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ABSTRACT

Despite being the standard growth model for several decades, little is actually known analytically about
the dynamic properties of the neoclassical Ramsey-Cass-Koopmans growth model. This paper derives
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and so the saving rate path might manifest "undershooting." A simulation illustrating these interesting

dynamics is presented.
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I. Introduction

Cass (1965) and Koopmans (1965) completed the standard growth model by merging
Ramsey’s (1928) theory of consumer optimization with neoclassical growth, allowing for an
endogenous saving rate. Since that time, economists have wanted to understand the properties of
the time path for the saving rate. Intriligator (1971, p. 438) noted that, barring specific assumptions
on the form of the utility function and technology, the saving rate cannot necessarily be shown to
be always increasing or decreasing along the optimal path. Intuitively, competing income and
substitution effects produce ambiguous results in general. Years later, Robert Barro and Xavier
Sala-i-Martin (1995) provided an analytical breakthrough by proving that the endogenous saving
rate is either monotonically increasing, decreasing or constant throughout the entire transition path
for the case of isoelastic utility (assumed to obtain a steady state) and Cobb-Douglas (CD)
technology. Most other analysis has been numerical, prohibiting general statements.

This short paper extends the analysis of Barro and Sala-i-Martin to Constant Elasticity of
Substitution (CES) technology that nests CD. For a factor substitution elasticity between capital and
labor less than unity, the saving rate decreases along the transition path after the capital stock
reaches a critical value identified analytically herein. But the path need not be monotonic. Before
the capital stock reaches this critical value, the saving rate might increase and so the entire saving
rate path manifests “overshooting.” Similarly, for a factor substitution elasticity greater than unity,
the saving rate increases along the transition path after the capital stock reaches a critical value.

Before reaching this value, the saving rate might decrease and so the saving rate path “undershoots.”

I1. The Neoclassical Growth Model with CES Production

The following variable and parameter table is provided for easy reference.



[Place Table 1 here]

An agent’s utility is defined over his/her consumption per labor unit at time 7, c,. Utility is
isoelastic and equal to u(c) = c‘,1 -0 / (1-0), where 6 > 0 is the constant relative risk aversion
parameter. Households face the following familiar problem first proposed by Frank Ramsey in 1928
that can be interpreted 4 la Robert Barro (1974) as implying operative intergenerational linkages.

In particular, households maximize,

L

QY] u(c)e ©dt,
/

where p is the rate of time preference and » is the population growth rate (with p >n). The dynamic

budget constraint equals

da,
(2) E=w,+rtat—ct-na

t
w, is the wage, r, is the interest rate, and a, are assets per labor unit. The transversality condition is

3) lim__av,

[ad]

where v, is the present-value shadow price of income from the following present-value Hamiltonian,
4) H = u(c)e @™ + v,[wt +ra, -c - nat]

Production takes the CES form,
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where f (Iét) is output per effective labor unit before depreciation at time #. gy, is the elasticity of

substitution between capital and labor while ¢ is the capital weight in production, 0 < ¢ <1. Cobb-



Douglas, f (IE,) = IE,“ ,1s a special case (gg;, = 1) and q is then equal to the capital share. 13, =k,e™™

is the capital stock per effective labor input at time ¢ where £,is capital stock per labor input and x
is the rate of labor-augmenting technological change. General equilibrium requires k, = a,.

Combining the household and firm problems, we get the following equations of motion:

dé, /dt
(©) = L -p -0
é, 0
(7) dk,/dt = fik) - ¢é, - (x +n+ 0,

r,=f (IQ,) - & with a depreciation rate of §, and &, = ¢, e ~ ™ is consumption per effective labor unit.
Denoting the limiting values of variables with asterisks, the limiting values for the interest

rate and the saving rate on the balanced growth path with CES production are as follows:

®) rt=p+bx = fiK7) -8
©) s*=(x+n+6)( “ )"’“
r*+9%

I11. Transitional Dynamics with CES Production

Letz, = 1-s,=¢,/f (Iet) equal the share of income consumed at time 7 and let v, ,, equal the

growth rate in the share of income consumed at time ¢#. Then

dzjdt  dejdt  f(k)dk,/dt
z, é f(]ét)

(10) Yoy =

- % ) -8-p-6x] - (1-2)f'(h) + a”f/(h) " (x +n+8)
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where we have used equations (6) through (9) and the following relationship:

(1) [ « )” k
rt+5 Fi(2)

The next proposition, proven in the Appendix, characterizes the endogenous transitional

saving rate for the Ramsey economy with CES technology.

