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1 Introduction

Method of Simulated Moments (MSM) estimators (MacFadden (1989), Pakes and Pollard (1989)) have great
value to applied economists estimating structural models due to their simple and intuitive nature. Regardless
of the degree of complication of the econometric model, one only needs the ability to generate simulated data
according to that model. Moments of these simulated data can then be matched to moments of the true data
in an estimation procedure. The value of the parameters that sets the moments of the simulated data "closest”
to the moments of the actual data is an MSM estimate. Such estimates typically have nice properties such as
consistency and asymptotic normality, even for a finite amount of simulation draws.

This paper addresses a caveat of such procedures that occurs when it is time consuming to solve and gen-
erate data from one’s model. Examples include 1) complicated equilibrium problems, e.g. discrete games
or complicated auction models, and 2) dynamic programming problems with large state spaces or significant
amounts of heterogeneity. In the above estimation procedure, one usually needs to solve such a model numer-
ous times, typically once for every simulation draw, for every observation, for every parameter vector that is
ever evaluated in an optimization procedure. If oneMabservations, performd Ssimulation draws per ob-
servation, and optimization requir€sfunction evaluations, estimation requires solving the mddsk N = R
times. This can be unwieldy for these complicated problems.

We suggest using a change of variables and importance sampling to alleviate or remove this problem.
Importance sampling is a technique most noted for its ability to reduce levels of simulation error. We show that
importance sampling can be also be used to dramatically reduce the number of times a complicated economic
model needs to be solved within an estimation procedure. Instead of solving the M8deN = R times,
with importance sampling one only needs to solve the mbdidgk N times orN Stimes. SinceR can be quite
large (e.g. when the number of parameters is around 8 and the function is well behaved, at a niRmmgimh
= 500 — andR tends to increase exponentially in the number of parameters), this can lead to very significant

time savings.



2 The Simple Data Generation MSM Estimator

Consider an econometric model

yi = (X, €,00)

wherex; ande; are vectors of predetermined variables, observed and unobserved to the econometrician respec-
tively. v; is a vector of dependent variables determined within the méges a parameter vector that one is
trying to estimate.
Given datgx;, yi }', generated at some trdg, a simple MSM estimator @, can be formed by examining
the generic moment:

E[yl —E[f(Xi,Gi,0)|Xi] | Xi]
Sincey; = f (X, €i, 80), this moment is identically zero &t= d,. So is the expectation of any functigix;)
of the conditioning variables multiplied by the difference betwgeamd its expectation, i.e.
E[(y —E[f(i,€,0Ix])=g(x) ]=0 atd =0 1)

As aresult, the value @, say/e\, that sets the sample analog of this moment

G () = = D101~ EL1(5, i, 0] » g3

equal to zero or as close as possible to zero is a consistent estim#tgr @inder appropriate regularity
conditions, one obtains asymptotic normalitﬁ(ﬂHansen (1982)).

Simulation enters the picture when the functienf (x;, €;, @)|xi] is not easily computable. The straight-
forward way of simulating this expectation is by averagin(g;, ¢;, &) over a set oN Srandom drawse; 1, ....... , €i.NS)

from the distribution ok, i.e.

INote that the vectoy can contain higher order moments of the dependent variabley(eyd, etc.). As the number of moments
used increases, one can approach asymptotic efficiency by the right choice of instrumentsgifenttien).
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ﬁ(@) is trivially an unbiased simulator of the true expectatibpf (x;, €;, 8)|x]. McFadden and Pakes and

Pollard prove statistical properties of the MSM estimator that sets the simulated moment:

G0 = = > [ — ER @) » gx)]

as close as possible to zero. Perhaps most important of these statistical properties is the fact that these esti-
mators are typically consistent féinite NS The intuition behind this is that the simulation error (i.e. the
difference between the simulated expectation and the true expecﬁ\tﬁp(ﬂ,) — E[f(x, €, 0)|x]) averages
out over observations @ — co.? This consistency property gives the estimator an advantage over alternative
estimation approaches such as simulated maximum likelihood, which typically is not consistent for a finite
number of simulation draws'.

