
TECHNICAL WORKING PAPER SERIES

SOLVING DYNAMIC GENERAL EQUILIBRIUM MODELS
USING A SECOND-ORDER APPROXIMATION TO THE POLICY FUNCTION

Stephanie Schmitt-Grohé
Martín Uribe

Technical Working Paper 282
http://www.nber.org/papers/T0282

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
October 2002

We benefited from discussions on second-order approximations with Fabrice Collard, Ken Judd, Jinill Kim,
Robert Kollmann, and Chris Sims.  The views expressed in this paper are those of the authors and not
necessarily those of the National Bureau of Economic Research.

© 2001 by Stephanie Schmitt-Grohé and Martín Uribe.   All rights reserved.  Short sections of text, not to
exceed two paragraphs,  may be quoted without explicit permission provided that full credit, including ©
notice, is given to the source.



Solving Dynamic General Equilibrium Models Using a Second-Order Approximation to
the Policy Function
Stephanie Schmitt-Grohé and Martín Uribe
NBER Technical Working Paper No. 282
October 2002

ABSTRACT

       This paper derives a second-order approximation to the solution of a general class of discrete- time

rational expectations models. The main theoretical contribution of the paper is to show that for any

model belonging to the general class considered, the coefficients on the terms linear and quadratic in
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exogenous shocks.  In other words, these coefficients must be the same in the stochastic and the

deterministic versions of the model. Thus, up to second order, the presence of uncertainty affects only
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of the proposed method is illustrated by solving the dynamics of a number of model economies.

Stephanie Schmitt-Grohé Martín Uribe
Department of Economics Department of Economics
Rutgers University University of Pennsylvania
75 Hamilton Street 3718 Locust Walk
New Brunswick, NJ 08901 Philadelphia, PA 19104
and NBER and NBER
grohe@econ.rutgers.edu uribe@econ.upenn.edu



1 Introduction

Since the seminal papers of Kydland and Prescott (1982) and King, Plosser, and Rebelo

(1988), it has become commonplace in macroeconomics to approximate the solution to non-

linear, dynamic, stochastic, general equilibrium models using linear methods. Linear ap-

proximation methods are useful to characterize certain aspects of the dynamic properties of

complicated models. In particular, if the support of the shocks driving aggregate fluctua-

tions is small and an interior stationary solution exists, first-order approximations provide

adequate answers to questions such as local existence and determinacy of equilibrium and

the size of the second moments of endogenous variables.

However, first-order approximation techniques are not well suited to handle questions

such as welfare comparisons across alternative stochastic or policy environments. For ex-

ample, Kim and Kim (forthcoming) show that in a simple two-agent economy, a welfare

comparison based on an evaluation of the utility function using a linear approximation to

the policy function may yield the spurious result that welfare is higher under autarky than

under full risk sharing. The problem here is that some second- and higher-order terms of

the equilibrium welfare function are omitted while others are included. Consequently, the

resulting criterion is inaccurate to order two or higher. The same problem arises under the

common practice in macroeconomics of evaluating a second-order approximation to the ob-

jective function using a first-order approximation to the decision rules. For in this case, too,

some second-order terms of the equilibrium welfare function are ignored while others are

not.1 In general, a correct second-order approximation of the equilibrium welfare function

requires a second-order approximation to the policy function.

In this paper, we derive a second-order approximation to the policy function of a general

class of dynamic, discrete-time, rational expectations models. A strength of our approach is

not to follow a value function formulation. This allows us to tackle easily a wide variety of

1See Woodford (1999) for a discussion of conditions under which it is correct up to second order to
approximate the level of welfare using first-order approximations to the policy function.
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model economies that do not lend themselves naturally to the value function specification.

To obtain an accurate second-order approximation, we use a perturbation method that

incorporates a scale parameter for the variance of the exogenous shocks as an argument of

the policy function. In approximating the policy function, we take a second-order Taylor

expansion with respect to the state variables as well as this scale parameter. This technique

was formally introduced by Fleming (1971) and has been applied extensively to economic

models by Judd and Judd and co-authors (see Judd, 1998, and the references cited therein).

The main theoretical contributions of the paper are: First, it shows analytically that in

general the first derivative of the policy function with respect to the parameter scaling the

variance/covariance matrix of the shocks is zero at the steady state regardless of whether

the model displays the certainty-equivalence property or not.2 Second, it proves that in

general the cross derivative of the policy function with respect to the state vector and with

respect to the parameter scaling the variance/covariance matrix of the shocks evaluated at

the steady state is zero. This result implies that for any model belonging to the general

class considered in this paper, the coefficients on the terms linear and quadratic in the state

vector in a second-order expansion of the decision rule are independent of the volatility of

the exogenous shocks. In other words, these coefficients must be the same in the stochastic

and the deterministic versions of the model. Thus, up to second order, the presence of

uncertainty affects only the constant term of the decision rules.

