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ABSTRACT

This paper uses Wald’s concept of the risk of a statistical decision function to address the
question: How should sample data on treatment response be used to guide treatment choices in a
heterogeneous population? Statistical treatment rules (STRs) are statistical decision functions that
map observed covariates of population members and sample data on treatment response into
treatment choices. I propose evaluation of STRs by their expected welfare (negative risk in Wald’s
terms), and 1 apply this criterion to compare two STRs when the sample data are generated by a
classical randomized experiment.

The rules compared both embody the reasonable idea that persons should be assigned the
treatment with the best empirical success rate, but they differ in their use of covariate information.
The conditional success (CS) rule selects treatments with the best empirical success rates conditional
on specified covariates and the unconditional success (US) rule selects a treatment with the best
unconditional empirical success rate. The main finding is a proposition giving finite-sample bounds
on expected welfare under the two rules. The bounds, which rest on a large-deviations theorem of
Hoeffding, yield explicit sample-size and distributional conditions under which the CS Rule is

superior to the US rule.
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1. Introduction

This paper uses the Wald (1950) concept of the risk of a statistical decision function to integrate
statistical analysisof treatment response with normative analysis of treatment choice. | begin from the premise
that empirical studies of treatment response should aim to improve treatment choices. The question | address
is: How should sample data on treatment response be used to guide treatment choices in a heterogeneous
population?

Bayesian decision theory coherently integrates statistical and normative analysis, but rests on a
subjective probabilistic foundation that has inhibited applications. Prevailing frequentist research practices
connect statistical analysisto normative objectives only loosaly, if at al. Many empirical studies test the null
hypothesis that some treatment effect is zero, with no reference to a decision problem that might motivate the
test. Many studies report estimates of treatment effects, but do not evaluate the estimation methods used from
the perspective of adecision problem. Viewing this situation, | concluded that Wald' s frequentist approach,
once well-appreciated but not much used today, warrants renewed attention.

The class of treatment choice problems considered here combines some realism and some simplicity.
Asin some of my recent research focused on identification problems (Manski, 1997a, 1998, 1999), | assume
that a planner must choose a treatment rule assigning a treatment to each member of a heterogeneous
population of interest. The planner might, for example, be a physician choosing medica treatments for each
member of apopulation of patients or ajudge deciding sentencesfor each member of apopulation of convicted
offenders. The planner observes certain covariates for each person; perhaps demographic attributes, medical
or criminal records, and so on. These covariates determine the set of non-randomized treatment rules that are
feasible to implement: the set of feasible such rulesisthe set of al functions mapping the observed covariates
into treatments. Each member of the popul ation has aresponse function mapping treatmentsinto areal-val ued
outcome of interest; perhaps a measure of health statusin the case of the physician or ameasure of recidivism

in the case of the judge. | assume that the planner wants to choose a feasible treatment rule that maximizes
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the population mean outcome; in economic terms, the planner wants to maximize a utilitarian social welfare
function. An early discussion of treatment choice from this perspective appearsin Stafford (1985). Manski
and Nagin (1998) uses this framework to analyze judges sentencing decisions and Dehejia (1999) uses it to
study trestment choices for welfare recipients. Heckman, Smith, and Clements (1997) propose alternativesto
the idea of maximizing population mean outcome.

Under the above assumptions, an optimal treatment rule assigns to each member of the population a
treatment that maximizes mean outcome conditional onthe observed covariates. Plannersrarely, however, have
the knowledge of treatment response needed to implement optimal rules. Empirical analysis of treatment
response seeks to provide this knowledge, but identification problems and tatistical issues stand in the way.
Over time, abody of research has illuminated the identification problems (e.g., Angrist, Imbens, and Rubin,
1996; Balke and Pearl, 1997; Heckman and Robb, 1985; Hotz, Mullins, and Sanders, 1997; Imbens and
Angrist, 1994; Manski, 1990, 1995, 1997b; Manski, Sandefur, M cL anahan, and Powers, 1992; Robins, 1989;
Rosenbaum, 1995; Rosenbaum and Rubin, 1983) and some work has addressed the statistical issues from a
Bayesian perspective (e.g., Dehgjia, 1999; Rubin, 1978). Frequentist statistical inference, however, has
remained focused on hypothesis testing and on the asymptotic behavior of estimates. Frequentist statistical
inference requires re-orientation to better inform treatment choice. Wald' sapproach iswell-suited to thistask.

Section 2 setsout the treatment-choice problem formal ly. After specifying the planner’ s choice set and
objective, | present the optimal treatment rule and characterize the value of covariateinformation. | then define
statistical treatment rules, which are rules that map covariates and sample data into treatments. The term
statistical treatment rule, or STR for short, recals Wald (1950), who used the term statistical decision
function to describe functions that map sample data into decisions. | also introduce the class of STRs that
condition on covariates.

We immediately confront a conceptual question about the evaluation of STRs, and of statistical

decision functions more generally. Should such rules be evaluated ex ante, using the sampling distribution of
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datayet to berealized, or ex post, conditioning on the actual sample datarealized? Wald' sfrequentist decision
theory adoptsthe former perspective, while Bayesian decision theory largely adoptsthelatter. | evaluate STRs
ex ante and | focus attention on the expected welfare (negative risk in Wald' sterms) achieved by arule. To
partly close the gap between ex ante and ex post evaluation, | present aL emmagiving conditions under which
the two approaches yield the same conclusions with high sampling probability.

The heart of this paper is Section 3, which applies the expected welfare criterion to evaluate two
specific STRs when the sample data are generated by a classical randomized experiment. | consider a
randomized experiment in order to focus cleanly on the problem of statistical inference, unencumbered with
concernsabout identification. | evaluate two simple rulesthat embody the reasonable ideathat persons should
be assigned the treatment with the best empirical success rate, but that differ in their use of covariate
information. The conditional success (CS) rule selects treatments with the best empirical success rates
conditiona on specified covariates. The unconditional success (US) rule selects a treatment with the best
unconditional empirical successrate. Whereasthe US Rule constrainsthe planner to choose the same treatment
for al persons, the CS Rule permits the planner to treat persons with different covariates differentially.
Whereas the US Rule has the planner compare success rates using the entire available sample, the CS Rule
requires that the planner compare success rates in sub-samples.

