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ABSTRACT

We propose two new estimators for a wide class of panel data models with nonseparable error
terms and endogenous explanatory variables. The first estimator covers qualitative choice models and
both estimators cover models with continuous dependent variables. The first estimator requires the
existence of a vector z such that the density of the error term does not depend on the explanatory variables
once one conditions on z. In some panel data cases we may find z by making the assumption that the
distribution of the error term conditional on the vector of the explanatory variables for each
“cross-section” unit in the panel is exchangeable in the values of those explanatory variables. This
situation may be realistic, in particular, when each unit is a group of individuals, so that the observations
are across groups and for different individuals in each group. The basic idea is to first estimate the slope
of the mean of the dependent variable conditional on both the explanatory variable and z and then undo
the effect of conditioning on z by taking the average of the slope over the distribution of z conditional on
a particular value of the explanatory variable. We also extend the procedure to the case in which the
explanatory variable is endogenous conditional on z but an instrumental variable is available. The second
estimator is based on the assumption that the error distribution is exchangeable in the explanatory
variables of each unit. It applies to models that are monotone in the error term. A shift in the value of an
explanatory variable for member 1 of a group has both a direct effect on the distribution of the dependent
variable for member 1 and an indirect effect through the distribution of the error. A shift in the
explanatory variable has an indirect effect on the dependent variable for other members of the panel but
no direct effect. We isolate the direct effect by comparing the effect of the explanatory variable on the

distribution of the dependent variable for member 1 to its effect on the distribution for the other panel

members.
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1 Introduction

In this paper we develop estimators for panel data models with nonseparable error terms and
endogenous explanatory variables. Examples of data that can be applied to such models are
samples of siblings, observations on individuals or firms through time, and data on individuals
who grew up in the same neighborhood or attended the same high school. The methods are
applicable to a wide range of topics. Examples include the use of siblings to analyze the effects
of teenage pregnancy on the probabilities of being in poverty, of being on welfare, and of ever
marrying (Geronimus and Korenman (1992)), the use of children from the same high school to
isolate the effects of family background on educational attainment, the use of siblings to study
the effects of neighborhood characteristics on high school graduation (Aaronson (1998)) or the
effects of the U.S. pre-school program Head Start on various outcomes (Currie and Thomas
(1995)), the use of siblings to study transfers of time and money to and from parents (Altonji,
Hayashi and Kotlikoff (2000), Rosenzweig and Wolpin (1994 a and b), and the use of panel
data to study the effects of minimum wages on employment (Currie and Fallick (1996). The
methods cover a wide range of models, including binary choice models.
To be more specific, consider the model (1.1)

where ;. is an outcome of person k from group ¢ , x; is a 1 X J; vector of observed variables, &;
is an error component common to observations from group ¢, u; is an error term that is specific
to person k of group ¢, and K; is the number of observations in group ¢. In some applications,
the “group” might be a family. In others, it might be a neighborhood, a school, or a firm. In
cross section time series data, ¢ might refer to an individual and k to the time period. The
function m(-,-,-) may be nonseparable in x;, €;, and u;;. The index k may be an element of
Z;,, which means that the effect of u;;, and €; on y;; may depend on sibling order in a family
context or age or the time period in a cross section time series context. Both ¢; and u;; may
be vectors.

To give a simple example, consider Aaronson’s (1998) analysis of the effects of neighborhood
characteristics on college attendance. In this case ¢ denotes a family and k a specific child. The
outcome y; is 1 if person ik started college and 0 otherwise and z;; is average neighborhood
income while person ik was between the ages of 10 and 16. (We abstract from other elements
of x;, such as the income of family ¢ when k is growing up to simplify the exposition). The
function m(x;k, €;, ui,) takes on the value 0 or 1. The form of m(z, &;, u;x) might be

m(Tig, €iywik) = 1if W@k, €5, wi) = vl + i +uie > 0

= 0 otherwise.
or

(1.1a) m(xk, €, uir) = I(—zipl’ — & < ug)



where the function I(.) is 1 if the inequality is true and 0 if it is false. (We adopt the linear
form for the index function for exposition only—our methods are nonparametric and do not
require that the index function ¥ be separable in z;, &;, and wu;.)

Let g(uig,€i|xix) be the density of (u,e;|xix). The probability that a person with charac-
teristics z;, attends college is

(1.2)E(yilzie) = [ [ [m(zm, i win)|9(win, €i| i) deiduy,

€ Uik

= f / Q(Uik, Ei|$z’k)d€iduik

—Izip—es

The objective of the analysis is to estimate the expected value of the partial derivative of the
probability of attending college with respect to neighborhood income, holding the distribution
9(wik, €;|xir) constant. Call this derivative 3(z;), where

(1.3) B(zix) = [ T-g(—Txy — &, &i|wan)de;

in the above binary choice example. The major statistical problem in estimating (3(z;) arises
from the fact that neighborhood income, x; , is likely to be correlated with unobserved char-
acteristics of families who are clustered in the same neighborhood. Standard nonparametric
estimators for binary choice models, such as the probit and logit, as well as standard nonpara-
metric estimators provide biased estimates of 3(x;) when ¢; is correlated with x;;, The estimate
of B(x,,) will pick up part of the effect of ; on .

Aaronson (1998) attempts to get around this problem by comparing the schooling outcomes
of siblings who grew up in different neighborhoods. He assumes that most family background
characteristics are the same for siblings conditional on observables such as family income and
marital status. He used the linear probability model with family fixed effects and the conditional
logit model proposed by Gary Chamberlain (1980, 1984) to do this. Many other authors have
used one or both of these methods in other contexts. Unfortunately, the linear probability
model is biased in almost all circumstances. Chamberlain’s conditional logit model does not
estimate the parameter of interest (the population mean at a particular value of x;;, of the effect
of x;, on the mean of y) and does not use information on groups (e.g., siblings) in which all
members have the same value for y;,. There is no suitable estimation method in the literature.
Our Estimator 1 identifies the parameter of interest and uses data on all groups, even groups
for which z;; is observed for more than one member but ;. is observed for only 1 member.

To give a second special case to which our methods apply, consider the model

(1-4) Vi = m(Tig, €, uzk) = zip1 + H (g, 51') + & + Uik;

where E(g;|zy) # 0and H is differentiable. Since m is differentiable in x;, the parameter of
interest may be written as

(1.5) B(xix) = [ [ [man(Tir, €1, win)|g(Wir, €| xin ) desduy,

€i Uik



There is a huge literature that assumes that H(z, €;) is 0 and deals with the correlation between
g; and x; by controlling for e; with a group specific intercept. These “fixed effects” estimators
don’t work when the impact of z;;, on y;, depends on ;. Alternatives in the literature require
strong assumptions about the form of H and the distributions of the error terms.

In this paper we propose two estimators for these problems as well as a wide class of other
panel data models involving nonseparable error terms and endogenous regressors. For simplicity
let K; = K for all groups i, and define z; to be the vector [z;1, ..., z;x]". Estimator 1 requires
the existence of a vector z such that dg(u, €;|Tik, 2)/Oxir, = 0. To find one such vector z, we
make the assumption that the distribution of u;, and ¢; conditional on x;;...7;x is exchangeable
in [z;..7;x] . By “exchangeable” we mean g(ui, &;|xi1...z;x) does not depend on the order in
which the x;;, are entered into the function g(w,€;|xi1...z;, ). That is,

Assumption A1.1 :  g(ui, €i|Tin...xi ) = g(Wik, €| Tiky , Tiky---Tiky ) fOT
ki € {1,2.,K} k; # kjyr

For example, the assumption implies that
9(Wik, €i|Ti1... Tk ) = g(Uik, €i| ik ... xi1). That is, for any wig, €;, g(Uk, ;|1 ... i) is & symmetric
function of x;1...7;x, which in our context means the function is invariant to permutations of
the ;1...7;x.! In neighborhood and sibling applications the assumption that the value of the
function g(u, &i]z;) is the same regardless of the order in which the x;; are entered into x; is
a natural one provided that the elements of z;, are measured at the same age for each child
and/or age is an element of x;;. Exchangeability is essential to our second estimator but not
to our first estimator.?

Estimator 1 is based on the conditional expectation function E(y;|x;), and for this reason we
sometimes refer to it as the “Regression Estimator”. The variable x;; has a direct impact on y;;
through the function m(.) and an indirect impact by shifting the distribution of &; and w;;.The
variable [z;s..x;x] only have an indirect impact through their effects on the distribution of ¢;
and wu;1, both of which may be vectors. Exchangeability restricts the distribution of u;; and ¢;
to depend on z; only through a vector of L exchangeable functions z(z;) of x;. This implies that
9(Uik, €ilin ... i) = g(uik, €i|2(x;)) and the mean E(y;|z;) can be written as E(yix|xi, 2(z;)).
If (1) the z(.) vector of functions is known and (2) x;; and the elements of the vector z(z;)
vary sufficiently, then the partial derivative OF(y|zi, 2(x;))/Ox;1 is identified. Since it is
possible to estimate the distribution of z(z;) conditional on z;;, one can recover the parameter
of interest (3(z;1) from the estimator of OF (yk|xi1, 2(x;))/0r: by integrating this derivative over
the distribution of z(x;) conditional on z;;. Exchangeability is a natural assumption in many
panel data situations, but it is not the only condition under which one can find a vector z(.)

LA sufficient condition for A1.1 is that the joint density of (wy,ée;,%i1...7;) and the marginal density of
(41,42, ...2;x) are both exchangeable in (2,1, %2, ..., z;x). However, it is easy to show using an example in
which (uik, €5, ¥i1...24) is jointly normal that g(u;g, &;|z1...2;5) can be exchangeable in (251, %2, ..., Tix) even
if the joint density and the marginal density are not. See de Finetti (1975, Chapter 11) for a brief introduction
to the concept of exchangeability.

?Note under Al.1 the distributions of both u;; and ¢; may depend on z;j, in contrast to some panel data
models in which only the common error component ¢; depends on ;. The distinction between the elements
of u;; and the elements of ¢; plays no essential role in our paper. We maintain it to ease comparisons to the
literature.



that satisfies (1) and (2) and has the property that g(uwi,e;|®ii...xix) = 9w, €i|2(x;)); any
such vector z(.) can be used with our first estimator. We also extend the procedure to the case
in which x;; is endogenous conditional on z(.), but an instrumental variable A, is available.
This case may be handled by augmenting the control variables z(.) with residuals from the
regression of x;; on A;; and z(.). This estimator provides an alternative to the frequently used
but inconsistent “fixed effects-IV” linear probability model.

In contrast to the first estimator, Estimator 2 relies heavily on Al.1. It also involves a
somewhat different set of assumptions. It does not use or require knowledge of the z(-) functions,
but it does require some additional assumptions that we discuss below. The most important is
that m(xik, €;, wix) is of the form m(xk, €ir), where e;, = Y(&;, ui) and Y(.,.) is a real valued,
continuous, not necessarily known, scalar valued function and m(x;, e;) is strictly monotone
in e;r. The strict monotonicity assumption rules out qualitative choice models but covers many
models that take on the form of (1.4). We show that m(zy, e;) and g(ex|z:) are identified,
under exchangeability of g(g;|x;), from knowledge of the joint distribution of y;;, and x;. With
knowledge of m(z;, e;) and g(e;x|z;) one can estimate the average response 3(x;;) as well as
other parameters that characterize the distribution of the response of ;. to a change in .

The basic intuition underlying the second estimator is as follows. Suppose that K = 2,
with k = 1,2. A shift in x;; alters the distribution of y;1 = m(z;1, €;1) by shifting m(z;, e;1) for
a given value of e;; and by shifting the distribution e;;. A shift in x;; alters the distribution
of m(x;2, €;2) only by shifting the distribution of e;5. Exchangeability implies that the z;; and
x;2 have the same effect on the distribution of e;;and e;s. Consequently, one can isolate the
direct effect of x;; on the distribution of m(z;,e;1) by comparing the change in the distribu-
tion of m(z;1, e, ) conditional on (z;1, z) as x;; changes to the change in the distribution of
m(z;2, €:2) conditional on (z;2,x;1) as z;; changes.

The theoretical literature on estimating nonseparable panel data models when the regressors
are correlated with the error term is relatively small. (See Powell (1994)). An exception is the
recent independent paper by Abrevaya (1997) which deals with generalized regression models
with fixed effects. Abrevaya’s approach permits estimation of slope parameters up to scale but,
in contrast to our approaches, does not permit estimation of the mean partial effect of x;; on
yir- In the case of qualitative response models we have already mentioned the linear probability
model with fixed effects and the conditional logit model. The conditional logit model and the
other “fixed effects” approaches that we are aware of are restricted to specifications that take
on the additively separable form of (1.1a).3 The fixed effects probit model is sometimes used
to estimate I' up to scale. It is well known that the fixed effects probit model is inconsistent
when the group size is fixed, but Heckman (1981) provides Monte Carlo evidence suggesting
that the bias is small when K is on the order of 10.%

Manski (1987) provides a way to estimate I" up to scale under more general assumptions

3The most common method in empirical studies is the linear probability model with fixed effects, which
forces one to maintain that the probability of y is the sum of e; and a function of x;.

4Heckman and MaCurdy (1980) apply this estimator as well as the fixed effects Tobit estimator to the
analysis of life cycle labor supply. Note that one can recover an estimate of the partial effect of x;; on the
probability that y;; is 1 from the probit coefficients and the distribution of ¢; given z;;, . However, the MLE
estimates of e; are unbounded when y is the same for all group members, so one cannot obtain an estimate of
the distribution of ¢;|x;; without making assumptions about this distribution. The same is true in the case of
the conditional logit.



than the conditional logit. He places no restrictions on the distribution of ¢; and assumes
that the distribution of w;|e;, i1, T2, is the same as the distribution of wu;|e;, i1, zi2. He
proposes a maximum score estimator that exploits that fact that sgn(E((vi2 — yi) |zi1, Ti2) =
sgn(xl —x; 1) where sgn(.) is -1 if the argument is negative and 1 if it is positive. In contrast
to Manski’s estimator, our approach requires a-priori information about the distribution of
ei|zi1, vo. However, it permits us to estimate the partial effect of z;; on the probability that
yir is 1 as well as the parameter vector I' up to scale. Furthermore, our “regression” approach
can handle qualitative choice models cases in which z;; and the error components interact in
arbitrary ways while the other approaches in the literature cannot.

