manning and Mullahy, 
2001).  In the case of a simple form of heteroscedasticity based on a categorical variable or if the 
underlying log-scale error term was actually normally distributed, then a heteroscedastic 
retransformation would be a viable alternative.  However, if the log-scale error is heteroscedastic 
in continuous variables or is not normally distributed, then this alternative is cumbersome and 
difficult to implement.  Having explored this alternative earlier, we forego it here.   

 Similarly, we could have adapted an MLE estimator for ln(y) to allow for a 
heteroscedastic, normally distributed error.   If the log-scale error is heteroscedastic, but not 
normally distributed, then the estimates from such a model will provide a biased estimates of 
E(y|x), because that expectation depends on the expected value of the exponentiated log-scale 
error term, and will not necessarily equal exp( 20.5 ( )xσ ) as it does in the log normal case.   

 

3.3. Design and Evaluation. 

 Each of the estimators is evaluated on 500 random samples from each of the data 
generating processes, with each sample having a sample size of 10,000. All models are evaluated 
in each replicate of a data generating mechanism.  This allows us to reduce the Monte Carlo 
simulation variance by holding the specific draws of the underlying random numbers constant 
when comparing alternative estimators.   The primary estimates of interest are:  

(1)   The mean, standard error and 95% interval of the simulation estimates of the slope β1 of 
ln(E(y)) with respect to x.  The mean provides evidence on the consistency of the estimator, 
while the standard error indicates the precision of the estimate.   

(2)   The mean residual, to see if there is any overall bias in the prediction of y.    The mean 
provides evidence on the consistency of the overall level of the response.  
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(3)  The bootstrap estimate of the variance of the slope of the (log of the) expected value of y 
with respect to x provides estimates of the precision of the estimator that is not sensitive to the 
over-fitting problems in a specific sample.  

(4) In evaluating the predictive validity of the alternative estimators, we compare the variance in 
estimating µ(x) at different values of x across alternative estimators. A plot of standard 
deviations of µ(x) against x is plotted for each estimator under each data generating mechanism. 
The pattern in the standard deviations indicates the estimated prediction variance on the raw 
scale and thus presents a sense of comparative efficiency across estimators. 

 Finally we also employ all the tests for identifying distributions based on the generalized 
gamma regression discussed in Section 2.   We performed four Wald tests on the parameter and 
variance estimates of the ancillary parameter.  The tests are:  a test for the standard gamma 
( exp( ˆˆln( ))σ κ= );  a test for the log normal ( ˆ 0κ = );  a test for the Weibull ( );  and, a test for 
the exponential (

ˆ 1κ =
ˆˆln( ) 0, 1σ κ= = ).  We report the proportion of the simulations where the chi-

square statistic from each of these tests is significant at the 5% level. 

 We used Stata 7.0 for all of the estimation.  For the generalized gamma, we employed the  
-- streg -- command in Stata.7   

 

 

4.  RESULTS: SIMULATIONS AND AN EMPIRICAL EXAMPLE 

4.1. Simulation Results. 

Table II provides some of the sample statistics for the dependent measure y on the raw 
scale across the various data generating mechanisms.  As indicated earlier, the intercepts have 
been set so that the E(y) is 1.  For each case, the dependent variable y is skewed to the right and 
heavy tailed.  Table III provides the results on the consistency and precision in the estimate of  
β1, the slope of ln(E(y|x)) with respect to x, for each of the alternative estimators for different 
data generating processes.   Appendix B provides tests of the goodness of fit measures for the 
alternative estimators, including the mean of the raw scale residuals for each estimator for each 
data generating process.   Table IV reports the tests for identifying distributions tests performed 
after the generalized gamma regressions on each data type.  Finally, Figures 1, 2 and 3 shows the 
relative precision of alternative estimators in predicting y in the raw scale at different values of x. 

 

                                                           
7   We have written three Stata ado files that can be used to estimate these models and do the 
associated tests.  They are available from the corresponding author by e-mail request.  
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4.1.1.  Homoscedastic Log Normal Data.  All the estimators seem to produce consistent 
estimates of the slope β1 for the homoscedastic log normal data (Table III).  Log-OLS seems to 
provide the most precise estimate when compared to the Gamma and Weibull estimators.  
However, the standard form of the three parameter generalized gamma (GGM) provides equally 
consistent and precise results as the log OLS.  The GGM-het1 model is also consistent and is 
more precise than the standard Gamma model.  This was expected since log normal distribution 
is a special case of the generalized gamma.  On average, the alternative estimators make 
unbiased predictions, as seen in Appendix B, Table I.  Again, the GGM fairs as well as the OLS 
estimates in terms of bias and goodness of fit measures, with the exception of the very heavy 
tailed alternatives.   The Weibull estimates show a downward bias (under prediction) with higher 
error variance.  For data such as these, the results for OLS estimate based on a logged dependent 
variable is BLUE. The results for the standard Gamma estimator are consistent (Manning and 
Mullahy, 2001) but less precise than the OLS estimate based on ln(y). This is especially true at 
extreme values of x as evident in Figure 1. 

The test for log normal (κ =0) after the GGM regression was rejected only 7 percent of 
the times for log-scale error variance of 1 and 6 percent for log-scale error variance of 2 at the 5 
percent significant level (Table IV).  The tests for Gamma, Weibull and Exponential were 
rejected for all samples of data such as these.  

 

4.1.2.  Heteroscedastic Log Normal Data.  As expected, OLS with homoscedastic 
retransformation yields a biased estimate of the slope ln(E(y|x)) with respect to x (Table III).  
The standard gamma provides a consistent estimate of the slope, though the consistency comes at 
some expense of precision.  However, the Weibull model seems to provide biased estimates with 
larger bias for the quadratic variance.   

The regular GGM estimate performs exactly like the OLS estimate for ln(y) with 
homoscedastic smearing and thus provides a biased estimate of the slope. This may come as a 
surprise when a special case of GGM, the standard gamma GLM is an unbiased estimator. We 
conjecture that that this anomaly is due to a special feature of generalized gamma distribution 
and the implementation of GGM in Stata 7. Using a separate simulation framework we found 
that as the coefficient of skewness of the error on the log scale approaches zero, the MLE for κ 
also approaches 0. When  is close to 0, Stata 7 maximizes the log-normal distribution instead 
of generalized gamma. Consequently, since heteroscedastic log normal data is symmetric on the 
log scale, the GGM model gives identical results to a log OLS model. We, therefore suggest 
cautious interpretation of results from a GGM model when 

κ̂

κ̂  is close to 0 and no hetero 
correction is applied. However, when we model the random part with the appropriate variance 
function, the heteroscedastic generalized gamma model (GGM-het2) gives a consistent estimate 
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of the slope with reasonable precision.  Thus, it provides an alternative to some heteroscedastic 
generalizations of Duan’s (1983) smearing estimate. When we use an ‘working’ variance 
function (GGM-het1) and not the true one, the heteroscedastic GGM model still gives consistent 
estimate of the slope and is more efficient than the standard Gamma model. However, the 
efficiency of the heteroscedastic GGM model will depend on the distribution of x. At higher 
values of x, the GGM-het1 is more inefficient than the standard Gamma (Figure 1) while the 
opposite is true at lower values of x.  

