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This paper speci�es a general set of conditions under which the impacts of a policy can

be identi�ed using data generated under a di�erent policy regime. We show that some of the

policy impacts can be identi�ed under relatively weak conditions on the data and structure of a

model. Based on the identi�cation result we develop estimators of policy impacts. We discuss a

nonparametric method to implement the estimation but also discuss semiparametric methods in

order to reduce the conditioning dimension. We then provide an empirical example of the impact

of tuition subsidies using the ideas. While the framework used in this paper is fairly narrow, we

believe this approach can be applied to a broad set of problems.

The standard formal econometric approach to estimation of a policy impact uses two stages.

First a \structural" model is estimated, and second, these estimates are used to simulate the

policy counter-factual. Sometimes the structural model takes the form of a regression model,

and in other cases the model is speci�ed from �rst principles of a behavioral model. In both

cases parameters of a model are estimated �rst and then the estimate of a target parameter is

constructed using these estimates.

Our approach here is to consider estimation of the policy impact directly rather than in two

stages. When we have the limited objective of obtaining estimates of policy impacts we show

that we can sometimes sidestep the problem of estimating the full behavioral models or even a

regression model. We can still obtain consistent estimates of the policy impacts as captured by

the parameters we specify.

When the conditions justifying our approach are applicable, it has three bene�ts over the

standard structural approach. First, there are examples in which the full model is not identi�ed,

but the policy impact can be identi�ed. In these cases the standard approach can not be carried

out, but our approach may be applicable. For example, semiparametric identi�cation of key

parameters in the classic selection model is often achieved by \identi�cation at in�nity" making

use of the subset of data where the probability of a particular event is close to 0 and 1.1 If

the support of the data is limited so that the probability is never close to the extremes, then the

parameters of the model are not identi�ed without strong (typically parametric) restrictions on the

distribution of the unobservables.2 The traditional two step policy analysis will not work without

1See Chamberlain (1986), Heckman (1990), Heckman and Honore (1990), or Angrist and Imbens (1991). Taber
(2000) uses a similar strategy to show identi�cation in discrete choice dynamic programming models.

2Heckman, Ichimura, Smith and Todd (1998) and Heckman Ichimura and Todd (1997, 1998) demonstrate that
in practice these support conditions are very important.
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a parametric distributional assumption in that case. We show that identi�cation of the full joint

distribution of the error terms is unnecessary for identifying the policy impact measure we de�ne

below and thus our approach avoids the \identi�cation at in�nity" problem. Related to this point

is that even when all aspects of the �rst stage model are formally identi�ed, using estimates of

them may lead to inaccurate estimates of policy impact relative to ours if the estimation of those

parameters can be done only inaccurately.

Second, as we do not require speci�cation of the �rst stage model our approach is less prone

to misspeci�cation problems. In particular, often the two step approach relies on the speci�cation

of the additive error terms or parametric speci�cation of the error distribution. Our approach

does not rely on such speci�cation.

Third, by the nature of two step procedures, the �rst stage estimation is carried out without

regard to the second stage. Thus when the �rst stage is misspeci�ed, the parameters that are

tuned to approximate the �rst stage equation may not be adequate to approximate the policy

impact measure in the second stage. The problem is essentially that the loss function used to

estimate the parameters in the �rst stage is unrelated to the policy experiment for which the

estimates will be used. By directly estimating the policy e�ect we avoid this problem by focusing

on the variation of data that is directly linked to the policy impact.

In addition this approach shares with the structural approach an advantage over \instrumental

variables" or \natural experiment" methods of being explicit about the policy and some aspects

of the behavioral model underlying the estimation. The emphasis in the \natural experiment"

literature is typically on �nding exogenous variation. However, exactly how variation is linked to

the policy under consideration is rarely made precise. We provide a framework to make this link.

Making this link forces the empiricist to be explicit about which variation in the data corresponds

to a policy equivalent variation.3 Finding a policy equivalent variation typically requires stronger

assumptions than in the instrumental variable case, but weaker assumptions than for full scale

structural estimation. We view our approach as a hybrid between the two.

This relates to the debate over Instrumental Variable estimation of treatment e�ect models.4

Imbens and Angrist (1994) show that the parameter being estimated by instrumental variables

takes the form of a \Local Average Treatment E�ect" (LATE). Heckman (1997) criticizes this pa-

3We formally de�ne a policy equivalent variation in section 3.
4See e.g. Heckman (1997,1999a),Imbens and Angrist (1994), and Angrist and Imbens(1999).
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rameter because it typically does not answer an economically interesting question. Our approach

avoids this criticism by estimating a pre-speci�ed policy counter-factual.

However, as we shall discuss, this type of reduced form approach is not always applicable.

Clari�cation of the conditions under which we can and cannot identify a policy impact is the

primary goal of this paper.

Our idea is an extension of the classic idea of making use of historical variation that corresponds

to the policy under consideration. When there is such exogenous variation in the data, it may be

used to identify the policy impact, but when there is no corresponding historical variation then

there is di�culty using this approach. Marschak (1953) provides an example of a monopolistic �rm

trying to maximize pro�t. In his example, an output level correspond to a policy and outcome is

pro�t. By randomly experimenting with di�erent levels of output and tabulating the results, the

�rm would know the pro�t level that correspond to a particular output level without knowledge

of any of the structural parameters. If we do not have data which correspond to certain level of

outputs, then the pro�t function at those points won't be observed. The simple example makes

it clear that when there is a variation in the data that correspond to a policy under consideration

one would know the impact of a policy but that when we don't have the corresponding historical

variation we do not.

Another limitation of the approach is that when there is a change in some parameters then the

reduced form relationship examined will in general change and thus the approach requires variation

under the new regime.5 Marschak (1953) discusses this problem using a government contemplating

imposing a tax on the demand for the monopolist's output. When the government changes the tax

rate, the reduced form relationship of pro�t and output changes and thus the government would

not be able to evaluate the impact of a change of the tax rate on the monopolist's pro�t by studying

the reduced form relationship observed in the past. In this sense the reduced form analysis seems

applicable for ex-post policy analysis but not for ex-ante policy analysis. Marschak (1953) points

out that by making use of an economic model of the demand function and the speci�cation of

how it relates to tax and the pro�t function one can resolve this di�culty by estimating the

demand function. In terms of the discussion above, his is a two step approach; the �rst step is the

estimation of the demand function and the second step is to combine it with an economic model

of demand that the demand only depends on tax through price to estimate the pro�t function

5See Hurwicz (1950), Marschak (1953), and Lucas (1976).
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under new regime. The analysis provides an example of a possibility of substituting economic

theory in place of lack of data.

It is important not to interpret the classic work on this subject as implying that estimation

of all of the parameters of a structural model is necessary for predicting the e�ects of a new

type of policy that has not been enacted in the past.6 By making use of some aspects of a

behavioral model one can exploit other types of variation in the data to mimic the e�ects of a

policy change. Sims (1982) mentions that this may be possible with a change in the money stock.

In our empirical work, we consider the example of a tuition subsidy. Even if a tuition subsidy has

never been enacted before, if we are willing to assume that the tuition faced by individuals varies

exogenously and that the tuition subsidy operates only by lowering the net tuition paid, then

one can estimate its e�ect through reduced form nonparameteric regression. Knowing the e�ect

of tuition on outcomes allows one to infer the e�ect of a tuition subsidy on outcomes without

knowledge of the structural parameters of the model. However, we still need to impose some

structure on the problem, namely that tuition subsidies operate only by lowering net tuition.

Another example is taxes and labor supply. In a partial equilibrium setting workers will respond

to changes in taxes in the same way they respond to changes in wages, so after invoking some

structural assumptions one can use other types of variation in wages to estimate the e�ects of

taxes on labor supply.

Marschak observes that one can substitute lack of historical variation in the data with economic

modeling in the structural approach. We exploit this observation in a more reduced form approach

and specify the conditions under which the e�ects of a particular policy can be identi�ed directly.

This paper focuses on the program evaluation model with two alternative choices, but the basic

principle can be extended to more general contexts.

In section 2 we present our framework and section 3 establishes conditions under which policy

e�ects can be identi�ed. Section 4 describes the relationship between our approach and results

available in the literature, and section 5 presents an empirical example. Section 6 concludes.

6See Heckman (1999b) for discussion of much of this previous literature.
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1 Basic model and parameters of interest

There are three basic elements in our model: choice variables, outcome variables, and a policy

under consideration. In this paper we consider a case in which the choice variable is binary and

the outcome depends on the choice. We index the policy by � which we assume to lie in a space

we call policy space �. The choice variable under policy � is denoted by the random function

D (Z; �) which takes values 0 and 1, where Z is an observable random vector. Y1 (Z) and Y0 (Z)

denote outcomes that correspond to choice D (Z; �) = 1 and 0, respectively without reference to

�.7

An important assumption we have made is that the outcome distribution of Y0 and Y1 is not

altered by the introduction of the new policy.8 We do not consider policies that change treatment

intensity. Nor do we consider the general equilibrium e�ects of the policy change.9 Heckman,

Lochner, and Taber (1998) show that ignoring these e�ects may be disastrous for some national

programs. However, for local programs there is no reason to believe this assumption will be

particularly problematic.