We should point out however that the estimators in their current form cannot accommodate
dynamics in the model, which are addressed in recent papers by Honoré and Kyriazidou (2000)
and Kyriazidou (1997).

The conditional logit and the fixed effects probit estimators may be thought of as parametric
“fixed effects” approaches. In addition, Chamberlain (1984) discusses and applies parametric
random effects approaches to estimating I' up to scale in (1.1a). Assume that w;; is normal,
identically distributed across k, and independent of x;. Also assume that ¢; is the sum of a
function of f(z;;0) plus a normally distributed error term that is independent of z;. Then one
can estimate I" up to scale by adding f(z;; ) to a probit model for each k and jointly estimating
0 and I' while imposing cross restrictions across the models for each k. One may also recover
the partial effect of z;, on the probability that y;, equals 1. The main disadvantages of this
approach relative to ours is that it requires the assumptions that u;; and ¢;|z; are normal and
additively separable from z;; in m(x, €;, u),as in (1.1a).

In the case of continuous variables, the incidental parameters problem limits the utility of
parametric “fixed effects” approaches for models such as (1.4). In special cases, parametric
random effects approaches may be available. GMM is often used to estimate the parameters of
nonseparable models and it may be possible in some cases to estimate elements of (3; or some
parameters of the H (x;,€;;0) when that function is parametric. However, there are many cases
in which this method cannot be used to estimate the partial effect of z;;, on the mean of ;.

The paper continues in section 2, where we present the “Regression” estimator based on
E(yik|x:). In section 3 we discuss a nonparametric version of the estimator and analyze its
asymptotic distribution. In section 4 we discuss an extension of the estimator to the case in
which x; is correlated with w; conditional on z(x;) but an instrumental variable is available.
In section 5 we derive the second estimator and provide results on its asymptotic properties. In
section 6 we present some limited but encouraging Monte Carlo evidence on the performance
of the “Regression” estimator. In section 7 we provide some concluding remarks.

5Thus far, neither of our estimators cover other limited dependent variables models such as the censored
regression models or sample selection models. Honore (1992) provides a fixed effects estimator for the limited
dependent variables case. Kyriazidou (1997) uses an exchangeability assumption that is similar to ours in her
work on panel data sample selection models. The approaches in both of these papers are based on differencing
the observations in clever ways and are quite distinct from our approaches.



2 An Estimator Based on E(y;;|z;)

In this section we present our regression based estimator. The estimator uses functions 2! (x;;...7x),
22(@i1eTixc)y ey 2E(wi1e i) of (wi1...mx)  satisfying the property that for all x..7x,
(Uir, €i|Tir. i) = g(um, €52}, .....25). In the case that g(um,&|Ti...zix) is exchangeable
in (z;1...7;x ), one might find exchangeable functions 2! (x;1...wix ), 22(@s1...Tix ), vy 2X(Ti1 - Wik
satisfying this property. By exchangeable we mean that the functions are invariant to the order
in which the elements of (z;;...z;x) enter the function. For example, 2] might be the mean of
T ..w;x for family 4 and z? might be the average over k of (z;x — zi1)?>. As we noted in the
introduction, assumption (A1.1) that g(uk, €| ...7k) is exchangeable in x;;...z;x means that
without loss of generality we can write g(u, €;|@i1...Tir) as g(ui, €;|2}, .....2F), where 2}, .....2F
are exchangeable functions 2'(zi1...Tix ), 22(Ti1---Tixc )y ooy 27 (Ti1.--Tire) Of (Ti1...zii¢). Let z; be
the vector of z¢ variables for family 7. The first estimator requires the following high level

assumptions:

Assumption 2.0. 0g(up, €i|Ti,z), ..., 2l) /Oxgy, = 0.

Assumption 2.1. The functions that define z; in terms of x; are known.

Assumption 2.2. The distributions of each element of the vector x;, 2
on the other elements of the vector are nondegenerate.

1

L., 2k conditional

With these assumptions one may estimate E(yix|Z, 2;) nonparametrically. (As we discuss
below, Assumption 2.2 can be weakened if a-priori information about the functional form of
E(yik|zi, z;) is available.) The Regression estimator of ((z;;) is based on the conditional
expectation function E(yix|Tik, 2;). Suppressing the i subscript where it is not needed for clarity
and setting k to 1 for concreteness, this function is

(2.1) E(yr|z1,2) = [ [ m(z1,e,u1)g(ur, €|z, 2)de duy

e up

The idea of the estimator is to recover §(z) from

0
(2.2) By, (1|21, 2) = a—xlE(@/ﬂﬂChz)

and h(z|z1), the conditional distribution of z given x;. The distribution h(z|z1) = h(z,z1)/h(x1)
can be estimated from observations on z and x; for the cross section of groups i. When the
function m is differentiable, the derivative with respect to x; is

(2.3) Eyy(y1lz1,2) ://mml(%,&ul)g(ul,dxhZ)dedul

uy €

because

//m(ml,e,m) g1 (u1,€lz1,2)deduy =0 .

The form of (2.3) is analogous to (1.3) in the binary choice case with a linear index function,

6



although our methods apply to essentially arbitrary forms of the index function in binary choice
cases. In this case

(2.4) Ey, (y1]|z1,2) = [ T-g(-T'zy —e,elzy, 2)de.

€

Note that E,,(y1|x1, 2) differs from [(z1) because the distribution of u; and € is conditioned
on both x; and z;. (See the right hand side of (2.3) or (2.4).) However, one may integrate out
z to obtain B(x1) from E,, (y1|x1, 2). To see how to do this, note first that

(2.5) g(ur,elzy) = /g(u1,5|x1,z)h(z|x1)dz

z

where h(z|z1) is the conditional density of z given ;. Multiply both sides of (2.3) by h(z|z;)
and integrate over the range of z. This yields (2.6)

(2.6) /Eml(y1|x1,z)h(z|x1):///mm(xl,a,ul)g(ul,dxl,z)h(z|x1)daduldz.

z z uy €

Re-arranging the order of integration on the right hand side of the equality and using (2.5)
establishes that the right hand side is ((x1), the function we would like to estimate. That is,

(2.7) Bla) = /Eml(y1|x1,z)h(z|x1)dz

z

The above equation forms the basis of Estimator 1. The estimator is obtained by substituting
parametric or nonparametric estimators of the components of the right hand side of (2.7)
into the equation.® In the next section we provide the asymptotic distribution theory for a
nonparametric approach in which kernel estimators of E,, (y1|z1, 2) and h(z|z;) are used.

The key assumption, aside from the instrumental variable condition is that E(y;|x1, z) is
identified conditional on prior information about how z; and z enter the expectation function.
The expectation function is identified nonparametrically only if z; varies conditional on z.
In the case in which Assumption 2.0 is satisfied because of exchangeability, the conditions for
identification involve trade-offs among (a) the size of the panel K, (b) the number L of elements
in z, and (c) parametric or nonparametric restrictions on F(y;|z1, z). For example, consider the
case in which zy, is a scalar and K = 2 (i.e., there are observations on 2 children per family).
Continuous exchangeable functions of the elements of z; = {z;1, z;2} may be approximated
arbitrarily closely by a function of z} = x; + x4 and 2? = |z;1 — z;»|."Thus, conditioning the

When K, the number of observations per group, differs across i, one could do the estimation for each group
size and then combine the estimates.

A sketch of a proof follows. Let 23 = z;12;0. One may verify that 25 = .25{(2})% — (22)?}. Any continuous
function h(x1,72) can be approximated arbitrarily closely by a polynomial in 27 and x9. Exchangeability
restricts the coefficients on the term of the polynomial that involve (z1)7(22)7 to equal the coefficient on the
term involving (x1)7 (22)7. It also implies equality of the coefficients on (21)7 and (x2)7. Consequently for N
possibly large '

h(wr,w2) ~ a0 + 355" S0 aryr[(w0)7 (w2)7'] + 00, agg((21)7 + (w2)7)



distribution of (g;, us) on z; and z;» is general enough. However, z2 = [2x;5 — 2z;;|. This
dependence among 2}, 2?, and x;; means that

E(y1|x1, 21, 2’2)

is not identified nonparametrically when K is 2. However, if the function

E(y1|x1, 21, 2’2)

is a low order polynomial in the three variables or z; does not enter at all, then it may be
identified. It is also possible that the function will be identified over some ranges of = where
there is variation in x conditional on z but not others. Note that when K is greater than 2, it is
possible to test restrictions on the dimensionality of z. For example, when K = 4 one can test
the hypothesis that the distribution of (e, ug)|z; depends only on z;; = (z;1 + T4 + T3 + xx) /4
and > |zi — 2;1|. Finally, note that it is necessary to identify the effects of zjand z; on the
mean of y; conditional on z; only over the range in which the conditional density h(z1, 22) is
positive since it is only these values that enter into (2.7).

2.1 Discussion

One very attractive feature of the estimator in the binary choice case compared to the condi-
tional logit or fixed effects probit estimators is that it can utilize groups in which y; is either 1
or 0 for all k. It is quite common in panel data applications, particularly for rare events, that
all group members have the same value for 1. 8

A second very attractive feature of the regression estimator is that it only requires that
data on the dependent variable y;;, be available for one member of group i, although data on
;. must be available for at least 2 members of group 7. In contrast, the conditional logit
estimator and standard fixed effects estimators require data on y;, and x;; for at least 2 group
members. Consequently, data on children as young as 16 can be included in studies of the
effects of neighborhood characteristics during childhood on outcomes that occur later in life,
such as college graduation or marriage. This will substantially increase the sample sizes for
sibling studies.

To provide a bit of intuition for why one only needs data on y;, for one member of group
¢ as well as the intuition underlying the Regression estimator, it is helpful to relate it to other
panel data estimators for the standard separable case. Note that the standard linear regression

where aq;;; = ayj; for all j,7° and the approximation is arbitrarily close. It is straightfoward but tedious
to show that one may express terms of the form (x1)? + (z2)’as a linear combination of powers of z}, powers
of 23, and products of powers of the two. The double sum in the middle term yields N/2 terms of the form
a;j(71)(z2)?, which are equal to a;;(23)7. Because ay;jj = ayj;, it also yields a bunch of terms of the form
arjy ((z1)7 (22)?" + (21)7 (22)7), which are equal to ayjj (23) 0" [(21)l9" 31 4 (29)l"~71]. Since (z1)V' 7| +
(9)1' 731 can be expressed in terms of z'and z3, and z} may be expressed in terms of z! and 22, it follows that
any continous exchangeable function of z1 and w3 may be approximated arbitrarily closely by a function of z}
and z2. We do not know if there is a useful generalization of this result when K > 2.

8The regression estimator can also be applied to multinomial models. A simple way to do this is to treat
each outcome as a seperate 0-1 variable, and estimate E.., (yix|Tik, z;), impose the adding up constraint, and

integrate out z;.



model with an additive family fixed effect is a special case of our model (1.1). Consider the
model

(28) Yik = l’zkﬁ + & + Uik

Chamberlain (1984) and Mundlak (1978) point out that the parameter 3, which is the effect of
ik on v holding €; constant, may be estimated by using the decomposition of ¢; into its least
squares linear projection on the elements of x; and the orthogonal error term v; to eliminate ¢;
from the above equation, and using the K observations on group ¢ to estimate the system of
equations

(2.9) yix = TieB + T\ +ug, +v5, k=1..K

with cross equation restrictions imposed. This does not require the assumption of exchange-
ability. The assumption of exchangeability places restrictions on the coefficient vector A sum-
marizing the relationship between ¢; and the elements of x;. In this case our regression based
estimation procedure would amount to running the regression

(2-10) Yik = Tk + f(Zz'; 51) + Ui +v;

where z; is a vector of exchangeable functions of z; and f(.; /) is a function with parameter
vector (3, such as a polynomial. In the above model m,,, (z, ui, €;), the partial derivative of
Yir With respect to x;;, is a constant (3, so it is not necessary to integrate out over the distribution
h(z;|z:). A special case is when z; only contains z;, the sum of the elements of x; and f(.;.) is
linear. In this case, (2.10) is equivalent to (2.9) with the restriction that the elements of A are
all equal. With these restrictions one does not need to have data on all of the y;; to identify 3
from (2.8).

3 Asymptotic Properties of the Regression Estimator in
the Nonparametric Case

The nonparametric version of the estimator introduced in Section 2 is given by

B(z) = [ ZE(ylr,2) h(z|z) dz,

where E(y|x, 2) is a kernel estimator of the conditional expectation of Y given (X,Z) and
h(z|z) is a kernel estimator of the conditional pdf of Z given X. We suppress the i subscript
and k subscripts on y;, and z;;, and the ¢ subscript on z;.

Let K; denote the dimension of x and K5 denote the dimension of z. Let d =1+ K; + Ko,
and let f denote the pdf of (y,z, z). Then,

F(y,l‘,Z) = ffoo f_moo f_zoo fN(twtCL‘:tZ) dty dtz dtl

where, for all (¢,,t,,t,) € R,



Pty te,ts) = o 00, (Mg, wete, ueks)

The following assumptions will be needed:
ASSUMPTION 1: The sequence {y;, x;, z;} is i.i.d.

ASSUMPTION 2: f(,-,-) has compact support © C R%and is continuously differentiable
up to the order g = 1 4 s for some even s > 0.

ASSUMPTION 3: The kernel function K(-,-,-) is continuously differentiable, K vanishes
outside a compact set, f K(y,z,z)dydxdz = 1, and K is a kernel of order s.

ASSUMPTION 4: As N — oo, In(N)/No%? — 0 and 05,4/ Not* — 0.

ASSUMPTION 5: f(z) >0 and [ mdz is bounded.

Theorem 1 : If Assumptions 2.0-2.2 and Assumptions 1-5 are satisfied, then B(m) 1S a con-
sistent estimator of 3(z) and

VN UJ(\IKI/Q)+1 (B(ﬂf) - ﬂ(@) — N(0,V) in distribution where

— {fVar (y|z, 2) % dz} {f (ff Ghlymz) dydz) (ff%dydz)/dx}.

PROOF: See Appendix A.