The usefulness of our theoretical results can be illustrated by relating them to recent

work on second-order approximation techniques by Collard and Juillard (2001a,b) and Sims

(2000b). We follow Collard and Juillard closely in notation and methodology. However,

an important difference separates our paper from their work. Namely, Collard and Juillard

apply a fixed-point algorithm, which they call ‘bias reduction procedure,’ to capture the fact

that the policy function depends on the variance of the underlying shocks. Their procedure

2Judd (1998, p. 477-480) obtains this result in the context of a simple one-sector, stochastic, discrete-time
growth model. Thus, our theoretical finding can be viewed as a generalization of Judd’s result to a wide
class of rational expectations models.
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makes the coefficients of the approximated policy rule that are linear and quadratic in the

state vector functions of the size of the volatility of the exogenous shocks. By the main

theoretical result of this paper, those coefficients are, up to second order, independent of the

variance of the shocks. It follows that the bias reduction procedure of Collard and Juillard

delivers an inaccurate second-order approximation to the decision rules.

Sims (2000b) also derives a second-order approximation to the policy function for a wide

class of discrete-time models. In his derivation, Sims (2000b) correctly assumes that the

coefficients on the terms linear in the state vector do not depend on the volatility of the

shock and obtains a second-order approximation to the policy function that is valid only

under this assumption. However, he does not provide the proof that this must be the case.

Our paper presents the proof of Sims’s guess in a general setting.

At a practical level, our paper contributes to the existing literature by providing MAT-

LAB code to compute second-order approximations for any rational expectations model

whose equilibrium conditions can be written in the general form considered in this paper.

We demonstrate the ability of this code to deliver accurate second-order approximations by

applying it to a number of example economies. The first example considered is the standard,

one-sector, stochastic growth model. Sims (2000b) computes a second-order approximation

to this economy, which we are able to replicate.

The second example is motivated by the fact that, as pointed out by Sims, his Matlab

code has known bugs that may show up only in multi-state models. The example applies our

code to the two-country growth model with complete asset markets studied by Kim and Kim

(forthcoming). This economy features multiple state variables. Kim and Kim have derived

analytically the second-order approximation to the policy function of this economy. We use

this example to verify that our code delivers correct answers in a multi-state environment.

Finally, we apply our code to the asset-pricing model of Burnside (1998). This example

is also analyzed in Collard and Juillard (2001b). Burnside solves this model analytically.

Thus, we can derive the exact analytical second-order approximation to the policy function.
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This example serves two purposes. First, it gives support to the validity of our code. Second,

it allows us to quantify the inaccuracy introduced by the bias reduction procedure of Collard

and Juillard (2001a,b).

The remainder of the paper is organized as follows. In the next section we present the

model. In section 3 we derive first- and second-order approximations to the policy function.

In section 4 we describe the Matlab computer code designed to implement the second-

order approximation to the policy rules. Section 5 closes the paper with applications of the

algorithm developed in this paper to three example economies.

2 The Model

The set of equilibrium conditions of a wide variety of dynamic general equilibrium models

in macroeconomics can be written as

Etf(yt+1, yt, xt+1, xt) = 0, (1)

where Et denotes the mathematical expectations operator conditional on information avail-

able at time t. The state vector xt is of size nx × 1 and the co-state vector yt is of size
ny × 1. We define n = nx + ny. The function f maps Rny ×Rny ×Rnx ×Rnx into Rn. The
state vector xt can be partitioned as xt = [x1t ; x

2
t ]
I. The vector x1t consists of endogenous

predetermined state variables and the vector x2t of exogenous state variables. Specifically,

we assume that x2t follows the exogenous stochastic process given by

x2t+1 = Λx
2
t + η̃σ6t+1; 6t ∼ NIID(∅, I),

where both the vector x2t and the innovation 6t are of order n6× 1. The vector 6t is indepen-
dently, identically, and normally distributed with mean zero and variance/covariance matrix

I. The scalar σ ≥ 0 and the n6 × n6 matrix η̃ are known parameters. All eigenvalues of the
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matrix Λ are assumed to have modulus less than one.3

To see how the equilibrium conditions of a familiar model can be expressed in the form

given by equation (1), consider the simple neoclassical growth model. Its equilibrium condi-

tions are given by

c−γt = βEtc
−γ
t+1[αAt+1k

α−1
t+1 + 1− δ]

ct + kt+1 = Atk
α
t + (1− δ)kt

lnAt+1 = ρ lnAt + σ6t+1

for all t ≥ 0, given k0 and A0. Let yt = ct and xt = [kt; lnAt]I. Then

Etf(yt+1, yt, xt+1, xt) = Et


y−γ1t − βy−γ1t+1[αe

x2t+1xα−11t+1 + 1− δ]

y1t + x1t+1 − ex2txα1t − (1− δ)x1t

x2t+1 − ρx2t

 ,

where xit and yit denote, respectively, the i-th element of the vectors xt and yt.