Note that this simulation procedure can be thought of as a data generating procedure. Eaghdraw
generates new dependent variablgs. Moments of these generategl,,s's are then matched to the observed
yi’'s. This illuminates how general this estimation procedure is. One only needs to be able to generate data

according to the model.

2Another nice property of these estimators is that the extra variance imparted on the estimates due to the simulation is relatively
small — asymptotically it is 1/NS. This means, e.g., that if one uses just 10 simulation draws, simulation increases the variances of the
parameter estimates by just 10%.

3The difference between consisitency or inconsistency for fixed simulation draws can often be seen dramatically in degree of small
sample bias (see, e.g., Ackerberg (1999)).

4Both McFadden and Pakes and Pollard note that it is essential to hold theeglryvsontant over different function evaluations
(i.e. differentd). Otherwise the likelihood function is infinitely jumpy. It is also usually helpful to use different simulation draws for
different observations, as this will tend to make the simulation error average out fabténagases.



3 Importance Sampling and a Change of Variables to Reduce Computational

Burden

A significant caveat of the above simulation procedure is th@at, €;.ns, 8) may be hard to compute. Often

numerical methods to are needed to evaldatéhe problem is that performing such operatibhStimes for

eachobservatioreachtime the function is evaluated within an optimization procedure can be time consuming.

This is particularly problematic as the number of parameters increases since the number of function evaluations

needed for convergence tends to increase exponentially in the number of parameters. This paper shows how

importance sampling and a change of variables can be used to significantly reduce the number of times that

f (X, €.ns, @) Needs to be computed.
Importance sampling addresses the simulatioR pf (x;, ¢;, 8)|x]. Consider an arbitrary integrable p.d.f.

g whose density is non-zero over the suppoi .obividing and multiplying byg we have:

E[f(X, e, 0)x] :/ f (X, €i,0)plei | %, 0)de :/ F €, 0) g(e | %)

g(ei | xi)de;

Importance sampling notes that instead of drawing friie | X, 8) and forming (2), one can take random

draws fromg and form:

1 €j Xi, 0
Efi @) = N_Sz f(Xi, €i.ns, G)F)(Ll')
ns

O(€ins | %)

This is trivially an unbiased simulator d& [ f (i, €, @)|x;]. Unfortunately, usingg f, (9) in an estimation
procedure still requires computingN S= N =« R times. We combine this importance sampling with a change

of variables to solve this computational issue.

Assumption (Al): There exists a functioa(x;, ¢;, ) such thatf (x;, ¢;, 8) = f(u(x, ¢;, 8)) and:



) given anyx; € R7, u(x, €, 0) is a random vector whose suppddes nodepend ord.

II) given x; andé, one can analytically (or quickly) compute the change of variables densitgxafe; , €)

induced by the distribution af;.

Note the slight abuse of notation &¢x;, ¢;, ) has different arguments thdrfu(x;, ¢;, 8)). One important
case where (Al) is violated is when an elemenuahust contain a parameter by itself. In this case, the
support ofu clearly does depend agh However, many economic models satisfy (Al) — this is exhibited in
examples later. We also discuss cases where it is not satisfied and show how one can either 1) still benefit from
computational savings using our technique, or 2) how economic models can be perturbed to satisfy it.

Let p(u; | i, &) be the density ofl; obtained by the change of variables formula. Combining this change

of variables with an importance sampling densitydarg(u; | x;), we have:

pu; | x,0)

oW 1 %) g(u; | x)du;

E[f(X,e€,0)x] :/ fu)p | x,0)du :/ f(ui)

Now consider the unbiased importance sampling simulatér [df(x;, i, @)|xi]:

P(Uins | Xi, )
stf('“) O(Uims | X)

where theu; 'S are draws fromg. Now whend changes, the; ,s's do notchange. As a resultf needs
not be recomputed whethchanges. The only components that need to be reevaluated are the numerators of
the importance sampling weights(u; s | Xi, @), which are typically not computationally burdensomas a
result, in an estimation procedure usiﬁ?ji () one only needs to compute N S= N times. Additionally, if

one uses the sangefunction for every observatiorf, only needs to be computéddStimes. The caveat here

SFor example supposé(xj,€j,8) = f(x 0 + €j) and thatej is multivariate normal. Then with the change of variahles=
X8 + €j, the distribution ol is also mltivariate normal



is that using the sangfunction may limit the extent to which simulation error averages out over observations,
as simulation error is correlated across observations.