4 An Extension: Correlation between ;. and x;. condi-
tional on z;.

In some applications, x;; will be correlated with the idiosyncratic error component u;;, even
after one conditions on z;. It is common in panel data applications involving continuous depen-
dent variables with additive error terms such as (2.8) to use an instrumental variable approach
to deal with this problem while at the same time adding group specific intercepts to control for
g; or to use the class of estimators discussed in Hausman and Taylor (1982). Unfortunately,
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this approach is not available in the case of nonseparable models.® Here we extend the Regres-
sion estimator to handle correlation between u;, and z;; when an instrumental variable A;; is
available. Write z as z = Y (A, ;) + &k, where Y (A, 2;) is E(xik] Aik, 2i) and &, is defined
accordingly. Assume

(Al.1a) A is independent of ¢;, u;, conditional on z;, &.
(Al.1a) is equivalent to g(wk, €| Tik, 2i, &ix) = g(Uik, €i|2:, &) (In some applications it may be
necessary to augment z; to include known exchangeable functions of A;, ..., Aik.). Note that
the correlation of z;;, with u;;, comes from &;;, and possibly z;. Since z;, x;; and A;;, are observed,
one can consistently estimate Y (A, z;) and &, particularly if Y(Ag, z;) has a finite number
of parameters. Given these facts, we modify the approach to estimation underlying (2.7) by
working with the E,  (vik|T, 2i, &) rather than E,,, (yix|Tik, 2:)-

Suppressing the ¢ subscript and setting k equal to 1.

(1) E(y1|$172,§1) = //m(xbg?ul)g(u17€|x17zagl)d€dul

Since A; is independent of (g, u;) conditional on z, &,

(11) 89('LL1,€|331,Z,§1) _ 89('&1,5|$1,Z,§1)

o =T orA, )

Using (i ) and (ii) leads to

(111) Ezl(yllth?fl) = //mzl(l‘1,€,U1)g(U1,€|l‘1,Z, fl)dedul

u1

E.. (y1|x1, ) differs from 3(x;) because the distribution of u; and ¢ is conditioned on z and
& as well as 1. However, one may integrate out z and &; to obtain G(x;) from E,, (y1|z1, 2, &1).
To see how to do this, note first that

(iv) g(u1,el|z1) ://9(“17€|$1,Z,fl)h(Z,§1|$1)d€1d2

z &

where h(z,& |z1) is the conditional density of (z,£;) given x;. Following the approach above,
multiply both sides of (iii) by h(z,&1|x1) and integrate over the range of z and & . This yields

)
v) / / By (1, 2 €0)h(z, &1z )ded>

z &

— ////mz1(x1,6,m)g(m,5|x1,z,{l)h(z,fﬂxl)dsduldgdz,

z & wup €

9In general, instrumental variables methods are inconsistent when regressor is correlated with a random
coefficient. An exception is Heckman and Vytlacil (1998) who provide a consistent IV estimator for a case in
which the random coeflicient is unobserved but depends on an exogenous observable and an instrument is also
available for the endogenous regressor.
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Using (iv) and re-arranging the order of integration on the right hand side of the equality
establishes that the right hand side is 3(x;), the function we would like to estimate. Basically,
the difference between & and z is that & must be estimated in a first step, as is a number of
estimation procedures in the literature in which a residual is introduced as a control variable
in a second step.!” Because of non-separability between the errors and x, one must use (v) to
“undo” the effects of conditioning on z, £&;when estimating the response of y to x.

The key assumption is (Al.1a). Altonji and Ichimura (1997) take a similar approach to
treatment of endogenous explanatory variables in the context of nonseparable linear dependent
variables models. The condition that A;, is independent of ¢; and w;, conditional on &, and
2;, 18 much stronger than the usual conditions for IV estimators in a linear setting. However, it
should be kept in mind that IV estimators of partial derivatives are almost always inconsistent
in models such as (1.4), where slope coefficients are random and correlated with the endogenous
variable, and there are no IV counterparts for binary response models. Consequently, it is not
surprising that our approach requires strong conditions. It is important to point out that our
approach covers the cross section case in which there is no k subscript or w;, component, z;
variables may or may not be involved, and an instrumental variable A; that affects the mean
of z; and is independent of &; on conditional & and z; is available.!!

5 Estimating the effect of r;; on y;; from the joint dis-
tribution of y; and z;.

Estimator 2 uses the entire distribution of y;; given x; rather than just the conditional expec-
tation function. We show that under certain assumptions it is possible to identify m(zy, €;, wr)
and g(uik, ;|z;) from the distribution of y;; conditional on x; and the distribution of y;; con-
ditional on z;;. Consequently, various functions of m(zy,e;, uix) and g(uy,€;|x;), including
average derivatives such as (3(z;), are identified. Our proof of identification is a construc-
tive proof and, hence, it provides a way of estimating m(x,&;, uix) and g(&;, u|x;) from a
nonparametric estimator for the joint distribution of y; and x;.

To simplify the notation we will suppress both the k& and ¢ subscripts and use y to refer to
Yi1 , T to refer to x;; , and u to refer to u;;. We will also consider only groups of size 2. The
model underlying the second approach to estimation is described by the following assumptions:

Assumption A5.1: There exists a real valued, not necessarily known function Y (e, u) such that
y =m(x,e), where e = Y(g,u)

10Gee, for example, Smith and Blundell (1986) and Rivers and Vuong (1988) in the context the tobit and
probit models.

"Since the first drafts of this paper were circulated, Blundell and Powell (1999) have proposed a related
approach to estimation with endogenous regressors in the context of the binary choice problem with a linear
index that we present in the introduction. That is, they consider the model

yi = Ha, I +& > 0}
where we drop the subscript k£ and the error component wu;;, because there is only one observation per group and
abstract from the possible presence of z;. They assume that x; and g; are correlated but that an instrumental
variable A; is available, and they make an assumption that is equivalent to (Al.1a).
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Let g(e|x1, z2) denote the conditional density of e given (z1,x2).
Assumption A5.2: Yw,w' q(e|w,w’) = q(ejw’, w).
Assumption A5.3: Vz  m(x,-) is strictly increasing in e.
Assumption A5.4:  g(e|w,w’) is strictly positive everywhere.

Assumption Ab5.1 states that m(-.-) is weakly separable in z and a function Y (e, ) of € and
u. We did not need this restriction for the regression estimator, but it is also assumed to hold
in most nonlinear panel data models in the literature, such as the probit and logit binary choice
models. Assumption A5.2 states that the conditional distribution of e is exchangeable in x;
and x2. Suppose, for example that (i) e = Y(e,u) = e+ u, (ii) the conditional distribution
of ¢ is exchangeable in x; and x9, and (iii) w is distributed independently of x and e, then,
Assumption A5.2 is satisfied.!?

The strict monotonicity assumption A5.3 is not required for the regression estimator based
on (2.7) but it seems to be critical for the identification of m(xy, e;x) and g(eu|zix).'> As we have
noted in the introduction, strict monotonicity of m in e rules out qualitative choice models. On
the other hand, this second estimator has a number of advantages over the regression estimator.
First, it does not require the knowledge of, or the use of, the z functions, which are required for
the regression estimator. Second, it does not require that z and the relevant z functions vary
independently for nonparametric identification. Finally, it permits one to estimate m(x;, €;x)
and g(e;x|z:) and various functions of them that include but are not limited to ((x;). Thus
the two approaches have different strengths and weaknesses and are complementary.

We adopt the following normalization:

Assumption A5.5: m(0,e) = e.

Assumption A.5 specifies the values of the function at one value of the vector x. The particu-
lar value of x at which this is specified is irrelevant for the identification result. The zero vector
was chosen here only for simplicity. When the function m is differentiable, it is easy to prove
that this assumptions is innocuous. To see this, note that the assumption of strict monotonicity

120 see this, let g(e|w,w’) and s(u) denote, respectively, the conditional pdf of e and the pdf of u, and note
that

(5.2) Yw,w' qe|lw,w’") = /s(e —elw,w’) g(e|lw,w") de
= /s(e —¢) g(e|lw,w') de
— /s(e —¢elw’,w) g(elw',w) de

= q(e/w’, w).
3The sign of the effect of e on m can depend on 1 provided that the analyst knows the values of 1 at which
the sign switches. For example, in the case of the model m(x1,e) = ajx1 + agxie the sign of the effect of e
depends on the sign of 1.
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of m in e implies that, given any function m(-,-), one can define a new function m/(-,-) by
m/(x,€) = m(z,m '(0,€)), where m'(0,-) denotes the inverse function of m with respect to

e, when z = 0. From the definition of m’ it follows that for all &, m/(0,¢€) = é. Moreover, since

for all z and all € and e such that m/(z,€) = m(z, €) it is the case that Zm/(z,€) = LZm(z,e),

it follows from Brown and Matzkin (1996) that m’ and m are observationally equivalent.

Theorem 2 :If Assumptions A5.1-A5.5 are satisfied, then m(x,e) is identified on the support
of (z,e) and F.,(x) is identified on R, from the distribution of y|zi, xs.
Proof. : Assumption A5.2 implies that
Yw,w' Pr(e < nlw',w) = Pr(e < njw,w’).
Hence, it follows by Assumption A5.3 that V', w , Ve, and Vn,
Pr(m(w',e) < m(w',n)|w',w) = Pr(m(w, e) < m(w,n)|w,w’), or
(5.3) Pr(y < m(u!, n)|',w) = Pr(y < m(w, n)lw, ).
In other words,
Eyar (!, 0) = Fys (miw, )
where Fyj. ., (-) is the CDF of y conditional on 2; = w' and x; = w. In particular,
(5:4) Fyao(m(z,e)) = Fyjou(m(0,e)) = Fyou(e)),
where the last equality follows from Assumption A5.5. By Assumption A5.4,

(5.5) m(z,e)) = F ! (Fyoz(e)).

ylz,0

Hence, the function m is identified. Next, since F,;(e) = Fy.(m(z, e)),

Fops(e) = FyII(FTi,o(Fy\O,z(e))a

Y

which shows that Fi;(e) is identified.
|

The basic principle underlying identification is quite simple. The assumption of exchange-
ability implies that the CDF of e|x, 0 is the same as the CDF of €|0, 2. When one changes z, the
distribution of m(0, e) changes only because of the change in the distribution of |0, z, while the
distribution of m(z, e) changes both because of the identical change in the distribution of e|z, 0
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and because x has a direct effect on m(z, e) for each value of e. Consequently, one can isolate the
direct effect of z on the distribution of m(z,e) by comparing the change in the distribution of
m(z,e)| x,0 as z changes to the change in the distribution of m(0, €)|0, z as x changes. Our ex-
changeability and strong monotonicity assumptions imply that Fy, o(m(x,e)) = Fyo.(m(0,€))
, which allows one to pin down m(x, e) subject to the normalization m(0,z) = e. The mechanics
are roughly as follows. Find the CDF of y|0, x which, is the CDF of e|0, z. Then find the CDF
of y|z,0. For each value of e, m(x,e) is the value of y at which the two CDFs are equal.

With knowledge of m(z, ) and Fy,(e), it is of course possible to obtain a number of functions
summarizing the effect of a change in x on the distribution of y holding the distribution of e
constant. Suppose that Fi, has a density g(e|z). Then, f(z1) = B(z) = [ Om(z,e)/0z q(e|x)
de. To obtain an expression for 5(z;) in terms of the pdf’s and the derivatives of the pdf’s of
the observable variables, we note that by the definition of m(x,e),

fm(re)f(smo . f f(s,0,x) ds
(5.6) 7@0) T0a)

Differentiating (5.6) with respect to x, we get

[0 2GR f(m(we)@0) omize) _ [T f(5:2.0) ds 9f(x.0)
7(@0)

f(z,0) Ox f(z,0)2 ox

_ Jo SN ds 0 f(s0.0) ds 0f (0.)
f(0,x) £(0,x)2 or

Hence,

om(ze) _ F(@0) [C2LE0D s f(p0) [°f(s,0,2) ds 9f(02)

ox — f(m(z,e),z,0) f(0,2) - f(m(z,e),z,0) f(0,2)2 Oz
LT f(sw0) ds ofo) _ [T A2
f(m(z,e),z,0) f(x,0) Oz f(m(z,e),x,0) -
_ y|0,x(e) 1 B af(O x) Fy\O,r(e) Bféz,o) _ f'm,(r,e) af(;,zz,o) ds
fyjz,0(m(z,e)) f(O ) Jyjz0(m(z,e)) f(x,0) f(m(z,e),r,0)

Differentiating (5.6) again, this time with respect to e, and solving for Om(z, e)/de, we get

om(x,e) _ f(x,0) f(e,0,z) _ Tylo,=(€)
Oe f(m(x,e),z,0) f(0,z) fy|,_.’0(m(z,e)) :

Hence, since

oF, .7:(6) x(m(m e)) om(x,e
qlelzr) = =5 . = fye(m(z, €)) 252,

it follows that

B fe ofts0) g, Fyjo.0(€) 2f(0.2)
(57) ,8(!13) - f[ﬁ‘zyo(m(m e))? f(0,z) fylz o(m(z.€))? f(0,z) O

F |z’0(fﬁ(m,e)) 8,)?(170) B f’m(r ,e) fgs z 02 R R
,f/;|z,0y(m(I,8))2 f(m,o) ox fy\z,O(m(m e)) m 0)]fy|cs< ( , 6)) fy|07m<e) d€7
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where

~

iz, e) = F 1 (Fyoa(e)).

Yy

5.1 Estimation and Asymptotic Properties

We now proceed to define a particular estimator for m(zx, e). Let K denote the dimension of
z. Let d =1+ 2K, and let f denote the pdf of (y,z1,xs). Then, the kernel estimators for the
unconditional and conditional pdf’s and cdf’s are:

(e

fN(ty7t17t2) = ﬁ Zz]il K(uy;ty7 uz_tl? uz;t2) for all (tyvtlth) € Rd:
N

F(?Ja T1,To) = f;yoo f:o ffio JEN(ty,tth) dt, dt, dt,,

7 [Y Fn(ty,ai,a2) dty
Fy\m,m (y|x1; 372) - ffooo fN(ty7$17I2) dt, ) Ild

fN(y|$1,$2) =7 frv(y,21,22)

o0 In(ty,m1,z2) dty

The estimator for m(z,e)) can then be defined by

~

m(z,e) = F_‘;’()(Fym,z(e))-

Yy

~

Since we do not restrict Fymo to be strictly increasing, Fyfmlvo(Fy\o,m(e)) need not be a singleton.