PROPOSITION 1 Assume that [ (l€) is the CES production function and that 131 < k. Then
A\ \"%%k
: A '(kl) 1 . .
(A)  If0<gy < I and the value of @is such that s — < —, then the saving rate is
7(F)
decreasing along the transition path from 181 to k. Moreover, there exists a value of
~ l-og
7 (k) I ,

ky <k, such that s > —, and the saving rate at k, is increasing -
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(B)  If g, > 1 and the value of @ is such that s’
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increasing along the transition path from Iél to k"
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(C)  Ifoxy=1and s" =V then the saving rate is constant along the transition path from k
0 P 0

> -1- then the saving rate is

Moreover, there exists a value of

ky < ky such that s
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to k*. (Barro and Sala-i-Martin [1995])



Case (4) considers a substitution elasticity between capital and labor less than unity. In this

case, the saving rate will forever decrease along the transition path after the capital-labor ratio 131 ,
defined implicitly by the expression s * (f { (lel) / L ))1_0’“ < —é—, is reached. The values of /(£ )

and 5" are given by equations (8) and (9), respectively. Before the capital-labor ratio Iél is reached,
however, there also exists a value of the capital-labor ratio /20 such that the saving rate is increasing
if and only if the second condition shown in Part (A) of the proposition holds. If this second
condition is satisfied, the path of the saving rate, taken as a whole, overshoots its final steady state.
Whether a simulation manifests overshooting depends, in part, on whether the initial value of the
capital stock is sufficiently smaller than 121 . If, for example, the initial value is chosen between /20
and Iél then overshooting may not occur. Simulation evidence below suggests that overshooting can
exist with a reasonably parameterized economy.

Case (B) considers a substitution elasticity between capital and labor greater than unity. This
case demonstrates that the saving rate will forever increase along the transition path after the capital-
labor ratio 121 , defined implicitly by the expression s * (f’ (131) / 1 k" ))1_0’“ > % isreached. In this
case, the economy might also manifest “undershooting” where the saving rate first decreases over
the transition path and then increases.

Case (C), given for completeness, shows the conditions when the saving rate is constant
along the transition path. This case was considered already by Barro and Sala-i-Martin.

Cases (4) - (C) nest the possible equilibrium paths corresponding to the Cobb-Douglas
production function (g, = 1) considered by Barro and Sala-i-Martin. In the Cobb-Douglas case,
the first inequalities presented in cases (4), (B) and (C) reduce to the simple mathematical
formulations: (4) s* < 1/0, (B) s* > 1/0 and (C) s* = 1/8, respectively. The absence of the capital-

labor ratio in these formulations reflect the fact that the transitional endogenous saving rate is



monotonically (4) decreasing, (B) increasing or (C) unchanging, respectively, throughout the entire
transition path. But the subsequent conditions necessary for generating non-monotonic paths cannot

hold. As shown above, however, things become more complicated with CES production.

IV. Illustrative Example: Overshooting
The policy function corresponding to the overshooting case (oy, < 1.0) is drawn in the phase

diagram in Figure 1. Also drawn in Figure 1 is the policy function corresponding to the constant
saving rate case (og, = 1.0 and s, = s* = 1/9): ¢ k) = (1-s9) f(k). Both policy functions share the

same value of s*. For Cobb-Douglas production (not drawn), the policy function would never cross
the constant saving rate policy function; this non-crossing property reflects the monotonic nature
of the optimal transitional saving rate in the CD economy. For CES production however the policy
function can cross the constant saving rate policy function as shown in Figure 1, resulting in an
overshooting of the saving rate.

