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1. Introduction
Consider a continuous-time parametric diffusion
(L) dX, = u(X,:0)dt+0(X,;:0)dW,

where X, is the state variable, W, a standard Brownian motion, U(.;.) and o(.;.) are known
functions and 6 an unknown parameter vector in an open bounded set ® < R*. Diffusion
processes are widely used in theoretical financial models, for instance to represent the

stochastic dynamics of asset prices, interest rates, macroeconomic factors, etc.

Obviously, the available data are always sampled discretely, while the model is
written in continuous time. As discussed by Merton (1980), Lo (1988) and Melino (1994),
ignoring the difference can result in inconsistent estimators. A number of econometric
methods have been recently developed to estimate 6 in (1.1), without requiring that a
continuous record of observations be available. Some of these methods are based on
simulations [Duffie and Singleton (1993), Gouriéroux, Monfort and Renault (1993),
Gallant and Tauchen (1997), Pedersen (19935), Santa-Clara (1995) and for applications
Honoré (1997) and Andersen and Lund (1996)], others on the generalized method of
moments [Hansen and Scheinkman (1995), Bibby and Sgrensen (1995), Conley et al.
(1997)], nonparametric density-matching [Ait-Sahalia (1996a, 1996b), Stanton (1997)] or

random sampling of the process to generate moment conditions [Duffie and Glynn (1997)].

As in most contexts, provided we trust the specification (1.1), maximum-likelihood
is the method of choice --with only one caveat here: in general, the likelihood function of
discrete observations generated by (1.1) cannot be calculated explicitly! Let pX(A,x I xo;e)
denote the conditional density of X, a=x given X=xg induced by the model (1.1), also
called the transition function. We observe the process at dates {t =1A [i =0,..., n}, where
A'is fixed. The Markovian nature of (1.1) implies that the log-likelihood function has the

simple form

(1.2) £,0)=n"Y" Lnfp,(AX, X 121,450}

but the true density px is in general unknown [for a list of the rare exceptions, see Wong
(1964); in finance, the models of Black and Scholes (1973), Vasicek (1978) and Cox,

Ingersoll and Ross (1985) rely on some of the existing closed-form expressions].

If sampling of the process were continuous, the situation would be radically

simpler. First, the likelihood function is known by means of classical absolutely
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continuous changes of measures [see e.g., Basawa and Prakasa Rao (1980)]. Second, if
we are willing to let the sampling interval go to zero, then expansions for the transition

function “in small time” are available in the statistical literature [see e.g., Azencott (1981)].

With fixed sampling, two methods have been proposed in the literature to compute
px. They either involve solving numerically the Fokker-Planck-Kolmogorov partial
differential equation [see Lo (1988)] or “filling-in the blanks” between the observation
dates by simulating a large number of sample paths along which the process is sampled
very finely [see Pedersen (1995) and Santa-Clara (1995)]. Dacunha-Castelle and Florens-
Zmirou (1986) calculate expressions for the transition function which involve functionals
of a Brownian Bridge, and can potentially be simulated. Neither method produces a closed-
form expression to be maximized over 8: the criterion function takes either the form of an
implicit solution to a partial differential equation, or an infinite sum over simulated sample
paths. In addition, when looking for the maximum value of (1.2), these numerical steps,
whether solving the PDE or recalculating averages over simulated sample paths, have to be
repeated a number of times: each time the value of 0 changes infinitesimally as part of the
likelihood maximization algorithm. As a result, these methods are not trivial to implement

in practice.

We can think of both the PDE and simulation methods as delivering a sequence of
approximations to the true likelihood function, which become increasingly accurate as
some control parameter J tends to infinity: for instance, J indexes the number of points on a
grid used in a typical discretization scheme to solve numerically the PDE solved by py; or J
indexes the sampling frequency used in the fine discretization of the sample path between

two successive observations, and the number of such simulated paths.

By contrast, we propose here a method to estimate 0 by maximum-Ilikelihood
which involves neither the numerical solution of a PDE nor any simulations of sample
paths. Like the PDE and simulation-based methods, we also construct a sequence ,é/ﬁl” , ] =
1,2,... of approximations to the log-likelihood function £,, but our sequence is in closed-
form. We then show that £,” converges to £, as J increases, and prove that maximizing
7" in lieu of the unknown £_ results in an estimator 6 = argmax,_, ¢(8) which
converges to the true maximum-likelihood estimator én = argmax, o ,(0) as J gets larger.
Therefore, in practice, it suffices to take a single value of J --large, although we provide
empirical evidence for models that are relevant in finance that J=4 is amply adequate-- and
maximize ¢\, Since the expression of £ is explicit, the effort involved is minimal --

identical to a standard maximum-likelihood problem with a known likelihood function.
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{X/t=0}, and with payoff function ‘I’(X A) at some future date A. For simplicity, assume
that the underlying asset is traded, so that its risk-neutral dynamics have the form

(1.3)  dX /X, ={r—8}dt+0(X,;0)dW,

where 1 is the riskfree rate and § the dividend rate paid by the asset, both constant again for
simplicity.

As 1s well-known, when markets are dynamically complete, the only price of the
derivative security that is compatible with the absence of arbitrage opportunities is

(14) P, = e“'AE[‘P(XAﬂXO :xo] = e"rAJOM‘P(x)pX(A,xIxO;B)dx

where py is the transition function (or risk-neutral density, or state-price density) induced
by (1.3).

The Black-Scholes-Merton option pricing formula is the prime example of (1.4),
when o(S) = ¢ is constant. The corresponding px is known in closed-form (as a lognormal
density) and so the integral in (1.4) can be evaluated explicitly for specific payoff functions
[see also Cox and Ross (1976)]. In general, of course, no known expression for pPx 18
available and one must rely on numerical methods such as solving numerically the PDE
satisfied by the derivative price, or Monte-Carlo integration of (1.3). These methods are
exact parallels to the two existing approaches to maximum-likelihood estimation that we

described earlier.

Here, given the sequence { p;’/J>1} of approximations to py, our valuation of the

derivative security would be based on the explicit formula
(1.5) PV = e*ﬂjo (x)pY (A, x | x0;6)dx.

Formulas of the type (1.5) have been proposed in the finance literature [see e.g., Jarrow
and Rudd (1982)] and justified as “corrections” to the Black-Scholes-Merton formula.
There is however an important difference between what we propose and the existing
formulae: the latter are based on calculating the integral in (1.4) with an ad hoc density Px
--typically adding free skewness and kurtosis parameters to the lognormal density, so as to
allow for departures from the Black-Scholes-Merton formula. In doing so, these formulas
entirely ignore the underlying dynamic model (1.3) for the asset price, whereas our method
gives in closed-form rhe option pricing formula (of order of precision J, for each J) which
corresponds to the given dynamic model (1.3). For instance, we can explore how changes

in the specification of the volatility function o(x;0) affect the derivative price, which is
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obviously impossible when the specification of the density py to be used in lieu of px is
unrelated to (1.3).