If this is the case, we let 7h(x, €) denote any particular element of FyT;,O(Fy\O,m(e))- The estimator
for F,;(e) is defined by

~

~ ~ ~ A A~

Foa(e) = Fyu(m(z,e)) = Fy\z(F_l (Fyjo.(€)))-

y|z,0

To establish the asymptotic properties of these estimators, we make the following assump-
tions:

ASSUMPTION 1’: The sequence {y;, x1;, T2} is i.i.d.

ASSUMPTION 2’: f(,-,-) has compact support © C R? and is continuously differentiable
up to the order s’ for some even s'.

ASSUMPTION 3’: The kernel function K(-,-,-) is Lipschitz, vanishes outside a compact
set, integrates to 1, and is of order s'.

ASSUMPTION 4’: As N — oo, In(N)/No¥ — 0 and 0%,/Na2K — 0.
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ASSUMPTION 5: 0 < f(0,z), f(x,0), f(z) < oo, and there exist 6,£ > Osuch that for all
s€{s€R| |s—m(x,e)| <&}, f(s,2,0) = 6.

Let

L = 255 F0u(e)(1 — Fyoa(€)) + 7ok Fywa(m(z, 0))(1 - Fypo(mlz, ))).

Theorem 3 : Suppose that Assumptions A5.1-A5.5 and 1°-5° are satisfied. Then,
(i) m(z,e) converges in probability to m(z,e),
(1) I/ﬁe‘m(e) converges in probability to F,,(e),

(iii) VNo'ks (m(z,e) — m(z,e)) — N (0,V,,) in distribution, where

V., = {f U K(S,Zl,ZQ)dS}QdedZQ} [mr L and

~

(iv) VN ok (Fe|m(e) — Fe|m(e)> — N(0, Vi) in distribution, where

2
Ve = {[ [ K(s, 21, 2)ds]” dendzn } [ Llrteh ]

PROOF: See Appendix A.

After replacing Assumptions 2’-4’ with:

ASSUMPTION 27: f(y, x1,x5) has compact support © C R and is continuously differen-
tiable up to the order 1 + s” for some even s” > 0;

ASSUMPTION 3”: The kernel function K (-, -, ) is continuously differentiable, vanishes out-
side a compact set, integrates to 1, and is of order s”;

ASSUMPTION 47: As N — oo, 1n(N)/NU%+2 0 and o N0_12VK+2 0,

we can obtain the asymptotic properties of B (x). Let

Fy10.0(€) Tyl (m(,€)) 2
Ly = [ { [ |2 (1s < €] = Fypoale)) de} fypals)ds,

e m(z,e 2
Ly = [ { f [Pl UL e D] (1[5 < im(w,€)) = Fyou(m(z,€)) de} fypeols)ds,
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and

0K = ff(faK”z s) (f%ds),dxdz.

Theorem 4 : Suppose that Assumptions A5.1-A5.5 and 1°,27,37,47, and 5 are satisfied.
Then,

(i) B(z) converges in probability to B(z), and

(i) VN & (8 ( (x) — ﬁ(x)) — N (0,V3) in distribution, where

Vs = OK [L1 + Ly

PROOF: See Appendix A.

6 Monte Carlo Evidence

We have performed a small scale Monte Carlo analysis of Estimator 1. We begin with experi-
ments in which y is continuous. The cases are nested in the following model:

Model 1
Yie = Mm(Tig, €y Mi, Uike) = bo + bixig + YT + O, + 0.6 + wi ;
k= 1,2;1=1,2,...1500
Tip = T+ Tk ;€ = Oy + & 5 Wi = Oputi + Mg
xz; ~ N(0,1); &y ~ N(0,1); & ~ N(0,1); 7 ~ N(0,1);us ~ N(0,1) .

The random variables x;, Z;, &;, and wu; are i.i.d. and mutually independent. Model
1 is a special case of the model in (1.4) that we used to motivate that paper. In applying
Estimator 1 we defined z; as (x;1+x;2) /2. Because of the linear relationship among the stochastic
components and the fact that £, x;, and Z;; are all normally distributed, g(n;, &;, wi|zi1, xi2) =
g(mi, €4, wik| (i +242) /2), S0 z; may be restricted to the mean of z;; over group 7. In practice, the
researcher will not know the distribution of the random components, and so it will be necessary
to experiment with additional symmetric functions of x;; and x;,. It seems sensible to us to
begin with the case in which we have the right conditioning variables, although this case is
likely to be the most favorable one for the estimator. We discuss a non-normal case below. For
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Model 1, B(z) = by + vE(ni|zik) = b1 + Y0p2bs,2,, Tir Where 6, is the population coefficient
of the regression of x; on x;;. We set Var(z;) =1 and Var (z;) = 1, s0 04,4, = .5.

We implement Estimator 1 using 2 different approaches. The approach labeled Polyno-
mial /Kernel approximates E(yix|Tx, 2;) as a fourth order polynomial in z;, and z; with inter-
actions up to the second order. We use OLS to estimate the coefficients of the polynomial. We
use kernel regression to estimate h(z;|z;). The second, Kernel/Kernel, uses kernel regression
to estimate both F(yix|T, 2;) and h(z;|z).'* We also report of 8(z) based on a OLS regression
of y;x on x; and a constant, both with and without group specific intercepts or “fixed effects”.
We set K to 2 and n to 1,500 and report results based on 750 replications. The numbers in
parentheses are the standard deviations and the mean squared error of the estimators.

We report 3 cases of Model 1. In all cases we set by to 0, by to 2, and evaluate the estimates
at ;5 =-2,-1,0, 1, and 2. In Case 1 7y 1is 0, 6 is 0, and 6,, is 0. The fact that v = 0 implies
that 5(z) = by = 2. In Case 1 both OLS and OLS/Fixed Effects are unbiased.

The results are in Table 1. The mean of the Kernel/Kernel estimator varies between 1.83
and 1.87 across the various values of z, showing some downward bias. This is probably due to
the fact that we employed the simple to use normal density for the kernel functions instead of
high-order, bias-reducing kernels. The Polynomial /Kernel estimator ranges from 2.01 to 1.989
and thus is very close to the true parameter value of 2.0 for all values of x. Not surprisingly, it
has a larger sampling error and mean squared error than OLS or the OLS fixed effects estimator.

Case 2 is the same as Case 1 except that we change 7 from 0 to 1 and 6,, from 0 to 1. At
these parameter values, §(x) is equal to 2 4+ .5z. It increases from 1 when x is -2 to 3 when
x is 2. The means of both versions of Estimator 1 closely track the true value of 5(z). The
OLS estimator has a mean of 2.0, and thus is positively positive biased when z is less than 0
and negatively biased when z is greater than 0. The mean of the OLS/fixed estimator is 2.5.
Controlling for group specific intercepts does not control for the x;n;.The standard deviation of
Estimator 1 is larger than the standard deviation of the OLS and OLS/fixed effects estimator,
but the mean squared errors are much smaller at most values of x.

Case 3 is the same as Case 2 except that we set 0. to 1 rather than 0, with 6., set to 0. §(z)
ranges from 1 when x; is -2 to 3.0 when z is 2. Once again, the two versions of Estimator
1 track [(z) closely. The Kernel/Kernel version suffers from a small downward bias and the
Polynomial /Kernel version from a small upward bias. In contrast, OLS is badly biased, with a
mean of 3.0. It overstates G(z) at all values except = 3. OLS-fixed effects also suffers from a
substantial bias at all values of x except x = 0. The standard deviation of Estimator 1 is larger
than the OLS and the OLS/Fixed Effects estimator, but at most values of z it dominates by a
large margin in mean squared error.

6.0.1 A Binary Choice Model

We now turn to an experiment applying Estimator 1 to a binary choice model. The model is
of the form

Tn initial experiments we obtained similar results using local linear regression to estimate one or both of
the functions. Details about window width selection are in the footnote to Table 1.
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Model 2
Yie = T(m(@ig, i, wi) > 0) = I(bg + bixi + yTaun; + 0y + wire > 0) ;
E o= 1,2:i=1,2 .0
Tipk = T+ T
N = Ot +1
zi ~ N(0,07); T ~ N(0,0%); 7 ~ N(Oaaé);um ~ N(0,07)

For this design we also set z; to (z;1 + x;2)/2 for reasons discussed above. The row labelled
(Probit /Kernel) in Table 2 is based on the assumption that E(y|xik, 2;) is well approximated
by a probit model with an index consisting of a third order polynomial in x;; and z; with
interactions up the second order. We use kernel regression to estimate h(z;|z;). In the row
labelled Kernel /Kernel we use kernel regression to estimate both functions. We also report
estimates of G(x) based on a probit model involving a third order polynomial in z;. As before,
we set n to 1,500 and perform 750 replications. In all the experiments, by is 0. The results are
in Table 2.

In a base case that we exclude from the table, v = 0, 6,, = 0, and b; = 0. We also set o2 to
1.5. In this case the probit estimator is consistent and [(z) = 0 for all z. The mean of both
versions of Estimator 1 and the probit are essentially 0.

In Case 1 in the Table 2, b = 2, v =0, and 6, is 1. We also set 0,, =1, 02 =1, 02 = 1,
and 0% = 1. This design is a probit model with a group specific error component () that is
correlated with z;; but no random slope. Not surprisingly, the probit estimator suffers from a
substantial positive bias at each value x. In contrast, Estimator 1 does pretty well, particularly
in the Kernel/Kernel case, and typically substantially dominates the probit estimator in mean
squared error.

Case 2 is similar to Case 1 in that b; = 2, v = 0 and x;; is correlated with 7,, but involves
different parameter values. The main difference is that we set 0,, to -1.5. We also set 0% =1.5,
o; =15, 0, = 1.5,and o7 = .5. For this design 3(z) = .155 at all values of z. The Probit/Kernel
version of the estimator matches this value at all values of x. The mean of the Kernel /Kernel
version ranges between .121 and .123 and so has a modest downward bias. This may be, again,
due to the fact that a N(0,1) density was used as a kernel function, instead of a high-order kernel.
In this case, dE(yix|xi)/dzy = 0 because the conditional mean of the index determining v, is
bixi, + E(n|zi) = 7524 — .5 - .1.52, =0. . This fact is reflected in the probit estimates, which
have a mean of 0 at all values of x in the table.

We have experimented with a number of cases in which 7; is correlated with z;; and enters
as both a random intercept and a random slope, with v # 0. The Kernel/Kernel estimator
performed very well. In most cases the Probit/Kernel version also performs well, but we
present an interesting exception in panel 3 of Table 2. In this case by = 2, v = 1, 02 = 1.0,
0; =10, 0. = 1.5, 07 = 1.5 and 6,, =1.5. The sign of §(x) varies with x; for three reasons.
The first is that the mean of the random slope obviously shifts with x;;. The conditional mean
of the slope of the index is by + YE(n;|xix) = 2+ 1 - .75x;. This term changes from positive
to negative when z;; = —2.67. The sign of 3(z) does not shift from negative to positive until
Ty = —1.29. The discrepancy reflects the nonlinearity in the relationship between y;, and the
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index by + b1xii, + yxikn; + O0nn; + uir , the fact that the distribution of the random intercept 6,;
declines with x;, and the fact that the value of bz, +vyxikn; + 0,n; influences the likelihood
that a given change in bz, +yxipn; will lead the index by + b2, +yxien, + 0,7 + wir, to exceed
0. B(z) switches from negative to positive as = increases. (G(x) is -.1 when z is -2, .107 when =
is -1, .393 when z is 0, .080 when z = 1, and 0.016 when x = 2.

The probit estimator is seriously biased at some values of x, particularly x = —2 and x = 1.
The Probit/Kernel version of Estimator 1 is also biased, particularly when x = —2. Adding a
4th order term in x had little effect on these estimates. In contrast, the Kernel /Kernel version
of Estimator 1 tracks f(x) quite closely.

Overall, the binary choice result are very encouraging. They suggest that the regression
based estimator does provide a way to estimate qualitative choice models with random errors
that are correlated with and perhaps interact with the explanatory variables in the model.

In addition to the results reported, we have conducted a series of experiments in which x;;
is a Chi-squaresz random variable normalized to have mean 0 and variance 1. We continue to
use z; = (z;1 + z;2)/2 as the only z variable even though is not the optimal choice in this case.
We used the Kernel/Kernel version of the estimator. For the continuous dependent variable
design in Table 1 and the binary choice design in Table 2, we found that Estimator 1 tracks
B(x) reasonably closely. The results for 3 binary choice cases are presented in Table 3.

The Monte Carlo evidence on estimator 1 is obviously limited by the relatively small set of
designs and parameter values we have examined. We have not experimented extensively with
choice of window width or with more sophisticated kernels in implementing the nonparametric
versions of the estimator.. The cases we report illustrate the fact 3(z) can vary widely over the
range of z;; and in some circumstances (eg., Table 2, case 3) a low order polynomial may not
adequately capture F(yi|Ti, z;) leading to bias in Estimator 1. However, we find the results
to date to be very encouraging.

7 Concluding Remarks

There has been an explosion of empirical studies that use variation among members of a
panel to try to deal with endogeneity of explanatory variables. In this paper we provide two
estimators for models with nonseparable errors and endogenous explanatory variables. One
important class of such models are qualitative choice models with group error components
that are correlated with the regressors. Estimator 1 covers this case. A version of Estimator
1 also covers a more general case in which a regressor is correlated with the idiosyncratic
error components and an instrument is available. Another set of examples consists of random
coefficients models in which a group specific random coefficient is correlated with the regressors.
The applied econometrician does not have good options in the literature to estimate such
models, except in special cases. Thus, Estimators 1 and 2 may prove attractive in a wide range
of situations.