Note the intuition behind this procedure. As we chafigeather than holding each of tle,s and their

implicit weights () constant, this procedure holds thg,s constant and varies the “Weighté’*’(ui ”S'X"g))

N Sxg(Ui,ns)

on each of the draws. Put another way, rather than changing our simulated “people” when weéhvaage
change the weight which we put on each simulated person. As $ulibes not need to be recomputed for new
simulated people. An additional benefit of this procedure is that while the pure frequency simulator (2) is often
discontinuous (if there is any discreteness in one’s economic model), these importance sampling simulators are

typically smootf.

3.0.1 Example 1: A Discrete Game

We consider a model similar to that in Davis (1999). Firrahooses the number of storgse (0, ....., S) to

operate in a given market. The cost of operating; stores is given by

c(@j) = (BX; +€j + (axj + 7;)d))q;

wherex; are observables arg andz; are unobservableg¢fx; + €;) measures firnj’s level of costs(ax; +
#j) Mmeasures its returns to scale. Market inverse demand in nraiket function of the total number of stores
Qm = 2>_; q; and equal to

P(Qm) = do — 01Qm + 92Zm + un

wherez,, are observables that shift overall demand afds an unobserved market demand shifter. As there

is only actual data on equilibriur®, and notP, a units normalization is necessary. We normadize= 1,

6The use of importance sampling as a smoother idlpriéscussed in McFadden (1989). An earlier version of the current paper
contained a number of interesting examples of how importance sampling can be used to smooth even very complicated economic model.
For a copy please consult the author.

"This normalization is different than that used by Davis (who normalizgd= 1), but is an identical model given that demand is
downward sloping. Interestingly, this alternative normalization is what helps satisfy (Al).



implying a profit function:

7 (Sj, Qm) = (0o + 02Zm + um + BXj + €))sj + (aXj + 77])512 — QmS;

While there are multiple equilibrium in this game, Davis shows conditions under vellickbquilibrium
consist of the same total number of stofgg. Thus he uses an estimation strategy similar to Berry (1992) by

estimating the equation

with the simulated moment

1
E[ym—N—SZf({x,-}le, {€1.nsh 0 (1, nsh 200 Zims Hmns @) | Xen, zm}
ns

In this case, not only is the expectation bfnot analytic, but the functiorf itself is very complicated.
Given simulated primitiveg{X; J-Jﬂl, {ej,ns}fll, {ﬂj,ns}fll, Zm, Mmns @), @N interative tatonnment procedure
is required to solve foQ,. This estimation algorithm requires computation of thisl S= N = R times (where

N is the number of markets).

Consider the change of variables function:

Jm

{Bx; +6]}j:1

_ 19m 1 9m . Im 0) = Im
Um = U({X]}jzla {ej}j:l’ {ﬂj}jzla Zmy tms ) = {OCXJ' =+ 1’]1-}].:1

00 + 02Zm + Um

The elements ofi, are sufficient to compute the equilibriu@®y, (this is clear from the profit function), and



under Davis’ joint normality assumption oa, (7, 1), the function satisfies (Al). The distributionwf,, p(un, |
Xm, Zms, &), iS simply multivariate normdl.

Now consider the importance sampling simulator:

p(Um,ns | Xma Zm’ 0)
9(Um,ns | Xm, Zm)

— 1
Efn@) =15 > f(Umns)
ns

where theun ns are draws from some distributiay(uy). As the parameters change, the importance sampling
holds theum ns cOnstant — as a result tfefunctions need not be recomputeddashanges. With this simulator,

f only needs to be computdd S+ N times instead oN S N = R times. If one uses the sangefunction

for all markets,f would need to be computdd Stimes. Note that this importance sampling also smooths the

objective function — this is in contrast to the pure frequency simulator, whicHdtasand jumps.