Figure 2 reports simulation evidence of overshooting. The policy function corresponding
to the transition path can be calculated numerically using either the “shooting” method or the “time
elimination” method described in the Appendix. I assume that per-capita income increased seven
fold during the past 100 years. Let the index variables, A; and Ay, describe the fraction of growth

in per-capita output between period 0 (100 years ago) and time ¢ that is attributed to transitional

dynamics and technological change, respectively. In particular, A= log[f(let) /13 (130)] Nogl[f(k,)/f(ky)]

and Ay = x-t/1og[y/yo] = 1-Ar. The implied rate of technological change equals

A, log7
X = Xog
100

(12)

where Ay is set equal to one half. The value of 130 (the capital-labor ratio 100 years ago) equals



(13) iy - Lo

A, log7
e 78

To reduce the amount of notation, I assume, without any impact to the numerical calculations, that

year 100 (today) begins (i.¢., is close enough to) the new steady state, i.e., f(leloo) = fik"). Avalue

of gy, = 0.85 is chosen. The steady-state capital-output ratio is equal to 4.5 which, as Barro and
Sala-i-Martin explain, can be interpreted as reflecting a broader measure of the capital stock

including at least some human capital. Figure 2 reports several variables including the gross saving

rate at time ¢, 5,= 1 - ¢,/f (12,), the net saving, s,” = s,- 8 12,/f(1€,), and the , gross capital share

at time #. Saving rates and capital shares include human capital investment. Notice that the capital-
output ratio increases from 2.5 to 4.5 which is reasonable, especially under a broad interpretation
of capital that includes human capital, which has increased significantly during the past century.
The value of r, is 0.19 and the half-life for income convergence is a respectable 22 years. There is

little movement in the capital share. A simulation with “undershooting” is available from the author.

V. Conclusion
This paper derived the analytical properties of the optimal endogenous saving rate along the
transition path for the standard neoclassical (Ramsey) growth model with CES technology. The
saving rate decreases [increases] monotonically when the capital-labor factor substitution elasticity
is below [above] unity, after the capital stock reaches a critical value derived herein. Before
reaching this critical value, however, the saving rate might increase [decrease] and the saving path,
taken as a whole, might manifest “overshooting” [undershooting]. In contrast, in the case of Cobb-

Douglas production, convergence is monotonic throughout the entire transition path.



Appendix
Proof of Proposition 1
[l
&™)

f"(k)<0. Hence, s* <1/@. For the economy to approach a steady state, y; =limy,, =0.
t—0

1-0g;
Consider case (4). Notice og, < 1 implies [ ] > 1 since Iél <k™ and

Equations (8) and (10) imply y'z =0=f '(k*)[-é—— (1 -z )} + [s* ——é—:l(p +0x + 8) . Since the

second term on the RHS of the equality is negative, the first term is positive. Since f'>0, we

have %— (1 - z*) >0,or z > _9_;_1 . Now suppose that there is a value of # such that z, < Q—é—l

By equation (10), yz, < 0 and so Z, <0 and y,, <0V s> 1. Hence, z < % , which is a

contradiction. It follows that z, > e—él— v t. Now differentiate (10) with respect to ¢

. . dk[  9-1 :
RGeS |
(A1)

1os \ Okt N
+ S*("*+5)(1-0KL)[ f(k’)] [k dk,

FIED) rEy @
Equation (A.1) implies that y,4, > 0V ¢. To prove this claim, note that the first and third terms on

the RHS of equation (A.1) are both strictly negative. Now suppose that there is a value of  such that

Yz < 0. Then the second term is weakly negative, which implies that ¥, < 0 =y, < 0 and

.

Vo) <OVS>2 Hence, v, < 0, which again is inconsistent with the economy approaching a steady

state. It follows that y,,, > 0 and therefore § <0V ¢, which completes the first part of the proof.

A I-0g
The proof that there exists a value of k, <k, such that s*[f( O)f' (]2*)] > % follows

immediately from the properties of the function, £, and the assumption g, < 1. In particular, for

1-0g,
A "\ &
CES production, lim f '(k) =00 andso lim 4 ( °) ~ =0 since gg; < 1. By the general
k—0 ko0 f '(k )

equilibrium condition, k, = a,, we know that s* > 0; otherwise, the marginal product of capital is



A * ! kA
infinite. Hence, for any value of § > 0, there exists a k0 >0 st s [f ( o)f' ( A*)] > 1/ The

necessary and sufficient condition for saving to be increasing at k, shown in the Proposition then

follows from setting v , o) < 0 in equation (10) and then reducing algebraically.
7'k ] o
<1
fi&™)

since 131 < k™ and f"(k)<0. Hence, s*>1/9. Now in order to satisfy the steady-state equation,