The paper is organized as follows. In Section 2, we construct the sequence of
density approximations for any given parametric specification (1.1) and show that they
converge, in a strong sense, to the true density function. We then prove in Section 3 that
maximizing the approximation to the likelihood function produces an estimator which can
be made arbitrarily close to the true (but not explicitly computable) maximum-likelihood
estimator, and shares its asymptotic properties. In Section 4, we show how to calculate in

closed-form the coefficients of the approximations.

The reader primarily interested in applying the result may go directly to Section 5.
There we give explicitly the first six terms of the approximating density sequence,
{ py'/J=1...,6}, and provide a number of examples which show that as a practical matter
stopping after the first three terms is sufficient. Section 6 concludes. All proofs are in the
Appendix.

2. A Sequence of Expansions of the Transition Function

’

To understand the construction of our sequence of approximations to py, the
following analogy may be helpful. Consider the density of the standardized sum of random
variables to which the Central Limit Theorem (CLT) apply, and its classical Edgeworth
expansion. The convergence of such an expansion is understood in the sense that the
number of corrective terms to the Normal density is fixed while the number of observations
goes to infinity. In fact, for a fixed sample size, the Edgeworth expansion will typically
diverge as more and more corrective terms are added, unless the density of each of these
random variables was “close to” a Normal density to start with. There is no need at this
point to make this statement precise. In our context, imposing that A remain fixed is
equivalent to imposing that the number of observations in the CLT remain fixed. By
contrast, if A goes to zero then px converges to a Normal, just like the distribution of the

standardized sum in the CLT converges to a Normal as the sample size goes to infinity.

Therefore, in general, the density px cannot be approximated for fixed A around a
Normal density by standard series such as Hermite expansions, because the distribution of
X is in general too far from that of a Normal. For instance, if X follows a geometric
Brownian motion, the right tail of the corresponding log-normal density px is too large for
its Hermite expansion to converge. Indeed, the tail is of order x™' exp{—(Ln(x))z} as x
tends to +eo. From the work of Cramér (1925), it is known that Hermite series only

converge when the density to be expanded is sufficiently close to a Normal density. For
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instance, an explicit calculation shows that the expansion of any N(0,v) density diverges if
v>2, and hence the class of densities functions to which Hermite expansions can be applied

1s quite limited.

The idea in this paper is to circumvent this difficulty by making two successive
transformations of X into a variable Z whose density pz happens to belong to the class of
densities for which the Hermite series converges. We next construct the converging
sequence of approximations for pz. We can then revert the transformation X—>Z, and
through the process of transforming Z back into X, deform the approximation of pz to
obtain an expansion for the density px around a deformed Normal density. In Theorem 1,

we will prove that such an expansion converges uniformly to the unknown py.
2.1 Assumptions and First Transformation

We start by making standard regularity assumptions on the functions 1 and . We
denote by Dx = (x, X) the domain of the diffusion X. We will consider the two cases
where Dy = (-e0,40) and Dx = (0,+0). The latter case is often the most relevant in finance,
when considering models for asset prices or nominal interest rates. In addition, the
function ¢ is often specified in financial models in such a way that 6(0;0)=0 and y and/or
G violate the linear growth conditions near the boundaries. For these reasons, we will
devise a set of assumptions where we replace growth conditions (without constrain on the
sign of the drift function near the boundaries) with assumptions on the sign of the drift near

the boundaries (without restriction on the growth of the coefficients).

Assumption 1 (Smoothness of the Coefficients): The functions 1(x;0) and o(x;0) are
infinitely differentiable in x on Dy, and twice continuously differentiable in 8 in the open
and bounded parameter space OcRK.

Assumption 2 (Non-Degeneracy of the Diffusion):

1. If Dy = (-o0,400), there exists a constant ¢ such that 6(x;08) > ¢ >0 for all xe Dy
and 0 € O

2. If Dx = (0,+e0), we allow for the possible local degeneracy of ¢ at x=0: if
6(0:0)=0, then there exist constants &gy, ©>0, p such that o(x;0) = wx® for all
0<x<p and B € © . Away from 0, G is non-degenerate, that is: for each £>0, there
exists a constant cg such that 6(x;0) > ¢, >0 forall xe [§,+~) and 0 € © .

The first step towards constructing the sequence of approximations to px consists

in standardizing the diffusion function of X, i.e., transforming X into Y defined as



2.0 Y, =v(X,0)= [ du/o(up)

where any primitive of the function 1/6 may be selected, i.e., the constant of integration is
irrelevant. Because 6>0 on Dy, the function Y 1s increasing and invertible. It maps Dy into
Dy = (y.¥), the domain of Y, where y=lim_, v(x;8) and y=Ilim_,_vy(x:6). For
example, if Dx = (0,+) and o(x;6) =x?, then Y, =(1-p)X'* if 0<p<l [so Dy =
(0.+e2)], Y, =Ln(X,) if p=1 [s0 Dy = (-e0,4e0)] and Y, =—(p - )X ®") if p>1 [s0 Dy =
(-,0)]. We suppose that the parameter space © is such that Dy in independent of 6 in ©.
This restriction on © is inessential, but it helps keep the notation simple.

By applying It6’s Lemma, Y has unit diffusion:
(2.2) dY, = p,(Y,:0)dt+dw,
where

@3 miy0) - B 190 1 y)0)

We say that an infinitely differentiable function f has at most polynomial growth if
there exists an integer p>0 such that |y,_plf(y)| is bounded above in a neighborhood of
infinity. If p=1, we say more specifically at most linear, and if p=2 at most quadratic. If
there exists a constant A>0 such that exp{—?»ly [} If(y)l is bounded above in a
neighborhood of infinity then we say that f has at most exponential growth.

Assumption 3 below restricts the behavior of the function Wy and its derivatives
near the boundaries of Dy. It is formulated in terms of the function MLy for reasons of
convenience, but the equivalent formulation directly in terms of the original functions p
and o is obvious from (2.3). Let g(y;8) = _(ui(y;e) + BuY(y;G)/ay)/Z.

Assumption 3 (Boundary Behavior): For all 6¢ ©, Hy(y:0), du,(y;0)/dy and
82p.LY(y;e)/8y2 have at most exponential growth near the infinity boundaries and
Iimy—)ynr? g(y’e) < oo

I. Left Boundary:

1. If y= 07, there exist constants €0, X, ¢ such that for all 0<y < €, and
0O, 1, (y;8) = ky™ where either o>1 and x>0 or 0=1 and >1/2.

. If y = —oo, there exist constants Eg>0 and K>0 such that for all y<-E,
and 6€ ©, p,(y;6)>Ky.



2. Right Boundary:

i. If § =+eo, there exist constants Eg>0 and K>0 such that for all y2E,
and Be ©, i, (y;0) <Ky.

1. If ¥ =07, there exist constants €0, X, 0. such that for all 0>y > —€, and
00, py(y;8)<—x|y|™ where either a1 and >0 or =1 and k>1/2.