Even for the heteroscedastic log normal, the test of log normality after the GGM 
regression seem to fail only 5 percent of the time, whereas other distributions were rejected for 
all the replicates at the 5 percent significance level (Table IV).   

 

4.1.3. Heavy-tailed Data.  The presence of a heavy-tailed error distribution on the log-scale does 
not cause consistency problems for any of the estimators, but it does generate much more 
imprecise estimates for the Gamma and Weibull models.  The standard errors are about 2 and 4 
times larger for the Gamma and Weibull models respectively than the OLS estimate if the 
kurtosis is 4.  These estimates rise to 4 and 10 respectively if kurtosis is 5.  The regular GGM 
produces both an unbiased and precise estimate of the slope.  The GGM-het2 (where σ is models 
as a function of the mixing process) also provides unbiased estimate and only modest precision 
gain over the regular GGM.  The GGM-het1 (where a ‘working’ variance functions is used) also 
provides unbiased estimate of the slope with modest precision loss over the regular GGM.  The 
standard Gamma model is highly inefficient for this data generating mechanism especially at the 
tails of the distribution of x (Figure 2).  

Regular GGM predictions tend to be upward biased by about 8 percent if kurtosis is 4 and 
by 20 percent if kurtosis is 5 (Appendix B Table 1).  However, GGM-het2 overcomes this 
problem and produces consistent predictions.  This may be indicative of the difficulty in 
modeling a mixture distribution.  The test of log normality after the GGM regression seems to 
fail only 5 percent of the time, whereas other distributions were rejected for all the replicates at 
the 5 percent significance level (Table IV).   

 

4.1.4. Data from the Gamma and Weibull Families.  Each of  the estimators provides a 
consistent estimate of the slope for the data generating mechanism of gamma with shapes 0.5 
(monotonically declining pdf), 1.0 (exponential distribution) and 2.0 (bell-shaped pdf skewed to 
the right) and of Weibull with shape 0.5 (linearly increasing hazard).  The OLS estimator 
experienced some precision loss mainly for the gamma with shape 0.5 (Table III and Figure 3).  
In terms of prediction, all estimators provide unbiased predictions expect that Weibull model 
tends to over predict at all the deciles of x for gamma with shape 0.5.  The GGM does not 



 14

provide any evidence for lack of fit as it is the MLE as well as BLUE for these data generating 
mechanisms. 

The tests for identifying distributions correctly identify the gamma or the Weibull data 
while rejecting all other distributions (Table IV).  For the exponential data (gamma with shape 
1.0), the tests correctly identifies it as gamma, Weibull and exponential since the exponential 
distribution is a special case of both gamma and Weibull.   

 

4.2.  Choosing an Estimator. 

 In Manning and Mullahy (2001), we suggested an algorithm for selecting among the 
exponential conditional mean models that we had examined.  The set of checks involved looking 
at two sets of residuals: (1) the log-scale residuals8 from a least squares model for ln(y); and (2) 
the raw-scale residuals from a generalized linear model with a log link.  If the log-scale residuals 
showed evidence that the error was appreciably and significantly heteroscedastic, especially if it 
was heteroscedastic across a number of variables, then the appropriate choice was one of the 
GLM models.  Although the heteroscedastic retransformation used on the Health Insurance 
Experiment, and discussed in Manning (1998), was a potential solution, it was often too 
cumbersome to employ.   If the residuals were not heteroscedastic, then the choice would depend 
on whether the log-scale residuals were heavy tailed or the raw-scale residuals exhibited a 
monotonically declining pdf.  If the log-scale residuals were heavy-tailed, but roughly 
symmetric, then OLS on ln(y) is the more precise estimator.  If the raw-scale residuals were 
monotonically declining, then one of the GLM alternatives, possibly the gamma, was 
appropriate. Finally, one could use the squared raw-scale residual in a modified Park test to 
determine the appropriate family (distribution) function among the GLM alternatives.    

 This algorithm did not deal with certain situations.  If the log-scale residuals are 
symmetric, heavy-tailed, and heteroscedastic, then OLS without suitable heteroscedastic 
retransformation will be biased.  But a suitable retransformation is often difficult to execute.  The 
GLM alternatives will be unbiased, but suffer substantial losses in precision.   

 One of the motivations for the current analysis was to examine the generalized gamma as 
a formal alternative to this earlier algorithm.  We in fact set up a program to execute the 
algorithm above, modified so that heteroscedasticity always leads to the choice of a GLM model, 
monotonically pdfs (otherwise) lead to GLM, and heavy tails (but homoscedastic on the log-
scale) lead to OLS on ln(y).  The results indicate that the generalized gamma alternative did 
                                                           
8  We would suggest using the standardized or studentized residuals rather than the conventional 
residuals e = ln(y) – xb, where b is the OLS estimate of β.   The OLS residual is heteroscedastic, 
by construction, even when the true error ε is not.  The variance-covariance matrix for the least 
squares residual is σ2 (I-X(X'X)-1X').  
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better over a range of data generating functions that were characterized by log-scale 
homoscedasticity, but asymmetric log-scale residuals.  In particular, the earlier algorithm would 
often choose OLS on ln(y) over the gamma regression alternative when the true data generating 
function was a gamma with a log link and a shape parameter greater than one.  The generalized 
gamma model, which includes both the log normal and the gamma with log link as special cases, 
never made this mistake.   

 As a result, we would suggest that anyone using the earlier algorithm and its rule about 
heavy tails require that the log-scale residuals be roughly symmetric before choosing OLS on 
ln(y).  Alternatively, we suggest using the generalized gamma and employing the tests used in 
this paper, including those in Appendix B.   