There is an evident tension between use of covariate information and available sample size. The
analysisin Section 3 characterizes this tension and assesses the implications for trestment choice. The main
finding is a Proposition giving finite-sample bounds on expected welfare under the two rules. The bounds,
which rest on a large-deviations theorem of Hoeffding (1963), yield explicit sample-size and distributional
conditions under which the CS Rule is superior to the US rule. | use a numerica illustration to give a
guantitative sense of these conditions.

Section 3 also draw implications for the reporting of covariate information in research articles

describing randomized experiments. A prevalent practice has been to report estimates of conditional mean
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outcomes only if aclassical hypothesistest rejects the null hypothesis of zero treatment effect. Thisreporting
criterion has no clear connection to treatment choice and may prevent implementation of rules that condition
on covariates.

Section 4 closes the paper with a question that may have no fully satisfactory answer. Applying
Wald' s frequentist approach to statistical decision theory to the problem of treatment choice, we find that the
expected-welfare ranking of alternative STRs depends on the population distribution of treatment response.
The use of STRsto make treatment choices, however, arises when planners have only sample data.on trestment
response, not knowledge of the response distribution. How then should a planner use the expected welfare
criterion to guide choice of a treatment rule? The frequentist and Bayesian literatures suggest pragmatic

answers, but neither is complete. | usethe CS and US rulesto illustrate.

2. The Planner’ s Problem

| set out basic concepts and assumptions here. Section 2.1 follows the description in Manski (1999)
of the planner’ s choice set and objective function. Section 2.2 derivesthe optimal treatment rule and the value
of covariate information. Section 2.3 defines statistical treatment rules and considers the ex ante and ex post
evaluation of such rules. Section 2.4 introduces the class of STRs that condition on covariates and presents

alemma connecting the ex ante and ex post evaluation of such rules.

2.1. The Choice Set and Objective Function

| suppose that thereisafinite set T of mutually exclusive and exhaugtive treatments. A planner must

choose atreatment rule assigning atreatment in T to each member of a population J. Treatment assignment



is sometimes referred to as intention-to-treat.

Each personj € Jhas aresponse function y;(-): T - Y mapping treatments into real-val ued outcomes
yi(t) € Y. Atreatment ruleisafunction t(-): J- T specifying which treatment each person is assigned. Thus
person j's outcome under rule t(-) is y;[t(j)]. This notation maintains the assumption of individudistic
treatment made commonly in analyses of treatment response. That is, a person's outcome may depend on the
treatment he is assigned, but not on the treatments assigned to others.

The planner is concerned with the distribution of outcomes across the population, not with the
outcomes of particular persons. Hence the population is taken to be a probability space, say (J, Q, P), where
Q is the o-algebra on which probabilities are defined and P is the probability measure. Now the population

mean outcome under treatment rule t(-) is well-defined as

@ E{y=01} = | yc0)IdPG).

| assume that the planner wants to choose atreatment rule that maximizes E{y;[t(j)]}. Thiscriterion function
has both normative and analytical appeal. Maximization of a population mean outcome, or perhaps some
weighted average outcome, is the standard utilitarian criterion of the public economics literature on socid
planning. The linearity of the expectation operator yields substantial analytical smplifications, particularly
through use of the law of iterated expectations.

The planner observes certain covariatesx; € X for each member of the population. The planner cannot
distinguish among persons with the same observed covariates and so cannot implement treatment rules that
systematically differentiate among these persons. Hence the feasible non-randomized rules are functions
mapping the observed covariates into treatments. | do not explicitly consider randomized treatment rules, but
thereisasimpleimplicit way to permit such rules. Let x include acomponent whose value is randomly drawn

by the planner from some distribution. Then the planner can make the chosen treatment vary with this



covariate component.
To formalize the planner’ s problem, let Z denote the space of all functions mapping X into T. Let z(+)

€ Z. Then the feasible treatment rules have the form

(2) () = zx), Jjed

Let Py(-), x] be the probability measure on YT x X induced by P(j). Let E{y[z(X)]} = [y[z(X)]dP[y("), X]
denote the expected value of y[z(x)] with respect to thisinduced measure. Then the planner wantsto solvethe

problem

(3 max E{y[z(x)]}.
z()ez

In practice, ingtitutional constraints may restrict the feasible treatment rules to some proper subset of
thespace Z. In particular, the planner may be precluded from using certain covariates (say race or gender) to
assign treatments. The analysis in this paper continues to hold if x is defined to be the covariates that the

planner is permitted to consider, rather than the full vector of covariates that the planner observes.

2.2. Optimal Treatment Rules and the Vaue of Covariate Information

The solution to the planner’ s problem is to assign to each member of the population a treatment that
maximizes mean outcome conditional on the person’s observed covariates. Let 1]-] be theindicator function
taking the value one if the logical condition in the brackets holds and the value zero otherwise. For each

Z(+) € Z, use the law of iterated expectations to write
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@) E{ylz()l} = E{E{y[z)I*}} = E T Eyt)x]-1z() =t} = | T E[y(t)*x]-1[z(x) =] dP(x).
teT teT
For each x € X, theintegrand %, . + E[y(t)*x]-1[z(x) = t] is maximized by choosing z(x) to maximize E[y(t)*x]

ont e T. Hence atreatment rule Z'(-) is optimal if , for each x € X, Z'(x) solves the problem

(5 max E[y(t)*x].
teT

The optimized population mean outcome is E{ max , . 1 E[y(t)*x]}.