In Section 5.2, we will give examples to illustrate the applicability of Assumption 3
to the typical models considered in finance. At this point however, the following remarks

can help demonstrate the generality of Assumption 3:

(1) Note that the upper bound lim_, . ;g(y;8) <o does not restrict g from going to -eo

near the boundaries.

(2) Similarly, Assumption 3 does not preclude Wy from going to - very fast near y, and
similarly, from going to +oo very fast near Y - Assumption 3 only restricts how large [y
can grow if it has the “wrong” sign, i.e., if it is positive near ¥ and negative near y: then
linear growth is the maximum possible rate. If Wy has the “right” sign then the process is
being pulled back away from the boundaries and we do not restrict how fast mean-

reversion occurs [up to an exponential rate for technical reasons].

(3) The constraints on the behavior of the function Wy are essentially the best possible. For
example, if uy has the “wrong” sign near an infinity boundary, and grows faster than
linearly, then Y explodes in finite time. Near a zero boundary, say 0+, if there exists k>0
and o<l such that u,(y;0)<ky™ in a neighborhood of 0+ then 0 and negative values

become attainable.

(4) Finally, we can fully characterize the boundary behavior of the diffusion Y implied by

the assumptions made:

Lemma 1: Under Assumptions 1-3, if 4+ is a boundary then it is natural if, near +co,
(uy(y;G) \ <Ky and entrance if [, (y;0) < ~Ky® for some B>1. If o0 is a boundary then it
is natural if, near -oo, [, (v:8)|<K|y| and entrance if Ly (y;8) > K]|y|® for some B>1. If

0 is a boundary (either O* or 0-), then it is entrance.

Both entrance and natural boundaries are unattainable [see Feller (1952) or Karlin and
Taylor (1981, Section 15.6) for the definition of boundaries]. Natural boundaries can
neither be reached in finite time, nor can the diffusion be started from there. Entrance
boundaries, such as 0+, cannot be reached starting from an interior point in Dy = (0,+o),

but it is possible for Y to begin there. In that case, the process moves quickly away from 0
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and never returns there. Typically, economic intuition says little about how the process
would behave if it were to start at the boundary, or whether that is even possible, and

hence it is sensible to allow both types of boundary behavior.

(5) Assumption 3 neither requires nor implies that the process is stationary. When both
boundaries of the domain Dy are entrance boundaries then the process is necessarily

stationary with unconditional density
y y v
(2.4) =n(y:9) = exp{ZLuy(u,E))du}/IZ exp{2jouy(u,6)du}dv,

provided that the initial random variable Yy is itself distributed with density (2.4). When at
least one of the boundaries is natural, stationarity is neither precluded nor implied. For
instance, both an Ornstein-Uhlenbeck process, where 1, (y;0) = B(c. — y), and a Brownian
motion, where uY(y;G):O, satisfy the assumptions made, and both have natural
boundaries at -0 and +oo. Yet the former process is stationary, due to mean-reversion,

while the latter is not (null recurrent).
2.2 Further Data Transformations

While Y, thanks to its unit diffusion, is “closer” to a Normal variable than X is, in
general it is not close enough to allow us to expand its conditional density around the
Normal density function, due to the fact that A need not be small. For that reason, we need
to perform a further transformation. For given A>0, 6 € ©® and Yo € R, we define the

“pseudo-normalized” increment of Y as
(2.5) Z, = Z(AY,] yo;e) = A_I/Z(Y[ —yo—uY(yO;B)A)

Of course, since we do not require that A—0, we make no claim regarding the degree of
accuracy of this standardization device, hence the term “pseudo”. It will turn out below
[see Lemma 2] that for fixed A, Z; defined in (2.5) happens to be close enough to a Normal
variable to make it possible to create a series of expansions for its density pz around the

Normal density function.

Let pY(A,nyO;G) denote the conditional density of Y,,,1Y,, and define the

density function

(2.6) pZ(A,zlyo;G) = A'/sz(A, A'/zz+y0+uy(y0;9)A|yo;6)
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Once we have constructed a sequence of approximations to the function (z,yo) —

pZ(A,z I yo;e), we will backtrack and infer a sequence of approximations to the function
(y,yo) = pY(A,y | yo;e) by inverting (2.6):

(2.7) py(Aylyy6) = A—l/sz(A, A—l/z(y_yo_MY(yO;G)A))yO;G)

and then back to the object of interest (x,xo) - pX(A,x ! xo;e). To go from px to py and

then back from py to px, we can compute that
(2.8)  py(Ax1x,:0)=0(x:0)" x py(A,¥(x;0)1 Y(%,:6):0)
(2.9) py(A,y1y:8)=0(v(:8):0) X Py (A7 (:8) 1 v (v,:8):6)
since

py(Ayly,:0) = %Prob(sg+A <y|Y, =,:9)

J _
= EProb(XHA <Y7(v:8)] X, =77(y,:6):0)

_ %[ijl(y:e)px(A,x | Y‘l(yO;B);e)dX:'

=0y (+:0):6) x p(A.¥7'(¥:6) 177 (1,:6):6)
which follows from

o (y:0) 1

dy [y /ox](y

) =o(v(y8):9).

and similarly for (2.8).
2.3 Approximation of the Transition Function of the Transformed Data

To approximate the density function pz, we will construct a Hermite series
expansion. We have constructed the variable Z, precisely so that it be “close” to a Normal
variable, for which expansions around a Normal density can be calculated. The rest of this
section makes this basic intuition rigorous. Of crucial importance in Theorem 1 is to prove
that the variable Z; is “close enough” to a Normal variable so that our expansion converges

uniformly.

Define the classical Hermite polynomials by
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, ap dip
(2.10) H{(z)=e /‘E[e /2],

let ¢(z) = e":/z/«/Zn be the N(0,1) density function and

(2.11) p(Az1y,:8) = ¢(z Z Mi(A.y0;0)H,(2)

be the Hermite expansion of the density function z > pZ(A,z I yo;e) (for fixed A, yg and
0). The coefficients 1 are defined by:

(2.12) M(Ay,:0) = (175 j:Hj(z)p(Zj)(A,z ly,;0)dz.