 

4.3.  Empirical Example – The University of Chicago Hospitalist Study. 

 We use data from a study of hospitalists that is currently being conducted at the 
University of Chicago by Meltzer, Manning, et al. [2002].  Hospitalists are attending physicians 
who spend three months a year attending on the inpatient words, rather than the one month a year 
typical of most academic medical centers.  The policy issue is whether hospitalists provide less 
expensive care or better quality of care than the traditional arrangement for attending physicians.  
The evidence to date suggests that costs and length of stay are lower. The behavioral issue in 
Meltzer, Manning et al. is whether these differences are due to increased experience in attending 
on the wards – as experience (number of cases treated) increases, do expenditures fall?   Does the 
introduction of a covariate for total experience and one for experience with the disease specific 
to that patient eliminate the explanatory power of the indicator for the hospitalists?   

 The data cover all admissions over a twenty-four month period.  All patients are adults 
drawn from medical wards at the University of Chicago.  Patients were assigned in a quasi-
random manner based on date of admission.   The hospitalist and non-hospitalist attending teams 
rotated days in fixed order through the calendar, ensuring a balance of days of the week and 
months across the two sets of attending physicians.   There is no evidence of significant or 
appreciable differences in the two groups of patients in terms of demographics, diagnoses or 
other baseline characteristics.   The sample size is 6511 cases for length of stay analyses and 
6500 for inpatient costs.  We deleted eleven cases because of missing values for the inpatient 
expenditure variable.  

The hospitalist study shows that there were no differences in cost per stay between the 
two groups of attending physicians at the beginning of the study.  This indicates that there were 
no significant or appreciable differences in baseline skills or experience between the hospitalist 
and traditional attending teams.  Instead, it appears that the differences evolve over time and are 
directly related to experience to the date of admission of the observation.  To illustrate the 
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alternative estimators, we re-estimate the models from the earlier study using inpatient (facility) 
expenditures as dependent variables, and the following estimators:  Ordinary least squares on 
ln(y), Gamma regression with  a log link, Weibull regression with a log link, and the Generalized 
Gamma estimator.   Table VI provides the estimates of the coefficients for the indicator for the 
hospitalist variable, the overall measure of experience-to-date, and the disease specific measure 
of experience-to-date.   We have suppressed the estimates of the coefficients of the other 
variables.  The standard errors reported are robust estimates using the appropriate analog of the 
Huber/White correction to the variance/covariance matrix.  

The results indicate that the coefficient on the hospitalist variable is not significantly 
different from zero once we correct for the inherent differences in experience between 
hospitalists and conventional atttendings.  There are two interpretations of the insignificant 
hospitalist coefficient.  First, hospitalists have no further effects on costs, except through their 
experience variable.  Second, at the beginning (no experience), they were not different from non-
hospitalists in their costs.  Further, it is disease specific experience, not total experience that 
matters.   These conclusions are unaffected by choice of estimator.  

The different estimators estimate different estimates of the magnitudes of the experience 
response.   As a result, the results in Table VI are not directly comparable.  First, the OLS on 
ln(y) estimates are really about the geometric mean.  Because the error term is heteroscedastic, 
these estimates are inconsistent in terms of the natural log of E(y|x).  Second, the Gamma and 
Weibull models do provide consistent estimates of the natural log of E(y|x).   Finally the 
generalized gamma regression models the deterministic part and the random part separately and 
hence provides a consistent estimate of log E(y|x) when estimates from both these part are taken 
into account. 

To make the results directly comparable, we predicted what each estimator would predict 
would be the results on the raw-scale of y – inpatient dollars.  In Table VI, we also provide the 
sample means of inpatient expenditures based on the deciles of disease-specific experience. For 
the OLS on ln(y), we used a homoscedastic smearing factor because we could determine no 
simple fix for the complex heteroscedasticity in the OLS residuals on the log scale.  In Appendix 
B, we also provide some tests of model fit.  Also, for the generalized gamma model, we report 
whether any particular distribution is identified by testing the ancillary parameters. 

 The regular GGM produces results identical to log OLS model in terms of slope and 
goodness of fit test.  However, the average residual from prediction is about 15 times lower than 
that of log OLS.  The test of log normality fails to reject the log normal distribution. A 
heteroscedastic version of GGM is fitted by modeling ln(σ) = α0 + α1LNCNT2 + α2LND3CNT2. 
This indicates that we assume that the heteroscedasticity is of the form: σ2 = K1 (CNT2)K2 

(D3CNT2)K3, where CNT2 is cumulative disease specific experience to date  and D3CNT2 is 
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specific experience-to-date. Though model fit with GGM-het was not much different than in 
regular GGM, the slopes of LNCNT2 and LND3CNT2 were comparable to the gamma 
regression with log link. 

 

 

5. CONCLUSIONS 

 In Manning and Mullahy (2001), we explored the performance of alternative least 
squares and generalized linear model estimators for the response of the expected value of y to a 
set of covariates x under a range of data generating processes.  No single estimator was dominant 
or nearly dominant under all circumstances.  But two patterns were clear.  First, least squares 
could provide biased estimates of the mean response of the (untransformed) outcome variable if 
there was heteroscedasticity in the log scale error.  Second, the GLM models would be unbiased 
but could be quite imprecise if the log-scale error was symmetric but heavy-tailed or if the log 
scale error variance is large (>1).  We proposed a set of tests that would allow analysts to choose 
among the competing exponential conditional mean (ECM) models.9 

 This paper takes a different approach.  It has considered the estimation of a regression 
model using maximum likelihood for a specific distribution – the generalized gamma -- that 
includes some of the ECM estimators, notably the gamma and the log normal, as special cases.   
Using similar simulation comparisons to our two earlier papers, we find that the GGM performs 
well against the special cases.  It handily rejects alternatives that do not apply to a specific data 
generating mechanism – for example, the log normal when the data are generated from a gamma 
with shape less than or equal to one.  It rarely rejects the correct distribution that applies.   The 
estimates provided by the GGM are consistent for the log-scale slope and almost as precise as the 
appropriate model for that data generating process.  The one exception to the consistency for the 
ECM data generating processes is the case where ln(y) = xβ + ε, where ε is heteroscedastic in x.  
This appears to be the result of the GGM selecting a κ close to zero because of the symmetry in 
the log scale error term.  Under these circumstances, the GGM estimates the log normal model, 
ignoring the heteroscedasticity.  This anomaly can be remedied by allowing the GGM to have a 
heteroscedastic error.  
                                                           
9 The results here confirm the earlier results and indicate how well the GG model works when 
the data generating process satisfies the proportional hazard assumption. .  In Basu, Manning, 
and Mullahy (2002), we also considered a set of alternatives derived from the literature on 
survival models with proportional hazard (PH) assumptions.  We provided a set of tests to 
choose between the two quite different exponential approaches that would allow a test of ECM 
vs PH alternatives.  
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Unlike the gamma with log link, the GGM can estimate the heavy-tailed alternatives 
without a noticeable loss in precision.  In those heavy-tailed cases, GGM is consistent for the 
slope of ln(E(y|x) with respect to x, but tends to under predict the overall mean on the raw scale 
because of  bias in the estimate of the  intercept. 