In the context of program evaluation D (Z; �) denotes program participation under policy �

and the individual outcomes with and without enrolling in the program are denoted Y1 (Z) and

Y0 (Z), respectively. Examples of � are subsidies or eligibility criteria of the program.10

Let

Y (Z; �) = D (Z; �)Y1 (Z) + f1�D (Z; �)gY0 (Z) :

Since Y1 (Z) is realized only if the person chooses D (Z; �) = 1, and since Y0 (Z) is realized only if

the person chooses D (Z; �) = 0, the econometrician can only observe (D (Z; �) ; Y (Z; �) ; Z) for

the policy � that is in place when the data is generated.

We use the following notational convention throughout the rest of this paper. If H(Z) is

7Many of the results will make use of exclusion restrictions: elements that in
uence choice but not outcomes.
However, to simplify the notation we write the outcome variables as a function of the whole vector Z. This notation
includes cases where some elements of Z do not a�ect outcomes.

8We usually condition on Z but when we do not, we assume that the relevant Z distribution is the one under
the old policy or it is not altered by a new policy.

9For these cases see Heckman and Smith (1997) and Heckman (1997). General equilibrium e�ects are considered
by Heckman, Lochner, and Taber (1998) where changing enrollment in the program may change the value of the
program through equilibrium e�ects.

10When possible we denote random variables or random vectors by upper case letters and the particular values
of them by lower case letters.
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a random function of Z, we take the expression E fH(z)g to mean E fH(Z) j Z = zg.11 Since

virtually every expectation we consider conditions on Z, this simpli�es the notation substantially.

The �rst two parameters we consider are

�
�
z; �0; �

�
= E

�
Y (z; �0)� Y (z; �)

�
;

the mean policy e�ect and

�c(z; �
0; �) = E

�
Y (z; �0)� Y (z; �) j D(z; �0) 6= D(z; �)

�
;

the conditional policy e�ect. The �rst parameter � (z; �0; �) captures the change in outcomes for

the population with characteristic Z = z when policy shifts to �0 from �.12 The second parameter

�c (z; �
0; �) captures the average gain for the population with characteristic Z = z who would be

a�ected by the policy shift.

In general,

�(z; �0; �) = �c(z; �
0; �) Pr

�
D(z; �0) 6= D(z; �)

	
;

so that j�(z; �0; �)j � j�c(z; �
0; �)j. This observation highlights the distinction between the

two parameters. The mean treatment policy embodies the notion of extensiveness of the impact

measured by Pr fD(z; �0) 6= D(z; �)g, but the conditional policy e�ect is the measure that isolates

the intensiveness of the impact once the choice is a�ected. Ideally we would want to identify both

the extensive and intensive impacts. Identi�cation of parameter � (z; �0; �) can be achieved under

weaker conditions than those for �c(z; �
0; �).

The intensity measure �c(z; �
0; �) described above is related to the local average treatment

e�ect (LATE) of Imbens and Angrist (1994). They de�ne LATE as the expected treatment

e�ect for individuals who are in
uenced to change treatment status by a change in the value of a

particular conditioning variable, which they refer to as an instrumental variable. Our parameter

is the expected treatment e�ect for individuals who are in
uenced to change treatment status

11And similarly,

Pr fD(z; �) = 1g = Pr fD(Z; �) = 1 j Z = zg :

12It is a version of the policy e�ect in Heckman (1997) that conditions on Z.
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by a change in a particular pre-speci�ed policy. By separating the two explicitly, we provide a

framework to discuss identi�cation and measurement of policy impacts.13

The next two \marginal treatment e�ect" parameters we consider are normalized limits of

the parameters �(z; �0; �) and �c(z; �
0; �), and can be considered only for � that is de�ned on

a policy space � with a notion of \closeness". These parameters correspond to those discussed

in the literature including studies by Bjorkland and Mo�tt (1987), Heckman and Smith (1997),

and Taber (1999). The nice aspect of these parameters is that with continuous data and policies

they will be identi�ed under weak support conditions.

To this point we have not put any structure on �, so the value of � has no content unto itself

except as an index to a policy option. In thinking about marginal treatment e�ects we specialize

� to be a �nite dimensional vector of real valued functions. For example if the government

considered a tuition subsidy, � could index the extent of the subsidy. In this case � can be

identi�ed with the weakly positive real line. Suppose instead it considered a tuition subsidy with

means testing, then a policy may be represented by two numbers � = (�1; �2), where the amount

of tuition subsidy is denoted by �1 and the maximum eligible parental income by �2. In this case

� can be identi�ed with the two dimensional weakly positive real plane. If the amount of the

subsidy depends on parental income then � can be identi�ed with a space of real valued functions.

We de�ne a marginal treatment e�ect as the impact of an in�nitesimal change in the extent

of intervention starting at � and will consider two types. Let � > 0 be a real number and let

�0 = � + �~� for some element ~� in �. Letting `� # 0' denote � approaches 0 from above, one

concept is the limit of the conditional mean impact on the switchers when policy shifts marginally

in direction ~�,

�m
c (z; ~�; �) � lim

�#0
�c(z; �

0; �):

The other concept is the normalized limit of the mean impact when policy shifts marginally in

direction ~�,

�m(z; ~�; �) � lim
�#0

�(z; �0; �)

�
:

13The distinction between an instrumental variable and a policy is important. The de�nition of the LATE param-
eter depends on the data so that by de�nition it will be identi�ed. Since our parameter depends on a prespeci�ed
policy it is not necessarily identi�ed. Angrist and Krueger (1992) provides a useful example for demonstrating the
di�erence between policy parameters and instrumental variables. Compulsory schooling laws are a policy that one
can consider. However, the source of variation used for identi�cation comes from variation in quarter of birth rather
than schooling laws. While they are related, they are not identical.
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For example if ~� = ej where ej has 0 in all but the jth element and 1 as the jth element then

since � (z; �0; �) = E [Y (z; �0)� Y (z; �)] ;

�m(z; ej ; �) =
@E [Y (z; �)]

@�j
:

We note that the concept of �m
c (z; ~�; �) can be de�ned more generally than the concept of the

directional limit utilized here but that the concept of �m(z; ~�; �) depends crucially on the concept

of the directional limit as we make use of the normalizing number � in an essential way.

As we observed, in general,

�(z; �0; �) = �c(z; �
0; �) Pr

�
D(z; �0) 6= D(z; �)

	
;

so that

�m(z; ~�; �) = �m
c (z; ~�; �) lim

�#0

Pr fD(z; �0) 6= D(z; �)g

�
:

That is, just as for parameters �(z; �0; �) and �c(z; �
0; �), parameter �m(z; ~�; �) is inclusive of

the extensive impact whereas �m
c (z; ~�; �) isolates the intensity of the marginal treatment e�ect.

Bjorkland and Mo�tt (1987) examine a parameter analogous to �m(z; ~�; �). They consider

a case with

D(Z; �) = 1(Z 0
 + � + U � 0);

where � is a real number representing costs of choosing 1 over 0, Z and U denote observable and

unobservable random variables that a�ect the choice and study the parameter

@E fY (z; �)g

@�
:

Heckman and Vytlacil (1999) and Aakvik, Heckman and Vytlacil (1999) consider a related

parameter they call local IV. In the same sense that �m
c (z; ~�; �) is a limit form of �c(z; �

0; �), their

parameter is a limit form of LATE. They show that in a latent variable framework this parameter

can be interpreted as the value of the treatment conditional on being indi�erent between entering

the program. Taber (1999) estimates a version of this parameter.

These parameters have two nice features. The �rst is that, as the de�nition makes clear,

they can be approximated by �(z; �0; �) and �c(z; �
0; �) where �0 is de�ned by a small value

of �. The other nice feature is that, as we will show below, when the support Z is continuous,

the parameters will be identi�ed under weaker support conditions than those for �(z; �0; �) and

�c(z; �
0; �).
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2 Identi�cation

2.1 Identi�cation of the Treatment Counter-factual

We �rst consider identi�cation of the decision rule under the new policy function �0, D(Z; �0). We

then consider identi�cation of the distribution of Y1(Z) given D(Z; �0) = 1 and Z = z and that

of the distribution of Y0 (Z) given D(Z; �0) = 0 and Z = z. Clearly the �rst is relevant only when

PrfD(Z; �0) = 1g > 0 and the second is relevant only when PrfD(Z; �0) = 0g > 0. Identi�cation

of the distribution of Y1 given D(Z; �0) = 0 and that of the distribution of Y0 given D(Z; �0) = 1

are not necessary for our purpose. Identi�cation of the policy e�ects comes directly from these

results.

Let Z be the support of Z. We want to identify the choice behavior under a new policy �0,

D(Z; �0), using the observations about choices made under old policy �, D(Z; �). The following

set plays the key role for this purpose:

D(z; �0; �) =
�
z� 2 Z : PrfD(z; �0) = D(z�; �)g = 1

	
:

For any point in this set, z� 2 D(z; �0; �), the observed choice behavior D(z�; �) mimics the choice

behavior under the new policy, D(z; �0). Thus if we could condition on elements of this set we

could identify the choice behavior under the new policy.

Being able to condition on this set requires essentially two types of conditions. First, we need

to be able to determine the values of z� for which D(z; �0) = D(z�; �). This will typically require

some type of \structural" assumption. Second, these values of z� must be contained within the

support of Z.