We now return to the general case. The solution to the model given in equation (1) is of

the form:

yt = g(xt,σ) (2)

xt+1 = h(xt,σ) + ησ6t+1, (3)

where g maps Rnx ×R+ into Rny and h maps Rnx ×R+ into Rnx. The matrix η is of order
nx × n6 and is given by

η =

 ∅
η̃

 .
We wish to find a second-order approximation of the functions g and h around the non-

3Note that our formulation allows for any number of lags in endogenous and exogenous state variables.
Also, it is straightforward to accommodate a more general law of motion for x2t of the form x2t+1 = Γ(x

2
t ) +

ση̃6t+1, where Γ is a non-linear function satisfying the condition that all eigenvalues of its first derivative
evaluated at the non-stochastic steady state lie within the unit circle. Further, the size of the innovation 6t
need not equal that of x2t .
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stochastic steady state, xt = x̄ and σ = 0. We define the non-stochastic steady state as

vectors (x̄, ȳ) such that

f(ȳ, ȳ, x̄, x̄) = 0.

It is clear that ȳ = g(x̄, 0) and x̄ = h(x̄, 0). To see this, note that if σ = 0, then Etf = f .

3 Approximating the Solution

Substituting the proposed solution given by equations (2) and (3) into equation (1), we can

define

F (x, σ) ≡ Etf(g(h(x, σ) + ησ6I,σ), g(x,σ), h(x, σ) + ησ6I, x) (4)

= 0.

Here we are dropping time subscripts. We use a prime to indicate variables dated in period

t+ 1.

Because F (x, σ) must be equal to zero for any possible values of x and σ, it must be the

case that the derivatives of any order of F must also be equal to zero. Formally,

Fxkσj (x, σ) = 0 ∀x, σ, j, k, (5)

where Fxkσj(x, σ) denotes the derivative of F with respect to x taken k times and with

respect to σ taken j times.

3.1 First-order approximation

We are looking for approximations to g and h around the point (x,σ) = (x̄, 0) of the form

g(x, σ) = g(x̄, 0) + gx(x̄, 0)(x− x̄) + gσ(x̄, 0)σ
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h(x, σ) = h(x̄, 0) + hx(x̄, 0)(x− x̄) + hσ(x̄, 0)σ

As explained earlier,

g(x̄, 0) = ȳ

and

h(x̄, 0) = x̄.

The remaining unknown coefficients of the first-order approximation to g and h are identified

by using the fact that, by equation (5), it must be the case that:

Fx(x̄, 0) = 0

and

Fσ(x̄, 0) = 0.

Thus, using the first of these two expressions, gx and hx can be found as the solution to the

system

[Fx(x̄, 0)]
i
j = [fy ]

i
α[gx]

α
β [hx]

β
j + [fy]

i
α[gx]

α
j + [fx ]

i
β[hx]

β
j + [fx]

i
j

= 0; i = 1, . . . , n; j, β = 1, . . . , nx; α = 1, . . . , ny

Here we are using tensor notation. So, for example, [fy ]
i
α is the (i,α) element of the derivative

of f with respect to yI. The derivative of f with respect to yI is an n×ny matrix. Therefore,
[fy ]

i
α is the element of this matrix located at the intersection of the i-th row and α-th column.

4

Note that the derivatives of f evaluated at (yI, y, xI, x) = (ȳ, ȳ, x̄, x̄) are known. The above

expression represents a system of n× nx quadratic equations in the n× nx unknowns given
by the elements of gx and hx.

5

4This is a variation of the tensor notation found in the mathematical literature. Our notation follows
Collard and Juillard (2001a).

5A number of authors have developed algorithms for finding solutions to the above equation associated
with non-explosive paths for the state and control variables (e.g., Blanchard and Kahn (1980), Sims (2000a),
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Similarly, gσ and hσ are identified as the solution to the following n equations:

[Fσ(x̄, 0)]
i = Et{[fy ]iα[gx]αβ [hσ]β + [fy ]iα[gx]αβ [η]βφ[6I]φ + [fy ]iα[gσ]α + [fy]iα[gσ]α

+[fx ]
i
β[hσ]

β + [fx ]
i
β[η]

β
φ[6
I]φ}

= [fy ]
i
α[gx]

α
β [hσ]

β + [fy ]
i
α[gσ]

α + [fy]
i
α[gσ]

α + [fx ]
i
β[hσ]

β

= 0; i = 1, . . . , n; α = 1, . . . , ny; β = 1, . . . , nx; φ = 1, . . . , n6. (6)

Note that this equation is linear and homogeneous in gσ and hσ. Thus, if a unique solution

exists, we have that

hσ = 0.

and

gσ = 0.