 This approach to choosing among the competing models is more appealing that 
the algorithm that we proposed in Manning and Mullahy (2001).  In practice, that algorithm 
often chooses the log normal when the true model is gamma with log link.  The new GGM 
approach thus deals well with the range of data generating conditions and problems that was 
problematic before.  Thus, it picks the right special case with high probability.   And it does so 
with little loss of precision in the log-scale slope.    

 Another advantage of the GGM is that it can be a robust or more general alternative to 
the two parameter log normal and exponential conditional models when the data do not fit one of 
the two or one parameter alternatives.  Thus, the generalized gamma provides an appealing 
encompassing model for several of the estimators that have been proposed.    

 But the generalized gamma model is not without some limitations of its own: 

• The standard formulation of the generalized gamma is not consistent when the data 
generating mechanism is the heteroscedastic model for ln(y), such as the examples in 
Manning (1998), Mullahy (1998), and Manning and Mullahy (2001).  This is in contrast 
to the results for the conventional gamma model, which is consistent (but inefficient) 
under those circumstances.   When such heteroscasticity is present on the log scale, the 
GGM must be adapted to handle heteroscedasticity, as we have done here to produce 
consistent and reasonably precise estimates.  

• Although it can be adapted to deal with heteroscedasticity and mixture models, the GGM 
does not have the robust, less parametric alternative like Duan’s smearing estimator 
smearing estimator for the least squares model.   But if the link function and the 
specification of the covariates in x are appropriate, then the choice of the wrong 
distribution/family does not lead to bias in the parameter estimates. 

• The GGM is not a full substitute for a careful examination of the model to see if the data 
exhibit the pattern we would expect of this class of models.   Nor is it a substitute for a 
careful examination of linearity, functional form, and the link function.  In a related 
paper, Basu and Rathouz (2003) extend the formulation of GLM models to select the 
power for the link and variance functions (distribution) simultaneously.  They show the 
nature in the bias from selecting the wrong link function. 

• Our concern here has been with modeling the mean response of the outcome variable to 
changes in the covariates, or some function of the mean, such as the marginal or 



 19

incremental effect of some covariate, controlling for other variables.  Many applications 
will require more attention to the distribution functions because the analyst is interested 
in a different task – such as the probability that the outcome will exceed some critical or 
policy important threshold.  For such analyses, the distributions studied here may not 
provide a close enough approximation. 

 Nevertheless, we hope that the alternatives considered here are useful in helping analysts 
to deal with data on outcomes that are inherently skewed, but may not necessarily fall into 
certain simple situations.   Those applications include the analysis of expenditures on health and 
other commodities and services, earnings, and many other economic outcomes which are often 
very skewed to the right.   Given the potential for bias and inefficiency in standard approaches, 
the GGM and its heteroscedastic adaptation provide a fresh, more flexible alternative. 
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Figure 1: Standard error of predictions from different estimators across different values of ‘X’ 

for Log Normal data with and without heteroscedasticity. 
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Heavy Tail k= 5.0 
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Figure 2: Standard error of predictions from different estimators across different values of ‘X’ 
for data with heavy tails. 
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Figure 3: Standard error of predictions from different estimators across different values of ‘X’ 
for Gamma, Exponential and Weibull data. 
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 Table I: Special Cases of Generalized Gamma Distributions 
 

Ancillary 
Parameters 

Distribution Probability Density Function 

σ κ   
   
   >0  

 
* 

 
Generalized Gamma exp

( )
z u

y

γγ γ
σ γ γ

 − Γ
 

 
 

= κ 

 
 

= σ, > 0 

 
 

Standard Gamma 

 

exp exp( )
( )

z z
y

γγ γ γ σ
γ

 − Γ
 

 
 
* 

 
 

= 1 

 
 

Weibull 

 

[ ]1 exp exp( )z z
yσ

−  

 
 

= 1 

 
 

= 1 

 
 

Exponential 

 

exp
exp( )

y µ
µ

 
− 

 
 

 
 
* 

 
 
 0 

 
 

Log Normal 

 
21 exp 22

z
yσ π

 −  
 

 
 
where, γ = |κ|-2, z = sign(κ){ln(y) - µ}/σ, and u= γexp(|κ|z); *= can take can value on . ℜ
 



Table II: Monte Carlo Simulation Design and Sample Statistics for Distributions. 
 

Alternative Data Generating Processes Descriptive statistics on y 
Data (y) Brief Description Mean* S.D.  Skewness Kurtosis 

 
Log Normal σ2

ε = 1 
 
ECM only 

 
1.0 

 
3.95 

 
 6.34 

 
99.36 

 
Log Normal σ2

ε = 2 
 
ECM only 

 
1.0 

 
12.18 

 
15.17 

 
516.7 

 
Heteroscedastic σ2

ε = 1+x 
 
ECM only 

 
1.0 

 
9.06 

 
15.14 

 
529.7 

 
Heteroscedastic σ2

ε = (1+x)2 
 
ECM only 

 
1.0 

 
39.63 

 
33.55 

 
1902.5 

 
Gamma, shape = 0.5 

 
Monotonically declining pdf, ECM only 

 
1.0 

 
2.58 

 
 3.28 

 
20.2 

 
Gamma, shape = 1.0 

 
Exponential Model, ECM & PH 

 
1.0 

 
1.86 

 
 2.41 

 
12.3 

 
Gamma, shape = 2.0 

 
Bell-shaped pdf, ECM only 

 
1.0 

 
1.36 

 
 1.81 

 
8.3 

 
Weibull, shape = 0.5 

 
Linearly increasing hazard, ECM & PH 

 
1.0 

 
0.94 

 
 1.15 

 
4.69 

 
Heavy tailed, k=4.0 

 
Mixture of Normals with v=1.0 & 3.3, p=0.9 

 
1.0 

 
13.42 

 
35.71 

 
2124.2 

 
Heavy tailed, k=5.0 

 
Mixture of Normals with v=1.0 & 4.6, p=0.9 

 
1.0 

 
37.41 

 
47.72 

 
3187.1 

 
* Standardized so that mean(y) =1. ECM = Exponential conditional mean property. PH = proportional hazards property. 
k = log-scale coefficient of kurtosis; σε2 = log-scale variance.    