By analogy with (2.7), we then construct the sequence of approximations to Py as:
(2.13) pV(Ay1yy:8) = A7 DA, Ay~ o~ 1y(v0:6)A) 1 y,:6)
and then approximate px by mimicking (2.8):

(2.14) p'(Ax1x,:8) = o(x:0)"pY(A,7(x:8) 17(x,:0):8).
2.4 Pointwise Convergence of the Expansion

The following theorem proves that Z is close enough to a Normal variable for the
expansion (2.14) to converge uniformly as more terms are added, and that the limit is the
true (but unknown) density function. Note that the sampling interval remains fixed; in
particular, we do not require that A—0 for the sequence p”)(A,x I xO;G) to converge to
Py (A, x1x, ,6). Rather, we let the number of terms J grow:

Theorem 1: Under Assumptions 1-3, there exists A > 0 such that for every Ae (O,K),
8 e® and (x,x,)eDy:

(2.15) pi'(Ax1%430) —== py(A,x1x,;0)

In addition, the convergence is uniform in 0 over © and in xg over compact subsets of Dy.
If & is non-degenerate, then the convergence is further uniform in x over the entire domain
Dx. If ¢ is degenerate at zero, then the convergence is uniform in x in each interval of the

form [g,+00), £>0.
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The proof of Theorem 1 relies on the following lemmas:

3

Lemma 2: Under Assumptions 1-3, there exists A > 0 such that for every Ae (O,K)
there exist constants C;, i=0,...,4 and Dg such that for every 6 € © and every (y,yo) eR™:

0 < py(Ayly,:8) < C%Af”zexp{—3(y——y0f/8A}

(2.16) 2
X CXP{Clly_YO”y0|+C2|y—y0|+C3|y0|+C4yo}

and

17 9Dy (A.y1y:8)/y| < DoA™ exp{-3(y —y,)/8a} x Py |y, |)

X exp{clly_}'o”}'ol'*'czly_}’o’+C3|YO’+C4Y(2)}

where P is a polynomial of finite order in (lyl,lyol), with coefficients uniformly bounded in

8 € © . Further, if iy <0 near +oo and [y = 0 near -oo, then A = 4oo.

Lemma 3: Under Assumptions 1-3, for every Ae (O,K), every 0 € © and every

Yo € R, the moments

(2:18) uy(Alye:8,) = [y py(Ay1ys:0)dy
are finite for all j=0.

Lemma 4: The polynomials H; satisfy:

() (j+1)H,(z) = dH,,,(z)/dz for all z in R and every integer j.

it ifj=k

N -172 _~wif _
(i) J‘_m(27t) e " PH(W)H (w)dw = {0 if £k

(iii) There exists a constant K such that for all z in R and every integer j:

[Hi(z)| < K(j)"7 5774 {1+]2772 /2% [fer.

1

We now study the properties of the sequence of maximum-likelihood estimators derived

from maximizing the approximate likelihood function computed from p{’.
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3. A Sequence of Approximations to the Maximum-Likelihood
Estimator

With the sequence of approximation to the transition function in hand, the point of
this section is to show that maximizing

3. 4O)=n"Y" La{pP(A.X,1X 0]

(with the convention that Ln(e) = —co if <0) over 8 in © results in an estimator 6"
which converges to the true (but uncomputable in practice) maximum-likelihood estimator

A

0, as J—>eo. We further prove that when the sample size gets large (n— <) then é(nj"’

n

converges to the true parameter value 8y where J,—eo with n. That this would hold is not
surprising in light of the strong nature of the convergence of p{’ proved in Theorem I:

uniform in x and in 0.

This setup is different from the pseudo-maximum likelihood one [see White (1982)
and Gouriéroux, Monfort and Trognon (1984)]. We are in an atypical situation in the sense
that the pseudo-likelihood does approximate the true likelihood function, and wish to
exploit this fact. We are not concerned with the potential misspecification of the true
likelihood function, but then do not require that the densities belong to specific classes such
as the linear exponential family. Simulation-based or PDE-based methods also produce
approximations to the true likelihood. Of course, what makes the convergence proof
possible here under very general conditions [including non-ergodicity of the process] is the

explicit nature of the approximation.

When defining the log-likelihood function in (3.1), we ignore the unconditional
density term Ln(m(Xg;0)) because it is dominated by the sum of the conditional density
terms Ln{pX(A,XiA IX(i_l)A;G)} as n—o, The sample contains only one observation on
the unconditional density T and n on the transition function, so that the information on «t
contained in the sample does not increase with n. All the distributional properties below
will obviously be asymptotic, so the definition (3.1) is appropriate for the log-likelihood
function [see Billingsley (1961)].

To analyze the properties of the estimators én and éfl”, we introduce the following
notation. Define the KxK identity matrix Id, L;(6) = Ln(py (A, X, 1X;_,,,:6)) the Kx]
vector L(8)=0dL,(8)/06 and the KxK matrix I,(8)=0L,(6)/0000" where T denotes
transposition. From the direct representation of the px used in the proof of Lemma 2, and
the differentiability of p and ¢ in O [see Assumption 1], px(A,x1xp,0) admits two
continuous derivatives with respect to 8 in ©. The same holds for its approximations of

any order J. Let
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(3.2) 1,(8) = Z:l:]diag Ee[Li(e)Li(e)T'X(i—DA]

and i,(8) = E,[I1,(6)] = zin:ldiag Ee[Li(G)Li(B)T] denote the unconditional expectation
of I(8). Also define H,(6) = =" L,(6) and recall that E,[H,_(6)] = E,[I,(6)]=,(6).
The order of differentiation with respect to 6 and integration with respect to the conditional
density px [i.e., computation of conditional expectations] can be interchanged because the

expected value of the derivative is continuous in 6.

If the process is not stationary, Ee[Li(B)Li(G)T] = ES[EG[Li(B)Li(G)T‘X(H)A” [by
the law of iterated expectations] is not independent of the time index i, but rather depends
on the joint distribution of (XiA,X(i_”A) which is nonstationary. We make the following

assumptions:
Assumption 4 (Identification): The true parameter vector 6y belongs to ©, and

(3.3) i'(8) —=> 0 uniformly in 6 ©.

n

If X is stationary, and for all k=1,...,.K, 8€ ©, and x¢e Dy,
3.4) 0< j {oLn(py(A.x1 xo;e))/aﬁk}sz(A,x | Xp;0)dx < + oo

is sufficient to ensure that I,(8) is well-defined and that i'(8) —2%— 0. For the upper
bound, it is obviously sufficient that 18Ln(px(A,xIx0;9))/89k| remain bounded as x
varies in Dy, but not necessary. For the lower bound, the assumption says that the
transition function px cannot be flat as a function of one of the parameters 6, otherwise
Ipy (A, x1x,;8)/08, =0 and the model cannot be identified.

Assumption 5 (Convergence in the Non-Ergodic Case): There exists a (possibly

random) matrix G(0), almost surely finite and positive definite, such that

(3.5) G,(0) = i;”*(6)H,(8) () —2> G(8)

n n

uniformly over compact subsets of ©.

If X is a stationary diffusion, then G(8)=Id is constant, and (3.4) in fact follows from the
Law of Large Numbers [see Hall and Heyde (1980, Theorem 2.18)] and the fact that

E,[H,(6)]=4,(6).

Our strategy to study the asymptotic properties of éfj") is to first determine those of
én [Lemma 5] and then to show that éff"’ and én share the same asymptotic properties

[Theorem 2]. It is easy to see that the score vector S, () = ;Li(G) is a martingale, and
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this forms the basis of the asymptotic properties of én. én is consistent, asymptotically

Normal and efficient:

Lemma 5: Under Assumptions 1-5, and for Ae(O,K), the maximum-likelihood

estimator O exists and satisfies:

~

i 6, —2>6, and i/’(6,)(8,-8,) —> G™*(8,)xN(0,1d) under P, .
1i. Suppose that én is an alternative estimator such that for any he RK and 6e ©,

i‘/z(e)(én - f‘/z(e)h) —< T(8) under P

1 n 8+1'72(6)h
where T(8) is a proper law, not necessarily Normal.