Rather than repeat the intuitive discussion of our estimators that is contained in the intro-
duction, we close with a research agenda. Much of our analysis follows from an examination
of the implications of the assumption that the distribution of the error components wu;; and ¢;
conditional on the vector z;of explanatory variables for the members of group 7 is exchangeable
in the elements of z;. Further research is needed regarding the power of the exchangeability
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assumption for identification, particularly in the context of Estimator 1. Estimator 1 provides
a way to estimate the partial effect of z;; on the expectation of y provided that one has a
variable z such the conditional distribution of the error term does not depend on x;; once one
conditions on z;. It is applicable in both cross section applications and in panel data applica-
tions, but the problem in applied situations is coming up with a 2z variable. Exchangeability
in the context of panel data provides a place to look. However, we point out in section 2 that
although exchangeability restricts the relationship between the distribution of the error com-
ponents and z; to exchangeable (symmetric) functions of the elements of x;, it is not sufficient
to identify E(y|zu, z;) nonparametrically. The conditions for identification involve trade-offs
among (a) the size of the panel K, (b) the number L of elements in z;, and (c¢) parametric or
nonparametric restrictions on E(y;x|zx, 2;). We conjecture that in actual panel data applications
when exchangeability holds, conditioning on 1 or 2 z; functions capturing the location of z;
(such as the average of the elements of x;) and the dispersion of the elements of x; (such as the
variance), will be sufficient to eliminate most of the relationship between the error terms and
x;;. But further theoretical research and monte carlo studies of the issue in the context of real
world data is needed.

Second, additional monte carlo analysis of the estimators is needed. Third, it worth explor-
ing the possibility that Estimator 1 can be adapted to nonseparable dynamic panel data models
when the data are stationary and wu;, is i.i.d.. The basic idea is that in some situations the
distribution of (¢;|y;1,..., yir—1) may be exchangeable in the lags of y. Complications will arise
when x variables also enter the model even if the x variables are strictly exogenous, because
the z variables will influence relationship between the lags of y and ¢;.

As with any new econometric procedure, the greatest needs are for practical experience
with the estimators in applications and the development of reliable algorithms and easy to use
software to implement them.
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8 Appendix A

We present in this Appendix the proofs of Theorems 1, 3, and 4, which present the as-
ymptotic properties of our estimators. All our estimators are functionals of kernel estimators
for joint distribution functions. We develop their asymptotic properties by first linearizing the
functionals, and then using properties of kernel estimators. (See Newey (1994) and Ait-Sahalia
(1994) for such Delta methods techniques.) Appendix B presents known results about kernel
estimators which are used in the proofs of the Theorems. (See Lemma 5.3 in Newey (1994)
for the first parts of [I] and [II] in the statement of the lemmas.) We include them for the
convenience of the reader.

PROOF OF THEOREM 1: To prove the theorem, we will use a Delta method, such as the
ones developed in Newey (1994) and Ait-Sahalia (1994). Let F(y,z,z) denote the distribution
function (cdf) of the vector of observable variables (y,z, z), f(y,x,z) denote its probability
density function (pdf), f(z,z) and f(x) denote, respectively, the marginal pdf’s of (z,z) and
z, and f(z|z) denote the conditional pdf of z given x. For any function G RUEKi+E2 R de-
fine g(y,z, z) = O Gy, 2, 2) /0ydx0z, g(x, 2) = [g(y,, 2) dy, g(x) = [ g(y,z, z) dy dz,
g9(z|lx) = g(z,2) / g(x),and ¢.(y, x, z) = Og(y, x, z)/Ox when these functlons exist. Let C denote
a compact set in R'F1+K2 that strictly includes ©. Let D denote the set of all functions
G : R K2 5 R such that g(y,z,2) and dg(y, z,2)/0r exist and vanish outside C. Let D
denote the set of all functions g, that are derivatives with respect to x of some g which corre-
sponds to a function G in D.Note that there is a 1-1 relationship between functions in D and
functions in D. Hence we can define a functional on D or on D without altering its definition.
Define then the functional ®(-) by:

O(g.) = 2(G) = [ 5 [y 9(ylz, 2) g(z]z) dz
Then,

B(x) = @(F) and Blx) = ®(F) = &(f)
where I is the kernel estimator for the cdf F and where, ]/‘;, the kernel estimator for the
derivative of f(y,z,z) with respect to z, is obtained by differentiating F' in the same manner
that f, is obtained from F.
Note that

= [LZE(y|z,2) f(z|z) dz

_ f(y,z,2) d f(z,2) d
i ] e

f(z,2) f(z)
o [y fz(y,z,2) dy . Jz(x,2) [y flyxz)dy
=[ T de — @ T 9%
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where the integrals with respect to z are over the values of z for which f(z,z) > 0,and where
fae(y,x,z)and f.(z,z) denote, respectively, the gradient with respect to x of the functions

fy,2,2) and f(z,2).

For any G € D let |G| denote the sup norm of dg(y, x, z) /Ox. Then, there exists p > 0 such
that if |G| < p, then

(1) f(z) + g(z) > f(x)/2 and
V(z, z) such that f(z,2z) >0, f(x,2)+g(x,z)> f(z,z)/2.
For all such G, we have that

fyfzyz2)+gzyz2)dy [y fely,x,2) dy
[f z)+g(x) dz f f(x) dz }
_ | (a(2,2)+ga(2,2)) [y(f (g, Z)+g(y z,2))dy fa (1‘ z fy f(y,z,2)dy
[f F (#2)t9(@,2)) (@) +a(e) dz— | ey f@) %

o (Jye=(we2) dy) (@)= ([ y fo(y2.2) dy)g(o)
=/ @)’ dz

fz (m,z)(f y g(y,:c,z)dy)f(z z) f(z)+gz(z z)(f yf(y,x,z) dy) (z,2) f(x)
- f flz,2)? f(2)? dz

Jo(@.2) ([ yf (y2.2)dy) [(x,2) 9(2)+ o (,2) ([ yf (y,2,2)dy)9(2,2) [(x)
+ f ) f(z,2)2 f(x)2 ) dz

1 9:ly,2,2) dy) F@) = (['y foly2.2) dy) 9(0)] | 7 — 7| @2

1
= [fel@,2) [ ygly, @, 2)dy [f(,2) f(@)] [(f(m,z>+g<w,z>><f<w>+g<m>>f(m,z>f<w> e T ] dz

1 1
= [ lo:(2,2) [uf(y, 2, 2)dy f(x,2) 1)) | Tommmmqmmmesrm — 7o f(I)Q} dz

1 1
+ [ felw,2) [yf(y @ 2)dy f(z,2)g(x)] [(f(I,Z)+g(w,2))(f(m)+9(ﬂr))f(M)f(w) T T@ere f(w)Q} dz

1 1
+ [ felw,2) [ yf(y, @ 2)dy g(w, 2) f(2)] [(f(I,Z)+g(w,2))(f(m)+9(ﬂr))f(M)f(w) T T f(w)Q} dz

f 9z (2,2) [yg(y,z.2)dy f(z,2)f(x)=fa(z,2) [ yf(y,z,2)dy g(z,2)g (w)dz
(f (z,2)+9g(2,2))(f(2)+9(2)) f(z,2) f ()

Let
o (Jyaa2) dy)f@) — ([y fa(ym,2) dy)g(cc>
. f fa(2,2) [yg(y,2,2)dy f(x,2) f(2) + go(2,2) [yf(ya,2)dy f(z,2) f(2) dz
f@2)* f (ﬂv)2
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fo(x,2) [yf(y,x,2)dy f(x,2) g(x) + fz(2,2) [yf(y,@,2)dy g(x,2) f(x)
+ @27 [ (@) dz

and
RO(F,G) = [ [([y 92y, z, 2)dy) f(x) = ([y fo(y, 2, 2)dy) g(z)] [f(m)uf( e fi2] dz
— [ [fo(,2) [yg(y,z, 2)dy f(x, 2) [ (T @2)19(@.2)) (f(l‘)+q(w))f(w 21 (@) f(mz 7 ] dz
— [ 9:(,2) [yf(y, 2, 2)dy f(z,2) |:(fzz)+g(ccz f(i:)+g( N @)@ @2 f(z)Q} dz
fol,2) [yf(y,z,2)dy f(z,2) [(f(z 9@ )+g(z))f(cc,z) @ @ z)2 dz

S el

1
[ [fel@,2) [yf(y, 2, 2)dy g(x, 2) f()] [(f(w,z>+g<w,z>><f<w>+g<w>>f<m,z> &~ T @2} dz
[ 9z (2,2) [yg(y,z,2)dy f(z,2)f(2)—fu(2,2) [ yf(y,m,2)dy g(z,2)g(z } dz.

(f(2,2)+9(2,2))(f(2)+9(2)) f (z,2) f ()

Then,
(3) ®(F + G) — ®(F) = DO(F,G) + RP(F,G).

Let Ri(F,G) denote the k — thcoordinate of R®(F,G), for k = 1,..., K;, and let g,, and
fz, denote the k — th coordinate of g, and f,, respectively. It follows that

[Bu(E,G)| < [ [ lo) 920 (v 2. 2) dydz f(2)+ |[ [y Fuu (v, 2)dydz] lg(a)]] | Hit]

Al farw.2)| [ 1ol loly..2) dy F(a,2) f(x)] | Aeatgesiie ualie | g,

f(@,2)? f(2)?

J1
[ A gn (@, ) | [y £y, 2, 2)dy| Fla,2) F(2)] [f(m,zng( @)+l )1 (@) Ho(x.2) |q<w>|] dz
T[4 @ 2) | [y £y, 2, 2) dy| f(z,2)|g(2)] [|f<m,z>g<m>\+|g<z,z>3\f<z>+\g<mz otz }dz

f(z,2)? f(z)?
[ @ 2 Sy Fly 2 2)dy| lg(w, 2)] fl)] [Lolelebelin ool g

4 9oy, (.2)] [1yll9(w,2.2)|dy f(w,2) f(@) + 4| fo, (,2,2)| | [ v Fly.@.2)dy| l9(z,2)]|9(2)]
+ f f(z,2)2 f(x)2 dZ,

where all the integrals are over compact sets. Since g vanishes outside C, if follows by the defini-
tion of ||| that there exist a, b, ¢, and dsuch that |g(x)| < a |G|, |g(z, 2)| < b||G|, lg9(y, z,2)| <
c||Gl,and |gs, (y,z,2)] < d||G|| for all (y,z).Hence, the above expression is bounded by
Ai |G|, where

N

A= [d (@) [ [yl dydz+a|f [y fuulysm, 2)dydz]] 2515
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a T,z 2 xr 2 a 3
de|fo(2,2)] [ Iyl dy fl2,2) ()] |2LelCLR Aol rab IG1] g,

[
J [4d‘fyf(y,x,z)dy‘ f(z,2) f(2)] |:f(z’z)a”G”2+bHgH2f(£§)+abHGHQ} @
[

f(@,2)° f(a)

2 2 T a 3
dalfu(2.2)| [y Fly,2,2) dy| f(a,2)] | Lol tQl ) sab IO8 ] g

o [401 @, 2 [y (o, 2)dy| f()] | 2LeUOLIGL I e 1G] g

4cd|G|? f(2,2) f(@) [lyldy+ 4ab|G?|foy, m,2)| | [y f(y,2,2)dy]
+/ T@2)2 [(@)? dz.

Since ||G|| < p, and by Assumptions 2 and 5, A is bounded, there exists Asuch that
(4) 1R(E. G| ues < A NG
where ||-|| zx, denotes the Euclidean norm in R*".

Let D®y(F,G) denote the k — th coordinate of D®(F, G). Then,

|D¢k(FG |< ff‘y| |gzk(ycsz

f(z)?

‘f 9(@)| [y fo (v2,2)] .

‘|‘f |fay, (2,2 |f\y|\g(y,w,2)\dyd i f |9 (.2 ||fyf(yw2)dy|d

T(z,2) f(z) z) f(z)
|for, (2.2)| | 9f (w,2,2)dy|l9(2)] | oy, (2,2)] | [ 91 (y,2,2)dy 19 (x,2)|
+J 1@ J@P dz+ | @ 7@ dz
Hence, since by the definition of the metric |||, there exist e and f such that for all & =

L. Ky, |9z, (y,z,2)| < e|lG|| and |gs, (x,2)| < n]||G||, it follows that the above expression is
bounded by By [|G|| , where

Bk:ffff\yldyd +faf|y fry ymz)|dydz

@) @2
| foy, (@.2)] [0l dy n| [ yf (v.z.2)dy
+ [ eaim @t | “Feare

a| fa, (2,2)|| [ uf (v,2,2)dy| b foy, (@.2)|| [ wf (y,,2)dy|
+/ Fw2) F(2)° dz+ [ @22 F(@) dz

Since, by Assumptions 2 and 5, By is bounded, it follows that for some B > 0,
(5) [D®x(F,G)| < B |G|

Hence, the linear map D®(F, ) is continuous.

Let G = F — F. By (3)-(5),

[P(F +G) — ®(F)| < B||G] + A |G|"
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By Assumptions 1-4 and Lemma B.3 in Newey (1994), Hﬁ —F H — 0 in probability. Hence,

Be) = 9] =[a(F) - #(r)] < B[P - F| 4 [P 7]

converges in probability to 0. Hence, B (x) is a consistent estimator for 3(x).

Also, from (3)-(5), ® is Hadamard differentiable at F. Hence, by Theorem 3.9.4 in van der
Vaart and Wellner (1996) and the Lemma in Appendix B, it follows that

/NU§1+2((I)(};) . (I)<fm)) D@(F /NO_K1+2(f fq:))
converges in outer probability to 0. By (2),
1 1 2 (¥,2,2)— f«(y,2,2)) dydz
DO(F,\[Nok 2 (f, - f.)) = Noky 2 L0 s
— N (F ) — fla) e

— Ki1+2 fz(wz)f’y(f ymz) f(y;vz)) dy
Vo' Fw2) F(a) dz
- f \/ NU§1+2 (ﬁc(q;,z)—fz(q:,z)) E(y|z,z) dz

f(z)

+ NO_K1+2(f<x) . f(l’)) [ fz(z,2) E(y|z,z) dz

()2
fo(2,2) E(yle,2) \/ Nog' P2 (F(z,2) - f(2,2))
+/ 7@2) F @) dz

By the Lemma in Appendix B, all the terms in the above summation except the first and fourth
converge in probability to 0. These two terms are

NoRT2 [ [y (Folymn)falye) dydz [ NoW I [ (Falw2)fo(@:2)) Blyle,?) dz
@) @)

N [ [ Ble) (o) (,2)) dud:
7@

By the Lemma in Appendix B, this last term converges in distribution to a random vector that
possesses a distribution N (0, V') where

2
{ff[ s fardon) | sy dydz}
Var (y|x, z dzt K
zq:)

and K = {f (ffaKy“ dydz) (ff%dydz)ldx}.
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Hence,
VR A (Ba) - @) = VR I (9(F) - B(F)) - N(O.V)

in distribution.