3.0.2 Example 2: A Dynamic Programming Problem

Consider a dynamic model of automobile choice. Suppose that in a given year the utility consotaens

from using carj with characteristicX; and agen; is given byU;; = 8, X; — y;a; wherep; is a vector of
consumet’s idiosyncratic tastes for the characteristics andneasures consumes distaste for older cars.

In each period the consumer has the option of keeping their old car or purchasing a new one from some set of

J cars. The single period utility from purchasing or not purchasing, respectively are

Up = mjax{ﬁin—aipj}

Up = BiXe —7idg

8|f one wanted to ensure that the marginal cost of an additional store was positive, one could, for examplgguserexp instead

of (BXj +¢€j). The first set of elements of thefunction then becom{aexp(ﬂxi +ej )}}]11. Note that this function also satisfies (A1)
as the support of these elementsida$ always (Opo) regardless of.




whereX, are characteristics ofs current car, andy, is the age of the current caw; is consumer’s distaste
for price. a; does not enter the utility from purchasing a new car because new cars are age O.

The formal state space of this problem(ds, a, ), i.e. the individual's current car type and its 8geThis
is of fairly small dimension, so it would be possible to numerically solve ‘®value functionV (¢, a; ) and
optimal policy (choice) functior®, (ci, a ). Note that the value and policy functions are indexed bgcause
they depend on consumiés characteristics, i.e. the vect@f;, ..., fix s @i, 7i)-

Econometrically, one might specif§i’'s, «;, andy; as linear functions of consumer characterisicge.g.

income, family size) plus unobservable terms, i.e.

K
{Bi = zPx + €ik}is
ai =Zo + €iKk+1

Vi =Ziy +€ik+2

and specify the joint distribution @f. Estimation could proceed by simulating from the distributios; pgolv-
ing the dynamic programming problem for each simulated individual (characteriZ@Ry ..., Siknss %inss ¥ ins))

and matching simulated choices to actual choices, i.e.

Gu0) == S [(P - EP0) @ 9(X, 2)]
N <

whereE P, (6) is the average of the simulated choices (polidfes)e.

— 1
EPi(0) = N_Sz P(Bitnss -+ Biknss Cinss ¥ ins» CGis &)
ns

andP, is the observed choice.

9This assumes prices and characteristics are not changing over time. Because of the large number of products, it would likely not
be feasible to include a complicated stochastic path of prices. On the other hand, an iid price process could likely be incorporated using
alternative specific value functions similar to Rust (1988). We also ignore initial conditions problem regarding correlation between
current car and tastes. This might be valid, e.g. if the sample was a panel of first car buyers.
190ne can think of as a vector of 0-1 choices (i.e. which car is bought).

10



The problem with the above estimation procedure is th@ichsnges, the simulatefli(,s, ---» Biknss %inss Vins)'S
change. Thus, the dynamic programming problem needs to be sHlIedN = R times. Again importance

sampling can help reduce computational burden. Consider changes of variables given by:

{zpc+ eik}kK:l

Ui :U(Zi,él, ----- ’6K+2’0): Zio + €K +1

Ziy + €ik+2

and the importance sampling simulator

p(ui,ns | z, 0)

— 1
EPIO) = g 2 T~ i s

As parameters change, thess's do not change. As such, the dynamic programming prolgia, a. ) only
needs to be computed S« N times — once for each simulation draw for each individual. As with the previous
model, one could reduce the number of computationdl by using the same simulation draws for each

individual.

4 Discussion

4.0.3 Satisfying or Partially Satisfying Assumption 1

The two examples above satisfy (A1), but for some models one might not be able tafihdtaloes. The most
common case is when there are parameters in one’s model that do not vary unobservably across the population
and do not enter into an index function that has some unobservable component that varies across the population.
In Example 2, for instance, one might be interested in estimating (rather than fixing) a discount factor that is
constant across the population. As the parameter has a degenerate distribution, itscnggobidnge with

0. It would also be very hard to find some random function of the discount factor which both 1) summarizes

11



its impact on the model and 2) has an analytic density. In Example 1, one might consider an alternative model
where returns to scale are the same across firmspte+ #; = a. In this case it would again be hard to find a

u to satisfy (Al). In these examples, thefunctions would need to be recomputed if the discount factor or the
returns to scale parameter changed.