The set of feasible treatment rules grows as more covariates are observed. Hence the optima mean
outcome achievable by the planner cannot fall, and may rise, as more covariates are observed. The value of
covariate information is appropriately measured by the difference between the optimal mean outcome

achievable with and without use of thisinformation. Thisis

(6) V(X) = E{maxE[y(t)x]} - maxE[y(t)].
teT teT

Ingpection of (6) shows that covariate information has no value if there exists a common optimal treatment;
that is, at* € T such that z*(x) = t*, amost everywhere on X. Covariate information does have vaue if
optimal treatments vary with x.

More generaly, we may compare the value of observing distinct covariate vectors, say x and w. A
planner who knows the conditional mean outcomes E[y(-) | x] and E[y(-)|w] should prefer observation of x to
w if and only if E{max .1 E[y(1)*x]} > E{max . E[y(t)*w]}. Inwords, the planner should prefer x to w
if X better separates persons who differ in their optimal treatments.

Note that the present criterion for comparison of covariates x and w differs from the prediction
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criterionfamiliar in statistical decisiontheory. The prediction criterion supposesthat, for eacht € T, onewants
to predict y(t) as well as possible in the sense of minimizing expected square loss. The best predictors
conditional on x and w are E[y(t)*x] and E[y(t)*w] respectively. A datistician who knows E[y(t)|x] and

E[y(t)|w] and wants to predict y(t) aswell as possible should prefer x to w if and only if E{y(t) - E[y(t)*x]}?

< E{y(®) - Ely(t)w]}*

2.3. Statistical Treatment Rules

A planner who does not know the conditional mean outcomes E[y(-)|x], X € X generaly cannot
implement an optimal treatment rule. Suppose, however, that the planner has sample datathat enable statistical
inference on E[y(-)*x], x € X. Then the planner may use these data to choose a treatment rule.

Considering thisin some abstraction, let Q denote a sampling process and let ¥ denote the associated
sample space; that is, ¥ is the set of data samples that may be drawn under Q. Let Z denote the space of
functions mapping X x ¥ into T. Then, following Wald (1950), each function (-, *) € Z definesastatistical
treatment rule, or STR. Thus an STR is afeasible rule whose identity depends on the sample drawn.

One's perspective on a statistical treatment rule depends on whether one evaluates it before or after
the sampling processis engaged. Let ¢ ¢ ¥ denote a sample that may potentially be drawn under Q and let
J° € ¥ denote the sample that is actually drawn. Ex ante s is a random variable, so ¢ (-, ) is a random
function of X. Ex post ° isadeterminate element of ¥, so { (-, Y°) isadeterminate function of X. Thusan
STR is ex ante arandom member of the set Z of feasible rules and ex post a determinate member of Z.

| evaluate statistical treatment rules from the ex ante perspective. The (ex ante random) population

mean outcome under a specified rule ¢ is

(7 E{yll, W} = [ X Ey®)X]-1¢ (x, ¥) = 1] dP(x) .



teT

The Q-expected value of E{y[{(X, )]} is

@) W(P.QQ = JEYCxW}dWw) =[] X EYy®)X-1x ¢) = 1] dP(x)] dQ(¥)

teT

= | L Ely®[x]-QI¢(x, ¥) = 1] dP(x),

teT
where Q[¢(x, ) = t] = [1[{(x, ¥) = t]dQ(Y) denotes the Q-probability of the event [{(x, ¢) =t]. | refer
to W(P, Q, {) asthe expected welfare under rule ¢ and | use W(P, Q, -) to compare alternative rules. This
criterion follows Wald except that he described decision makers as minimizing risk rather than as maximizing
expected welfare. The loss under rule ¢ is-E{y[{(X, ¥)]} and therisk is-W(P, Q, ().

| can offer two substantive and one technical reason for adopting the ex ante perspectivein general and
for focusing on expected welfare in particular. The first substantive reason, which is commonly given by
statisticians performing ex ante evaluation of statistical decision functions, isthat one may want to understand
how such decision functionsperform asproceduresin repeated applications (e.g., Berger, 1985, Section 1.6.2).
In the present setting, this argument is appealing if one is a statistician recommending a treatment rule to be
applied repeatedly in treatment choice problems with statistically independent sample data. Focusing on
expected welfare in particular is appropriate if the statistician’s objective is to maximize a utilitarian social
welfare function aggregating outcomes across repetitions of the choice problem.

The above reasoning is not germane to a single planner concerned only with his own treatment choice
problem, a point made with compelling logic by Bayesian critics of frequentist statistical theory (e.g., Berger,
1985, Section 1.6.3). A second substantive rationale may be relevant however. Suppose that institutional
constraintsrequire a planner to commit to an STR before observing the relevant sample data. Theinstitutional

constraint may, for example, reflect public distrust of the planner and adesireto limit hisdiscretion. A planner
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who is required to pre-commit must evaluate {(-, ) ex ante rather than { (-, °) ex post. If the planner isrisk
neutral, his objective will be to maximize W(P, Q, -).
The technical reason for focusing attention on expected welfare is its status as an approximate
sufficient statistic for ex post evaluation of STRs. In some settings, the Q-distribution of E{y[{(X, ¥)]} can
be shown to be tightly concentrated near W(P, Q, ), implying that ex ante and ex post evaluation of STRs

yields the same conclusions with high Q-probability. Section 2.4 develops thisideaformally.

2.4. Statistical Treatment Rules That Condition on Covariates

The complexity of expected welfare W(P, Q, {) stands in the way of a constructive general analysis
of statistical treatment rules. This being the case, | now focus on a class of STRs that is amenable to
interesting analysis. These are the rules that condition on covariates.

Assume that the covariate space X is finite, with P(x) > 0, all x € X. Assume that the sampling
process Q generates separate, statistically independent datafor personswith different values of the covariates
X; that is, a data sample  is composed of a set of statistically independent sub-samples (5, x € X). Inthis
setting, | shall say that an STR ¢ conditions on x if the treatment that ¢ selects for persons with covariates x
depends on the sample data ¢ only through y,. With some flexibility of notation, | henceforth write {(X, ¥,)
to indicate such a rule. The conditional success rule introduced in Section 1 conditions on x. The
unconditional success rule does not.