PROOF OF THEOREM 3: As in the proof of Theorem 1, let F(y,x,z) denote the distrib-
ution function (cdf) of the vector of observable variables (y,x, z), f(y,x, z) denote its proba-
bility density function (pdf), f(z,z) and f(z) denote, respectively, the marginal pdf’s of (z, z)
and z, and f(z|x) denote the conditional pdf of z given z. For any function G : RY — R,

define g(y,z,2) = 0¢G(y, z, z)/@y@x@z g(z,2) = [g(y,z,2) dy, g fg y,x,2)dydz,
9(zlz) = g(z,2) [ g(x), Gylar 2 ( fy g(y,x',2")ds/g(z', 2'), and Gy (y,z,2) = [V g(s,z,2)ds
= [1[s <] g(s,z, z)ds where 1[] = 1if [-] is true, and it equals zero otherwise. Let Cdenote a

compact set in R that strictly includes ©. Let D denote the set of all functions G : RY - R
such that g(y, x, z) vanishes outside C. Let D denote the set of all functions Gy that are derived
from some GG in D. Since there is a 1-1 relationship between functions in D and functions in
D, we can define a functional on D or on D without altering its definition. Define then the

functional ®(-) by ®(G) = Gyﬁ o (Gyo.z(€)) , where G;\i,o denotes an arbitrary element of the

se’z Gy|)i0,1f Gy\io is not a singleton. Then, ®(F) = ®(Fy) = m(z,e) and ®(F) = fIJ(Z/:’\;) =
m(zx,e

Let ||G|| denote the sup norm of g(y,x, z). Then, if G €D, there exists p; > Osuch that if
|G| < p1 then, for some 0 < a,b,c < co,all y and all s € N(m(z,e),§),

(1) lg(@)| < allGl], lg9(x,0)] < a |G|, 19(0,2)] < allG],
lg(m(z, €),z)| < al|G],
f(@) +g(x) = bf(x), f(x,0)+g(x,0) = bf(x,0),

F(0,2) + h(0,z) > bf(0,), and

I, 9(s.x)ds| < alGl,

f(87 :B, 0) +g(87 :B, 0) 2 Cf(s7 x? 0)'

By substituting for « in the proof of Theorem 3 in Matzkin (1999) with (z,0), everywhere
except where = appears (in that proof) as an argument of the function m, and by substituting
for  and €, in that same proof, with , respectively, (0,x) and e, it follows that for all H such
that ||H|| < p1,
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O(F + H) — &(F) = DO(F, H) + RO(F, H)
where
(2) DB(F, H) = smtrtatrres AT + Tomiy atmam AT
AZ = f(0,2) [“h(s,0,z)ds — h(0,z) [© f(s,0,2)ds,
Az = f(z,0) fq)(F) h(s,z,0)ds — h(z,0) fq)(F) f(s,2,0)ds,
and for some A;, As,
DO(F, H)| < A, | H| and |RO(F, H)| < A5 | H|.
In particular, the linear map D®(F)-)is continuous.

Let H = F — F. Then,

— D®(F,F — F)+ R®(F,F — F),

2

D@(F,ﬁ—F)’gAl F-F

F- FH , and ’R@(F,ﬁ— F)’ < A,

By Assumptions 1’-4’ and Lemma B.3 in Newey (1994), Hﬁ — FH — 0 in probability. Hence, it

follows from above that m(x,e) — m(z,e) in probability. Moreover, since, as we have shown,
® is Hadamard differentiable at F)it follows by Theorem 3.9.4 in van der Vaart and Wellner
(1996) and the Lemma in Appendix B that

V/NoE (<I> (ﬁ?{/) oy (1?;)) — Do (F N2k <1§\; _ ﬁ;))
converges in outer probability to 0. By (2),
D® <F No2K <§; _ ]v}))
= e I 1(s<ef(0501(8]\/W<f(s,0,x) _ f(s,O,x)) ds
fy\xo ey = e))(a: O;OZ(m(Ive))] VNa3F (J?(Syﬂﬁ,o) - f(87$70)> ds.

Hence, it follows by the Lemma in Appendix B that
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VN 0¥ (i(z, ) — m(z,e)) = VN ok (cp(ﬁ) - <I>(F)> s N(0, V)

2 1 2
where V,,, = {f U K(s, 21,22)d5:| dzlsz} [W] L and

s<e =(€) 2 s<m(x,e z, (m(z,e)) 2
L=[ [1;(02 — y'ool,) ] f(s,0,z)ds + [ [1( Jf(m 9 D _ Ly o) f(s,2,0) ds

= mFyIO,I(e)(l - Fy\O,w(e)) + mFy\w,O(m(l‘: e))(1— FyII,O(m($7 e)))

Next, to determine the asymptotic properties of the estimator for F,,(e), define the func-
tional ©(G) by ©(G) = F,,(P(G)), where ®(G) is as defined above. Then, O(F) = F|,(e) and
O(F) = F..(e). Moreover,

_ _ P e dy [P hy ) dy' [P f(y a)dy
O(F + H) - O(F) = F@)+h(z) (@) '

By Taylor’s Theorem, there exist real numbers Ry, R, ay and aj; such that
JU g ) dy = [T S @)y + F@F),2)(R(F + H) — ®(F)) + Ry
and
Sy ) dy = [T iy @)dy + B(@(F), @) (@(F + H) ~ ®(F)) + R,
where |Ry| < a; | ®(F + H) = ®(F)||* and |Ry| < ay, |®(F + H) = ®(F)|*.
Hence,

O(F + H) — O(F)

B f<1><F> Fy @)dy' + [ ((F) @) (®(F+H)+Rp—®(F))
f(z)+h(z)

+fq>(F) h(y' x)dy' +h(®(F),z)(®(F+H)—®(F))+Ry,
J(@)+h(z)

)y ) dy
f(x)

[£(@) F(®(F)2)(®(F+H)~®(F)+f(@)Ry+f(x) [ h(y z)dy']
@)

L) M) ) (B4 H)—B(F))+ ] (@) () [P f(y x)dy
T(@)?

+ [£(@) F@(F), @) (@(F + H) = O(F)) + f(2) Ry + f(z) [*" iy, 2)dy |

[ 1 o
f@)(f(x)+h(z)  f(z)?
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+ (@) H(@(F),2)(@(F + H) = ®(F)) + f () Rn — hiw) [** f(y,2)dy]

[ 1 !
f@)(f(@)+h(@)  fl2)?]
From above,

O(F+H)—®(F))=D®(F,H)+ R®(F,H),
where for some Aj,As,

DO(F, H| < Ay | H|| and [RO(F, H)| < A, |[H] .
Hence,

O(F+H)—-0O(F) =

[F(2) F(@(F),2)(DB(FH)+RS(F,H))+F(z)Rp+f(x) [P h(y' )dy'|
()

f(@) h(®(F),x)(D®(F,H)+RS(F,H))+f () Rp—h(z) [*" f(y' x)dy
- @2

+ |£(@) F@F),2)(@(F + H) = ®(F)) + f() By + f(2) [*" h(y/ 2)dy |

[f(w)(f(ﬂlf)Jrh(w)) - f(i)Q}
+ () h(@(F),2)(@(F + H) = ©(F)) + f(@) R — hiw) [*7 f(y ) dy]

e -
f@)(f(x)+h(z)  flx)?] "
Let

T T ) [BF) ! Vo' —h(z) [EE) '
DO(F, H) = [/ (@) J(®(F)2) DB(F,H)+( )ff(I)Qh(y, Ydy'—h(z) [*7) f(y w)dy] and

RO(F, H)

/() J(®(F),2)RO(F,H)+[ () Ry+/ () h(®(F),x)(D(F,H)+R®(F,H))+[ () R
f(z)?

+ |£@) F@F), 2)(@F + H) = ®(F)) + f(@) By + f(x) [** by, 2)dy |

vt
f(@)?(f(z)+h(z))

+ | (@) H(@(F),2)(@(F + H) = ®(F)) + f () Rn — hiw) [** f(y,2)dy]

vt
F@)?(f(@)+h(z)) | *
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Then, for some C and D,
|DO(F, H)| < C||H| and |RO(F, H)| < D ||H||*.

Hence, © is Hadamard differentiable at F. Moreover, since

[F(z) F(®(F) ) DO(F,H)+[(x) [*7) by’ w)dy' —h(z) [* £y 2)dy]
[@)?

DO(F, H) =

and

1(s<e)—Fy0.4(€)
D®(F,H) = fy|zo(m(m 5 ff y10.2(¢)] h(s,0,x) ds

f(0,x)

1(s<m(:c e))—F, |, o(m(az,e))]
fy\IO m ze ff f(z S) h<87 lr’C7 0) d87

it follows that

DO <F /No2K <§ - ﬁ))
_ _ fm(ze)x) \/Wflm—yoz].( 3071')—']0(3,0,1'))615

fy‘xomme) f(0,x)

(m(z,e),z 57 1(s<m z,e))— z, (m(z,e)) -~
fy\z olm ze) ) N 2K f f(z g)l - ] (f(s7‘r7 O) - f(S,fL’, O)) dS?
f(w \/NO']QVKfl [s < m(z,e)] (f(s,x, 2) — f(s,, 22)> dsdzo

m(z,e)
[ f(,;)g ) dy /'No sz( s, T, Z2 f(371‘722)> ds dz; dzo.

Since, by the Lemma in Appendix B, the last two terms converge in probability to 0, it follows,
again, by that Lemma that

VN 0¥ (Fiale) = Fuule)) = VN 0¥ (0(F) — O(F)) — N(0, V)

2
where Vi = {f U K(s, 21722)d3:|2d21d2:2} [%] L and

13<e F, ,z(e) 2 13<m1‘e F, z, (m(l’:e)) 2
L= [f((()q; ) } f(s,0,2)ds + f[ ( f(mO) L _ 2 e ] f(s,2,0) ds

mFy\O,I(e)(l — Fyoz(€)) + mFylw,O(m(% €))(1 = Fyzo(m(z, e))).

PROOF OF THEOREM 4: As in the proofs of the previous theorems, let F'(y, x, z) denote
the distribution function (cdf) of the vector of observable variables (y,z, 2), f(y,z, z) denote

32



its probability density function (pdf), f(x, z) and f(x) denote, respectively, the marginal pdf’s
of (x,z) and x, and f(z|x) denote the conditional pdf of z given z. For any function G : RY —
R, define g(y,x,2) = 0¥ G(y, z, 2) /0y0x0z, g(x, 2) fg (y,x, 2) dy, = [g(y,z, z)dydz,

g(2|z) = g(x,2) /| g(2), g.(y, 2, 2) = dg(y,z,2)/0z,and Gy, (y, z, 2) fy 9g(s,r,z)/0x ds =
[1[s < y] dg(s,x,2)/0x ds. Let D denote the set of all functions G : RY — R such that
9(y,x, z) and 0g(y, x, z) /O exist and vanish outside C, where C is a compact set that strictly

includes ©. Let D denote the set of all functions é\;m that are generated from a G that belongs
to D. Since there is a 1-1 relationship between functions in D and functions in D, we can define
a functional on D or on D without altering its definition. Define then the functional ®(-) by:

2(G) = (Gy.) = [ £ (Jyg(yle. 2)dy) g(z|z) d=

Let ||G|| denote the sup norm of Gy-,. Then, there exists p > Osuch that if |G| < p, then for
some a, b, d < o0

(1) g(z,0)[ < a[|G[,

[ 9(s,2,0)ds| < al|C.
F(,0) + 9(2,0) = b g(x,0), f(s,3,0) +g(s,7,0) > b f(5,,0), and

(F +G)yzo(Fyoa(e)) € N(m(z,e), ).

Define the functionals s, ¥y, and A by

_ g(z,0) [° L’Zo’ac)ds g(z,0) [€g(s,0,z) ds dg(0,z)
K(G) 9(0,2) g(<I>(G8),z,0) T 9(@(0),x,0) g(0,0)2 Oz

[5D g(s,2,0) ds dg(z,0) [ 220
9(®(G),x,0) g(z,0) oz 9(®(G),2,0)

. (z,0) g(e,0,z)
Vo(G) = 760 g0e 20d

9(2(G),z)
ANG) = g(z)
where <I>( ) is as defined in the proof of Theorem 3, G : R — R, and for all y,z, z, Gyp...(y)
= [? _g(s,x,2)ds/g(x, 2), g(s,x,2) = O G(s,x, 2)/0s020z, g(x,2) = [°_g(s,x,z)ds, and
g(z) = ffooo g(s,x z)dsdz
Then, w(F) = 2529, 0y(F) = 2529 \(F) = fyu(m(z,e)), w(F) = 252D, Uy(F) =

amé“ and \(F) = fy|$( (x,e)). Define the functional ' by
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As in the proofs of the previous theorems, we will study the asymptotic properties of E (x)
by first obtaining a first order Taylor expansion of the nonlinear functional defining 5(z). With
this aim, we will first obtain first order Taylor expansions of the functionals x, ¥y, and A.