Then 6, has maximum concentration in that class, i.e., is closer to 8y than 6_ is in the

sense that for any €>0

(3.6) lim, . Prob, (i!(6,)(6, - 6,) cs) > lim Probeu(ilﬂ(eo)(én ~0)e cg)

n—oo n
where C, =[-e,+¢]".

(iiiy Tt @, is also asymptotically Normal, ill]’z(GO)(én —90) — G_l/z(GO)XN(O,VO)

under P, . then V, — Id is non-negative definite.

This lemma follows from specializing to the observed process here general results
pertaining to maximume-likelihood estimation for stochastic processes [see Hall and Heyde
(1980, Section 6) and Basawa and Scott (1983)]. If the process is stationary, then Lemma
5 can be greatly simplified: we can then set G(8) =1d and i*(6,) = n"%"*(6,) where the

unconditional expectation
(3.7) i(8) = diag E,[L,(6)L,(8)'].

is now independent of the time index i and is Fisher’s Information Matrix [see Billingsley
(1961)).

However, when the process is not ergodic, G(6) may well be a stochastic matrix:

consider for example the case of a mean-avoiding Ornstein-Uhlenbeck process,
dX, = (a, + o, X, )dt +dZ,,

where o >0 [Sgrensen (1991, Example 5.2) studied the likelihood of continuously

sampled observations from this process and calculated the stochastic limit of the norming
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factor; we can show that the same result applies to discrete sampling at interval A].
Furthermore, when the parameter vector is multidimensional, the K diagonal terms of
i!%(8,) do not necessarily go to infinity at the same rate [unlike the common rate n!’2 in the

ergodic case].

If we had normed the difference (én - 90) by the stochastic factor 1/%(8,) rather
than by the deterministic factor 1'31/2(60)—EE90 [In(eo)]‘” [see Hall and Heyde (1980,
Chapter 6)] then the asymptotic distribution of the estimator would have been N(0,Id)
rather than G™*(8,)xN(0,1d). In other words, the stochastic norming, while
intrinsically more complicated, may be useful if the distribution of G(8p) is untractable. In
that case, the distribution of i;ﬂ(eo)(én —60) need not be asymptotically Normal [and
depends on 8p] whereas that of IL/Z(GO)(én - 60) would simply be N(0,Id). Again, none of
these difficulties are present in the stationary case, where G(0) = Id.

A~

Naturally, Lemma 5 is not an end in itself since in our context 6, cannot be
computed explicitly. The lemma becomes useful however when we can prove that the

approximate maximum-likelihood estimator 8 is a good substitute for 6_, in the sense

n?

that the asymptotic properties of ©_ identified in Lemma 5 carry over to 8. For technical

reasons, we need to limit the speed at t a minor additional condition on the

Assumption 6 (Strengthening of Assumption 2 in the limiting case where oi=1 and the
diffusion is degenerate at 0): Recall the constant p in Assumption 2(2), and the constants
o and x in Assumption 3(1.i). If a=1, then either p=1 with no restriction on K, or ¥ =

2p/(1-p) if O<p<I. If o>1, no restriction is required.

Finally, we have:

Theorem 2: Under Assumptions 1-6, and for Ae (O,Z):

i. Fix the sample size n. Then as J—eo, 6 —2 6, under P, .

ii. AS n—>oeo, there exist a sequence J —oo such that for any J, =7 :

(3.8) 6" —> 0, and i(6,)(65" —0,) —> G™(8,)xN(0,1d) under P, .

iii. And recall from Lemma 5 that Id is the lowest asymptotic variance achievable by

:1/2
l/

n

(8, )-consistent and asymptotically Normal estimators of 6.
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4. Explicit Expressions for the Expansion

With these desirable asymptotic properties in hand, we can now turn to the

computation of the terms in the expansion of px. Theorem 1 shows that

(4.1) pz(A’Zl}’o = 0(z 2 Mn; AYm ( )-

Recall that p”’(A,z I yo;e) denotes the partial sum in (4.1) up to j=J. To fully characterize
the expansion for a given J, we now give the explicit expression of the coefficients 1; in

the form of a Taylor series in powers of A. From (2.12), we have

(4.2) -
j! J H (z )Al/sz(A, Al/zz+y0+uY(yO;G)A‘y0;8)dz

(1/31)
(173
= (13 [T H( A (y - yo 1y (¥6:8)A)) Py (A, |y:6) dy
= (1/3) E[H, (87 (s = ¥o ~ iy (338)A)) | X, = 038

To calculate explicitly the coefficients of the expansion we therefore need to

calculate these conditional moments. For that purpose, we rely on Lemma 6:

Lemma 6: Under Assumptions 1-3, let f be a function such as f and all its derivatives
have at most exponential growth. Then for Ae (O,Z), Y, €R and 6 € O, there exists &
in [0,A] such that

43) E[f(Y,.)]Y, =yo] = _:zlAj(e)'f(yo)?.—; + E[AT(0) e (Y., )|, :yO](JA:)!

where A(6) is the infinitesimal generator of the diffusion Y, defined as the operator:

of 1 0°f
(4.4) A(e)eruY(~;G)ay() 25,70

and A'(6)ef(y,) means A(8) applied j times to the function y+—>f(y), and evaluated at
y=Yo.

Further, there exists a constant Ky dependent on J, but independent of f and 9§,
such that

(4.5) ‘ E[A“‘(e)- f(YH;,)lYt = yo]

< K,
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Note also that in what follows, we do not require that the remainder of the Taylor series
converge to zero as J—oo for fixed Ae (O,_A—), since the operator A(8) is unbounded in
general. Rather, the convergence of the Taylor series (4.3) should be interpreted in the
sense that for any given J

(4.6) lim, , A‘”*‘){E[f(YHA)!Yt =Yo]—2;=1Aj(9)'f(y°)?_z} B é_((lﬁi_z)f_!(_yo_)_

i.e., as the proof of Lemma 6 makes clear, (4.3) is a Taylor series expansion of the

conditional expectation operator in A.

Of course, the convergence of the series p5’ to p, in (4.1), which follows from

Theorem 1, is independent of (4.2). In other words, we first choose J sufficiently large for
the remainder in (4.1) to be small, and for that fixed J we then apply (4.2) to calculate the
coefficients nj, j=0,....J.

Let P4’ denote the approximation to pz obtained by retaining in p5’ all the terms in
Nj, j=0,....J of order smaller or equal to A¥2. Exact calculations show that n; is or order

oo

A2 50 o(z) Z N,(A,y,;0)H,(z) is of order larger than AY2. Hence the expression

(SR
p does indeed retain all the terms up to A¥2in pz, not only in p3’. In the next section,

we give the expression of the first few terms of the expansion P .