Expected welfare under an STR that conditionson x is

9 WEPE.QQ = XPX X EY®X-QIx b = t.

xeX teT



11
| indicated in Section 2.3 that interest in W(P, Q, {) can be motivated by the status of this quantity as an
approximate sufficient statistic for ex post evaluation of ¢. | now formalize thisidea.
Consider the Q-variance of E{y[{(X, ,)]}. By (7) and the assumed statistical independence of the

sub-samples (,, x € X),

(10) Varg {E{y[C (x, wJI}} = Va{ ¥ P() Y Ely®*>I-1C (x, %)=t} = ¥ PX)*Cy,

xeX teT xeX

where C,, = Varg{ Y (.t E[y®)|x]-1[C (x, ¥,) = t]}. Thefollowing Lemma establishes upper bounds on

Varg {E{y[C(x, W)]}}:

Lemma Let o = max [P(x), X € X]. For x € X, let M, = max . 1 E[y(t)|x], m, = min .+ E[y(t)|x], and &, =
M, - m,. Let f3;, bethe Q-probability that rule {(x, V) selects atreatment that maximizes E[y(t)|x]. Let y,,

= max(1/2, B;). Then

(11) Varg {E{y[C(x, wJl}} < o L PO Yu(l-v0)0 < (a/d) Y P(x)-62. M

xeX xeX

Proof: For eachx € X, P(x)* < aP(x). Hence Varg { E{Y[{ (X, P,)]}} < & YycxP(X):C. A universaly vaid
upper bound on C,, is (1/4)8,2, this being the variance under atreatment rule that selects an optimal treatment
with Q-probability %2 and aworst treatment with Q-probability %2. A tighter upper bound on C,, isavailable
if B, > Y2 Then an upper bound on C,, is B,(1 - B,)3,2 this being the variance under a treatment rule that
selects an optimal treatment with Q-probability ., and aworst treatment with Q-probability 1 - B,,. Hence
Cu < ch(l - ch)éxz-

Q.E.D.
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The Lemma shows that Varg {E{y[( (X, ¥,)]}} issmall if either of two sufficient conditions holds.
One sufficient condition isthat the quantities y,,, X € X benear one. Thisholdsif the sample sizeislarge and
if rule ¢ is consistent. The other sufficient condition is that the quantity o be near zero. This holds if the
covariate space X is large, with no dominant value of x. If, for example, P(x) is uniform, then a = 1/| X|,
where | X |isthe cardindity of X. If either condition holds, the Lemmaand Chebychev’ sinequality imply that
the Q-distribution of E{y[{ (X, ¥,)]} is concentrated near W(P, Q, ().

The sufficient condition on « isof particular interest. Let ¢ and ¢’ denote any two STRsthat condition

on x. The bound (a/4) ¥, .« P(x)-8,2 holds for both rules. Hence

(12) Varg {E{yl(x, wI} - E{y[C' (% W} < o Yuox P(X)-6,2

Suppose that W(P, Q, {) < W(P, Q, {’). Then (12) and Chebychev’s inequality imply that

(13)  QE{y[{(x, wl} > E{Y[C'(X Wl} < [o Yuex PO)-3AW(P, Q, ) - W(P, Q ()%

Thus, if o issmall, the ex ante and ex post rankings of rules ¢ and ¢’ are the same with high Q-probability.

3. Statistical Treatment Rules Using Data From Randomized Experiments

I now apply the expected welfare criterion to compare two STRs, the CS and US rules, when the
sample dataare generated by arandomized experiment. Section 3.1 describes the sampling process generating
the data. Section 3.2 formalizes the CS and US rules and examines their expected welfare. Section 3.3

develops the main finding, a proposition giving bounds on expected welfare under the two rules. A corollary
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givesexplicit sample-size and distributional conditions under which the CS Ruleis superior tothe USrule, and
a numerical illustration gives a quantitative sense of the conditions. Section 3.4 draws implications for
reporting covariate information in research articles describing randomized experiments. Section 3.5 poses

variations on and extensions to the present analysis that seem worthy of study.

3.1. The Sampling Process

| assume that, for each x € X andt € T, the sampling process draws N,, persons at random from the
subpopulation with covariatesx and assignsthemto treatment t. Each sample of subjects, denoted N(x, t), then
realizes outcomesy;, j € N(x, t). | assume that the experiment isclassical in all respects: subjects comply with
their assigned treatments, they do not interact with one another, and the planner observes their covariates,
treatments, and outcomes. Thus, for each x € X, the planner observes y, = [y;, j € N(x, t), t € T].

For simplicity, | restrict attention to treatment-choice problems with two feasible treatments, denoted
t=0andt=1 1 asoassume that the planner knows the covariate distribution P(x). | evaluate expected
welfare under the assumption that the sampling process Q repesats the randomized experiment with the sample
sizes(N,, t € T, x € X) held fixed. This is the natural sampling process to consider if the experimenter
specifies these sample sizes a priori. Experiments are sometimes carried out under another protocol in which,
for eacht € T, the experimenter specifies anumber of subjects, say N,, to be drawn a random from the entire
population and assigned to treatment t. Under this protocal, (N, t € T, x € X) varies across repetitions of the

experiment, necessitating a more complex analysis than that performed here.
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3.2. Expected Welfare Under the CS and US Rules

In Section 1, | described the conditional success (CS) rule as one that selects treatments with the best
empirical successrates conditional on the observed covariates, and the unconditional success (US) rule asone
that selects a treatment with the best unconditional empirical successrate. | now formalize these rules.