In general, without any understanding of the relationship between z and �, the set D(z; �0; �) is

not known. However we show via examples below, that by exploiting some aspects of a behavioral

model, in some cases we can identify the elements in this set.

The notation we use in the bulk of the paper hides an important aspect of a problem involved

in the statement above. We use more complete notation just for a few paragraphs below to explain

the assumption needed more explicitly. Implicit in the expression PrfD(z; �0) = D(z�; �)g is the

assumption that the concept of probability is well de�ned for two di�erent points z and z�. In

particular, this requires that the stochastic element that drives the choice variable be independent

from at least the part of Z that makes the equality holds. To express this more explicitly, let

9



Z =
�
~Z;Z�

�
and corresponding �xed values z = (~z; z�). Using this notation we write

D(~z; z�; �
0; �) =

�
(~z; z��) 2 ZjPrfD(~z; z�; �

0;!) = D(~z; z��; �;!)g = 1
	
;

where ! expresses the stochastic element that drives the participation decision and z� is the part

of z that makes the equality holds. In order for this expression to make sense, Z� and ! need to

be independent given ~Z.

For convenience, we call Z� \a policy-� equivalent variation given ~Z" or \a policy equivalent

variation" when � and ~Z are evident or not necessary to be made explicit in a discussion and !

\unobserved variation in the choice variable". We assume

Assumption 1 A policy equivalent variation and the unobserved variation in choice variable are

independent given some conditioning variables under two policies � and �0.

The variables that correspond to the policy equivalent variation depends on the behavioral

model assumed and Assumption 1 needs to be evaluated for each application.

For example in the empirical work we consider below, � is the current tuition subsidy level

and �0 is the contemplated tuition subsidy level. We assume a behavioral model in which college

attendance depends only on net tuition so that individual choice depends only on z� � �, where

z� is a level of tuition faced before the subsidy. It is conceivable that an individual's behavior

could be di�erent for di�erent combination of z� and � even if z� � � is the same but this is the

\structural" assumption we are going to maintain and exploit. In addition to this assumption

which de�nes the policy equivalent variation, we need to maintain Assumption 1. In our example,

tuition is measured by the average tuition of 2 year colleges of the state in which the individual

lived at age 17. We need to assume that this variable and the unobserved variation in choice

variable are independent given some conditioning variables. Because we expect the Z� variable

to be correlated with some state characteristics which also can be correlated with the individual

characteristics, we need to condition on certain variables such as race and parental education

level.

We next consider identi�cation of the distribution of Y1 (z) givenD(z; �0) = 1 and identi�cation

of the distribution of Y0 (z) given D(z; �0) = 0. As we just discussed we simulate a decision under

new policy, D(z; �0), by examining the choice made under the old policy by individuals with

characteristic z�, D(z�; �). Note that the corresponding outcome Y1 (z
�) and Y0 (z

�) need to

10



match Y1 (z) and Y0 (z), respectively. Thus the key assumption of the identi�cation result is

based on the following sets:

Z0(z; �) = fz� 2 Z : PrfY0(z) = Y0(z
�)jD(z�; �) = 0g = 1g ;

Z1(z; �) = fz� 2 Z : PrfY1(z) = Y1(z
�)jD(z�; �) = 1g = 1g :

Typically the assumption holds when some exclusion restrictions hold. In the tuition subsidy

example, if tuition z� does not enter directly into the outcome equation, the condition holds.

More generally, while it may be possible to avoid them with some parametric speci�cations, for

general nonparametric models exclusion restrictions will be required to satisfy these conditions.

Using the intersection of these sets with D(z; �0; �), we can identify the distribution of Y (z; �0)

in a manner similar to Pr(D(z; �0) = 1) above. In particular, for any z 2 Z, if we can �nd a value

z� 2 D(z; �0; �) that is contained in Z0(z; �), and Z1(z; �), then the distribution of Y (z; �0) is the

same as the distribution of Y (z�; �). To see this note that for any z� 2 D(z; �0; �) \ Z0(z; �) \

Z1(z; �),

Pr(Y (z; �0) < y) =Pr(Y0(z) < y j D(z; �0) = 0)Pr(D(z; �0) = 0)

+ Pr(Y1(z) < y j D(z; �0) = 1)Pr(D(z; �0) = 1)

=Pr(Y0(z) < y j D(z�; �) = 0)Pr(D(z�; �) = 0)

+ Pr(Y1(z) < y j D(z�; �) = 1)Pr(D(z�; �) = 1)

=Pr(Y0(z
�) < y j D(z�; �) = 0)Pr(D(z�; �) = 0)

+ Pr(Y1(z
�) < y j D(z�; �) = 1)Pr(D(z�; �) = 1)

=Pr(Y (z�; �) < y):

Thus conditioning on z� allows us to identify the distribution of Y (z; �0). Once again this con-

ditioning requires both that D(z; �0; �) \ Z0(z; �) \ Z1(z; �) is known and that it is nonempty

involving both \structural" and \support" conditions.

We now formalize this idea.

Assumption 2 Z0(z; �) and Z1(z; �) are known and their intersection with D(z; �0; �) is nonempty

for z 2 Z.

11



Lemma 1 (i) Under Assumptions 1 and 2, if PrfD(z; �0) = 0g > 0 the distribution of Y0 given

D(z; �0) = 0 is identi�ed. (ii) Under Assumptions 1 and 2, if PrfD(z; �0) = 1g > 0 the distribution

of Y1 given D(z; �0) = 1 is identi�ed.

(Proof In Appendix)

The lemma delivers identi�cation of � (z; �0; �).

Theorem 2 If Assumptions 1 and 2 hold for the same z and if EfD(z; �0)Y1 (z)g and E[f1 �

D(z; �0)gY0 (z)] are �nite, �(z; �0; �) is identi�ed.

(Proof In Appendix)

We next discuss identi�cation conditions for the parameter �c(z; �
0; �). Note that since our

policy only in
uences outcomes through D and that EfY (z; �0)�Y (z; �) j D(z; �0) = D(z; �)g =

0, so that

�c(z; �
0; �) = EfY

�
z; �0

�
� Y (z; �) j D(z; �0) 6= D(z; �)g

=
EfY (z; �0)� Y (z; �)g

PrfD(z; �0) 6= D(z; �)g

=
�(z; �0; �)

PrfD(z; �0) 6= D(z; �)g
:

From the theorem we know that �(z; �0; �) is identi�ed under Assumption 2. However these

assumptions are not su�cient for identi�cation of the denominator. All we can hope to identify

about the joint distribution of (D(z; �0);D(z; �)) conditional on Z = z is PrfD(z; �0) = 1g and

PrfD (z; �) = 1g. Without further assumptions this will not be su�cient to identify PrfD(z; �0) 6=

D(z; �)g. To assure identi�cation of PrfD(z; �0) 6= D(z; �)g we use a monotonicity assumption.

Assumption 3 For any z 2 Z, either PrfD(z; �0) � D(z; �)g = 1 or PrfD(z; �0) � D(z; �)g =

1.

Under this assumption

PrfD(z; �0) 6= D(z; �)g =
��PrfD(z; �0) = 1g � PrfD(z; �) = 1g

��
and thus PrfD(z; �0) 6= D(z; �)g is identi�ed. Imbens and Angrist (1994) exploit this type of

condition in the context of identi�cation of treatment e�ects.

Corollary 3 Under Assumptions 1,2 and 3, �c(z; �
0; �) is identi�ed.
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2.2 Identi�cation of Marginal Treatment E�ects

As we illustrate below, Assumption 2 is not likely to hold on all points in the support of Z. In

this subsection we will establish conditions for identi�cation of the marginal treatment e�ects

de�ned above. We show that identi�cation of the marginal treatment e�ects can be carried out

under support conditions that are weaker. Recall that the marginal treatment e�ects are denoted

�m (z; e�; �) and �m
c (z; e�; �), where the connection between �0 and ~� is that �0 = � + �~� and

that we consider the limit of � to zero from above. The key assumption is the following:

Assumption 4 There exists �� (z; e�; �) > 0 such that Assumption 2 holds for all �0 that corre-

spond to � such that 0 < � < �� (z; e�; �).
Under this assumption it is easy to show that the conditional marginal treatment e�ects are

identi�ed.

Corollary 4 Under Assumptions 1 and 4, if �m (z; e�; �) exists, then it is identi�ed.

Corollary 5 Under Assumptions 1,3 and 4, if �m
c (z; e�; �) exists, then it is identi�ed.

The argument here is in some sense the opposite of identi�cation at in�nity. In the typical

identi�cation at in�nity we use the extremes of the distribution to produce the policy counter-

factual. The corollaries above essentially use the part of the distribution that is in�nitesimally

close for identi�cation. We will clarify this claim and discuss the extent to which these conditions

are weaker in some of the examples below.

2.3 Examples

To demonstrate the ideas above and to examine some of the limitations of the approach we study

four examples. These have been chosen to represent a wide variety of models and policies.

Example 1: Treatment on the Treated

One parameter that is often discussed in the program evaluation literature is the e�ect of the

\treatment on the treated." It can be identi�ed using an \identi�cation at in�nity" argument.