These two expressions represent our first main theoretical result. They show that in general,

up to first order, one need not correct the constant term of the approximation to the policy

function for the size of the variance of the shocks. This result implies that in a first-order

approximation the expected values of xt and yt are equal to their non-stochastic steady-state

values x̄ and ȳ.

3.2 Second-order approximation

The second-order approximations to g and h around the point (x, σ) = (x̄, 0) are of the form

[g(x, σ)]i = [g(x̄, 0)]i + [gx(x̄, 0)]
i
a[(x− x̄)]a + [gσ(x̄, 0)]i[σ]

+
1

2
[gxx(x̄, 0)]

i
ab[(x− x̄)]a[(x− x̄)]b

+
1

2
[gxσ(x̄, 0)]

i
a[(x− x̄)]a[σ]

and Klein (2000)). In the numerical applications presented at the end of the paper we used Klein’s package
to solve for gx and hx.
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+
1

2
[gσx(x̄, 0)]

i
a[(x− x̄)]a[σ]

+
1

2
[gσσ(x̄, 0)]

i[σ][σ]

[h(x,σ)]j = [h(x̄, 0)]j + [hx(x̄, 0)]
j
a[(x− x̄)]a + [hσ(x̄, 0)]j[σ]

+
1

2
[hxx(x̄, 0)]

j
ab[(x− x̄)]a[(x− x̄)]b

+
1

2
[hxσ(x̄, 0)]

j
a[(x− x̄)]a[σ]

+
1

2
[hσx(x̄, 0)]

j
a[(x− x̄)]a[σ]

+
1

2
[hσσ(x̄, 0)]

j[σ][σ],

where i = 1, . . . , ny, a, b = 1, . . . , nx, and j = 1, . . . , nx. The unknowns of this expansion

are [gxx]
i
ab, [gxσ]

i
a, [gσx]

i
a, [gσσ]

i, [hxx]
j
ab, [hxσ]

j
a, [hσx]

j
a, [hσσ]

j, where we have omitted the

argument (x̄, 0). These coefficients can be identified by taking the derivative of F (x,σ) with

respect to x and σ twice and evaluating them at (x,σ) = (x̄, 0). By the arguments provided

earlier, these derivatives must be zero. Specifically, we use Fxx(x̄, 0) to identify gxx(x̄, 0) and

hxx(x̄, 0). That is,
6

[Fxx(x̄, 0)]
i
jk =

p
[fy y ]

i
αγ [gx]

γ
δ [hx]

δ
k + [fy y]

i
αγ [gx]

γ
k + [fy x ]

i
αδ[hx]

δ
k + [fy x]

i
αk

Q
[gx]

α
β [hx]

β
j

+[fy ]
i
α[gxx]

α
βδ[hx]

δ
k[hx]

β
j

+[fy ]
i
α[gx]

α
β [hxx]

β
jk

+
p
[fyy ]

i
αγ [gx]

γ
δ [hx]

δ
k + [fyy]

i
αγ [gx]

γ
k + [fyx ]

i
αδ[hx]

δ
k + [fyx]

i
αk

Q
[gx]

α
j

+[fy]
i
α[gxx]

α
jk

+
p
[fx y ]

i
βγ [gx]

γ
δ [hx]

δ
k + [fx y]

i
βγ [gx]

γ
k + [fx x ]

i
βδ[hx]

δ
k + [fx x]

i
βk

Q
[hx]

β
j

+[fx ]
i
β[hxx]

β
jk

+[fxy ]
i
jγ [gx]

γ
δ [hx]

δ
k + [fxy]

i
jγ [gx]

γ
k + [fxx ]

i
jδ[hx]

δ
k + [fxx]

i
jk

6At this point, an additional word about tensor notation is in order. Take for example the expression
[fy y ]

i
αγ . Note that fy y is a three dimensional array with n rows, ny columns, and ny pages. Then [fy y ]

i
αγ

denotes the element of fy y located at the intersection of row i, column α and page γ.
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= 0; i = 1, . . . n, j, k,β, δ = 1, . . . nx; α, γ = 1, . . . ny.