Lety, = (1/Ny) Y icnwy Y; bethesampleaverage outcome among subjectswith covariates x assigned
to treatment t. Lety, =Y ,.x Y« P(X) be the population-weighted average outcome among all subjects
assigned to treatment t. For each x € X, the CS rule selects a trestment that maximizesy,,ont e T. The US
rule selects a treatment that maximizesy, ont € T. Each rule requires a tie-breaking convention to be used
when multiple treatments maximize the relevant average outcome. | use the convention that treatment 1 is
chosen when both treatments yield the same average outcome.

With these definitions, the CS rule yields expect welfare

(14) WP Q. CS = Y PX){EY(D)[X]QYa 2 Y + E[Y(0)[X]' QY1 < Vxal}-

xeX

The US rule yields expected welfare

(15 W(P,Q,US) = E[y(1)]-QlY. > Yo + E[Y(0)]-Q[Y: <Yl

Applying the expected welfare criterion, we shall say that the CSrule is superior or inferior to the USrule if
W(P, Q, CS) islarger or smaller than W(P, Q, US).
Itiseasy to seethat the CS rule asymptotically yields the optimal population mean outcome and that

thisruleisasymptotically superior to the USruleif the value of covariateinformation ispositive. Let n = min
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(N,, t € T, x € X) denote the smallest experimental sample. The strong law of large numbersimpliesthat as

n-e, W(P, Q, CS) ~ E[max{E[y(1)|x], E[y(0)|x]}], which is the optimal mean outcome. Moreover,

(16) lim W(P,Q,CS) -W(P,Q,US) = E[max{E[y(1)[x], E[y(0)[x]}] - max{E[y(1)], E[y(0)]}.

N-oo

Theright side of (16) isthe vaue of covariate information defined in equation (6). ThusW(P, Q, CS) >W(P,
Q, US) as. if nissufficiently large and if the value of covariate information is positive.
Asymptotic theory may be suggestive, but aplanner comparing the CSand US rulesmust be concerned

with their performance in finite samples. A simple example illustrates the subtlety of the matter:

Example: Let the covariate space have two elements, with X = (g, b) and P(x = @) = P(x = b) = %2 Let the
experimental design be balanced with one subject in each sample, so N;; = Ny = Ny, = Ny, = 1. Let the
response distributions P[y(0) |x = & and P[y(0) |x = b] be degenerate with mass points A, and A,, respectively,
where0<A,<1,0<A,<1,and1<A,+ A, Lettheresponsedistributions Ply(1)|x =& and P[y(1)|x = b]
be Bernoulli with means i, and |, respectively, where 0 < p,<l1and O < p, < 1.

In this setting, QY > Yol = PlY(1) = 1[x=8] = Hay Q[Yi1 2 Yl = Ply(2) = 1[x = b] =, and

Qly: = Yol = Ply()=1jx=al-Ply(1) =1[x =b] = p,p, Hence

W(P, Q, CS) -W(P, Q, US)

Vo{[Usd +Aa(L- o) + Wy + A (1- )] - [(Mat Hp)Ha My + (At Ap)(L - Ha )]}

Yo {Ha(Ma- As) + Hp(Hp - Ap) - Ha Mo(Ha - Aa) - Ha Mp(My - An)}

Yo {Ma(Ma- Aa)(1 - o) + Ho(Hs - Ap)(L1 - K2} -
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Thusthe CSruleis superior or inferior to the US rule, depending on (U, My, A Ay). Observethat the CSrule

issuperior if (Uy> A, Mp > Ap) and the USruleis superior if the inequdities are reversed. W

In generd, the expected-welfare ranking of the CS and US rules depends on the distributional and
sample-size features of the treatment-choice problem. We would like to characterize the circumstances in
which the planner should prefer one rule to the other. Direct analysis of the expressions for expected welfare
in (14) and (15) isdifficult because the treatment-sel ection probabilities Q[y,, > V.ol and Q[Y, > V.| typicaly
are complex functions of the response distributions { P[y(-)|x], x € X}, the sample sizes (N, t € T, x € X),
and the covariate distribution P(x). Fortunately, alarge-deviations theorem of Hoeffding (1963) for averages
of bounded random variables yields relatively ssimple bounds on Q[Y,; > Y,o] and Q[Y, > ¥,]. In Section 3.3,
| use Hoeffding' s theorem to develop bounds on expected welfare under the CS and US rules. These bounds

imply explicit sample-size and distributional conditions under which the CS Rule is superior to the US rule.

3.3. Bounds on Expected Welfare Under the CS and US Rules

Here is the Hoeffding theorem that forms the basis for my findings:

Large Deviations Theorem (Hoeffding, 1963, Theorem 2): Let w;, w,, - - -, w, be independent real random

variables, with boundsa <w; < b, (i=1,2,---,n). Let w=(1n) X" _, w, and i = E(W). Then, forv >0,

Pr(w - p > v) < exp[-2nZ4/Z" _, (b - 8)7. u

Hoeffding's Theorem 2 is a very broad, powerful result. The only distributional assumptions are that the
random variableswy, w,, - - -, w, be independent and have bounded supports. The derived upper bound on

Pr(w - 1 > v) has no nuisance parameters and is of order exp(-nv?) in the sample size n and the distance v. |
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would note that Hoeffding (1963), Theorem 1givestighter but more complicated bounds on Pr(w - L > v) that
hold if wy, w,, -- -, w, havethe samerange. It may be that these alternative bounds can be used to improve
on my Proposition below. | leave this as an open question.

I now use Hoeffding's Theorem 2 to obtain finite-sample bounds on expected welfare under the CS
and USrules. The Proposition developed here requires that the outcome variable y be bounded but otherwise
is entirely general. (The Proposition assumes that outcomes take values in the unit interval but, given
boundedness, this may always be achieved by appropriate normalization of location and scale)) The proof of

the Proposition isin an Appendix.