We will demonstrate that this result is a special case of Theorem 2 above. In our framework in

which parameters are de�ned conditioned on Z, this parameter takes the form,

E (Y1(z)� Y0 (z) jD(z; �) = 1) :
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It is interpreted as the e�ect of the program on those individuals who choose to enter it. It

can be considered a special case of our conditional policy e�ect where the alternative policy �0

corresponds to elimination of the program, so that for any z 2 Z, D(z; �0) = 0. In that case,

�c(z; �
0; �) = E(Y (�0)� Y (�) j D(z; �0) 6= D(z; �))

= �E (Y1(z)� Y0 (z) jD(z; �) = 1) :

Suppose that we have exclusion restrictions as in the case discussed above so that Z = (Z1; Z2)

where Z1 in
uences the decision to enter the program, but has no direct in
uence on outcome

conditional on entry. Following the logic above, since D(z; �0) = 0 with probability one, for each

z2 we need to �nd a value of z�1 such that almost surely D ((z�1 ; z2); �) = 0. If we can �nd such a

z�1 , then with this type of exclusion restriction, Assumption 2 is satis�ed. Thus for the treatment

on treated parameter our identi�cation conditions are met using \identi�cation at in�nity."

This example is extreme in two ways. On the one hand the conditions under which Assumption

2 was satis�ed required very little structure on the model. An exclusion restriction was su�cient.14

On the other hand the demands on the data are strong in the sense that for any z 2 Z, �(z; �0; �)

is only identi�ed by values of z for which the probability of entering the program is zero. While

for some small programs such as government job training programs it may be possible to �nd such

a variable, but for larger \programs" such as college, �nding such a variable may be infeasible.

We observe that the problem associated with \identi�cation at in�nity" is a special case of

the problem of extrapolation in forecasting.

Example 2: Tuition Subsidy

In this example we consider the case of tuition subsidy which in
uences an individual's decision

to attend college. In particular we consider a policy in which a student receives a tuition subsidy

of level �0 if they choose to attend college. We assume that there is no such policy in existence

today so � = 0,15 and that we have data on tuition levels T faced by di�erent individuals, and

possibly other observables X. We also assume that tuition in
uences an individual's decision

about whether to attend college, but does not in
uence earnings conditional on attending college.

14Alternatively one could use linear index assumptions.
.
15Again we assume that this is a policy that only a�ects a small number of people so there are no general

equilibrium e�ects.

14



An important assumption is that it is only the net tuition and not tuition and subsidy separately

that a�ects the college attendance decision. Thus Z = (X;T ) and

D(Z; �) = D(X;T � �);

Y0(Z) = Y0(X);

Y1(Z) = Y1(X):

The assumption that only the net tuition a�ects the college attendance decision can be justi�ed

in the model where individuals do not distinguish the sources of funding and that the net tuition

is known enough in advance so that the attendance decision can be made with enough preparation

time. The e�ect of a policy we measure under this assumption is that corresponds to the subsidy

announced well in advance. More generally, the policy we can measure the e�ect of correspond

to whatever the equivalent variation we use.

We assume that the support of T does not depend on X and bounded, [T`; Tu]. In this case

the set D(z; �0; �) \Z0((x; t) ; �) satis�es the following:
16

D(z; �0; �) \ Z0((x; t) ; �) =
�
(x; t�) 2 ZjPrfD(x; t�) = D(x; t� �0)g = 1

	
�

�
(x; t�) 2 Z j t� = t� �0

	
:

Clearly in this example any element of f(x; t�) 2 Z j t� = t� �0g is also an element of D(z; �0; �)\

Z1((x; t) ; �). If Tu > t > T` + �0 then Tu > t� = t� �0 > T`, so (x; t
�) is in the support of (X;T )

which means that this set is not empty. Thus Assumption 2 will hold and �(z; �0; �) is identi�ed.

However if t < T` + �0, then t� = t � � < T`, so (x; t�) is not in the support of (X;T ). In

this case Assumption 2 is likely to fail and we can not identify �(z; �0; �). Thus for some values

of z, we can identify the policy e�ect, but for others we can not. This means that we can only

partially evaluate the policy, there will be a group of people for whom the e�ect of the policy is

not identi�ed.17

The intuition here is straight forward. If we have an individual who faces tuition level $1500

with other covariates x, to identify the e�ect of a $1000 tuition subsidy, we need to �nd other

individuals with the same covariates x, but who currently face a tuition level of $500. If the

16Implicitly we assumed monotonicity of the decision with respect to tuition. If it is not, then Z0((x; t) ; �
0; �)

includes the right hand side.
17Ichimura and Taber (1999) considers obtaining bounds for the impact in these cases.
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minimal level of tuition in the data is $0 then we can �nd such individuals, but if the minimal

level is $1000 then the e�ect of the policy change is not identi�ed. In this case the policy e�ect

is not identi�ed for individuals who face a current tuition between $1000 and $2000.

In contrast, Assumption 4 does not fail for any interior points of Z. For any interior point t

if we choose e� = t� T`, then when � < 1,

t > T` + �0 = T` + � (t� T`)

so Assumption 4 will hold. Thus the marginal treatment e�ects will be identi�ed for all interior

points of Z. This is the sense in which the conditions for estimating the marginal treatment

e�ects are weaker then the policy e�ects.

This case is somewhat special as tuition has two important roles. First, it is the central focus

of the policy in that changing tuition levels has exactly the same e�ect on schooling attendance

as changing the tuition subsidy. Second, it acts as an exclusion restriction in that it in
uences

the decision to attend college, but does not in
uence earnings directly. The combination of these

two characteristics allows us to put very little structure on the model but still be able to identify

many of the policy e�ects. While this structure is special, it is not unique. Many programs have

either subsidies or eligibility criteria that vary across individuals which may be of interest and

these subsidies and criteria typically will not have a direct e�ect on outcomes.

Example 3: Linear Binary Choice Model

Our two earlier examples are special in that we needed to make only very weak assumptions

about the form of D(Z; �). Typically we will need to make stronger assumptions in order to verify

Assumption 2. We often need an explicit structural model in which the parameters are policy

invariant and need the model to predict how entrance to the program depends on the structural

parameters. This third example has more structure than in the previous case, but less than in

our fourth example.

We assume that program participation is determined by linear index binary choice model for

D(Z; �),

D(Z; �) = 1(Z 0� (�) + U);
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where Z = (Z1; Z2) and Z1 is an exclusion restriction that is independent of Y1, but Z2 need not

be. We also assume that the relationship between � (�) and � (�0) is well known in the sense that

� (�0) is identi�ed from � (�).

In this case the key sets take the following form,

D(z; �0; �) =
�
z� 2 ZjPrfD(z; �0) = D(z�; �)g = 1

	
=

�
z� 2 Zjz0�

�
�0
�
= z�0� (�)

	
:18

Z0(z; �) \ Z1(z; �) = fz� 2 Z j z2 = z�2g :

This case turns out to be very similar to the tuition example above. Suppose that the support of Z1

does not depend on Z2 and that the support of Z
0
� (�) is bounded, [B`; Bu]. If B` < z

0
�(�0) < Bu

then if we choose z� so that z�0� (�) = z
0
�(�0) and z�2 = z2 then Assumption 2 will hold. However

if z
0
�(�0) lies outside the support of Z

0
� (�), then these assumptions will typically not hold. Thus

in many cases Assumption 2 will hold for some of the values of z 2 Z but not all. However, if as

above �0 = � + �e� for some e�, and lim�#0 �(�
0) = � (�) then for each z 2 Z, for some value of

� small enough, B` < z
0
�(�0) < Bu. Thus Assumption 4 will be satis�ed under weaker support

conditions.

Example 4: Search and Welfare

This example is loosely based on Wallace (1998). Devine and Kiefer (1991) provide an excellent

survey of related empirical search models. Consider a women who currently participates in welfare.

While on welfare she has the utility,

UA(X;B (�));

where B (�) is the level of welfare bene�ts under the current welfare system � and X is observable

factors.19 This woman searches for a new job. The probability of a job arriving in some time

period is �(X). When a job arrives, the wage is drawn from the distribution of wages F (W ;X).

If the welfare mother chooses to accept the wage W she leaves welfare and receives utility,

UL (X;W ) :

19We keep the model simple by abstracting from unobservable heterogeneity.
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Under di�erent types of assumptions one could derive the reservation wage R(X;B (�)) at

which an individual is indi�erent between working or not, where R increases with welfare bene�ts.

If she receives at most one o�er in a period, the probability that a woman who is on welfare at

the beginning of the period works at the end of the period is,

Pr(Working j X;u) = �(X) f1� F (R(X;B (�));X)g :

Even abstracting from issues about unobservable heterogeneity there is a fundamental identi-

�cation problem that Flinn and Heckman (1982) point out. If R is bounded from below, it is

impossible to distinguish � from 1�F below that point. In this case, � and thus the full structural

model are fundamentally unidenti�ed. However, in some cases, one can still evaluate the e�ects

of policy changes.