To obtain a first order Taylor expansion of k, define the following functionals:

gz, ®(G) ag(s,z,
WG) = sapmo: B1(G) = WD) 1 (G) = [ 2D g,

€g(s,0,z) ds 0g(0,x e 9g(s,0,z
AMG) = LIS, 5a(G) = 252, 10(G) = [* 250,

8(G) = [*9 f(s,2,0) ds, n:(G) = g( x,0),

v1(G) = 2=, and 1,(G) = —=

— g(z,0)? g(0,z)"

Then,

K(G) = w(G)m(G) 12(G) 1i(G) — (G) m(G) M(G) ni(G) B(G)

+1(G) 12(G) 6(G) Bi(G) — w(G) -

Replacing z by (z,0) in the proof of Theorem 4 in Matzkin(1999) everywhere except where
x appears as the argument of the function m, and replacing € by e and z by (0, x) in the proof
of that same theorem, it follows that there exists J; < oo such that

p(F + H) — w(F) = Du(F, H) + Ru(F, H),

Gi(F+ H) — 51(F) = DBi(F, H) + R (F, H),

N(F+ H) = n(F) = Dy(F, H) + Ry (F, H),

M(F+ H)—A(F)=DA(F,H)+ RA(F,H),

|Du(F H)| < Ju | H|, [Ru(F H)| < Ju || H|

(DB (F,H)| < 1 |[H*,

Dy (F H)| < T | HI|, |By(F H) < LIHIP,

[DAL(F H)| < L ||H||, |RA(F, H)| < 0| H,

— 2EE2.0 P (1) —h(®(F),z,0)
f(@(F),2,0) ’

Du(F, H) =

Dy (F, H) = 2528,

ox
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Dy (F, H) = 20020 pg( ) 4 [0 2hlen) g anq

_ [°h(s,0,2) ds — h(0,x) Fyjoz(e)

DA(F,H) = 7o)

Making the same substitutions in the proof of Theorem 5 in Matzkin (1999), it follows that
there exists Jy < oo such that

m(F+H) —m(F) =Dy (F, H)

vi(F+ H) — v (F) = Duv(F,H) + Rv(F, H),

|Din(F, H)| < Lo | H| s D (FH)| < L HP, [Rn(FH)| < o || HIP
D, (F,H) = h(z,0), and

Duvy(F, H) = — 5525

By making the obvious modifications to the derivations of D, and Dy, it is easy to obtain
that there exists J;3 < oo such that

Bo(F + H) — B2(F) = DBa(F, H)
vo(F + H) — u(F) = Duy(F, H) + Ry (F, H),

|DBy(F, H)| < J5 |H||, |Dvo(F, H)| < J5 |H||*, |Rwe(F, H)| < J5 | H||,

DBs(F, H) = 284 "and

Dvy(F,H) = __';;fg;g.

To obtain a first order Taylor expansion for 5, we note that
V2(F + H) = 72(F) ZIEWCJHFW@—IBW@
Let Dyo(F,H) = [* st.
Then,
Y2(F + H) — vo(F) = D7»(F, H) and, for some a < oo,
| Dyo(F, H)| < allH|.

To obtain a first order expansion for §, we note that
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S(F+H) —6(F) = [ f(s,2,0)ds + [*F ) h(s, z,0)ds — [*") f(s,2,0)ds.
By Taylor’s Theorem, there exist ey, e, ¢, and R) such that
fé(FJFH)f(s,x,O)ds— fé(F)f(s,x,O)ds
= [(®(F),z,0) [®(F + H) — ®(F)] + Ry,
and
fé(FJFH) h(s,z,0)ds — f(b(F) h(s,z,0)ds
= W(®(F),z,0) [O(F + H) — B(F)] + Ry,
where |Ry| < ef ||®(F + H) — ®(F)|* and |Ry| < en ||®(F + H) — ®(F)|*. Hence,
S(F+ H)—6(F) = f(®(F),z,0)[®(F + H) — ®(F)] + Ry
+ [*Y) h(s, 2,0)ds + h(B(F), z,0) [®(F + H) — ®(F)] + Ra.
Let
DS(F,H) = f(®(F),z,0) D®(F, H) + [*") h(s,z,0)ds and
RS(F,H) = §(F + H) — §(F) — DS(F, H).
Then, for some c;, ¢y < 00,

[DS(F.H)| < e || H|| and [RS(F, H)| < 2 || H|.

LetN:N(FvH) (F H) 72(F7H) V1—V1( ) Al Al(F7H)7 ﬁQZﬁQ(F7H)7
V2:V2<F7H> b= ( ) ﬁl(F7H>7and71 (FaH)
Let

Dr(F,H) = Dy yav1 + pp Dy ya vy + pemy Dya vy + ey v2 Dy
—Dpm Ayvy By — p Dy Ay vy B2 — oy DAy vy By
—pum Ay Dy By — Dpumy Ay vi DBy + Dy 6 3y
+uDvy b By + pve D6 By + pve 6 DBy

—Dpy — p Dy

36



Let Rx(F,H) = k(F + H) — s(F).
Then, it is easy to verify that there exists J; < oo such that
|Dr(F, H)| < Jy | H|| and |Rs(F, H)| < Jy | H||*.
This provides a first order Taylor’s expansion for k.
To obtain a first order Taylor expansion for W5, we note that by replacing x in the proof of

Theorem 5 in Matzkin (1999) with (x,0), everywhere, in that proof, except where x appears
as an argument in the function m, and by replacing = and € in that proof with (0,z) and e,

respectively, it follows that for all H such that || H|| < p,

Uy(F + H) — Uy(F) = DUy(F, H) + RUs(F, H),

where
AUm5).2.D) po(F) f(2,0) F(€.02)  him(w,e)a,0) f(2,0) f(e.0.0)
_ ) ? thedt) _ m(zx,e),x, J\z, Jleu,x
D\I'2(F7 H) - yf(m(cz:,e),z,O)Q 7(0,2) F(m(z,e),5,0)2 f(0,2)

h(z,0) f(e,0,x) f(x,0) h(e,0,x)
T Fn(e.e)2,0) 102 T Tmze)w0) £(0:2)

_ f(z,0) f(e,0,z) h(0,z)
f(m(z,e),z,0) f(0,2)2?

RUy(F, H) = Uy(F + H) — Uy(F, H) — DU,(F, H),

and for some E', F' < o0,
DU (F, H)| < E'[|H| and [Ro(F, H)| < F'||H]||".

To obtain a first order expansion for A, we note that for any H such that ||H|| < p,

f(®(F+H),x)+h(®(F+H)z)  f(®(F+H)x)

AF +H) = AF) = Ft)+h(@) ~ W
_ J@) @) )4 () (@ H) )~ (@) F(@(F))—h(z) F(@()a)
(@) (F () +hi) :

By Taylor’s Theorem, there exist R}, R}, dy, and dj such that
f(@(F + H),z) — f(B(F), z) = LELL(B(F + H) — &(F)) + R}, and
WO(F + H),z) — h(®(F),z) = 2B (§(F 4 H) — O(F)) + R},

where R, < d; |®(F + H) — ®(F)|* and R, < dj, || ®(F + H) — ®(F)|*.
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From the proof of Theorem 3, it follows that
O(F+H)—®(F)=DP(F,H)+ RY(F,H)
where

D®(F, H) = sooiratrzn A% + T atmes A

Az = f(0,z) [“h(s,0,z)ds — h(0,z) [ f(s,0,z)ds,

Az = f(z,0) f(b(F) h(s,z,0)ds — h(z,0) f(b(F) f(s,x,0)ds,
and for some A;, As,

|DO(F, H)| < A |H|| and |R®(F,H)| < A || H|*.

Then,

1 1 1
AF + H) = MF) = [f(I)Q t o rw@) f(w)2] '

f () 2D DO(F, H) + f(a) h(® (F),w)—h(x)f(@(F),x)]

1 1
+ [f(w)Q T @ T@E) f(I)Q] '
[f )G RO(F, H) + f(2) Ry + f(2) 5722 (DO(F, H) + RO(F, H)) + f () R

Let

Of(®(F),z)
DX(F,H) = {#D@(F, H)+ h<§<(f)>:w> _ h(z);g)@@)

and
RANF,H) =ANF + H)— \F)— DXZF,H).
Then, there exists J5 such that
IDA(F, H)| < J5 || H| and |RA(E, H)| < Js | H].
We can now obtain a first order Taylor expansion for I'. Let
DIF,H) = [ Dk(F,H) W5(F) X(F) de + [ k(F, H) DU5(F) \(F) de

+ [ K(F, H) Uy(F) DA(F) de,
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and
RI'(F,H)=T(F+ H) - T'(F).
Then, for some E, F < 0o,
[DU(F, H)| < E ||H|| and |[RU(F, H)| <F |H|".

In particular, DI'(F,-) is continuous. Letting H = F-F , the above Taylor expansion implies
that B(x) — F(x)in probability, since by Assumptions 1’ and 2”-4” and by Lemma B.3 in
Newey (1994), Hﬁ —F H — 0in probability. Next, let

o f(m,O) e ah(SOI 1 f \O,I(e)f \I(m(mve)
D\l(F,H) = [ [f(m(q:,e),q:,o) (f By ds) f(O,m)] [ oo m(@e) } de
e
f(m(z,e),z,0)

_ 0) . (f f}?oomw)ds) f(é,z) 8hé(;,m)} [fy\o;:‘i);‘gz((:ge))] de
H JH Seths) 2 | [Bret e | de
) [y (17 2ptas) | [Py ae
= [ [l ] [( 1ls < 024602005 — By (e) 202 )] de
-/ Uj:z z((;();ylez))g}(aeo } [fl s < m(z 8)]Mds — Fyzo(m(z, e))%} de.

By the Lemma in Appendix B, all the terms of \/Naﬁ“DF(F,}?’ — F), except those in
VN aﬁ“DlF(F,F — F), converge in probability to 0. Hence, by Theorem 3.9.4 in van der
Vaart and Wellner (1996) and by the Lemma in Appendix B, it follows that

VN THD(F) = T(F)) = VNok (B(z) — B(x)) — N(0,V3)

where

Vﬂ :?[Ll +L2],
Tylo,z(€) fyjz(m(z,e 2
Ly = f {f [ lc}y\(z,i(TTl(HE,e)()Q ))} (1[8 < e] - FyIO,z(e)) de} fy|07m<8)d8
Ly=[ {f [fle’Z(E) fymm(z’e))} (1[5 <m(x,e)] — Fyo.(m(z e))) de}Qf (s)ds
2 Tylz,0(m(@.e))® = ’ yl0x ’ yla,0

and

K= J()2e245) (f —Bng’z)ds)'dxdz.
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9 Appendix B

LEMMA: Suppose that the following assumptions are satisfied:
(i) {yi, x;} is iid, y; has values in R" and z; has values in R%.

(ii) The joint density f(y, ) has a compact support © C RLT9 f is continuously differen-
tiable up to the order g =t + s for some even s > 0.

(iii) The kernel function K (-, -) is continuously differentiable, K vanishes outside a compact
set, [ K(y,x)dydx =1, and K is a kernel of order s.

(iv) The function r(y, ) is continuous and bounded a.e.

Then,
(I)if t =0, No% — oo and 05,1/ No¥ — 0, then
VNoy [r(y.z) (f(y,w) — [y, 2))dy — N(0, )

where Vi = { [ [r( ,a:)dy}{ ([ K(y,z dy) dx},

and for any two distinct points 2" and z(®,

VNS [y, 2M) (Fly,2M) — fy,2M)) dy and

VNoS [ r(y, 2D) (Fy,2V) = f(y,zM)) dy are asymptotically independent.

(D) if t = 1, NoQ™ — 0o and o3/ No¥™? — 0 then

(s )

where V5 = { [ [r( [y, x)dy} K,

andfz:{f(ff%y% ) (f f 2e22q )dx}

Moreover, for any two distinct points 2" and z(?

/NU%LQI r(y, z <8f y;n(l)) 8f(z§;6(1))> dy and

\/Naj?ﬁ [r(y,x ( y;”@)) of (%’j@))> dy are asymptotically independent.
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PROOF: We first show (I). By the definition of 7,

f?“(y,l‘) ( (yv ) - f(yv l‘))dy
= [r(.2) (F TN, [k (552, 252) — fly.2)] ) dy

= ¥ 2 [y, 2) e K (UL, 2ty dy — [r(y, =) f(y, x)dy]

Then,
Jry. =) (Fly,x) = f(y,2)) dy
=220 [wi— [r(y,z) fly,z)dy]
=¥ 2y [wi = E(w)] + [E(w) = [r(y,2) f(y,z)dy]

We will show that under the above assumptions, the first term is asymptotically normal and
the second converges to 0. For this, we note that

E(w;) = E (5 [ 1y, o) K (4, 22 dy)

= [ [ (G [ r(y, o) K(252, 522 dy) f(ys, :)dysd;
= [ [ (fr(y,2)K(@,2)dy) f(y + 07, @ + 07)dydz
= [r(y,2) ([ [ K@ T)f(y+ oy, x + o)dydT) dy

Using a Taylor’s expansion of f(y + oy, z + ox) around f(y, ) and using the assumption that
the kernel function K integrates to 1 and is of order s, it follows that

(1) E(w;) = [r(y,2)f(y,2)dy + O(c”).

Next,
E(w?) = E (b [ rly, o) K (2, 222)dy) )
= B (o [f vl — 07, 0) K5, 22)d7)°)

= [ [ L [y — 00, 2) K@ 2)dG)” f(ys, & + o) dy:d
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Then, by the continuity and boundedness of f and r, it follows by the Bounded Convergence
Theorem that

(2) oE(w}) — [ [ 7(y,x)*f(y, z)dy] {f ([K(y,z dy))Qdm}-

From (1), (2), and ¢ — 0it follows that

a?Var(w;) — U r(y, x)Qf(y,x)dy} {f (fK Y, T dy))de}

Let 6 > 0. Since

246 2200 Bl |2
= N2+§

E |+ (w; — E(w;)

0 e g (246
Blwi]*™" = B |t [r(y, o) K (L2, 222 qy|*"

=// (JQ<2+6) | [ r(yi — o9, 2)K (7, mia_w)d@v‘%é) I (i, z3)dyida;
=ff(;ﬁnﬂfmm—a@xrwﬁﬂ«@fmm“ﬁf@hx+a®ﬁMf
= 0 (7a079)

and

(ws) =
Var(w; — 1
( N > O <(NO’Q)1+%> )

it follows that

2468

X B -] -

N .
TN B|(F-B(R%
1+

[(Varz ) N)l/QFH (Var(2))™

By Liapounov’s Theorem it then follows that

ING(E SN w — B(w,)) — N(0, Vi)

where

Vi=[[r(y,z)fy,z)dy] {f ([K(y,z dy))gdm}-

Since by (1) and by assumption,

No% (BE(w:) — [r(y,z)f(y,z)dy) = O (va\/rafi) — 0

O 1
T = O (yrrorrsar) — 0.

42



the first part of (I) is proved.

Next, to show the asymptotic independence, we note that by (i) and the definition of fthe
covariance equals

e (B [([rKY) ([P K2)] = B ([ KY) B (f r*K2) }

where

(e

([P E*R) = [r(y, ™)K (% v A) dy k=1,2
Since

B (1K) (K

= [ ([FRY) ([FRY) (g, 2V + 0F)dyidi
where [FK' = [r(y; — o, 2V K(§,7)dy
and [P2K2= [r(y — oy, 2@)K (7, 7 + 2=y

it follows by bounded convergence, (1), and o — 0that the covariance converges to 0.