Since we know the derivatives of f as well as the first derivatives of g and h evaluated at

(yI, y, xI, x) = (ȳ, ȳ, x̄, x̄), it follows that the above expression represents a system of n×nx×nx
linear equations in the n× nx × nx unknowns given by the elements of gxx and hxx.
Similarly, gσσ and hσσ can be obtained by solving the linear system Fσσ(x̄, 0) = 0. More

explicitly,

[Fσσ(x̄, 0)]
i = [fy ]

i
α[gx]

α
β [hσσ]

β

+[fy y ]
i
αγ [gx]

γ
δ [η]

δ
ξ[gx]

α
β [η]

β
φ[I]

φ
ξ

+[fy x ]
i
αδ[η]

δ
ξ[gx]

α
β [η]

β
φ[I]

φ
ξ

+[fy ]
i
α[gxx]

α
βδ[η]

δ
ξ[η]

β
φ[I]

φ
ξ

+[fy ]
i
α[gσσ]

α (7)

+[fy]
i
α[gσσ]

α

+[fx ]
i
β[hσσ]

β

+[fx y ]
i
βγ [gx]

γ
δ [η]

δ
ξ[η]

β
φ[I]

φ
ξ

+[fx x ]
i
βδ[η]

δ
ξ[η]

β
φ[I]

φ
ξ

= 0; i = 1, . . . , n; α, γ = 1, . . . , ny; β, δ = 1, . . . , nx; φ, ξ = 1, . . . , n6.

This is a system of n linear equations in the n unknowns given by the elements of gσσ and

hσσ.

Finally, we show that the cross derivatives gxσ and hxσ are equal to zero when evaluated

at (x̄, 0). We write the system Fσx(x̄, 0) = 0 taking into account that all terms containing

either gσ or hσ are zero at (x̄, 0). Then we have,

[Fσx(x̄, 0)]
i
j = [fy ]

i
α[gx]

α
β [hσx]

β
j + [fy ]

i
α[gσx]

α
γ [hx]

γ
j + [fy]

i
α[gσx]

α
j + [fx ]

i
β[hσx]

β
j

= 0; i = 1, . . . n; α = 1, . . . , ny; β, γ, j = 1, . . . , nx. (8)
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This is a system of n×nx equations in the n×nx unknowns given by the elements of gσx and
hσx. But clearly, the system is homogeneous in the unknowns. Thus, if a unique solution

exists, it is given by

gσx = 0

and

hσx = 0.

These equations represent our second main theoretical result. They show that in general,

up to second-order, the coefficients of the policy function on the terms that are linear in

the state vector do not depend on the size of the variance of the underlying shocks.7 We

summarize our two main theoretical results in the following theorem:

Theorem 1 Consider the model given by equation (1) and its solution given by the policy

functions (2) and (3). Then

gσ(x̄, 0) = 0,

hσ(x̄, 0) = 0,

gxσ(x̄, 0) = 0, and

hxσ(x̄, 0) = 0.

Theorem 1 shows that the second-order approximation to the policy function of a stochastic

model belonging to the general class given in equation (1) differs from that of its non-

stochastic counterpart only in a constant term given by 1
2
gσσσ

2 for the control vector yt

and by the first nx − n6 elements of 12hσσσ2 for the endogenous state vector x1t . Therefore,
any second-order expansion of the policy function of a stochastic problem whose linear and

quadratic coefficients do not coincide with those of the non-stochastic version of the model is

7Chen and Zadrozny (2001) obtain similar results in the context of a linear-quadratic exponential Gaussian
optimal control problem. Also, upon receiving a draft of our paper, Ken Judd communicated to us that in
work in progress he came across results similar to those we obtain in this section.

11



necessarily inaccurate. This is the case, for instance, with the approximation resulting from

the bias reduction procedure of Collard and Juillard (2001a,b).8 In section 5.2 below, we

quantify the inaccuracy introduced by the bias reduction procedure for a particular model

economy.

3.3 Higher-order approximations

It is straightforward to apply the method described thus far to finding higher-order ap-

proximations to the policy function. For example, given the first- and second-order terms

of the Taylor expansion of h and g, the third-order terms can be identified by solving a

linear system of equations. More generally, one can construct sequentially the nth-order

approximation of the policy function by solving a linear system of equations whose (known)

coefficients are the lower-order terms and the derivatives up to order n of f evaluated at

(yI, y, xI, x) = (ȳ, ȳ, x̄, x̄) (see also Collard and Juillard, 2001a; and Judd, 1998).

4 Matlab Codes

We prepared a set of Matlab codes that implements the second-order approximation devel-

oped above. The programs are publicly available on the world wide web.9 The program

gx hx.m computes the matrices gx and hx. The inputs to the program are the first deriv-

atives of f evaluated at the steady state. That is, fy, fx, fy , and fx . This step amounts

to obtaining a first-order approximation to the policy functions. A number of packages

are available for this purpose. We use the one prepared by Paul Klein of the University of

Western Ontario, which consists of the three programs solab.m, qzswitch.m, and reorder.m.10

8Collard and Juillard (2001b) maintain that the presence of stochastic shocks will in general affect the
coefficients on the terms that are linear or quadratic in xt in a second-order approximation. Specifically, on
p. 984 they state that “[i]t should be clear to the reader that, as higher-order moments will be taken into
account, values for f0 and f1 [in our notation, f1 corresponds to the coefficient on xt− x̄ in the second-order
expansion] will be affected. More particularly, both of them will now depend on volatilities.”