In terms of our notation above, the observable variables are Z = (X;B (�)). The choice

variable is welfare participation, the outcome is labor income, and the policy of interest is the

welfare bene�ts. Thus, D (Z; �) denotes welfare participation under policy � and,

Y0(Z) = W

Y1(Z) = 0:

We assume that X = (X1;X2) and that X1 a�ects only the reservation wage and not the o�ered

wage distribution or the job o�er probability. Suppose we want to change welfare bene�ts to some

new level under new policy �0. The key sets will have the following form,

D(z; �0; �) =
�
z� 2 ZjPrfD(z; �0) = D(z�; �)g = 1

	
=

�
z� 2 ZjR(x1; x2; B

�
�0
�
) = R(x�1; x2; B (�))

	
:

We are worried about the problem that reservation wages may be bounded from below. If the

counter-factual reservation wage R(x;B (�0)) falls below this bound, then the set D(z; �0; �) will

be empty and we will not be able to achieve identi�cation. This case should depend on whether

the policy under consideration expands bene�ts or contracts them.20 If it cuts them back then

R(X;B (�0)) � R(X;B (�)) so for some values of Z we are likely to have problems, however if the

proposed policy increases current bene�t level then R(X;B (�0)) > R(X;B (�)) and we can still

identify the impact of the policy even though we can not identify the full model.

20It could be more complicated depending on the support of X.
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3 Relationship with other approaches

The objective of this paper is to present a framework to consider direct estimation of policy

impacts. However, since we carry this out in a binary choice framework our work can be linked

directly to three strands in the literature of program evaluation. The �rst strand is the sample

selection approach typi�ed by Heckman and Robb (1985). The main criticism of this approach is

that it requires strong assumptions to obtain consistent estimation of the parameters of the model

(e.g. Lalonde, 1986). We note that the typical parameters studied in the program evaluation

literature are not necessarily the parameters we study. As we observed in Example 1, one of the

parameters we examine includes the average treatment on the treated parameter studied in the

literature as a special case. The condition we place for its identi�cation, in this case, coincides

with the standard condition to identify the average treatment on the treated parameter. In this

sense our framework can be seen as a generalization of the identi�cation result to allow di�erent

types of policies.

A second strand is the instrumental variables or natural experiment approach typi�ed by Im-

bens and Angrist (1994). The main criticism of this approach is that it either requires very strong

assumptions or the coe�cients do not converge to the policy relevant parameters of interest.21

We draw on the natural experiment approach in two ways. First, we study the local e�ects which

are similar in form to the \LATE" parameter de�ned by Imbens and Angrist (1994). Second, we

share the idea of exploiting the variation in the data that are most relevant for the variation we

wish to examine.

Our framework extends the natural experiment framework by formally considering a policy

parameter separately from the conditioning variables. This allows us to explicitly de�ne the

policy impact parameters ex-ante and then to discuss conditions for identi�cation and estimation

of such parameters. There are special cases in which the parameters we examine and the LATE

parameter coincide which we discuss in the empirical section below.

Another bene�t of making the policy parameter explicitly di�erent from the conditioning

variable is that we can meaningfully de�ne what we mean by a policy equivalent variation and then

make use of economic models to link variation in some variable with a policy under consideration.

A third strand is the matching method typi�ed by Cochran and Rubin (1973), Rosenbaum

21See Heckman (1997).
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and Rubin (1983), Heckman, Ichimura, Smith, and Todd (1998), and Heckman, Ichimura, and

Todd (1997, 1998). The main criticism of this approach is that the identi�cation condition is

generally not testable within its framework and that it is consistent with a model that allows

selection on unobservable only under special cases.22 We draw on this approach by paying closer

attention to the distribution of observables than much of the previous literature. In some sense

our approach is matching except that we use some aspect of an economic model to justify the

match rather than the distance of the regressors typically employed in the literature.

To see this consider the tuition subsidy example. In this context, what we want to estimate

is, for example

E
�
Y
�
t� �0

�
� Y (t) jT = t;X = x

�
= E

�
Y1 (x)D

�
t� �0; x

�
+ Y0 (x)

�
1�D

�
t� �0; x

��
jT = t;X = x

�
�E (Y (t) jT = t;X = x) :

The second term of the right-hand side can be identi�ed directly in the data so that we concentrate

on identifying the �rst term. Note that if T is independent with fD (t;X)gt given X and that T

is excluded from outcome variables, then the following equalities holds:

E
�
Y1 (x)D

�
t� �0; x

�
+ Y0 (x)

�
1�D

�
t� �0; x

��
jT = t;X = x

�
= E

�
Y1 (x)D (T; x) + Y0 (x) (1�D (T; x)) jT = t� �0; X = x

�
:

As the right hand side is identi�ed in the data, the left hand side is. In this sense, the approach

can be viewed as matching.

When viewed in this manner our approach is also similar to Manski (1993). In our approach

we show how the econometrician can study an individual who faces tuition t� �0, to learn about

the behavior of an individual who faces t if the policy is enacted. Manski models how agents

study other individuals to learn about their own outcomes under alternative choices.

4 Estimation

4.1 Nonparametric method

We consider estimation of � (z; �0; �) and �c (z; �
0; �) making use of the identi�cation results dis-

cussed earlier. Estimation of the marginal parameters follow directly from estimators of � (z; �0; �)

22See Heckman and Robb (1985).
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and �c (z; �
0; �) and hence discussions of them are omitted.

Recall that

�
�
z; �0; �

�
= E

�
Y (z; �0)� Y (z; �)

�
:

As E [Y (z; �)] can be estimated using the standard nonparametric regression method, we shall

only discuss estimation of the counter factual parameter E [Y (z; �0)]. Let

Z�
�
z; �0; �

�
� D(z; �0; �) \ Z0(z; �) \ Z1(z; �):

As our examples show, there are some cases in which set Z� (z; �0; �) is known ex-ante and others in

which it needs to be estimated. Set Z� (z; �0; �) is known in Examples 1 and 2 without estimation

of any parameters. However in Examples 3 and 4 we must �rst estimate some aspects of the model

before we can construct Z� (z; �0; �). As estimation of set Z� (z; �0; �) is case speci�c, below we

assume that the set is known or has been estimated.

Note that under our identi�cation condition, for any z� in Z� (z; �0; �),

E
�
Y (z; �0)

�
= E [Y (z�; �)] : (1)

For each z�, the right-hand side can be estimated using the standard nonparametric regression

method. Thus when Z� (z; �0; �) is a singleton, the natural way to estimate � (z; �0; �) is to

contrast two nonparametric regression estimators, one centered at z�, and the other centered at

z.

When there are multiple elements in Z� (z; �0; �), however, we need to address the manner in

which di�erent z� values would be combined. One possibility is to take a weighted average across

the di�erent points. Alternatively, one can exploit the following equality,

E
�
Y (z; �0)

�
= E

�
Y (Z�; �)jZ� 2 Z�

�
z; �0; �

��
(2)

which is an implication of E [Y (z; �0)] = E [Y (z�; �)]. Note that it can happen that the dimension

of vector z� is higher than the dimension of the smallest linear space that includes Z� (z; �0; �).

The index model discussed above is an example. In that case, the weighting approach involves

averaging of the higher dimensional nonparameteric estimation than that involved for an imple-

mentation based directly on this equation. Since the case with singleton Z� (z; �0; �) is a special

case of the latter method, we de�ne the estimator of � (z; �0; �) as an estimator of,

E
�
Y (Z�; �)jZ� 2 Z�

�
z; �0; �

��
�E [Y (z; �)] :
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Based on the relationship,

�c(z; �
0; �) =

�(z; �0; �)

jPrfD(z; �0) = 1g � PrfD(z; �) = 1gj
;

the problem of estimating �c(z; �
0; �) is reduced to the problem of estimating PrfD(z; �0) = 1g,

which, by the same reasoning can be estimated using,

E
�
D(z; �0)

�
= E

�
D(Z�; �)jZ� 2 Z�

�
z; �0; �

��
:

Thus we de�ne the estimator of �c (z; �
0; �) as an estimator of,

E [Y (Z�; �)jZ� 2 Z� (z; �0; �)]�E [Y (z; �)]

jE [D(Z�; �)jZ� 2 Z� (z; �0; �)]� PrfD(z; �) = 1gj
:

4.2 Alternative Parameters

When the dimension of the linear space that includes Z� (z; �0; �) is high, we face the curse of

dimensionality problem. There are two approaches established in the literature to deal with the

curse of dimensionality. The �rst is to average the pointwise estimates as is done in this subsection.

The second is to exploit parametric restrictions researchers are willing to impose which we discuss

in the next subsection.

The averaging idea is to give up on estimating � (z; �0; �) or �c (z; �
0; �) and instead condition

on a larger set of observables which can be estimated with smaller variance. For set S � Z we

generalize the notation so that

�(S; �0; �) = E
�
Y (Z; �0)� Y (Z; �) j Z 2 S

�
�c(S; �

0; �) = E
�
Y (Z; �0)� Y (Z; �) j Z 2 S; d(Z; �0) 6= d(Z; �)

�
=

�(S; �0; �)

Pr (d(Z; �0) 6= d(Z; �) j Z 2 S)

The choice of set S is dictated by two considerations. The �rst consideration is to de�ne the

group one is interested in studying. The second consideration is to de�ne the subgroup of which

one can expect to estimate the impact. For example, in order to estimate � (z; �0; �), we need to

be able to estimate both E [Y (Z�; �)jZ� 2 Z� (z; �0; �)] and E [Y (z; �)] at the same time. This

requires that the Lebesgue density of z and Z� (z; �0; �) be bounded away from 0 at all points in

S.23

23The same issue is considered in Heckman, Ichimura, Smith, and Todd (1998).
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By the iterated expectation

E
�
�
�
Z; �0; �

�
jZ 2 S

	
= E

�
E
�
�
�
z; �0; �

�
jZ = z

�
jZ 2 S

	
:

Thus the averaged parameter can be obtained as the averages of the pointwise estimators.