 Table III: Effect of alternative estimator on log-scale coefficient on slope of ln(E(y|x)). 
 

Data Estimator Mean Slope S.E. 95% simulation interval 

    Lower Upper 
 
Log Normal 

 
OLS for ln(y) 1.0006 0.0338 0.9407 1.0710 

 σε2 = 1.0 Gamma 1.0003 0.0440 0.9178 1.0856 
(true = 1.0) Weibull 1.0003 0.0440 0.9176 1.0860 
 GGM 1.0006 0.0338 0.9410 1.0703 
 GGM – het(1) 1.0005 0.0412 0.9169 1.0835 
 
Log Normal 

 
OLS for ln(y) 1.0009 0.0478 0.9162 1.1004 

 σε2 = 2.0 Gamma 0.9999 0.0847 0.8445 1.1711 
(true = 1.0) Weibull 1.0004 0.0622 0.8835 1.1215 
 GGM 1.0009 0.0478 0.9165 1.0994 
 GGM – het(1) 1.0005 0.0672 0.8643 1.1317 
 
Log Normal 

 
OLS for ln(y)1 1.0008 0.0415 0.9375 1.0886 

σε2 = 1+x Gamma 1.5000 0.0662 1.3778 1.6423 
(true = 1.5) Weibull 1.4084 0.0547 1.3100 1.5134 
 GGM 1.0007 0.0423 0.9359 1.0888 
 GGM – het(1) 1.5129 0.0559 1.3989 1.6269 
 GGM – het(2) 1.5021 0.0573 1.3897 1.6162 
 
Log Normal 

 
OLS for ln(y)1 1.0011 0.0526 0.9070 1.1069 

σε2 = (1+x)2 Gamma 2.4949 0.1354 2.2722 2.7866 
(true = 2.5) Weibull 1.9815 0.0711 1.8474 2.1184 
 GGM 1.0011 0.0598 0.8949 1.1220 
 GGM – het(1) 2.5983 0.0893 2.4233 2.7899 
 GGM – het(2) 2.5024 0.0805 2.3417 2.6721 
 
Heavy-tailed 

 
OLS for ln(y) 1.0006 0.0378 0.9312 1.0743 

k = 4.0 Gamma 0.9973 0.1383 0.7268 1.2966 
(true = 1.0) Weibull 0.9992 0.0808 0.8544 1.1543 
 GGM 1.0007 0.0377 0.9314 1.0731 
 GGM – het(1) 1.0016 0.0523 0.9029 1.1084 
 GGM – het(2) 1.0007 0.0348 0.9380 1.0720 
 
Heavy-tailed 

 
OLS for ln(y) 1.0006 0.0398 0.9249 1.0754 

k = 5.0 Gamma 0.9923 0.3110 0.3257 1.7007 
(true = 1.0) Weibull 0.9984 0.1102 0.7912 1.2017 
 GGM 1.0007 0.0397 0.9250 1.0756 
 GGM – het(1) 1.0022 0.0611 0.8899 1.1228 
 GGM – het(2) 1.0008 0.0349 0.9376 1.0728 

 
NOTE:  Based on 500 simulations, each with n=10,000. Numbers normalized so that E(y)=1.0. 
Slope parameter GGM – het models obtained via numerical methods.  
1 With heteroscedastic smearing. GGM = Generalized Gamma;  
het(1) = hetero. model with ln(σ) = α0 + α1x; het(2) = true underlying hetero. model. 
k = coefficient of kurtosis, σ2 =log-scale variance. 
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Table III (cont’d): Effect of alternative estimator on log-scale 
coefficient on slope of ln(E(y|x)). 

 
Data Estimator Mean Slope S.E. 95% simulation interval 

    Lower Upper 
 
Gamma 

 
OLS for ln(y)  1.0015 0.0750 0.8654 1.1504 

γ = 0.5 Gamma 1.0006 0.0471 0.9150 1.0950 
(true = 1.0) Weibull 1.0007 0.0491 0.9054 1.1025 
 Cox 0.9777 0.0472 0.8868 1.0679 
 GGM 1.0005 0.0472 0.9157 1.0950 
 GGM – het(1) 1.0006 0.0472 0.9156 1.0944 
 
Gamma 

 
OLS for ln(y) 1.0009 0.0433 0.9236 1.0881 

γ = 1.0 Gamma 1.0005 0.0335 0.9364 1.0659 
(Exponential) Weibull 1.0005 0.0335 0.9364 1.0659 
(true = 1.0) GGM 1.0005 0.0335 0.9369 1.0661 
 GGM – het(1) 1.0004 0.0335 0.9366 1.0659 
 
Gamma 

 
OLS for ln(y) 1.0005 0.0271 0.9522 1.0548 

γ = 2.0 Gamma 1.0004 0.0238 0.9543 1.0496 
(true = 1.0) Weibull 1.0003 0.0241 0.9557 1.0483 
 GGM 1.0003 0.0238 0.9540 1.0495 
 GGM – het(1) 1.0004 0.0238 0.9544 1.0497 
 
Weibull 

 
OLS for ln(y) 1.0004 0.0217 0.9618 1.0441 

σ = 0.5 Gamma 1.0003 0.0177 0.9679 1.0376 
(true = 1.0) Weibull 1.0002 0.0167 0.9682 1.0329 
 GGM 1.0002 0.0168 0.9684 1.0331 
 GGM – het(1) 1.0003 0.0167 0.9684 1.0370 
      

 
NOTE:  Based on 500 simulations, each with n=10,000. Numbers normalized so that E(y)=1.0. 
Slope parameter GGM – het models obtained via numerical methods.  
k = coefficient of kurtosis, σ2 =log-scale variance. GGM = Generalized Gamma; 
het(1) = hetero. model with ln(σ) = α0 + α1x; 
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Table IV:  Identifying Distribution  Tests from the Generalized Gamma Regression. 
 

                        
                Proportion significant at 5% level 

Data Generating 

Mechanism 
Gamma 

exp(lnσ
∧

) = κ
∧

 
 

Log Normal 

κ
∧

 = 0 
 

Weibull 

κ
∧

 = 1 

Exponential 

lnσ
∧

 = 0, κ
∧

= 1 
 

     
Log normal  σ 2  =  1 
 1.0000 0.0720 1.0000 1.0000 

Log normal  σ 2  =  2 1.0000 0.056 1.0000 1.0000 

Log normal  σ 2 =  1+x 1.0000 0.056 1.0000 1.0000 

Log normal  σ 2 = (1+x)2 1.0000 0.058 1.0000 1.0000 

Heavy tailed  k  =  4 1.0000 0.0520 1.0000 1.0000 

Heavy tailed  k  =  5 1.0000 0.0620 1.0000 1.0000 

Gamma    shape  =  0.5 0.0480 1.0000 1.0000 1.0000 

Gamma    shape  =  1.0 0.0460 1.0000 0.0440 0.0300 

Gamma    shape  =  2 0.0480 1.0000 1.0000 1.0000 

Weibull    shape = 0.5 1.0000 1.0000 0.0440 1.0000 

 
Note: k = coefficient of kurtosis 
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              Table VI:  Alternative Regression Estimates from Hospitalist Study. 
 