We next show (II). By the definition of f,,

[ I, 2) (faly, ) = faly, ) dy

— [ Jrina) (FEL | SR o) Y g

S [ S O gy [y, 2]
Let w; = o ffr(y,x)%dy. Then,

[, ) (faly, 2, 2) = foly, 2, 2)) dy

= & 20 s — B(wi)) + | B(ws) = [ r(y, 2) 2g2dy|

We note that

- o) Y I
E(w;) =FE (%fr(yw)%dy)
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=/ (0L+Q+1 Jr(y,= )%d,ﬂ) f i, zi)dyida;
ff((i Jr(y, )aKyw)dy> fly+oy,z+ ox)dydx
= [r(y.2) ([ [ K (G520 gz ) dy

where the last inequality follows by integration by parts. Using a Taylor’s expansion of
Bf Of(y,z)

Of(y+oy,z+07)
oz

around and using the assumption that the kernel function K integrates to 1 and is of
order s, it follovvs that

= [ [ r(y.2)22dy + O(*).
Next,

E(ww)

oK ﬂyﬂ OK ﬂyﬂi
i ez [ )
=F ( 2Q+2Tzr )

—ff( STl ) (yi, x + o)dy;dx

K (g, ==

where r; = [r(y; — 0¥, x)#')dg
OK (y, 2=

and 7; = [ r(y; — oy, x)T")c@.

By the continuity and boundedness of f and r, it follows by the Bounded Convergence Theorem
that

(4) o2 E(wiwy) — [ r(y, 2)*f(y, x)dy] K
where K = {f (f%dy) (f%dy)ldx}.

From (3), (4), and ¢ — 01it then follows that

o2 Var(w;) — [ [ r(y,2)*f(y, z)dy] K

To apply Liapounov’s Central Limit Theorem, we note that, for 6 > 0,

246 _ 220 B|w,[*H?

E|x(w; — BE(w)|"" < —p5
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where

(v = 246

Elw[*" =E % fr(y,f)aaim)dy

[y — o, 2) K0 gy

2
= g(Q+11>(§5>
=/
246
Y (>

945
) f (Wi, 2:)dysde;

[t = o70) 227" ) s+ o

= O (saurorers)

and
)\ *
Var(w; . 1

( N > =0 <(NJQ+2)1+§)
Hence

DO ol o1 D Wr A ol ol o !

= = O (vm4=rz) — 0.
318 " 3 T158/25Q5/2
(=R (var(3))"" !

By Liapounov’s Theorem it then follows that

Vo (N, fws = Bw)]) — N(0,V2)
where V5 = U r(y, z)*f(y, x)dy} K
and K = {f (f%dy) (f%dy)ldx}.

Since, by (3), 1/ N (E(wl) — [ [r(y,z)2e )dy) O(c%1/ No% ™) — 0. The first part

of result (II) is proved. To prove the second part of (II), we note that by (i) and the definition

of g—f, the covariance equals
T

e B [(Jr'0K") ([ r*0K?)] — B ([ r0K") B ([ r*0K?)}

where

yi—y oi— (k)
(50 = oty
= [ r(y,=™) dy k=1,2

ox

Since

E[(fr'oKT) (f r*0K?)]
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— o2 [ ([FORY) ([ 70K ) flys, o + 0F)dyidi

where fFlf?l = [r(y; — o7, x(l))c?Ka(g@) dy

_ L@
and [T?K?= [r(y; — Uﬂ,ac@))w((y’m+ = )dg

ox

it follows by bounded convergence, (3), and o — 0that the covariance converges to 0.
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Table 1: Monte Carlo Simulations of the Estimator:1

The Continuous Dependent Variable Case

Yik

Xik =
ni =
g, =

Ui~

Sample Size

bo + b1 X + v X + Oy + €5 + ua

T; + Xik;

gnsz’ + flzkv

eamxi + gz
N(0,1)

Xir ~ N(0,1)
ik ~ N(0,1)

1

n = 1500; Group Size: K=2; Replications=750

Case 1: Parameter Values
Yire = 2Xip + 0Xam; + 1ns + 0g; + wig; e = 0
X Value: -2 -1 0 1 2
True Value of §(z) : 2.00 2.00 2.00 2.00 2.00
Estimator of ((z) using:
Kernel/ Kernel® 1.83 1.86 1.87 1.87 1.85
(SE,MSE) (17,.27) (12,10 (.11,.096) (.132,.096) (19,.27)
Polynomial | Kernel® 2.01 2.00 1.99 1.995 1.989
(SE.MSE) (:31,.096) (13,.016) (.041,1.6e—3) (13,.017) (:032,.10)
OL3 1.099 1.099 1.099 1.099 1.009
(SEMSE) (019,1.6c4) | (019,1.6e 4) | (.019,1.6e_4) | (019,1.6e_4) | (.019,1.6e_4)
OLS/Fized EJ Jects 1.999 1.999 1.999 1.999 1.999
(SEMSE) (026,6.8c—4) | (.026,6.8¢—4) | (.026,6.8¢—4) | (.026,6.8c—4) | (.026,6.8¢—_4)
Case 2: ParameterValues
Yie = 2 X5, + 1.Xuem; + 1mi 4 085 + wgp; Ope =1
X Value: -2 -1 0 1 2
True Value of §(z) : 1 1.5 2.00 2.50 3.00
Estimator of ((z) using:
Kernel/Kernel 852 1.41 1.899 2.44 2.90
(SEMSE) (16,048) | T11,.020) (12,.025) (12,.017) (.25,.073)
Polynomial/Kernel 1.03 1.54 2.04 2.55 3.06
(SEMSE) (14,02) | (106,012) | (09,9.7¢_3) (.13,.02) (2,.043)
OLS 7.00 7.00 7.00 7.00 300
(SEMSE) (.067,1) (.067,.25) | (.067.4.5e—3) (.067,.25) (.067,1)
OLS/Fized Ef fects 2.5 2.5 2.5 2.5 2.5
(SEMSE) (.073,2.25) (073,1) (.073,.25) (.073,5.39¢—3) | (.073,.25)
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Case 3:

ParameterValues

Yie = 2Xop + 1Xum; + 1ns + 1e +ue; Oy =1
X Value: -2 -1 0 1 2
True Value of B(x) : 1 1.5 2.00 2.5 3.00
Estimator of B(x) using:
Kernel/Kernel 0.91 1.43 1.95 2.46 2.96
(SE,MSE) (21,.052) | (13,.022) (.15,.025) (13,.018) (.29,.085)
Polynomial/Kernel 1.01 1.54 2.05 2.55 3.05
(SE,MSE) (16,.026) | (11,.014) (.097,.012) (14,.022) (22,.051)
OLS 3.0 3.0 3.0 3.0 3.0
(SE,MSE) (068,4) | (.068,2.3) (.068,1) (.068,.25) | (0684.6e—3)
OLS/Fized Ef fects 2.0 2.0 2.0 2.0 2.0
(SE,MSE) (076,1) | (.076,25) | (.076,5.7e—3) | (.076,.25) (.076,1)

1. In the Kernel/Kernel we use kernel regression to estimate both F, (yik|xik, zi) and h(zi |xzk) For
both functions we used a gaussian kernel. We chose window widths separately for the kernel estimators
of Ey(Yir|Tik, 2z;) and for h(z;|z;) using Silverman’s plug in method (See Pagan and Ullah (1999)
page 26 for details) for a particular design, and did not re-optimize for the various cases including
some that we do not report. We used .35 for Em(yik|xik, z,) and .15 for h(zl|xlk) In preliminary
work we also experimented with window width values that were obtained using cross validation for
regression and conditional densities and it did not make much difference. In evaluating F, (yzk|xzk, Zz)
at values of 2 for a given & we added the constant .0001 to the denominator to avoid extreme values.We
evaluated the integral in (2.7) using Simpson’s rule after trimming away observations that lie within
1 window width of the boundary of the support of the data because of high bias near the boundary.
In the Polynomial/Kernel version we use OLS estimation of a fourth order polynomial (x;x, ;) with
interactions up to the second order as the estimator for &/ (yiklxik, z,»), We use the kernel estimator for
h(z;|zi) with the window width set to .10 . We also report of 3(x) based on the application of OLS
both with and without group specific intercepts or “fixed effects”. We set n to 1,500 and the group
size K to 2. The Monte Carlo results are based on 750 replications.
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Table 2. Monte Carlo Simulations of the Estimator 1:
The Binary Choice Case!

Yie, = 1Y >0); Yii = bo+ b1 Xp +vXami + Oymi + wie
Xpo = Xi+ X Xix ~ N(0,1)

M; Ona X + i3 i ~ N(0,1)

z; ~ N(0,02); Ty ~ N(0,03); ﬁin(O,ag);é}N

Sample Size

n=1500; Group Size: K=2; Replications=750

N(0,1); uy ~ N(0,02)

Case 1: ParameterValues
_ .2 9 9 9 _
}/zz = 2szz + OXZ]CT]Z + ]_’I]Z + Uiy, Op = 03z = Uﬁ =0, = 1, 0771. =1.5
X Value: -2 -1 0 1 2
True Value of §(z) : .0036 135 451 0.135 .0036
Estimator of (3(z) using:
. Kernel/Kernel .0070 .14 .41 .14 .0068
Estimator 1 (SEMSE) 10026,6.9e—6 | .016,2.7e—4 | .0243.1e—3 | 016,2.5e—3 | .0026,6.8¢—7
: Probit/Kernel .0040 .16 .42 .16 .0045
Estimator 1 (SE,MSE) 0018,1e 5 | 025,1.1¢ 3 | :037,2.0¢ 3 | 024,1.1c_3 | :0018,7.7¢_3
Probil 0080 T 56 ®il -0080
(SE,MSE) 004,1.8c 5 | .022,5.6c 3 1031,.01 022,5.6c_3 | 0040,1.8¢ 5
Case 2: ParameterValues
Vi = 75X + 0Xyem; + 1 + 05y +ugg; 0 =03 =o0a=1.5,0;=.5,0,, = —15
X Value: -2 -1 0 1 2
True Value of §(z) : 155 155 155 155 155
Estimator of (3(z) using:
. Kernel/Kernel .123 121 121 121 .123
Estimator 1. (SEMSE) 1055,.0040 | :040,.0027 | -039,.0027 | 0420029 | 7052,.0087
. Probit/Kernel .155 .155 .155 .155 .155
Estimator 1. (SE,MSE) 016,000 | 012,000 | 012,000 | 012,000 | 016,000
Probil 500 000 000 000 000
(SE,MSE) -011,.024 | 009,024 | 009,024 | 009,024 | 011,024
Case 3: ParameterValues
X Value: -2 -1 0 1 2
True Value of 3(z) : -.100 107 .393 .080 .016
Estimator of 3(x) using:

: Kernel[Kernel —.086 149 .356 111 .025
Estimator 1. (SEMSE) (037.1.7c—3) | (023,2.36—3) | (037.2.70—3) | (030,1.63c—3) | (:025,7.00—4)
; Probit/K ernel 012 142 331 149 011
Estimator 1. (SE,MSE) (012,013) | (014,14c 3) | (024,4.4c-3) | (019,450-3) | (010,1.2¢_4)

Probit —009 153 133 979 043
(SEMSE) (012,8.5¢—3) | (:009.2.2e—3) | [.021,2.50—3) (1012,.038) (.007,7.7e—4)

! See Table 1. In the case of the Kernel/Kernel Estimator we use a gaussian Kernel with a window
width of .32 for E(yik|xik, zi) and .18 for h(zl|xlk) The Probit/Kernel Estimator uses a MLE-probit
with an index consisting of a constant and a third order polynomial in z;; and z; with a full set of

interactions up to the second order to estimate E(ylk|xlk, Zl) and the kernel estimator with a window
width of .10 to estimate h(zzlxzk) The Probit estimator is MLE-probit with an index consisting of a

constant and third order polynomial in x;.
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Table 3: Monte Carlo Simulations of Estimator 1

The Binary Choice Case, Chi-Square—Normal Regressors'

Yik 1(Yiz > 0); Yy = bo + b1 Xig + v Xapms + Onmi + O-5 + wir,)

X = @ + Xk z; ~ N(0,1); Xip ~ (Chi Squares — 3)/(3°)
N = O Xi+ Nik; ik ~ N(0,1)

ur ~ N(0,1), ¢ N(0,1)

Sample Size

n=1500; Group Size: K=2; Replications=750

Case 1: ParameterValues
Yii = 2Xop + 0Xam; + 1ms + 0g; + wig; e = 1
X Value: -2 -1 0 1 2
True Value of 3(z) : 0 10 61 209 0
Estimator of (3(z) using:
Kernel/Kernel .0018 11 .53 .18 .0044
(SE.MSE) 0012,4.686—6 | 014,2.96e—4 | 041,8.1e—3 | -035,2.07¢e—3 | -0066.,6.3e—5
Case 2: ParameterValues
Y =2X5, + 1.Xum: + 0n; + 0g; + uip; Opp =1
X Value: -2 -1 0 1 2
True Value of 3(z) : 018 .089 .68 12 0
Estimator of 3(x) using:
Kernel[Kernel — 023 07 63 102 -00083
(SE,MSE) 022.2.17¢_ 3 | 018,6.85c 4 | .041,4.18¢ 3 | 0250.40e 4 | .018,3.25¢ 4
Case 3: ParameterValues
Y:;C = 2X21€ + 1Xik77i + 1771' + 1&71' + Uk Hm; = 1, 951 =0
X Value: -2 -1 0 1 2
True Value of 3(x) : 0 .22 421 .03 0
Estimator of ((z) using:
Kernel/Kernel —.00048 .202 42 .067 —7.34e—5
(SE,MSE) 012,1.1e—4 | 020,7.2e—4 | 037.1.4e—3 | 031.2.3e—3 | 035,1.2¢—3

b X1, is distributed Chi-square with 3 degrees of freedom, normalized to have mean 0 and variance
1. See Table 1 and 2 for details of the computation of the Kernel-Kernel estimator The window widths

are the same as those used in Table 2.
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