Note that

E
�
�
�
Z; �0; �

�
jZ 2 S

	
= E

�
E
�
Y (Z�; �)jZ� 2 Z�

�
Z; �0; �

��
jZ 2 S

	
�E fY (Z; �) jZ 2 Sg

and that in some cases alternative methods for estimation can be considered because

E
�
E
�
Y (Z�; �)jZ� 2 Z�

�
Z; �0; �

��
jZ 2 S

	
simpli�es. For example consider a case, when Z� (Z; �0; �) is a singleton and for a given measurable

function �, Z� = � (Z; �0; �). Then under Assumption 1,

E
�
E
�
Y (Z�; �)jZ� 2 Z�

�
Z; �0; �

��
jZ 2 S

	
= E

�
E
�
Y
�
�
�
Z; �0; �

�
; �
�
jZ
�
jZ 2 S

	
= E

�
Y
�
�
�
Z; �0; �

�
; �
�
jZ 2 S

	
:

There are a number of ways to estimate the model based on this equality. Two possibilities follow,

1. One could �rst estimate Y (Z�; �) using nonparametric regression. Once we have done that,

for each Z we can construct Y (�(Z; �0; �); �) and then average it over the data.

2. Letting g be the unconditional density of Z and gS the distribution of Z conditional on

Z 2 S, we could use the density weighted average,

E
�
Y
�
�(Z; �0; �); �

�
j Z 2 S

	
=

Z
E(Y j Z� = �(Z; �0; �))gc(Z)dZ

=

Z
E(Y j Z�)

gc(�
�1(Z�; �0; �))

g(Z�)

@��1(Z�; �0; �)

@Z�
g(Z�)dZ�

= E

�
Y
g(��1(Z�; �0; �))

g(Z�)

@��1(Z�; �0; �)

@Z�

�
:

Our empirical section below clari�es and implements this idea.

Note that in either case one needs to estimate either conditional mean of Y (Z�; �) or density

g(Z�) both of which are high dimensional objects. However the averaging should yield higher

convergence rates than for the parameters discussed in the previous section.
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4.3 Parametric Restrictions

The second dimension reduction approach requires some form of parametric restrictions. Typically

they are placed on the conditional mean function of the outcome and choice variables. For

example, Let X denote the exogenous variables that a�ect both outcome and choice variables and

T (�) denote the policy related variables that only a�ect program participation. The potential

outcome equations and choice variables may be speci�ed as

Y1 = �1 +X 0�1 + V1

Y0 = �0 +X 0�0 + V0

D = 1
�
X 0�X + T (�)0 �Z + U � 0

	
where (X;T (�)) and (V0; V1; U) are independent. With this restriction, � (z; �0; �) and �c (z; �

0; �)

are both functions of three indices, X 0�1, X
0
0�0, and X 0�X + T 0 (�) �Z . If we further restrict

�0 = �1, then both are functions of two indices. The last formulation is the one we employ in the

example below.

5 Empirical Example

5.1 Methodology

In this section we estimate the impact of a tuition subsidy following the example above. We

assume that in the current state of the world there is a tuition level Ti in place for each individual

i. A new tuition subsidy of the amount �0 is proposed while there is currently no subsidy (� = 0).

We take this to be a state level or narrowly targeted subsidy to rule out general equilibrium e�ects

of the type discussed by Heckman, Lochner, and Taber (1998). Our goal is to estimate the impact

that this subsidy will have on earnings.

We measure this impact using the conditional parameter,

�c

�
Z
�
�0
�
; �0; �

�
;

where Z (�0) is a subset of the support of the observables. We assume that Z is composed of

tuition, T , and other conditioning variables, X. The key assumption is that expected earnings

conditional on (T;X) in the counter-factual world is equivalent to expected earnings conditioning

on (T 0;X) in the current (� = 0) world where T 0 = T � �0.
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Consider estimation of the policy counter-factual E (Y (T;X; �) j(T;X) 2 Z (�0)). As in our

example above we can write,

E
�
Y (T;X; �) j(T;X) 2 Z

�
�0
��
Pr
�
(T;X) 2 Z

�
�0
�	

=

Z
Z(�0)

E
�
Y (t; x; �0)

�
g(t; x)dtdx

=

Z
Z(�0)

E(Y (t� �0; x; 0))g(t; x)dtdx

=

Z
Z(0)

E(Y (t�; x; 0))g(t� + �0; x)dt�dx

=

Z
Z(0)

E(Y (t�; x; 0))

�
g(t� + �0; x)

g(t�; x)

�
g(t�; x)dt�dx:

where t� = t � �0. Given an estimate ĝ of the density g, we can create the sample analogue of

this expression,

E
�
Y
�
T;X; �0

�
j(T;X) 2 Z

�
�0
��

=

PN
i=1 Yi

�
bg(Ti+�0;Xi)
bg(Ti;Xi)

�
1((Ti;Xi) 2 Z (0))PN

i=1

�
bg(Ti+�0;Xi)
bg(Ti;Xi)

�
1((Ti; Xi) 2 Z (0))

:

We can then use the same method to estimate the counter-factual college attendance

E (D (T;X; �0) j(T;X) 2 Z (�0)), and combine the estimates to form the parameter.

As we discussed, with a large number of covariates, the nonparametric strategy faces the

curse of dimensionality problem. In particular, a high dimensional density function needs to be

estimated for the case above. For this reason we consider a two dimensional index model as

discussed above to obtain,

E fY (X;T; 0) jX;Tg = P
�
X

0

1
 � T
�
g1

�
X

0

1
 � T;X
0

2�
�

+
�
1� P

�
X

0

1
 � T
��

g0

�
X

0

1
 � T;X
0

2�
�
:

where T represents tuition, and X1and X2 are composed variables in X that will typically have

some elements in common. Note that we assume common � in functions g0 and g1.

This speci�cation arises naturally in the standard selection model with additive error terms but

that is not necessary to justify this speci�cation. Under the standard additive error speci�cation,

one way of estimating the semiparametric model would be to �rst estimate the entire model

including the full joint distribution of (u; "1) and the joint distribution of (u; "2), and then simulate

the e�ect. While many semiparametric estimators do a good job estimating the slope parameters,
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they often perform poorly when estimating the joint distribution of the error terms.24 Our

approach is to estimate this parameter directly and avoid estimating the distribution of the error

terms. In practice, often estimates of the distribution are represented by a low dimensional


exible form. This faces the challenge of approximating the full distribution by a small number

of parameters. It seems reasonable that they may do a poor job in estimating the relatively small

part of the joint distribution that is relevant for the policy simulation. We avoid this problem by

essentially using only the part of the distribution that is relevant.

Under a maintained independence assumption there are a number of di�erent methods one

could use. One possibility would be to estimate the second stage model,

E(Y (X;T; 0) j D;X; T ) =X
0

2� +D(X;T; 0)E
�
"1 j X;T;X

0

1
 + T + u > 0
�

+ (1�D(X;T; 0))E
�
"0 j X;T;X

0

1
 + T + u < 0
�

�X
0

2� +D(X;T; 0)g1

�
X

0

1
 � T
�
+ (1�D(X;T; 0)) g2

�
X

0

1
 � T
�
:

One could then simulate the counter-factual since,

E
�
Y
�
Z; �0

�
� Y (Z; 0) j D(Z; �0) > D(Z; 0); Z

�
=

p0g1

�
X

0

1
 � T + �0
�
+ (1� p0) g2

�
X

0

1
 � T + �0
�
� pg1

�
X

0

1
 � T
�
� (1� p0) g2

�
X

0

1
 � T
�

p0 � p

where p0 = Pr(X
0

1
 � T + �0 + u > 0) and p = Pr(X
0

1
 � T + u > 0). This is essentially another

reduced form approach to the problem. To show that this parameter is identi�ed, you would

need to show that g1

�
X

0

1
 � T + �0
�
and g0

�
X

0

1
 � T + �0
�
are identi�ed which uses precisely

the type of identi�cation strategy we provide above. It typically does not require that the joint

distribution of the error terms be globally identi�ed. The primary advantage of our estimator

versus this one is that we do not rely on the additive independent error terms. We use it only for

convenience.

To simplify the exposition we de�ne

T � � Z
0


 + T

X� � X 0�

Y (T �;X�; �) = Y ((X;Z; T ); �)

D (T �; �) = D ((X;Z; T ); �)

24See for example Heckman and Singer (1984) or Cameron and Taber (1996).
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Speci�cally to estimate the parameter we use the following procedure:

0. Dimension Reduction: Estimate 
 and � from Semiparametric Least Squares,25 call them


̂ and b� respectively.26

1. Estimate g(T �;X�) with a kernel density estimator using
�
Z
̂;X�̂

�
, call it ĝ.