Proposition: Let T = {0, 1} and 0 < y(t) < 1,t € T. Forx € X, let M, = max{ E[y(2)|x], E[y(0)|x]} and &,

= [Ely(D)[x] - E[y(Q)|x]|. Let M = max{E[y(1)], E[y(0)]} and & = [E[y(1)] - E[y(0)]|. Then

A7) Y PX) M, - YP)3,cexp[-28,/ (N ™ + Nig)] < W(P, Q,CS) < ¥ P(x) M.

xeX xeX xeX

(18) M - Sexp[-20%(Z ..« PN 1+ NgD}] < WP, QUS) < M. m

Expected welfare under the CS rule necessarily exceeds that under the US ruleif the sample sizesare

sufficiently large that the CS lower bound exceeds the US upper bound. The Corollary below states this

immediate implication of the Proposition.

Corollary: Let the sample sizes (N,; N,q; X € X) be such that

(19)  YP()d,exp[-25,/ (N ™ + Nig )] < ¥ P(x) My - M.

xeX xeX
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Then W(P, Q, CS) > W(P, Q, US). m

Theright side of (19) isthe value of covariate information, which is necessarily non-negative and is
positive if optimal treatments vary with x (Section 2.2). The left side of (19) bounds from above the damage
that sampling variation may cause to expected welfare under the CSrule. This quantity fallsto zero asthe
samplesizes (N,; N,o; X € X) grow. Hencethe Corollary reiterates our earlier finding ( Section 3.1) that the
CSruleis superior to the US rule if the samples are sufficiently large and if optimal treatments vary with x.
The important new contribution of the Corollary isthat its sufficient condition for superiority of the CSrule
is asmple explicit function of the sample sizes (N,,, N,o; X € X), the covariate distribution P(x), and the
conditional mean outcomes { E[y(-)|x], x € X}. Moreover, this sufficient condition supposes only that

outcomes are bounded. No other distributional assumptions are imposed.

IHustration: A numerical illustration gives a quantitative sense of the Proposition and Corollary. Let X =(a,
b), with P(x = @) = P(x = b) = %2 Let the design be balanced, with N,; = N, =N,; = Ny, = n, wherenisa

specified positive integer. Let E[y(1)] = E[y(0)] = Y2 Then the CS and US bounds are

YoM, + M) - Y0, exp(-nd2) - ¥, exp(-ndy?) < W(P, Q,CS) < % (M, + M,)

% < WP, Q,US) < %.

The table below evauates the CS bound when E[y(1)|x = @], E[y(0)|x = &], and n have specified

values, namely E[y(1)|x =& = .4, E[y(0)|x =4a] € (.4, .5, .6,.7,.8),and n € (1, 10, 25, 50). The quantities

E[y(t) |x = b] cannot be varied freely because E[y(t)] = E[y(t)|x =aP(x = a) + E[y(t)|x = b]P(x = b). Hence

the terms of the illustration require that ¥2 = ¥2E[y(t) | x = & + ¥2 E[y(t)|x = b], implying that E[y(t)|x = b] =
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1- E[y(t)|x =4&. Thus, inthetable, treatment O is aways optimal for persons with x = aand treatment 1 is
always optimal for persons with x = b.
Theentriesin the columntitled “n"” givethe smallest value of n such that the lower CS bound exceeds
%5, the expected welfare under the US rule; that is, n” isthe smallest integer n such that (M, + M,) - 0exp(-
nd;?) - 8,-exp(-nd,?) > 1. When nexceedsn’, the CSrule definitely yields higher expected welfare than does
the USrule. When nissmaller than n’, Proposition 1 does not yield a definite ranking of thetwo rules. The

column titled “n”” will be explained in Section 3.4.

The CS Bound
E[y(0)|x = & n=1 n=10 n=25 n=>50 noon
4 [.50, .50] [.50, .50] [.50, .50] [.50, .50] 0 0
5 [.45, .55] [.46, .55] [.47, .55] [.49, .55] 70 196
6 [.41, .60] [.47, .60] [.53, .60] [.57, .60] 18 48
7 [.38, .65] [.53, .65] [.62, .65] [.65, .65] 8 20
8 [.37,.70] .62, .70] [.69, .70] [.70, .70] 5 5

The first row of the table describes the boundary case in which treatments 0 and 1 yield the same
conditional mean outcomes, so the planner is indifferent between the CS and US rules. The other rows show
the tension between use of covariate data and sample size. The value of covariate information increases as
E[y(0)|x = & movesaway from E[y(1)|x = &, with treatment O becoming increasingly better for personswith
x = aand, symmetrically, treatment 1 becoming increasingly better for personswith x = b. Hence the upper
CS bound increases monotonically. The behavior of the lower CS bound is more complex. As the value of
covariate information increases, so does the loss to the planner if covariate data are used to make sub-optimal

treatment choices. The result isthat, holding sample size fixed, the lower CS bound first falls and then rises
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as E[y(0)|x = a moves away from E[y(1)|x = 4.
Although the lower CS bound varies non-monotonicaly with E[y(0)|x = &), the sample size n” at
which the lower bound first exceeds Y% falls monotonically. Observe how small the values of n” are. If
E[y(0)|x =& = .5, the CSruleis superior to the US rulein samples of 70 observations or more. If E[y(0)|x =

al = .8, the CSruleis superior in samples of 5 observationsor more. W

3.4. Implications for Reporting Covariate Information in Research Articles

The foregoing analysis carries implications for reporting covariate information in research articles
describing randomized experiments. Planners often have extensive covariate information on the popul ation of
interest. However, research articles reporting the findings of randomized experiments often present estimates
of mean outcomeswith little accompanying covariateinformation. Asaresult, plannersoften haveonly limited
ability to apply CSrules.

Consider, for example, a physician who must choose treatments for a population of heterogeneous
patients. Physicians often observe many covariates — medica histories, diagnostic test findings, and
demographic attributes — for the patients that they treat. Research articles often report the outcomes of
randomized clinical trials evaluating aternative treatments. These articles, however, rarely report much
covariate information for the subjects of the experiment. Articles reporting on clinical trials usually describe
outcomes only within broad risk-factor groups.