5. Practical Considerations
5.1 The First Terms in the Expansion

The message from Section 3 is that maximizing the closed-form expansion of the
likelihood function of order J results in an estimator which gets closer to the exact (but
impossible to compute) maximum-likelihood estimator as J increases. If we collect the
terms in powers of A as indicated in Section 4, and retain only the terms of order smaller or
equal to AY”2, we obtain an approximation p$’. We call S’ the approximation of order J to

pz.

The first six terms of the sequence f)(Z”(A,Z I yO;G) are given by:

(5.) Py =0
(5.2) Py’ =py +o[H,n}/2]A

(530 D)=y~ o[, {2+ 4} + H o]
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(5.4 Py =55+ o[ HL {ui2 /3 + pyn? 3+ 6} + H {nh? /8 + ! 24} | &7

By =5 — o [H {uyny? /6 +pinl /6 + uful /4 +u n /6 +uy 24}
(5.5) + Hy{uyu? /4 + S /2 + pon /8 + ul 16}
+ Hy{pPuP 12+ ' 120} A7
By’ = By + 0 [FL{iRY" /84 1iP f6 + 2, niP 3+ 70 /32
i /8 i /3 4 /8 + /32
(5.6) + H,{u{" /6 +uyniiud! /4 +17u8" /120
+13u0 /60 + o 30 + u! /60}
+ H {u§" /48 +ul? /72 + piiut /48 + Y /720}] A

where we have used the more compact notation ¢ for ¢(z), the N(0,1) density, H; for
Hj(z) and u§™ for (akuY(yo;G)/Gyg)m.

The corresponding expressions for p(”(A,x I xo;e) are given by:
BY(8x1%:0) = 0(x:0) A 5P, 572 (4(x:8) = V(xg38)~ o ((x5:0):0)A) 1 (x,:0): 6)
and then replacing v and [ty by their expressions (2.1) and (2.3) respectively.

For instance, the first term is the Normal density deformed by the function v:

1 (10150 9)-ny (¥(x0 0)0)a)} /25

5.7) pP(Ax1x,:0) = ——-—
-7 pX( X% ) ZTtAG(x;B)e

the second term is

P’ (A.x1%,:8) = {\/Ho(x;e)}_] e_{(Y(X;e)_y(x”;e)_”Y(Y(x0?9)$9)A)}2/2A X
(5.8) {1 + H{Y(X;G)—Y(XO;G)—uY(y(xo;e);g)Aj u[\}]((y(xo;e);e)) A}

and so on.
The first six polynomials Hj are given by:

Hl(z)z—z H()E zt -1, H(Z)E—Z3+3Z, H,(z)=z"'-62"+3
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The corresponding terms for the expansion of the log-likelihood for Z are given by:

(5.10) 7, (8)=n""Y"" Ln[0]
(51 1) ?(Z (9)—- f(Zl)n +n ]2 [HZM“]/Z]A
(5.12) 70(0)=72,(0)—n" 27 [H {uon/2+nl/a}+ H (o)A

etc., and the expansion 7”() is obtained from 23 (8) just like Py’ from p3’ above. In
practice, including just the first three terms in the expansion, i.e., maximizing Ejﬁ’(e) is

more than adequate and there is no need to consider higher order expansions.

Note that the third and higher correction terms to the N(0,1) distribution function in
the expansion of pz do not become smaller as J increases: the third order term remains of
order A¥2 no matter how large J gets. So constructing better and better approximations to
the conditional mean and standard deviation of Y,,, |'Y, for the purpose of centering Y
more accurately [i.e., constructing a “better” Z] would not improve the performance of the
approximation. This is why we do not construct pseudo-maximum-likelihood estimators of
6 by maximizing a Normal density function with converging expansions of the mean and
standard deviation as in Huggins (1997) and then let J go to infinity --the best one could
do would be an approximation error of order A32, the first correction term present
exclusively in the non-Gaussian case. By contrast, the error here is of order AY2 and can

be made arbitrarily small by choosing J large enough.
5.2 Examples and Accuracy of the Expansion

We study the size of the approximation made when replacing px by py’, and how
fast the error decreases as more terms are added, in three classical examples where px is
known in closed-form. These examples show that the term of order 2, provides an
approximation to px which is better by a factor of roughly 10 than the term of order 1, and

that each additional order produces additional improvements by a factor of roughly 10.

Example 1 (Vasicek’s Model): Consider the Ornstein-Uhlenbeck specification proposed
by Vasicek (1977) for the short term interest rate, dX, = B(G - X()dt + odW,, distributed

on (-eo,4o0) and for which the transition density is Gaussian:

Py(Ax1x,:0) = (mo?(1- ) /B). 1/2exp{—(x"a—(xo —’o‘c)e‘m)zﬂ/(cz(l—e‘m))}

with 8=(@,B,0). Here Y, = y(X,;6)=0"'X, and py(y;8) = poic™ —Py.
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We first plot in Figure 1 the density px as a function of the interest rate value x for a
semi-annual sampling frequency (A=1/2), evaluated at x¢=0.10 and for the parameter
values @=0.08, p=0.01 and 6=0.02, which are realistic values from U.S. short term
interest rates. Below the density px, we plot the approximation error py -p% for
J=1,...,6. The striking feature of this figure is the speed of convergence to zero of the
approximation error as J gets larger. In effect, we can approximate px (which is of order
10+1) within 10-6 with J=4 and within 10-8 with J=6 (even though we are only sampling

the process every six months).

Figure 2 reports the same results for a monthly sampling frequency (A=1/12). As
one would expect, the approximation error gets smaller even faster for this lower value of
A. With J=4, the approximation etror is of order 107, and 10-!! with J=6, when px is of
order 10+2. In other words, small values of J already produce extremely precise
approximations to the true density px, and the approximation is even more precise if Ais

smaller.

Example 2 (The CIR Model): Consider Feller’s square-root specification proposed as a
model for the short term interest rate, dX, = B(a - Xt)dt +0./X,dW,, by Cox, Ingersoll
and Ross (1985). X is distributed on Dy = (0,+) provided that q =20/’ ~1 > 0. Its

transition density is non-central chi-squared:

py(A,x1x,:0) = ce’“‘v(v/u)qlzlq(Z(uv)m)

with 8=(®,P,0), all positive, c= ZB/(Gz{l—e_ﬁA}), u=cx,e ™, v=cx and Iq is the
modified Bessel function of the first kind of order q [see Cox, Ingersoll and Ross (1935,
(18))]. Here Y, =v(X,;0)=24X, /o and u,(y;6)=(q+ 1/2)/y —By/2. This process
satisfies Assumptions 1-3. With regard to Assumption 6, we have a=1, k=q+1/2 and
p=1/2. Hence we need q+1/2 2 2p/(1-p)=2, or g23/2. The CIR process is indeed the

limiting case where a=1 and 0<p<l1.