2. For the trimming value �t, �nd gt such that ĝ(ti; xi) > gt with fraction 1� �t in the data.

3. De�ne Z (�0) = f(t; x) 2 <2 : ĝ(t� �0; x) > gtg.
27

4. Construct estimates,

Ê
�
Y (T �;X�; �) j(T �;X�) 2 Z

�
�0
��

=

PN
i=1 Yi

�
bg(T �

i +�
0;X�

i )
bg(T �

i
;X�

i
)

�
1 (bg(T �

i ;X
�
i ) > gt)PN

i=1

�
bg(T �

i +�
0;X�

i )
bg(T �

i ;X
�
i )

�
1 (bg(T �

i ;X
�
i ) > gt)

Ê
�
Y (T �;X�; 0) j(T �;X�) 2 Z

�
�0
��

=

PN
i=1 Yi1(bg(T �

i � �0; X�
i ) > gt)PN

i=1 1(bg(T �
i � �0;X�

i ) > gt)

Ê
�
D (T �; �) j(T �;X�) 2 Z

�
�0
��

=

PN
i=1Di

�
bg(T �

i +�
0;X�

i )
bg(T �

i ;X
�
i )

�
1 (bg(T �

i ;X
�
i ) > gt)PN

i=1

�
bg(T �

i +�;X
�
i )

bg(T �
i ;X

�
i )

�
1 (bg(T �

i ;X
�
i ) > gt)

Ê
�
D (T �; 0) j(T �;X�) 2 Z

�
�0
��

=

PN
i=1Di1(bg(T �

i � �0;X�
i ) > gt)PN

i=1 1(bg(T �
i � �0; X�

i ) > gt)

5. Put the various terms together so that

b�c

�
Z
�
�0
�
; �0; �

�
=

Ê (Y (T �;X�; �) j(T �; X�) 2 Z (�0))� Ê (Y (T �;X�; 0) j(T �;X�) 2 Z (�0))

Ê (D (T �; �) j(T �;X�) 2 Z (�0))� Ê (Y (T �; 0) j(T �; X�) 2 Z (�0))

This parameter will have the interpretation as a return to college. That is suppose we estimated

a value �̂c (�
0) = 0:30 where the dependent variable Y is log wages. We would interpret this

parameter as implying that those people who are induced to attend college by a tuition subsidy

of �0 will see their wages grow by .30 log points in expectation.

25See Ichimura (1993).
26That is, we estimate � by �nding the minimizer of

N1X

i=1

(Y1i �X
0
i� � â1(Z

0
i
))

2 +

N0X

i=1

(Y0i �X
0
i� � â0(Z

0
i
))

2

where for j = 0; 1; âj is obtained from a kernel regression of (Yj �X 0�) on Z0
.
27Z (�0) picks up both the fact that we have trimmed out some of the observations with low density and have

eliminated the values of the observables for which the parameter is not observable. In practice the parameter is
identi�ed for more than 99 percent of the sample. This is driven in large part by the index model we are using. If
we relied solely on variation from the tuition data, the identi�cation problem would be much more severe.
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5.2 Comparison with Instrumental Variables

It may be useful to compare this estimator to instrumental variables before estimating the model.

For the sake of exposition we consider a case in which there are no conditioning variables so we

focus only on the exclusion restriction T . The simplest case is in which there is no heterogeneity

in the treatment e�ect so that for everyone in the population Y 1 � Y 0 = �. In this case both

estimators will yield consistent estimates of �.

In the case in which there is heterogeneity in the treatment e�ect, but tuition T , takes on

only two values say t1 and t2, where t1 < t2;the IV method using tuition as an instrumental

variable will converge to LATE as Imbens and Angrist (1994) have shown. In this case LATE

can be interpreted as the impact of the tuition subsidy policy of (t2 � t1) which would be given

to anyone facing t2 originally. In this case LATE and �c(�
0; �) would correspond exactly and the

estimators would correspond exactly (once we have replaced the densities in the derivation above

with probabilities).

The more realistic case in this example is where tuition takes on more than two values. Angrist,

Graddy, and Imbens (1997) and Heckman and Vytlacil (1999) use alternative formulations to

interpret the probability limit of the linear instrumental variables estimate in this type of case.

For their application, Angrist, Graddy and Imbens show that it is a weighted average of derivatives

of the demand functions. Heckman and Vytlacil show that it is a weighted average of Local IV

parameters. In both cases the weights are very hard to interpret making the estimate very hard

to interpret. In contrast to IV, when it is identi�ed our estimator produces a parameter that is

easy to interpret.

As an example consider the tuition result where in the current world tuition T measured

in thousands of dollars takes on J values S = (t1; :::; tJ ) where t1 < � � � < tJ , with marginal

probabilities (P1; :::; PJ ). Assume for simplicity that these tuition values are equally spaced with

�. In this case there are a number of di�erent policy counter factuals we can identify. One is

a � thousand dollars subsidy to anyone who would pay tuition in the current state of the world

except for the minimum tuition t1. Let ~S = S n ft1g. In this case our conditional parameter,

�c( ~S; �
0; �) = E

�
Y
�
�0
�
� Y (�) j ~S; d(T; �0) 6= d(T; �)

�

=

JX
j=2

E
�
Y1 � Y0 j d(T; �

0) 6= d(T; �); T = tj
�
Pr
�
T = tj j ~S; d(T; �

0) 6= d(T; �)
�
:
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Note that

Pr
�
T = tj j ~S; d(T; �

0) 6= d(T; �)
�
=

Pr
�
d(T; �0) 6= d(T; �)jT = tj; ~S

�
Pr
�
T = tjj ~S

�
Pr
�
d(T; �0) 6= d(T; �)j ~S

� :

Thus our policy parameter is a weighted average of something related to the LATE parameters

and the weights are easily interpretable. For each tuition level the weight is the ratio of population

a�ected at that particular tuition level to the population a�ected at some level of tuition. The key

to the interpretability of the weights is the policy equivalent variation we introduced in this paper.

The weight we would use is automatically adjusted appropriately when we de�ne the policy of

interest and its policy equivalent variation. Using this framework, at each level of tuition, we

can hypothesize individuals choosing di�erent schooling as they face two distinct policies. In the

LATE framework, in order for individuals to choose di�erent schooling, they need to face two

distinct tuitions. Thus the LATE parameter needs to be de�ned across two di�erent tuition levels.

When there are more than two potential outcomes, then, the weight takes a complicated form

that is hard to make sense.

To see this we explicitly derive the weight for IV when there are more than 2 points in the

support of the IV. We can show that

�IV =
cov(T; Y )

cov(T; d)

=

PJ
j=1

PJ
k=1 [E (Y jT = tj)�E (Y jT = tk)] tj Pr (T = tj) Pr (T = tk)PJ

j=1

PJ
k=1 [Pr (d = 1jT = tj)� Pr (d = 1jT = tk)] tj Pr (T = tj) Pr (T = tk)

=

PJ
j=1

P
k<j [E (Y jT = tj)�E (Y jT = tk)] (tj � tk) Pr (T = tj) Pr (T = tk)PJ

j=1

P
k<j [Pr (d = 1jT = tj)� Pr (d = 1jT = tk)] (tj � tk) Pr (T = tj) Pr (T = tk)

:

As Imbens and Angrist (1994) showed, for any t and t0 2 S

E (Y jT = t)�E
�
Y jT = t0

�
= E

�
Y1 � Y0jd (t) > d

�
t0
��
Pr
�
d (t) > d

�
t0
��
�E

�
Y1 � Y0jd (t) < d

�
t0
��
Pr
�
d (t) < d

�
t0
��

and that under monotonicity

E (Y jT = t)�E
�
Y jT = t0

�
= E

�
Y1 � Y0jd (t) 6= d

�
t0
�� �

Pr (d = 1jT = t)� Pr
�
d = 1jT = t0

��
:

29



Thus

�IV =

JX
j=1

X
k<j

E (Y1 � Y0jD (tj) 6= D (tk))w (tj; tk)

where,

w (tj; tk) =
[Pr (d = 1jT = tj)� Pr (d = 1jT = tk)] (tj � tk) Pr (T = tj) Pr (T = tk)PJ

l=1

P
m<l [Pr (d = 1jT = tl)� Pr (d = 1jT = tm)] (tl � tm) Pr (T = tl) Pr (T = tm)

:

This weight can be interpreted as the contribution of the support points tj and tk in the overall

covariance of d and T .28 But why we should weight this way is much more di�cult to justify.

5.3 Results

We now turn to the empirical exercise of estimating the e�ect of tuition subsidies on wages. We

use data from the National Longitudinal Survey of Youth using a speci�cation very similar to

Cameron and Taber (1999).29 Our experimentation indicates that tuition has a weak e�ect in

the �rst stage, so we use tuition as well as the presence of a four year college in the county as

exclusion restrictions.30 In order to be consistent with our model above we choose schooling to

be a binary variable indicating whether the individual attended college. Thus in terms of the

notation above, Di is an indicator of whether the student attended college, � indexes di�erent

levels of tuition subsidies, and Yi is the log wage of individual i.