Case B can be proven in a similar fashion. In particular, gy, > 1 implies [

v, =0= f'(k*)[% - (l -z )} + |:s* - —(I;jl(p +0x + 8) ,the inequality, z*~ < Qg—l ,must hold.
0-1

The same type of proof by contradiction used above can be used to show that z, < 5 v t. Now

notice that the first and third terms on the RHS of equation (A.1) are both strictly positive. It

immediately follows, along the same line of argument above, that vy, < 0 v ¢ and therefore s >0

v ¢, which completes the first part of the proof. To establish the remainder of the Proposition for

A 1-0y,
. ~ ' k
part B, notice lim f '(k) = o0 now implies lim s (%(12*) =0 since gy > 1. Since s*

k—>0 ko—0

is finite (otherwise, the general-equilibrium condition implies there is no marginal return to saving),
) 1-04;

—% < 1 The necessary and sufficient condition for saving
1(k)

to be increasing at 120 follows from setting Y20y > 0 in equation (10) and then reducing

there exists a k, > 0s.t. 5"

algebraically.

Case C was proven already in Barro and Sala-i-Martin (1995).=

Solving the Policy Function

The policy function for the model herein can be described implicitly as the solution to the

following differential equation:



(A2) de® _ el -5-p-8x
dk Sk -ék) - (x+n+B)k

with the boundary (or initial) values given by é,k) = (¢ * k). To see this, note that

de  de(k,)at _ _ ,
~ = ———— where the numerator and the denominator are given by equations (6) and (7),
dk dk,/dt

respectively. Equation (A.2) is solved numerically for the policy function using the shooting method

or the time-elimination method. The standard shooting method employs the bisection updating

technique to solve for the correct value of &, such that the generated policy function satisfies the

transversality condition. The time-elimination method is outlined by Casey Mulligan and Xavier
Sala-i-Martin (1993). This novel approach transforms the standard boundary-value problem into
an easier initial-value problem by employing L'Hopital's rule at the limit point (¢ k) = (6%,k") (the
slope of the policy function, equation (A.2), is indeterminant at the limit point). Applying

L'Hopital's rule to equation (A.2) at the limit point renders a quadratic equation in 9é(k ")/dk. The

positive root of this quadratic equation is the correct solution since dé(k ")/dk > 0 (Figure 1). After

a little algebra, it can be shown that the positive root in the model herein is given by

12

[y - en+8)] + {Lf’(lé Y- @en+8)f - 4%*f”(1€*)}

dek") _
; 2

(A3)

-10-
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Table 1
Variable Table

assets per labor input at time 7.
consumption per labor input at time z.

consumption per effective labor input at time = ¢,e ~*.

output per effective labor unit gross of depreciation at time ¢.
capital stock per labor input at time ¢.
capital stock per effective labor input at time 7 = k, e **.

population growth rate.
interest rate at time £.

gross saving rate at time t = 1 - ¢,/f (12,).

net saving rate at time t =5, - 0 - let/f(lft)

isoelastic utility (felicity) function, u(c) = (c"®-1)/(1-0).
wage rate at time ¢

rate of labor-augmenting technological change.

share of income consumed at time ¢ = 1-s, = ¢,/f (Iét .

capital weight in production, 0 < ¢ < 1.
constant rate at which the capital stock depreciates.
growth rate in the share of income consumed at time ¢ = (9z,/9¢)/z,.

gross capital share at time ¢ = o for Cobb-Douglas production
(0x=1).
rate of time preference.

log[f(k,)/f(k,)]/1oglf (k) /f(k))]= fraction of cumulative growth in

per-capita output between period 0 and 7 due to transitional dynamics.
x-t/log[y/y,] = fraction of growth due to technological change = 1-
Pr.

elasticity of substitution between capital and labor.

constant relative risk aversion

present-value shadow price of income

S11-



Phase Diagram for the Neoclassical Production Function with
CES Production and gy, < 1.0 and the Implied Saving Rate:
The Case of an Overshooting Saving Rate
(Figure 1)

o>

-~~~ constant saving rate, 0 = |

A
dc/dt = O/K overshooting saving rate, 0 < 1
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N
A\ A k

-12-



The Transition Path for Parameterization Noted Below
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