While it might be hard to find a that fully satisfies (Al), it is often possible to fi that partially satisfy
it. By partially satisfying it, we mean that we can findidhat has an analytic density and whose support only
depends on aubsebf the parameters. Denote By the set of parameters which affect the suppon ef 8-
is the set of parameters that do not change the supporf; Beanges,f needs to be recomputed, butés
changes, it does not. Clearlyshould be chosen to minimize the number of parametefs.iin the dynamic
programming model with the discount factor, for example, the discount factor wouldée tine rest of the
parameters if,12.

If (A1) is partially satisfied, a first option is to use derivative based optimization methods. In computing
numeric first derivativesf needs to be recomputed only when element8.adire perturbed. This reduces
computational time bﬁ%gg—l)l relative to a standard procedure. A second alternative is to use a nested search
algorithm. On the outside, one searches @#gron the inside, ove#,. For the inside search algorithm,
one needs not recomputes. As these nested search algorithms are generally inefficient, this approach is
reasonable only if the dimension&f is small, e.g. 1 or 2.

An alternative to the above approach is to slightly perturb one’s model to satisfy (Al). Typically this
involves adding unobserved heterogeneity to the model. When estimating the discount factor, one might be
willing to assume that agents are heterogenous in their discount factors. This model would sati$fyl(A1)
example 2, one might allow heterogeneity in returns to scale (as in the text). Interestingly, our technique works

better when there is more heterogeneity in the population. The intuition behind this is that the heterogeneity

HThe simulator in this case would BP; (0) = g5 > ns f Ui ns, 01)% , S0 changes ifl; are adjusted for with impor-
tance sampling weights, change#inadjusted for with changes if.
12as one needs the discount factor between 0 and 1, one could usﬁé%% wherew; is a normal.

12



allows the econometrician to “span” parameter space with the initial draws. If the parameter space can be
spanned, then the moment condition can be evaluated at alteréiatibg weighting the initial draws. One

caveat of this procedure is that the variance of the unobserved heterogeneity must be bounded away from zero.
If this variance is zero, then (A1) is no longer satisfied. In practice, one should be careful to watch for these

variances approaching zero during estimation. If they do, it is probably best to switch to the first approach.

4.0.4 Choice ofg

As mentioned, the traditional use of importance sampling is to reduce the variance of simulation estimators.
An appropriate choice af can accomplish this goal. Unfortunately, if one is not careful, importance sampling
can also increase the variance of simulation estimators. When performing the above change of variables and
importance sampling, one needs to be aware of this issue.

Perhaps the obvious choice fgis p itself at some initial parameter vect®. This importance sampling
simulator is identical to the pure frequency simulatof at ¢’. What is attractive about the pure frequency
simulator is that asymptotically its variance is 1/NS times the variance due to the data generating process. Thus,
with g defined ag at some&?’, simulation error in our procedure also has this property-até’.

Unfortunately, with this choice af simulation error can get quite large é&gets far away frond’. While
theoretically this is not a problem if the parameter space is bounded, this can be an issue in practice. One
needs to be careful th@tdoes not stray too far frof¥. There are a number of ways to do this that we have
found to work well in some simple experiments. First, one might repeat the estimation process several times,
updatingd’ at each repetition. Second, if one is using a (first) derivative based search algorithm, one could
at least begin the algorithm by changifgat every iteration. Since numeric derivatives are taken in a region
wheref =~ 0’, the simulation error in these derivative should be of orgét & Even though thef functions
need to be recomputed at each iteration in this case, they do not need to be recomputed at each parameter

perturbation when computing derivatives. Thus the time savings (relative to the standard procedure) will be

13



1/(K + 1), whereK is the number of parameté?s After one is relatively confident that the parameters are
in the neighborhood of the extremu#i,can be held constant over iterations. This ensures that the procedure
converges. Third, one might pay close attention to the search procedure. If parameters stray toofaitfrom
can be updatet.

Lastly, note that one might be able to use the importance sampling to one’s advantage in reducing simulation
error. This would involve using an initial guesséaand oversampling parts of thedistribution that are most

informative about the integral (typically those that lead to a high value of the integrand).