As we discussed, our tuition variable is measured by the average tuition of 2 year colleges in

the state in which the individual lived at age 17. We need to assume that this variable and the

unobservable in the choice equation are independent given the conditioning variables. Because we

expect the tuition variable to be correlated with some state characteristics which also can be cor-

related with the individual characteristics, we condition on �ve background characteristics: race,

parental education level, AFQT score, mean local income variables, and number of siblings. In

addition, as we expect shorter experience for college graduates at the same age, we also condition

on experience.

An issue that arises here as in other applications is the choice of bandwidth for the density

g. We used the following procedure: After estimating 
̂ and �̂ we replace values for Y so that

28We have derived this estimator as a weighted average of all of the local average treatment e�ects. Alternatively
we could have derived it as a weighted average of the local-Late variabes, E (Y (1)� Y (0) j D(tj) 6= D(tj+1)) :This
gives weights that are even harder to interpret (at least for us).

29Details about the data are provided there.
30Kane and Rouse (1993) also use tuition as an exclusion restriction in estimating the returns to schooling, and

Card(1995) uses the presence of a college.
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Y1 = 1 and Y0 = 0 for all individuals in the sample. We �rst choose a bandwidth for the �rst

dimension. We then experiment with alternative values of the bandwidth of the second dimension

so that the estimator of b�c (Z (�0) ; �0; �) on the simulated data is one. We have experimented

with alternative values of the �rst and second dimension around those points and �nd that the

results are not very sensitive to the bandwidth choices.31

The empirical results are presented in Tables 2 and 3. It should be kept in mind that these

parameters represent the e�ect of attending college, not the return to a year of college. For

comparison, in the �rst row of Table 2 we present the ordinary least square estimate of the returns

to college and in the second we present the result from instrumental variables, instrumenting with

tuition and with a dummy variable that indicates whether there is a college present in the county.

We then estimate a selection model using a Heckman two step method and use that model to

simulate the e�ect of several levels of tuition subsidies.We �nd that the selection results are lower

than the OLS estimates, and that the IV estimates are higher. In results not reported, when we

use tuition alone we �nd that the IV estimates are much higher than OLS, while using presence

of a college yields estimates of approximately 0.17.

In Table 3 we present the estimates of the policy simulations using the methodology outlined

above. As one can see, these estimates are fairly close to the IV results particularly for the larger

subsidies. The $100 yields a somewhat larger return of 0.410. These results suggest that students

closer to the margin of whether to attend college have higher returns than others. There are a lot

of caveats in interpreting these results. While most of these problems could be addressed, we view

this exercise as an example of what one could do using these methods, rather than as an empirical

exercise unto itself. Thus, for the sake of brevity we will refrain from a lengthy discussion of the

many issues that arise.

6 Conclusions

When computational capacity is limited it is natural to construct and estimate a parsimonious

model and then to use the result in many ways. The structural estimation approach shares this

\estimate once, use many times" approach but takes advantage of the increased computational

capacity by making the model more realistic in many dimensions in the way it was not possible

31Changing a bandwidth by a factor of 2 typically yields a change in the estimated e�ect of approximately .02.
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before. In this paper we discuss an alternative way to take advantage of increased computational

capacity. Our approach is to construct and estimate a di�erent model tuned for each of a particular

parameter we wish to estimate. We discuss this approach in the context of measuring policy

impacts.

We present a framework to directly estimate the impact of a new policy using a reduced form

approach. We provide precise conditions under which the policy counter-factual can be estimated

directly. This requires essentially three types of conditions. First, it requires some structure to

be placed on the problem. Second, it requires an exclusion restriction. Third, it requires support

conditions on the data.

Our results are applicable to ex-ante as well as ex-post policy analysis. To make this point, we

have considered estimation of a new policy e�ect using data generated under old policy regime.

We also presented an estimator that uses these ideas and applied it to the study of tuition

policy. In this case the estimator takes the form of a simple density ratio weighted average of the

outcome variable. The empirical work �nds estimates of the payo� of tuition subsidies that are

quite high and that smaller subsidies yield higher returns per individual.

When our goal is simply to estimate a policy impact, this approach improves over two stage

methods that �rst estimate a full structural model and then simulate the policy e�ect for three

reasons. First, there are cases in which the full model is not identi�ed but the policy counter-

factual can be identi�ed. Second, we can often impose fewer assumptions and avoid spelling out

preferences and the stochastic environment when they are not necessary for identi�cation of the

policy e�ect. Third, estimation is focused on the range of the data that is most informative for

estimating the policy counter-factual.

There are cases in which not all the policy impacts can be identi�ed using the approach we

have presented in this paper but some policies impacts are. In this case we need to resort to

a more structural or parametric approach for the policy impacts our approach can not identify.

Using the policy impact parameters both approaches identify we can examine the speci�cation

assumptions behind the more structural approach.

We see a number of extensions of this work. First, the estimator proposed can be formalized

and extended to other contexts. Second, we believe the approach itself will prove useful in a wide

range of empirical applications. For this purpose it will be useful to consider a decision framework

where more than binary choice is involved.
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Appendix

Proof of Lemma 1: Note that for any z� 2 Z0(z) \ D(z;�; �
0)

Pr
�
Y0(z) � yjD(z; �0) = 0

	
=

E f1fY0(z) � yg1fD(z; �0) = 0gg

E f1fD(z; �0) = 0gg

=
E f1fY0(z) � yg1fD(z�; �) = 0gg

E f1fD(z�; �) = 0gg

=
E f1fY0(z

�) � yg1fD(z�; �) = 0gg

E f1fD(z�; �) = 0gg

= Pr fY0(z
�) � yjD(z�; �) = 0g :

The �rst equality follows from the de�nition. The second equality follows from Assumption 2.
The third equality follows from Assumption 2. The fourth equality follows from the de�nition.
Since the last expression is uniquely determined in observable population, the �rst expression
is also unique which implies the identi�cation result (i). Result (ii) follows from an analogous
argument as that for (i).

Proof of Theorem 2: We can write �(z; �0; �) as the sum of three separate pieces,

�(z; �0; �) = E
�
D(z; �0)Y1 (z)

�
+E

�
(1�D(z; �0))Y0(z)

�
�E[Y (z; �)]:

Notice �rst that E[Y (z; �)] is identi�ed directly from the data. Also E(D(z; �)Y1 (z)) and E[(1�
D(z; �))Y0 (z)] are identi�ed using the results from Lemma 1 when the means are �nite.

Proof of Corollary 3:By Theorem 2, we know that �(z; �0; �) is identi�ed. Under As-
sumption 3 PrfD (z; �0) 6= D (z; �)g is identi�ed, so by the observation in text, �c(z; �

0; �) is
identi�ed.

Proof of Corollary 4:Under Assumption 4 and by Theorem 2 we know that �(z; �; �0) is
identi�ed for all �0 = � + �e� for which � < �� (z; e�; �). Since,

�m(z; e�; �) = lim
�#0

�(z; �0; �)

�

then if �m(z; e�; �) exists, it is identi�ed .
Proof of Corollary 5: Under Assumption 4 and by Corollary 3 we know that �c(z; �; �

0)
is identi�ed for all �0 = � + �e� for which � < �� (z; e�; �) : Since,

�m
c (z; e�; �) = lim

�#0

�c(z; �
0; �)

�

then if �m
c (z; e�; �) exits, it is identi�ed .



Table 1

Summary Statistics,
Estimates of College Attendance,

and Estimates of Log Wage Equation
Males, National Longitudinal Survey of Youth

Standard Stage 1z Stage 2�

Variable Mean Deviation Coe�cient Coe�cient

Tuitiony 0.73 0.42 -6.04
College in County 0.87 0.34 21.74
Black 0.31 0.46 9.18 -0.10
Hispanic 0.19 0.39 1.00 -0.03
AFQT Test Score 0.205 22.14 11.79 0.005
Father's Highest Grade 10.46 4.08 -0.59 0.003
Mother's Highest Grade 10.76 3.19 1.45 0.002
Number of Siblings 3.75 2.63 0.19 0.007
Mean Local Income 13.57 2.74 -2.76 0.02
Experience 6.41 3.52 0.07
Experience Squared/100 0.53 0.49 -0.30

Sample Sizex 2223 17068
y Tuition is the average tuition of 2 year colleges of the state in which the

individual lived at age 17 measured in thousands of 1986 dollars.
z The �rst stage uses Semiparametric Least Squares to estimate the e�ects

of these variables on college attendance.
� The second stage uses Semiparametric Least Squares to estimate a linear

log wage equation model where the distribution of the error term is unspeci�ed.

The coe�cients are restricted to be the same by college, but the

conditional expectation of the error term di�ers.
x The sample size di�ers because we have longitudinal data on wages.



Table 2

Estimates of College Return Using Standard Methods
Males, National Longitudinal Survey of Youth

Level of Return Change in
Method Subsidy to College College Attendance

Ordinary Least Squares: 0.217

Instrumental Variables: (LATE) 0.296

Sample Selection with Mills's ratio:
(ATE) 0.116 1.0
$ 1000 0.156 0.046
$ 500 0.160 0.023
$ 100 0.164 0.005



Table 3

Direct Estimation of Policy E�ect
Males, National Longitudinal Survey of Youth

Level of Return Change in
Subsidy to College College Attendance

$ 1000 0.346 0.055
$ 500 0.354 0.022
$ 100 0.410 0.005