When comparing the approximation to the true density, we find similar results to
those of Example 1, with again an extremely fast convergence even for a semi-annual
sampling frequency (Figure 3), and even more so if we sample more often (see Figure 4
for monthly sampling). The parameter values are ®=0.08, B=0.05 and 6=0.05 [so q=2.2]
and the density is evaluated at xo=0.10.

Example 3 (The CEV Model): dX, =B(d - X,)dt +cX{dW, with 8=(a,B,0.p) is

distributed on (0,+0) when @>0, >0 and p>1/2 [if p=1/2, see Example 2 for an

additional constraint]. This model does not admit a closed-form density [see Cox (1975-
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1996), Chan et al. (1992)]. For 1/2<p<l, the transformation from X to Y is given by
Y, =y(X;:0) =X {G(l — p)} and

1y (y:8) =gy ' - wy T - g

where @, = pac """ (1~ p)_p/(l_p), V= —p/{Z(l ~p)} and ¢, =P(1-p). Assumptions
1-3 again apply. Assumption 6 is automatically satisfied since a>1 when 172<p<l1.

Example 4 (Nonlinear Mean Reversion): The following model, estimated by Aft-Sahalia
(1996b), Conley et al. (1997) and Tauchen (1997), was designed to produce very little
mean-reversion while interest rate values remain in the middle part of their domain, and
strong nonlinear mean-reversion at either end of the domain:

dX, = (o, /X, + 0y + 0, X, +0,X] )dt + 6X7dW,

t

with 6=(a1,000,0.1,002,0,p). We can again verify that Assumptions 1-3 are satisfied by
this model. Indeed, Dx = (0,+e0), Y, = 7(X;8) = X\ /{o(1-p)} (for pz1, Yi=0Ln(Xy)
if p=1) and for p=1

uY(y;G) — (p_]y*(Hp)/(l—p) + (poy—p/(l—p) +yy oy (pzy(Z—p)/(l—p)

where ¢, = OL_IG_Z/(H))(I _ p)‘(“P)/(l—P), §, = OLOG_I/(I_p)(l _ p)—P/(l—P), e —p/{Z(l _ p)},
0, =0, (1-p) and @, =06 (1- p)? U Assumption 6 is satisfied because 0>1
when 0<p<1 due to the term with coefficient ¢.;, and o=1 (leading term has coefficient

near 0*) can only occur if p>1.

Example 5 (The Black-Scholes-Merton Model): Consider a geometric Brownian Motion,
dX, = uX,dt + oX dW,, which is distributed on Dx = (0,+o0). Its transition density is log-

normal:
py(A x| Xo;e) = (27tA02x2)_”2 exp{—(Ln(x/xO) - (u - 02/2)A)2/(2A02 )}

with 8=(1t,0). In this case, we have Y, =y(Xt;9)=0Ln(Xt) so0 Dy = (-o0,+0) and
i, (v:0) = p/o — 6/2. This process satisfies Assumptions 1-3 and 6 (irrelevant), and is not
ergodic. Nevertheless, because Y is an arithmetic Brownian motion (lly is constant), it is
casy to see that our approximation gives an exact result starting at the first order, i.e.:

py’ = py forall J21.



23
5.3 Estimation of the Asymptotic Variance and Test Statistics

Theorem 2 essentially implies that we can replace 8, by 6" in any of the usual
calculations involving maximum-likelihood estimates, without any adverse consequences

asymptotically.

For instance, from the convergence in Theorem 2 and the continuity of the gradient

of the log-likelihood, it follows in the ergodic case that
(5.14) i =0 3 diag (KW OLO) ], — (8)
T

-1
S0 [10 ] is a suitable consistent estimator of the asymptotic variance of the maximum-

likelihood estimator.

Test statistics can be derived. Suppose that the model is (1.1) and that we wish to
test Hy: 8=0 against the two-sided alternative H,: 60). As a consequence of Theorem 2,

the likelihood ratio test statistic evaluated at éf“) behaves identically to that én

(5.15) 2{6(“]“)(@(“"“))—(;”(n’")(ﬂo)} — 2 under Hy, and:

(5.16) 2{6(“1" )(é(nj )) — 6(13“)(60)} s (z+ GI/Z(BO)h)2 under the sequence of alternatives
Hy: =6, +i7(0,)h.

It is interesting to note that under Hy, the distribution of the statistic is chi-square
whether G(8) is random or Id, i.e., whether the diffusion is ergodic or not. However
under H,, the statistic is non-central chi-square if G(0) = Id, and a mixture of non-central

chi-square distributions with the random non-centrality parameter acting as a mixer.

Distributional results can be also be obtained for tests of a nested model which only
allows for K free parameters from the K parameters in 6, and we can also consider Rao’s
efficient score statistic, which depends only on the restricted estimator 8,’, and Wald’s
test statistic, which depends only on the unrestricted estimator éf“). Basawa and Scott
(1983, Chapter 3) derive the properties of these statistics when true maximum-likelihood
estimators are used. In effect, under Theorem 2, we can replace é“ with é(nj“) and the same

distributional and power properties apply.
5.4 How Many Terms to Include

From Theorems 1 and 2, the answer is simple: as many as is practically feasible!

However, as the examples above have shown, it is not necessary to go much beyond J =3
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in the relevant financial examples to estimate the true density with a high degree of
precision. More generally, to select an appropriate J at which to stop adding terms to the
expansion, we propose the following approach: take J large enough so that the
approximation error made in replacing px by py’ is smaller than the sampling error due to

the random character of the data, by a predetermined factor.

That is, in

A

(5.16) Héﬁlj)—eo” < éf)—én + GH—BOH,

we can estimate the asymptotic standard variance of én about B¢ by (5.14). By
Chebyshev’s Inequality, we can then bound the second term on the right-hand-side of
(5.16). We can then stop considering higher order approximations at an order J such that
the distance between the two successive estimates éf) and ég_” is an order of magnitude

smaller than the distance between én and Og.

6. Conclusions

This paper has constructed a series of explicit functions converging to the
conditional density of a diffusion process, under very mild regularity conditions on the
process. This method makes maximum-likelihood a practical option for the estimation of
parameters in discretely-sampled diffusion models. Further, the formulae for the expansion
of px apply to any specification of (1,02), including nonparametric ones. An extension to
multi-dimensional diffusions will be considered in future work. Applications to derivative
pricing, consisting in obtaining pricing formulas for any underlying price process, have

been outlined and will also be developed in future work.
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APPENDIX: PROOFS

Proof of Lemma 1: We treat fully the case where y=0* and y=+oo, the other boundary
configurations being dealt with similarly. Let s, (v;0) =exp {—IVZ wy(u;0) du} be the scale
density of Y and S, (v;0)= Jst(v;G)dv. In each case, the lower limit of integration is a
fixed constant, the choice of which is irrelevant in what follows. Also define its speed
density my (v:0)=1/s,(v;0) and M,(v;8)= J‘y m,(v;8)dv.