4.0.5 Comparison to Discretation/Randomization Approaches

Note that an alternative strategy for the dynamic programming problem of example 2 would be to explicitly

solve for the value and policy functions as depending on the individual specific parameters, i.e.

V(ﬁil’ ---’ﬁiKaai’yiaCia aCi) andp(ﬁil’ ---’ﬁiKaai’yi’Ci’aCi)

If one could solve for these functions, one would only need to solvede Then when simulating a particular
individual at a particular parameter vector, one can just plug the resgijng, ..., fiknss %inss ¥ ins) iNtO P t0
compute the simulated policy. However, the time required to solve a dynamic programming problem typically
increases exponentially in this “state” space. Thus, if the dimension of heterogeneitiJiis.large, this

will generally not be feasible. Since thg;{,s, ---,» Biknss %inss> ¥ins) &re continuous, this would also require
some discretation, a8 can only be solved for at a finite number of points. Even so, if each dimension of
heterogeneity is discretized into 10 points, this procedure would implicitly require solvingépra ) 10€+2

times, considerably more than theS=« N or N Stimes above. This discretation also adds error to the problem

and likely destroys econometric consistency.

13This is if one uses one-sided numeric derivatives. The time savings woul®Beiflusing two sided derivatives.

1450mething else we have found to help is to uggfanction where the variance of the heterogeneity in the model is larger than that
at the initial set of parameters. This helps span parameter space better and appears to reduce simulattbfaefromet’ (although
it tends to increase simulation error neaéy

14



In recent work, Keane and Wolpin (1994) and Rust (1997) suggest using randomization to approximate
V(B - Biks @is Vi, C, ). The procedure is that instead of discretizing the state spaceamemlychooses
state space points at which to approximate the value function. Rust shows that such randomization can often
break the curse of dimensionality in the dimension of the state vector, though computational time still increases
polynomially in order to achieve a given degree of approximation error.

After using such an approach to approxim¥tesimulation estimation would proceed by drawing sets of
(Bitnss --» Biknss Qinss Vins)» COMputing simulated choice3(f; s, ---» Bikns» %inss ¥ins» C 8c), and matching
these simulated choices to observed choices. Since one’s simulation draws will generally not equal the points at
which the value function is approximated, one needs additional approximation (e.g. interpolation) to compute
P(Biinss - Bikns Cinss ¥ inss Ci» 8g)-

Our methodology is related to this in that the value function is also being computed at a random set of
points. However, in our procedure, the points for which we solve the value functi@xacédythe points that
are chosen by the simulation process in the estimation routine. As a result, there is no approximation error
in computation of value and policy functions — the functions we solve for are '&xaéthile there is only
one source of simulation error in our estimator (that in the estimation process), the Rust method has two (the
estimation process and that in the value function approximation).

While the Rust methodology addresses the curse of dimensionality by brute force (directly going at the
value function) our methodology in some sense avoids it. The key is that with our estimation method, one never
needs to solve for the entire value function — one only need to solve it for the simulation draws used in the
estimation procedure. As such, the standard results on breaking the curse of dimensionality through Monte-
Carlo integration apply. There are caveats with both procedures however. Our procedure only breaks the curse
of dimensionality in the unobserved individual heterogeneity “state variables”(#;g, ..., Bik, @i, y;). |If

the dimension of the observed state variables that evolve over tim¢g,i&), increases (e.g. consumers are

15This relies org; andac being in discrete space. Even if they were not, we would still expect considerably less approximation error
in our procedure, as our procedure would only need to discretize a subset of the state space rather than the entire state space.

15



allowed to own multiple cars), computational time will go up exponentially. Interestingly, Rust's randomization
method does the reverse. It tends to breaks the curse of dimensionality in the true state variables, but doesn't
break the curse in unobserved individual heterogetfeityThe reason is that because this heterogeneity is
constant over time, the value function doesn’t have the ability to self approximate itself. It should be noted that
this is more of a technical issue than a practical one — one can still solve for the value function at a random
set of points and use approximation for points in between. One thing this discussion suggests is the possibility
of combining the two methods to break the curse of dimensionaligllinariables. To do this, one would

follow our procedure and use the randomization technique to conMiatea,, ) for each of theN Ssimulated

individuals. This has the potential to break the curse of dimensionalél the state variables.