Estimator   Coefficient Robust 
Std. Err.

z-statistic P > | t |

Outcome: Inpatient Expenditure    
 
OLS on ln(y) 

 
hsplist 
lncnt2 

lnd3cnt2

 
-.00319 
-.00723 
-.04328 

 
.02920 
.01015 
.01569 

 
-0.11 
-0.71 
-2.76 

 
0.913 
0.476 
0.006 

 
Gamma Regression  
with log link 

hsplist 
lncnt2 

lnd3cnt2

 .00703 
-.00070 
-.05468 

.03599 

.01235 

.01905 

 0.20 
-0.06 
-2.87 

0.845 
0.955 
0.004 

 
Weibull Regression  
with log link 

hsplist 
lncnt2 

lnd3cnt2

 .01315 
 .00423 
-.06601 

.04145 

.01381 

.02166 

 0.32 
 0.31 
-3.05 

0.751 
0.759 
0.002 

 
Generalized Gamma  
Regression 
 

hsplist 
lncnt2 

lnd3cnt2

-.00267 
-.00723 
-.04288 

.02909 

.01094 

.01597 

-0.09 
-0.69 
-2.69 

0.927 
0.489 
0.007 

GGM-het    
                 lny: 
 
 
       
       ln(sigma): 
 
                   
            lnE(y): 

 
hsplist 
lncnt2 

lnd3cnt2 
 

lncnt2 
lnd3cnt2 

 
lncnt2 

lnd3cnt2

 
-.00314 
-.00753 
-.04474 

 
 .03180 
-.04539 

 
 .00916 
-.06854 

 
.02902 
.01044 
.01587 

 
.00900 
.01287 

 
.01133 
.01734 

 
-0.11 
-0.72 
-2.82 

 
 3.53 
-3.52 

 
 0.81 
-3.95 

 
0.914 
0.471 
0.005 

 
<.001 
<.001 

 
0.419 
<.001 

  Mean Std. Error t p 

Deciles 
1 

  
 

8717.93 

   
 

430.80 

    
 
   20.24 

 
 

0.000 
2  10193.44 575.85 17.70 0.000 
3   9884.57 686.14 14.41 0.000 
4  9066.21 467.62 19.39 0.000 
5  8946.39 530.70 16.86 0.000 
6  9082.10 473.85 19.17 0.000 
7  8098.04 439.66 18.42 0.000 
8  7528.42 392.02 19.20 0.000 
9  7375.74 413.86 17.82 0.000 

10  6384.19 397.41 16.06 0.000 
 
              hsplist:            Indicator for patient of hospitalist  
              lncnt2:            log cumulative experience–to–date   
              lnd3cnt2:        log disease specific experience–to–date 
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Table VII: Goodness of Fit on the Raw Scale of Inpatient Expenditures  

from Hospitalist Study. 
 

Estimator Average 
Residual1 

H.L. 
F Test 

(p) 

Pregibon 
Test 
(p) 

Pearson 
Correl. 

(p) 
 
OLS for ln(y) 

 
-73.63 

 
1.09 

(0.36) 

 
-1.62 

(0.106) 

 
-0.1387 

(<0.0001) 
 
Gamma 
Regression 

 
-101.37 

 
1.25 

(0.26) 

 
-2.04 
(.041) 

 
-.1313 

(<0.0001) 
 
Weibull 
Regression 

 
-993.49 

 
7.72 

(<0.0001) 

 
-0.07 
(0.94) 

 
-0.2212 

(<0.0001) 
 
Generalized 
Gamma 
  

 
-5.29 

 
0.94 

(0.50) 

 
-1.65 
(0.10) 

 
-.1304 

(<0.0001) 

GGM-het -27.29 0.92 
(0.52) 

-1.65 
(0.10) 

-0.1489 
(<0.0001) 

     
 
Tests for identifying 
Distributions 

Chi Sq 
Statistic 

 
df 

 
p-value 

Std. Gamma κ = σ   303.30 1 <0.0001 
Log Normal κ = 0       2.45 1 0.1178 
Weibull κ = 1   587.05 1 <0.0001 
Exponential κ = σ = 1 1273.80 2 <0.0001 
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Appendix A 

 
We start with (1) which is the formulation of the generalized gamma density function that Stata 
uses: 

 P(y; κ, µ, σ) = exp
( )

z u
y

γγ γ
σ γ γ

 − Γ
      

 
where, γ = |κ|-2, z = sign(κ){ln(y) - µ}/σ, and u= γexp(|κ|z). Rearranging we have, 

P(y; κ, µ, σ) = ( )(ln ) ( )(ln )exp exp
( ) /

sign y sign y
y

γγ κ µ κγ
σ γ γ σ γ σ γ

µ  − − −  
Γ     

 

 
 

        = 

( ) ( )1

exp
exp( ) exp( )( )

sign sign

y y
y

κ γ κ
γ σ γ σ γγ γ

µ µσ γ γ

 
    −     Γ      

 

 

        = 

[ ]
( )

( )

( )1

( )1 1

( )

( )

( )

1 exp exp( )

exp( )( )

sign

sign

sign

sign

sign

yy

κ
σ γ

κ γ
σ γ

κ σ γ

κ γ
σ γ

κ σ γ

µσ γ
γ

µγ
γ

 
−  

 

 
  
     −     
    
   

 

 
 Γ
  

 

 

        = 
( )1| | ( ) exp

( )

c
ca

ca

yc y b

a b

−  
− 

 
Γ

 (Stacy and Minhram, 1965) 

where  a = γ = 1/|κ|2,  
b = exp(µ)/(1/|κ|2)sign(κ)σ/|κ| = exp(µ)/(1/|κ|2)σ/κ  , and  
c = sign(κ)|κ|/σ  =  κ/σ. 
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Appendix B 
 

 We were also interested in the ability of standard tests to pick up model misspecification 
when the data on the dependent variables were as skewed as the cases considered here.  We 
considered three tests.  The first examines the mean of the raw-scale residuals across deciles of x.  
By looking at the pattern in the residuals as a function of x, we can determine whether there is a 
systematic pattern of bias in the forecasts.  A formal version of this test is provided by a variant 
of test of goodness of fit proposed by Hosmer and Lemeshow [1995], using an F test that the 
means of the raw scale residual across all 10 of the deciles are not significantly different from 
zero.    If the residual pattern is u-shaped,  then there is evidence for a different nonlinear 
response than was assumed.   We report the proportion of the simulations where the F was 
significant at the five percent level. 