9The URL is http://www.econ.upenn.edu/∼uribe/2nd order.htm.
10For a description of the technique used in this package, see Klein (2000).
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The program gxx hxx.m computes the arrays gxx and hxx. The inputs to the program

are the first and second derivatives of f evaluated at the steady state and the matrices gx

and hx produced by gx hx.m.

The program gss hss.m computes the arrays gσσ and hσσ. The inputs to the program are

the first and second derivatives of f evaluated at the steady state, the matrices gx and hx

produced by the program gx hx.m, the array gxx produced by the program gxx hxx.m, and

the matrix η.

4.1 Computing the derivatives of f

Computing the derivatives of f , particularly the second derivatives, can be a daunting task if

the model is large. We approach this problem as follows. The MATLAB Toolbox Symbolic

Math can handle analytical derivatives. We wrote programs that compute the analytical

derivatives of f and evaluate them at the steady state. The program anal deriv.m com-

putes the analytical derivatives of f and the program num eval.m evaluates the analytical

derivatives of f at the steady state.

4.2 Examples

To illustrate the use of the programs described thus far, we posted on the website given above

the programs needed to obtain the second-order approximation to the decision rules of the

three model economies studied in section 5 below. For example, to obtain the second-order

approximation to the policy functions of the neoclassical growth model discussed in sections 2

above and 5 below, run the program neoclassical model run.m. The output of this program

are the matrices gx and hx and the arrays gxx, hxx, gσσ and hσσ. This program calls the

program neoclassical model.m, which produces the first- and second derivatives of f . More

generally, neoclassical model.m illustrates how to write down analytically the equations of

a model belonging to the class given in equation (1) using the MATLAB Toolbox Symbolic

Math.
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5 Applications

In this section, we apply the second-order approximation method developed above and the

computer code that implements it to solve numerically for the equilibrium dynamics of a

number of models. These models were chosen because they are particularly well suited

for evaluating the ability of the proposed algorithm to arrive at the correct second-order

approximation to the decision rule. We begin with the one-sector neoclassical growth model

for which Sims (2000b) has computed a second-order approximation. This is an economy

with one endogenous predetermined state and one control variable. We then consider a two-

country growth model with complete asset markets. In this case there are two endogenous

predetermined variables and one control. For this economy, Kim and Kim (forthcoming)

derive analytically the second-order approximation to the policy function in the case that

the underlying shocks are iid. We close the section with an examination of an asset pricing

model that has an exact closed form solution due to Burnside (1998). Recently, Collard

and Juillard (2001b) have used this model as a benchmark to evaluate the accuracy of their

perturbation method, which incorporates an iterative procedure to capture the effects of the

presence of uncertainty on the coefficients of the second-order expansion. As we show above,

this procedure introduces an inaccuracy in the second-order approximation. We present

parameterization under which these inaccuracies are quantitatively large.

5.1 Example 1: The Neoclassical Growth Model

Consider the simple neoclassical model, described in section 2. We calibrate the model by

setting β = 0.95, δ = 1, α = 0.3, ρ = 0, and γ = 2. We choose these parameter values to

facilitate comparison with the results obtained by applying Sims’s (2000b) method.11 Here

we are interested in a quadratic approximation to the policy function around the natural

11See the MATLAB script sessionEG.m in Sims’s website (http://eco-
072399b.princeton.edu/yftp/gensys2/GrowthEG)
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logarithm of the steady state. Thus, unlike in section 2, we now define:

xt =

 ln kt
lnAt


and

yt = ln ct.

Then the non-stochastic steady-state values of yt and xt are, respectively:

ȳ = −0.8734.

and

x̄ =

 −1.7932
0


The coefficients of the linear terms are:

gx = [0.2525 0.8417]

and

hx =

 0.4191 1.3970

0.0000 0.0000


The coefficients of the quadratic terms are given by:

gxx(:, :, 1) = [−0.0051 − 0.0171]

gxx(:, :, 2) = [−0.0171 − 0.0569]

and

hxx(:, :, 1) =

 −0.0070 −0.0233
0 0


15



hxx(:, :, 2) =

 −0.0233 −0.0778
0 0


Finally, the coefficients of the quadratic terms in σ are:

gσσ = −0.1921

and

hσσ =

 0.4820
0

 .
A more familiar representation is given by the evolution of the original variables. Let

ĉt ≡ ln(ct/c̄)

and

k̂t ≡ ln(kt/k̄).