There seem to be severa reasonswhy research articlesreport little covariate information. (1 say “ seem
to” becausethesereasonsarerarely stated explicitly.) Sometimesresearchers seem to assumethat there exists
a common optimal treatment across the population of interest; then covariate information has no value (see
Section 2.2). Sometimes concern for the confidentiality of subjects identities inhibits researchers from

reporting covariates that may be related to treatment outcomes. Sometimes sampling variability inhibits
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researchers from reporting estimates of treatment effects conditional on covariates.

The merits of the first two reasons must be assessed on a case-by-case basis, but the third reason is
subject to ageneral critique. Researchers often perform randomi zed experimentswith samples of subjectsthat
arelarge enough to yield dtatistically precise findings for unconditional treatment effects but not large enough
to yield precise findings for treatment effects conditional on covariates. Findings conditional on covariates
commonly go unreported if they do not meet conventional criteriafor Statistical precision. A prevalent practice
is to report estimates of E[y(-)|x] only if aclassical hypothesistest rejects the null hypothesis{ H,: E[y(1) |X]

= E[y(0)|x]}. In particular, researchers often use the t-statistic criterion

(20) Report (yxb ny) if (yxl - ny)/[Svar (yxl - yxo)]l/2 > 2,

where SVar (Y,, - Y,o) 1S the conventional sample estimate of the variance of (¥,, - Yxo)-

Reporting criteriabased on statistical precision bear no clear connection to treatment choice. | think
it would be better if researchers describing randomized experimentswould report trestment effects conditional
on covariates whenever (i) there is a priori reason to think that optimal treatments may vary with these

covariates and (ii) reporting is consistent with maintenance of confidentiality of subjects’ identities.

[ustration: The illustration in Section 3.3 gives a quantitative sense of the implications of conventional

reporting criteria. Consider the idealized t-statistic criterion

(21) Report (yxb ny) if EQ(yxl - ny)/[VarQ(yxl - yxo)]l/2 >2.

| refer to thisasan “idealized” criterion because the operationd t-statistic rule givenin (20) makes reporting

afunction of the sample drawn, hence arandom variable, whereasthe idealized t-datistic givenin (21) makes



22

reporting afunction of population characteristics specified in theillustration. Lety be binary, so E[y(")|x] =

Ply() = 1|x]. Let P, = Ply(t) = 1|x], t =0, 1. Then the idedlized criterion becomes

(22)  Report (Y, Vio) if (Pu = Pod/[Pu(l- Pi)in + Po(1-Podin]* > 2.

The column titled “n”” in the table of Section 3.3 givesthe minimal value of n a which this reporting criterion

ismet. Comparison of the entriesfor n” and n” showsthat n’ < n” in every case and that n” is much larger

thann’ when Py, € (.5, .6, .7). Thus, use of areporting criterion based on statistical precision may prevent use

of the CSrule when that ruleissuperior totheUSrule. W

3.5. Variations on and Extensions to the Analysis

Many variations on and extensions to this analysis seem worthy of study. These include

Measurement of Empirical Success: The versions of the CS and US rules analyzed here measure the empirical

success of treatment t by the sample averagesy,, and y,. These averages are natural nonparametric estimates
of E[y(t)|x] and E[y(t)], but it may bethat other estimatesyield higher expected welfare. More generally, there
is alarge open question about optimal estimation of E[y(-)|x] for use in the CS rule. What nonparametric
estimate should be used when x is not discrete, given specified smoothness restrictions on E[y(-)|x] as a
function of x? What estimate should be used when the planner has prior parametric or semiparametric
information restricting the form of E[y(-)|x]? These are familiar questions in the literature on efficient
estimation of regressions, but the traditional objective has been to minimize mean square error in predicting

outcomes. Here the objective isto choose treatments that maximize expected welfare.
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Hybrid CSUSRules: TheCSand USrulesare polar cases, one always and the other never using the available

covariate information. It may be that hybrid CS-US rules, in which the use of covariate information depends
onsamplesize, aremoreeffective. Theliterature on prediction suggests shrinkage estimatorsto minimize mean

square error. It may be that smilar approaches improve expected welfare.

Experimental Design: The analysisin this paper takes the design as given. Experimental design has received

extensive study from the perspective of hypothesis testing. In particular, there is a longstanding practice of
selecting sample sizesthat achieve specified power when testing anull hypothesisof no treatment effect against
a specified aternative. The expected welfare criterion may be used to study experimental design from the

perspective of treatment choice.

4. Using the Expected-Welfare Criterion to Choose a Treatment Rule

This paper has used Wald's statistical decision theory to evauate statistical treatment rules in the
setting of a randomized experiment. Wald's approach is capable of yielding important findings on the
performance of STRs. At the same time, it isincomplete.

The difficulty is that the expected-welfare ranking of aternative STRs depends on the population
distribution of treatment response. The use of STRsto make treatment choices, however, ariseswhen planners
have only sample data on treatment response, not knowledge of the response distribution. Henceit isnot clear
how a planner should use the expected welfare criterion to guide choice of atrestment rule. The CS and US
rules illustrate the conundrum. Expected welfare under the CSruleisafunction of { E[y(-)|X], Q[Yx > Vxdl:
x € X} and under the CSruleisafunction of {E[y(-)], Q[Y: > Yo} The planner, however, only has sample

data on treatment response.
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The frequentist and Bayesian literatures suggest alternative pragmatic solutions. The frequentist
literature suggests that the planner use the available sample data to estimate the relevant parameters of the
distribution of treatment response, and then “plug-in” these estimates to evaluate expected welfare. For

example, one might estimate W(P, Q, CS) and W(P, Q, US) by

(23) W(P,Q,CY = Y PX){¥aal¥u-Y020 + ViodlVir- e < O}

xeX

(24) w(P,Q,CS

Yrdlyi-Yo 2 0] + yydly,-y0 < Q]

Hereq[-] denotes asample estimate of the corresponding treatment-sel ection probability Q[-]; for example, the
empirica distribution of the sample data might be used to generate a bootstrap estimate of Q[-]. Then one
might choose the CSruleif w(P, Q, CS) > w(P, Q, US) and the US rule otherwise.