 The second is a more parsimonious test for nonlinearity known as Pregibon’s Link Test  
[1981, 1982].  Based on the initial estimate of the regression coefficients, we create a prediction 
of (xβ) on the scale of estimation.  This variable and its square are included as the only 
covariates in a second version of the model.  If the model is linear, then the coefficient on the 
square of the prediction should be insignificantly different from zero.  We report the proportion 
of the simulations where the t test for the second term is significant at the 5 percent level.    

 The third test uses the Pearson correlation between the raw-scale (y-scale) residual and x.  
If this statistic is significantly different from zero, then the model is providing a biased prediction 
of E(y|x).  Unlike Pregibon’s Link Test, this test examines a propensity of the estimated impact 
of x on y (the slope) to be either too high or too low.  We report the proportion of the simulations 
where the correlation is significantly different from zero. 

B.1.  Simulation Results.  

 Appendix B, Tables 1 and 2 report the results for the same set of data generating 
mechanisms and estimators examined in earlier part of the paper.  Figures 1 and 2 show the 
pattern of the means across deciles that correspond to the Hosmer-Lemeshow tests on the raw 
scale.  

In terms of predictions, log OLS, regular GGM, and the Weibull make biased predictions 
across all the deciles of X (Appendix B Figure 1). The biases are larger for the quadratic 
variance.  These estimators also fail the goodness of fit.  In contrast, the regular Gamma and the 
GGM-het make unbiased predictions and seem to provide a good fit to the data. 

  The results for the diagnostic tests were mixed. In principle, we should find no 
evidence of model misfit when the estimates should be consistent.  Except for the OLS on log(y) 
(with homoscedastic retransformation) and GGM model when the errors are heteroscedastic, all 
of the estimators should be consistent with zero average residuals on the raw scale.  None of the 
results were statistically significant from zero at usual levels.  However, the Weibull and GGM 
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were off by appreciable amounts for the heavy tailed distribution – 14 and 20 percent of mean 
values.  The consistent estimators should also have failed Pregibon’s Linktest and the modified 
Hosmer-Lemeshow only about 5 percent of the time.  Pregibon’s test was well behaved, with 
model rejections in the 5 – 6 percent range for the consistent models, with only the Weibull 
having too many failures.  The modified Hosmer-Lemeshow test indicated that there was a 
problem too often, especially for the heavy tailed and highly heteroscedastic data generating 
processes.  This is also evident in the figures in this appendix, which indicate the degree of misfit 
across quantiles of the single covariate x.  Pearson’s correlation of the raw-scale prediction and 
residual often failed to have adequate coverage.  

  The inconsistent estimators had small average bias, but failed to pass the modified 
Hosmer-Lemeshow and Pearson correlation tests in a high proportion of the cases.  Pregibon’s 
Linktest failed to pick up the misspecification of the model in the heteroscedastic cases where 
there should have been a problem (OLS on ln(y) and GGM.)  Thus, it appears that Pregibon’s 
Linktest is an under powered test for assessing the type of bias that one would get in this case.  

 Thus the evidence indicates that some of the diagnostics are weak (Pregibon’s Linktest) 
or may indicate failure too often (the modified Hosmer – Lemeshow in the face of heavy tails).  
Thus these diagnostics should be used with some caution. 

 

B.2.  Hospitalist Example 

We also examined the fit for the hospitalist data.  The test results for inpatient 
expenditures for the OLS on ln(y) model and for the gamma model with log link are mixed.  
There is no evidence of significant nonlinearity by the Hosmer-Lemeshow test or for Pregibon’s 
Link Test for OLS.  The gamma model fails Pregibon’s Link Test (p = 0.04).  Both gamma 
models fail the Pearson correlation test (p < 0.0001).   It appears that the problem is the lack of 
fit for the casemix measures (the DRG relative weight and the Charlson Index).   

 The Weibull regression model fails all of the tests of fit (Table VII) and tends to over-
predict the grand mean and the mean by deciles of disease specific experience (Appendix B, 
Figure 3).   

 The regular GGM produces results identical to log OLS model in terms of slope 
and goodness of fit test.  However, the average residual from prediction is about 15 times lower 
than that of log OLS.  The test of log normality fails to reject the log normal distribution. A 
heteroscedastic version of GGM is fitted by modeling ln(σ) = α0 + α1LNCNT2 + α2LND3CNT2. 
This indicates that we assume that the heteroscedasticity is of the form: σ2 = K1 (CNT2)K2 

(D3CNT2)K3, where CNT2 is cumulative disease specific experience to date  and D3CNT2 is 
specific experience-to-date. Though, model fit with GGM-het was not much different than in 
regular GGM, the slope of LNCNT2 and LND3CNT2 were comparable to the gamma regression 
with log link.
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Figure 1: Mean Residual from different estimators across deciles of ‘X’ for Log Normal data with and without heteroscedasticity. 
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Figure 2: Mean Residual from different estimators across deciles of ‘X’ for data with heavy tails. 
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Figure 3: Mean Residual from different estimators across deciles of ‘X’ for Gamma, Exponential and Weibull data. 
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Figure 4: Mean Residual from different estimators across deciles of disease-specific experience 

for inpatient expenditures from the Hospitalist Study. 
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Appendix B Table 1: Alternative Estimator Results for Log normal, 
heteroscedastic and heavy tailed distributions. 