Then, the laws of motion of these two variables are given by

ĉt = 0.2525k̂t + 0.8417Ât +
1

2

�
−0.0051k̂2t − 0.0341k̂tÂt − 0.0569Â2t − 0.1921σ2

=

and

k̂t+1 = 0.4191k̂t + 1.3970Ât +
1

2

�
−0.0070k̂2t − 0.0467k̂tÂt − 0.0778Â2t + 0.4820σ2

=
.

It can be verified that these numbers coincide with those obtained by Sims (2000b).

16



5.2 Example 2: A Two-Country Neoclassical Model With Com-

plete Asset Markets

The following 2-country international real business cycle model with complete asset markets

is taken from Kim and Kim (forthcoming). The competitive equilibrium real allocations as-

sociated with this economy can be obtained by solving the first-best problem. The planner’s

objective function is given by

E0
∞3
t=0

βt
^
C1t

1−γ − 1
1− γ

+
C2t

1−γ − 1
1− γ

�
,

where Cit, i = 1, 2, denotes consumption of the representative household of country i in

period t. The planner maximizes this utility function subject to the budget constraint

C1t + C2t +K1t+1 − (1− δ)K1t +K2t+1 − (1− δ)K2t = A1tK
α
1t +A2tK

α
2t,

whereKit denotes the stock of physical capital in country i andAit is an exogenous technology

shock whose law of motion is given by

lnAit = ρi lnAit−1 + σ6it, i = 1, 2,

where 6it ∼ NIID(0, 1) and ρi ∈ (−1, 1). The optimality conditions associated with this
problem are the above period-by-period budget constraint and

C1t = C2t

C−γ1t = βEtC
−γ
1t+1[αA1t+1K

α−1
1t+1 + (1− δ)]

C−γ1t = βEtC
−γ
1t+1[αA2t+1K

α−1
2t+1 + (1− δ)]

We use the following parameter values: γ = 2; δ = 0.1; α = 0.3; ρ = 0; and β = 0.95.
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Given this parameterization, the second-order approximation to the policy function is

given by:

K̂1t+1 =
}
0.4440 0.4440 0.2146 0.2146

]


K̂1t

K̂2t

Â1t

Â2t



+
1

2

}
K̂1t K̂2t Â1t Â2t

]


0.22 −0.18 −0.023 −0.088
−0.18 0.22 −0.088 −0.023
−0.023 −0.088 0.17 −0.042
−0.088 −0.023 −0.042 0.17





K̂1t

K̂2t

Â1t

Â2t


−1
2
0.166σ2,

K̂2t+1 = K̂1t+1,

and

Ĉ1t =
}
0.2 0.2 0.097 0.097

]


K̂1t

K̂2t

Â1t

Â2t



+
1

2

}
K̂1t K̂2t Â1t Â2t

]


0.1 −0.08 −0.0093 −0.038
−0.08 0.1 −0.038 −0.0093
−0.0093 −0.038 0.079 −0.019
−0.038 −0.0093 −0.019 0.079





K̂1t

K̂2t

Â1t

Â2t


+
1

2
0.406σ2

Ĉ2t = Ĉ1t,
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where a hat over a variable denotes the log-deviation from its steady state. The non-

stochastic steady state is given by [Ki; Ai; Ci] = [2.6257; 1; 1.0733]. Kim and Kim (forth-

coming) derive analytically a second-order approximation to the decision rule of the model

considered here. Our numerical results match those implied by Kim and Kim’s analytical

second-order approximation, as can be checked by running the program kim run.m.

Example 3: An Asset Pricing Model

Consider the following endowment economy analyzed by Burnside (1998) and Collard and

Juillard (2001b). The representative agent maximizes the lifetime utility function

E0
∞3
t=0

βt
Cθ
t

θ
,

subject to

ptet+1 + Ct = ptet + dtet

and a borrowing limit that prevents agents from engaging in Ponzi games. In the above

expressions, Ct denotes consumption, pt the relative price of trees in terms of consumption

goods, et the number of trees owned by the representative household at the beginning of

period t, and dt the dividends per tree in period t. Dividends are assumed to follow an

exogenous stochastic process given by

dt+1 = e
xt+1dt,

where xt denotes the gross growth rate of dividends and is assumed to follow an exogenous

AR(1) process

xt+1 = (1− ρ)x̄+ ρxt + ση6t+1,

and 6t ∼ NIID(0, 1).12
12To make the notation compatible with our previous analysis we call ση what Burnside calls σ.
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The optimality conditions associated with the household’s problem are the above budget

constraint, the borrowing limit, and

ptC
θ−1
t = βEtC

θ−1
t+1 (pt+1 + dt+1).

In equilibrium we have that Ct = dt and et = 1. Defining the price-dividend ratio as

yt = pt/dt yields the equilibrium condition

yt = βEt
+
eθxt+1[1 + yt+1]

�
.