4.0.6 Relation to Keane and Wolpin (2000)

Independently, in two empirical papers, Keane and Wolpin use a procedure that is related to ours in order
to solve problems of unobserved state variables. These papers analyze dynamic programming problems of
educational choice (forthcoming) and fertility/marriage choice (2000). In the first paper, where individuals
schooling, work, and savings decisions are analyzed over a lifetime, a significant problem is that assets (a state
variable) are not observed in some years of the data (there are other state variables, choice variables, and initial
conditions, e.g. schooling and hours worked, that are also occasionally unobserved). To estimate this using
standard methods would be exceedingly complex, as one would need to integrate out over very complicated
conditional distributions of the missing data.

Their approach starts by simulating a number of unconditional (i.e. there are no predetermined variables)
outcome paths — these are what they call their “simulated paths”. To create each of these paths, one needs
to solve the simulated agent’s dynamic programming problem. If all outcome variables were discrete, one

could in theory compute the likelihood for observatioby the proportion of "simulated paths” that match

1811 our example, it actually doesn't break the curse of dimensionaligygither. The reason is thatevolves deterministically. If
a evolved stochastically with constant support, the Rust method would break the curse of dimensionality.
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observationi’'s path. Practically, since there are so many possible paths (and since some of the outcome
variables are continuous), this results in likelihood zero events. To mitigate this problem, Keane and Wolpin
add measurement errordtl outcome variable¥’ This gives any observed path a positive likelihood and allows

for estimation using Simulated Maximum Likelihood.

What is similar to our paper is the fact that Keane and Wolpin use importance sampling while searching
overd. This means that as they char@jehere is no need to draw new simulated paths. Instead, one needs to
compute the likelihood of the original simulated paths at the éeWhis likelihood is much simpler that the
original problem since the simulated paths have no missing data. The importance sampling also smooths the
likelihood function ind. However, unlike our procedure,dbesrequire re-solving\ Sdynamic programming
problems whe® changes.

Formally, and in our notation, Keane and Wolpin are computing(e;, 8) + #; = Vi), the likelihood of
the observed datg, wherey; is measurement error anfde;, 8) are outcomes of the dynamic programming

problem. Integrating out over the density Dfe;, ) gives:

L(f (e, 0) + =yi)=/L(fi =i | )p(fi 10)

The inner likelihood is over the measurement error process conditional on the dynamic programming outcomes,
p(fi | 6) is the distribution of dynamic programming outcomes (without measurement error). Importance

sampling these dynamic programming outcomes with some distribgtimer outcomes gives:

fi |0
L(F(ei,0) + =yi)=/L(fi m=yil fi)p(g(—f!))g(fi)

1Note that our simulation procedure is also prone to generating likelihood zero events, and thus is more appropriate for MSM (rather
than MSL) estimation. If one wanted to use MSL with our technique, one could use Keane and Wolpin's measurement error methodolgy
(or, e.g. kernel smoothing) to solve this issue.
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Keane and Wolpin usg = p(f; | #') at some initiah’ and form the importance sampling simulator:

p(fns| &)

fns i— Y fns
ZL( T =l ) S S

where thef,s's are simulated paths generated’at As @ changes, onlyp( f,s | ) needs to be recomputed.
This analogous to the likelihood of a standard dynamic programming problem where there is no missing state
variable data. However, unlike our procedurejoesgenerally require resolving the dynamic programming

problems of the simulated agetits

5 Conclusion

This paper suggests a new use of importance sampling to reduce computational burden in simulation of compli-
cated economic models. We show that combining a change of variables with importance sampling can reduce
estimation time by dramatically reducing the number of times that a complicated economic model needs to
be solved or simulated in an estimation procedure. The technique is applicable to a wide range of models,
including single or multiple agent dynamic programming problems or complicated equilibrium problems such
as discrete games or auction models. Use of this technique allows economists to estimate models that were

previously intractable to estimate.
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