Data Estimator Average 
Residual1 

Prob. 
H.L.2 

Signif. 3 

Prob. 
Pregibon 
Signif. 3 

Prob. 
Pearson 
Signif.3 

 
Log Normal 

 
OLS for ln(y) - 0.00002 0.0460 0.0580 0.0040 

σε2 = 1.0 Gamma    0.00001 0.0400 0.0560 0.0000 
 Weibull 0.0001 0.0400 0.0580 0.0000 
 GGM -0.00004 0.0460 0.0620 0.0040 
 GGM – het(1) -0.00007 0.0400 0.0600 0.0000 
 
Log Normal 

 
OLS for ln(y) -0.0001 0.1180 0.0580 0.0120 

σε2 = 2.0 Gamma    0.00001 0.1060 0.0600 0.0000 
 Weibull   0.0647 0.0520 0.0580 0.0020 
 GGM -0.0004 0.1180 0.0560 0.0260 
 GGM – het(1) -0.0004 0.1100 0.0620 0.0000 
 
Log Normal 

 
OLS for ln(y)4   0.0395 1.0000 0.0640 1.0000 

σε2 = 1+x Gamma     0.00004 0.0700 0.0620 0.0000 
 Weibull   0.0372 0.0460 0.0620 0.2100 
 GGM   0.0494 1.0000 0.0620 1.0000 
 GGM – het(1) -0.0027 0.0760 0.0560 0.0240 
 GGM – het(2)  -0.00034 0.0660 0.0560 0.0120 
 
Log Normal 

 
OLS for ln(y)4 0.1119 1.0000 0.0640 1.0000 

σε2 = (1+x)2 Gamma 0.0075 0.3000 0.1600 0.0000 
 Weibull 0.1767 0.9320 0.2000 0.9980 
 GGM 0.1908 1.0000 0.0620 1.0000 
 GGM – het(1) -0.0284 0.2860 0.0580 0.3420 
 GGM – het(2) -0.0032 0.1721 0.0656 0.1148 
 
Heavy-tailed 

 
OLS for ln(y) -0.0004 0.4800 0.0620 0.0380 

k = 4.0 Gamma -0.00007 0.4320 0.0460 0.0000 
 Weibull 0.0441 0.1480 0.0600 0.0000 
 GGM 0.0787 0.0680 0.0620 0.0500 
 GGM – het(1) 0.0786 0.0660 0.0620 0.0240 
 GGM – het(2) 0.0002 0.5040 0.0580 0.0480 
 
Heavy-tailed 

 
OLS for ln(y) -0.0015 0.8060 0.0620 0.0540 

k = 5.0 Gamma -0.0003 0.7560 0.0620 0.0000 
 Weibull  0.1336 0.2080 0.0660 0.0020 
 GGM  0.2031 0.1180 0.0620 0.0680 
 GGM – het(1)  0.2030 0.1020 0.0620 0.0400 
 GGM – het(2) -0.0049 0.9020 0.0600 0.0800 
      

NOTE:  Based on 500 simulations, each with n=10,000. Numbers normalized so that E(y)=1.0. 
1Residual on raw scale for y.   2Hosmer-Lemeshow test.     3At the 5 percent level.  
4 With homoscedastic smearing. GGM = Generalized Gamma; het(1) = hetero. model  
with ln(σ) = α0 + α1x; het(2) = true underlying hetero. model. 
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Appendix B Table II: Alternative Estimator Results for Gamma, Weibull and Gompertz 
distributions. 

 
Data Estimator Average 

Residual1 
Prob. 
H.L.2 

Signif. 3 

Prob. 
Pregibon 
Signif. 3 

Prob. 
Pearson 
Signif.3 

 
Gamma 

 
OLS on ln(y)  -0.0003 0.0440 0.0640 0.0960 

γ = 0.5 Gamma  0.0000 0.0200 0.0540 0.0000 
 Weibull -0.0337 0.2260 0.0540 0.0000 
 GGM   0.00002 0.0200 0.0520 0.0000 
 GGM – het(1)   0.00002 0.0200 0.0520 0.0000 
 
Gamma 

 
OLS on ln(y)  -0.00008 0.0320 0.0640 0.0200 

γ = 1.0 Gamma 0.00001 0.0180 0.0600 0.0000 
(Exponential) Weibull 0.00001 00180 0.0600 0.0000 
 GGM 0.00001 0.0180 0.0300 0.0440 
 GGM – het(1) 0.00001 0.0180 0.0600 0.0000 
 
Gamma 

 
OLS on ln(y)  -0.00002 0.0180 0.0620 0.0000 

γ = 2.0 Gamma  0.00001 0.0180 0.0520 0.0000 
 Weibull -0.0031 0.0200 0.0520 0.0000 
 GGM 0.0000 0.0180 0.0500 0.0000 
 GGM – het(1) 0.0000 0.0180 0.0500 0.0000 
 
Weibull 

 
OLS on ln(y)  -0.00001 0.0160 0.0640 0.0000 

σ = 0.5 Gamma 0.0000 0.0140 0.0520 0.0000 
 Weibull  0.00001 0.0160 0.0600 0.0000 
 GGM  0.00001 0.0140 0.0600 0.0000 
 GGM – het(1) 0.0000 0.0180 0.0500 0.0000 
      

 
 NOTE:  Based on 500 simulations, each with n =10,000. Numbers normalized so that E(y) = 1.0. 

          1Residual on raw scale for y.   2Hosmer-Lemeshow test.     3At the 5 percent level.  
 4 With homoscedastic smearing. GGM = Generalized Gamma;  
 het(1) = hetero. model with ln(σ) = α0 + α1x;  
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Appendix B, Table III: Goodness of Fit on the Raw Scale of Inpatient Expenditures  
from Hospitalist Study. 

 
Estimator Average 

Residual1 
H.L. 

F Test 
(p) 

Pregibon 
Test 
(p) 

Pearson 
Correl. 

(p) 
 
OLS for ln(y) 

 
-73.63 

 
1.09 

(0.36) 

 
-1.62 

(0.106) 

 
-0.1387 

(<0.0001) 
 
Gamma Regression 

 
-101.37 

 
1.25 

(0.26) 

 
-2.04 
(.041) 

 
-.1313 

(<0.0001) 
 
Weibull Regression 

 
-993.49 

 
7.72 

(<0.0001) 

 
-0.07 
(0.94) 

 
-0.2212 

(<0.0001) 
 
Cox Regression 

 
-138.17 

 
1.38 

(0.18) 

 
2.90 

(0.004) 

 
.1702 

(<0.0001) 
 
Generalized 
Gamma 
  

 
-5.29 

 
0.94 

(0.50) 

 
-1.65 
(0.10) 

 
-.1304 

(<0.0001) 

GGM-het -27.29 0.92 
(0.52) 

-1.65 
(0.10) 

-0.1489 
(<0.0001) 

     
 
Tests for identifying Distributions 

Chi Sq 
Statistic 

 
df 

 
p-value 

Std. Gamma κ = σ   303.30 1 <0.0001 
Log Normal κ = 0       2.45 1 0.1178 
Weibull κ = 1   587.05 1 <0.0001 
Exponential κ = σ = 1 1273.80 2 <0.0001 
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