Theplug-in prescriptionis easy to explain and implement, but itstheoretical foundation isincomplete.
Lacking finite-sample theory, frequentist statisticians commonly cite asymptotic theory showing that sample
estimatesof population parametershavewel |-behaved limiting distributions. Theplanner’ sobjective, however,
is not to obtain estimates of expected welfare with good asymptotic properties. It isto choose atreatment rule
maxi mizing expected welfarewhen applied to samples of specifiedfinitesize. Using asymptotic theory to guide
afinite-sample statistical decision problem requires aleap of faith.

The Bayesian literature suggests that the planner should assert a subjective prior distribution on the
space of treatment-response distributions, use the available sample data to update the prior, and apply the
resulting posterior subjective distribution to evaluate alternative treatment rules. Bayesian decision theory
provides a coherent finite-sample approach to evauation of treatment rules by reaching beyond frequentist

statistics to introduce a new concept, the subjective prior distribution on the space of treatment-response



25
distributions. Bayesian conclusions about the performance of aternative treatment rulesinevitably depend on
the prior invoked, but the Bayesian paradigm is silent on the critical question of how the prior should be
specified. Thus, in practice, the Bayesian prescription is incomplete.

It may be that a fully satisfactory approach to evaluation of treatment rules using sample data is
unachievable. We can, however, expand the set of available options. The bounds on expected welfare under
the CS and US rules developed in Section 3.3 demonstrate one approach. Evaluation of the bounds does not
require al of the distributional information needed to evaluate expected welfare. Consider the CS rule.
Wheress expected welfare is afunction of { E[y(-) |X], Q[Yx1 > Yxol}, the bound depends only on E[y(-)|x]. A
frequentist contemplating plug-in estimation of the bound need not address the subtle problem of estimating
QlV.« > Vwl- A Bayesian contemplating use of the bound need not articulate a full subjective posterior
distribution on the space of treatment-response distributions; the posterior for E[y(-)|x] suffices. Of course
these benefits are achieved with an accompanying cost. The CS and US bounds may overlap, in which case

the ranking of these treatment rules is indeterminate.

Appendix: Proof of the Proposition

CS Bound: The upper bound followsfrom (14), so thetask isto prove the lower bound. For x € X, | writey,,

- V.0 &S the average of independent random variables and apply Hoeffding' s theorem to show that

(AD) My - 8,:exp[-28,%(Nuy* + Nio )] < ElY(D)[X]-QlVia - Y0 2 O] + E[Y(0)[X]"Q[Ysa - Vo < Ol

LetN, = N, +N,, Foreachxe X,
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(A2) Vu-Yo = WN) Yicnxn Y = (UNy) Yicnwo Vi

= (UN)[ ZjeN(x, 1) (yJ"Nx/le) + ZjeN(x, 0) ('yJ"Nx/Nxo)]-

Thusy,, - ¥, isthe average of N, independent random variables. Thefirst N,;haverange [0, N,/N,,] and the

remaining N,, have range [-N,/N,,, 0].

Consider x € X such that E[y(1)|x] < E[y(0)|x]. ThenE(Y,; - Vo) = -0,. Hoeffding’ stheorem yields

(A3) Q[yxl - ny 2 0] < exp['ZNx2 6x2/{ l\lxl'(Nx/'\le)2 + NxO'(Nx/NXO)Z}] = eXp['Zéle(le-l + NxO-l)]-

Hence

(A4) Ely(D)X]QVua-Yo =z 0 + EY(0)[X]"QlYx - Y« < O]

Ely(D)[x]-exp[-28,2/ (N, + Ny )] + E[y(0)[x]-{1 - exp[-28,%/(N;™ + Ny )]

vV

Mx - 6><'exp['26><2/(le-l + NxO-l)]'

So (A1) holds. Next consider x € X such that E[y(1)|x] > E[y(0)|x]. For such X, E(V,o - Yx1) = -0,.

Application of Hoeffding's theorem yields

(AS) Q[yxl'yxo < 0] = Q[yxo'yx1> 0] < Q[yxo'yxl 2 0] < exp['26x2/(Nx1-1+ NxO-l)]-

Thus (A1) continues to hold by an argument analogous to (A4). Finaly consider x € X such that E[y(1) |X]

= E[y(0)|x]. For suchx, 6, =0. Hence (A1) holds as an equality.

US Bound: The upper bound follows from (15). The lower bound holds as an equality if E[y(1)] = E[y(0)].
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The task is to show that the lower bound holds otherwise. Asin the proof of the CS bound, | writey, - ¥, as
the average of independent random variables and then apply Hoeffding' s theorem.

LetN = 2, x (N +Ny). Then

(A6) ¥i-Yo = Y xexPX) (UNw) Yicnn Y = 2 xex PX) (UNy) Yicnwo Vi

(UN)[Y xex Zj ene 1y Y POON/N,,)  + Y xex Zj ene, o) Y POON/NLG)].

Thusy, - y, averages N independent random variables with ranges [0, P(X)N/N,] and [-P(X)N/N,,, 0], X € X.

Let E[y(1)] < E[y(0)]. Then E(Y; - ¥o) = -6. Application of Hoeffding’ s theorem yields

(A7) QlY1-Yo2 O] < exp[-2N* 87X , . x Naa(P(X):N/N,1)* +N,o(P(X)-N/Nyo)%}]

= exp[-262/{ by X e X P(X)Z(le-l + NxO-l)}]'

Hence

(A8) Ely(DI'QlY1-Yo> O + E[Y(O)]-Q[Yi-Yo < O > M -8exp[-20%{Z . x PX)*(N,a" + Ny )}

The same result holds when E[y(1)] > E[y(0)].

Q.E.D.
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