Burnside (1998) shows that the non-explosive solution to this equation is of the form

yt ≡ g(xt, σ) =
∞3
i=1

βieai+bi(xt−x̄), (9)

where

ai = θx̄i+
θ2σ2η2

2(1− ρ)2

^
i− 2ρ(1− ρi)

1− ρ
+
ρ2(1− ρ2i)

1− ρ2

�

and

bi =
θρ(1− ρi)

1− ρ
.

It is immediate to see that gσ(x̄, 0) = gxσ(x̄, 0) = 0, in line with Theorem 1. Collard and

Juillard (2001b) present an algorithm to compute a second-order approximation to the above

policy function. Their method appends to a deterministic perturbation method a fixed-point

algorithm involving an iterative procedure. This procedure introduces a dependence of the

coefficients of the linear and quadratic terms of the expansion of the policy function on the

volatility of the underlying shocks. Theorem 1 shows that in a second-order expansion the

coefficients on the terms linear and quadratic in the state are independent of the volatility

of the exogenous shocks. It follows that the fixed-point algorithm proposed by Collard and

Juillard (2001b) yields an inaccurate second-order approximation.
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A second-order approximation of (9) around xt = x̄ and σ = 0 yields

yt ≈ g(x̄, 0) + gx(xt − x̄) + 1
2
gxx(xt − x̄)2 + 1

2
gσσσ

2, (10)

where

gx =
θρβeθx̄

(1− βeθx̄)(1− βeθx̄ρ)
,

gxx =

X
ρθ

1− ρ

~2 ^
βeθx̄

1− βeθx̄
− 2βeθx̄ρ

1− βeθx̄ρ
+

βeθx̄ρ2

1− βeθx̄ρ2

�
,

and

gss =

X
θη

1− ρ

~2 ^
βeθx̄

(1− βeθx̄)2
+

X
ρ2

1− ρ2
− 2ρ

1− ρ

~
βeθx̄

1− βeθx̄
+
2ρ2

1− ρ

βeθx̄

1− βeθx̄ρ
− ρ4

1− ρ2
βeθx̄

1− βeθx̄ρ2

�
.

We follow Burnside (1998) and Collard and Juillard (2001b) and use the calibration β = 0.95,

θ = −1.5, ρ = −0.139, x̄ = 0.0179, and η = 0.0348. Then, evaluating the above expressions
we obtain

yt ≈ 12.30 + 2.27(xt − x̄) + 1
2
0.42(xt − x̄)2 + 1

2
0.35σ2.

This is precisely the equation one obtains using the perturbation algorithm developed in this

paper, as can be verified by running the program asset run.m.

Collard and Juillard (2001b) express the second-order approximation to yt as

yt = f0 + f1(xt − x̄) + 1
2
f2(xt − x̄)2.

Relating their notation to ours, we have f0 = g(x̄, 0) + 1
2
gσσσ

2, f1 = gx, and f2 = gxx. In

their table 2, Collard and Juillard (2001b) report the numerical values for fi (i = 0, 1, 2) for

three different calibrations of the above asset-pricing model. To facilitate comparison, we

reproduce in our table 1 their numbers in the rows labeled fixed-point algorithm. We also

report the correct coefficients, which can be obtained either by evaluating equation (10) or
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Table 1: Second-Order Approximation to the Policy Function of the Asset-Pricing Model

f0 f1 f2

Benchmark Calibration:
Exact 2nd-Order Approx. 12.48 2.27 0.42
Fixed-Point Algorithm 12.48 2.30 0.43

High curvature, θ = −10:
Exact 2nd-Order Approx. 4.79 4.83 6.07
Fixed-Point Algorithm 5.00 5.97 7.50

High Persistence, ρ = 0.9:
Exact 2nd-Order Approx. 22.02 -99.07 976.84
Fixed-Point Algorithm 14.50 -115.40 1137.81

Note. The benchmark calibration is β = 0.95, θ = −1.5, ρ = −0.139, x̄ = 0.0179,
σ = 1, and η = 0.0348. The rows labeled ’Exact 2nd-Order Approx.’ are obtained
either by evaluating equation (10) or by running the program asset run.m. The
rows labeled ’Fixed-Point Algorithm’ are taken from Collard and Juillard (2001b,
table 2).

by running the programs implementing our proposed algorithm (asset run.m). The table

shows that the inaccuracy introduced by the fixed-point algorithm of Collard and Juillard

can be significant. For example, when the intertemporal elasticity of substitution is low

(θ = −10) the coefficients associated with the constant, linear, and quadratic terms are,
respectively, 4, 24, and 24 percent larger than those of the exact second-order expansion.

Similarly, when the underlying shock is assumed to be highly persistent (ρ = 0.9), then the

difference between the coefficients on the constant term is 34 percent and on the linear and

quadratic terms is 16 percent.
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