(1) To study the boundary +oe, define:

T, = J-:m {J:my (u;e)du}sy(v;e)dv = J‘;w {j?Y(v;G)dv}mY(u;G)du

u

N, = ij {J:sy(u;e)du}m\,(v;e)dv = j;w {j:;hy(v;e)dv}s\((u;e)du

where the choice of the lower bound of integration y is again irrelevant. The boundary +eo

is a natural boundary when £_ =N_ =eco, and an entrance boundary when £ _ =< and
N_ <oo.

(i) Let E>0 be such that Ky <uy (y;B) < Ky for all y>E. We have
I -
/ u y u

y

deo ptoe (Vo opwd Raad o w2 2
ZJ J e YN gudu :J {J e X dv} e du

y u y

Now by integration by parts
rm e X dv= rx vlve ™™ dv = (2Ku)™ e ™ —(2K)™ J’m v2e ™ " dv

: * 2 —Ky? o (7 -k? :
and, since J v e U dv<u J e X dv, it follows that

u u

(1 +(2K)'1u‘2) r”e_sz dv > (2Ku)—1e_K“2.

u

or J+m e M dv > (2Ku+u“1)_1 e X" Therefore

u
u

N, > J:w{rme"(vzdv}e‘("zdu > j;m(2Ku+u"‘)'le_K“2eK“2du = +oo

that is, N.. = oo and +co is a natural boundary.

(ii) If instead we have [ty (y:0) < —KyP?, B>1, for all y=E, then
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Hoo phoo (v w: +oo pdoa v B oo [[pes gy e
N. :J J. el O o dy SJ j e h PN dvdy :J {J e ldv}eC ™ du
y Ju y Ju y

where {=2(B+ 1)¥l K. By integration by parts

J’*“’e—évlmdv :J'I*”V-ﬁvﬁe—avuﬂdvz (C(BH))—lu-pe—cuM _C—](B+1)—2‘[+°°v—|3—1e—c_vﬁ+1 dv

o0

+ _eyb -1 B _c“ﬁu
henceJ- e dv < (2K) u™"e , and therefore

u

+o0 Heo Bl B+l 1T _p _p B B+
N. SJ {j e dv}ecu du < (2K) IJ. uPe ™™ e™ du < +oo

y

and +e is an entrance boundary.

(iii) By the same type of calculation as in (i), we have provided that p,(y;0) <Ky
for all y2E (irrespectively of how negative Ly gets):

oo
1

too m4o0 v wdw Foo +eo _Kv
ZJ- J. g b 2Kwd dvdu:J J e X dv! eX du = +oo
y Ju y

Yy = J’\*w {jf;y(v;e)dv}s;l(u;e)du _ Jymjume_;uv qu(w;e)ddedu

u
that 1s, Z.. = =0 and thus + is unattainable.

(2) Near 0+, define:
Yl ¢y y| pu
T, = J‘O {jv mY(u;G)du}sY(v;G)dv = Jo{jo sY(V;G)dv}mY(u;G)du

N, = :{JVYSY (u;e)du}my(v;ﬂ)dv = JOY{J:mY(V;G)dV}sY(u;G)du

where the choice of the lower bound of integration y is again irrelevant. Note that we have
only assumed that p,(y;0) ~ ky™, but it is clear from ,(y;0)/ky™ —1 as y—0* that
for the purpose of calculating Xy and Ng we can do as if [, (y;0)=xy ™ over the interval
(0,ep]. Let O<u<egy.

(i) If a>1, we have for O<v<g,
sy(v:B) =exp {J 2u,(w;0) dw} > exp{J Yew ™ dw} =k, exp{ZK(OL _ 1)V-(a-1)}

and hence J.OUSY(V',G)dV=+°°. If a=1,

$y(vi0) = exp {J 2kw™! dw} = ko exp{—2kLn(v)} = kv
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and f (v;0)dv >J kov?"dv = +eo again since we have assumed that ¥>1/2 when o=1,
In all these inequalities, kg denotes a different positive and finite constant. It follows from
j( ]usY(v;G)dv =+co and the finiteness of the measure my in the second equality defining X
that £y = o, 1.e., 0 is unattainable.

(11) Among unattainable boundaries, whether 0 is an entrance or a natural boundary

depends upon whether Ny < oo or Ng= oo respectively. We have in all cases
p P p y

Hy(w:B) > xw™ for some k>0 [since if a>1, Wy (w:0)=xw ™™ >kw™; note that this

constant K is not necessarily = 1/2]. Then we can bound Ny above as follows

N, = J‘:J:exp{‘l.: 2uy (w;0) dw}dvdu = Joyjouexp{—fvu 2, (w;0) dw}dvdu
< J.OYLU e MYy du = _[Oy{ Jou Vz"dv}u"“du

:(2K+1)_'j0y{u2“+l}u”2Kdu = 2k+1)7"y* /2 < +oo

Therefore 0 is an entrance boundary for all o>1. QED.

Proof of Theorem 1: Let A> 0 be the constant defined in Lemma 2 below. Let Ax be
a compact set contained in Dy, and consider xy in Ax. Let Ay be the compact set which
contains the values of y(x;8) as xo varies in Ax and 0 in © (recall that © is bounded).
Detine

LA x1x,:0) = A (y(x;e)—y(xo;e)—uy(y(xo;e);e)A).
We seek to bound:

|Px(AxTx0:6) = pP(Ax 1 x,:6) |

=o(x;0)" ‘ py (A ¥(x;0)1 Y(%30):8) — pg)(A,y(x;G) I y(xo;e);8)|
=0(x:0) A | p,(AL(A X 1x0:0)1v(x,:6);8) - Py’ (A.L(A.x1x,:6)! y(xO;B);6)|

Consider the j-th coefficient of the approximating function p(”.

N,(Ay,:8) = J H,(w)p, (A, wly,;8)dw

= (J !)‘ (J + 1)_1'[_«, H,/ (W)pz(A’W I YO;B)dW



28

=(G+D) H,, (w)p,(Aw] yo;e)]im

00

-(G +1)!)_1J:Hj+l(w){8pZ(A,w I yO;G)/BW}dW
Fromy=y, + uY(A I yO;B)A + A”w, it follows that
(y- yo)z/A =w’ +2wA" 1y (Aly,:0) + Apg (A ly,;0)

Therefore, from Lemma 2, the continuity of 6+ (A I yO;B) and the boundedness of @,
it follows that

0<p,(Awly,0) < a, exp{—3w2/8}exp{al|w||y0|+a2|w|+ aly, |+ a4y§}

where the constants a;, i=0,...,4 are uniform in 8 € ® . Combine this bound with Lemma 3
(ii1) to obtain

(G0 "H (w)p, (8w y:8)| < (G+D)™ G+ DM RT+| w2 /27 e

% a, e—3W2/8 eﬂx [wllyol+as | wl+as|y, |+asys

and therefore
(G+ D) "y (wp (A, wly:0)] =0.

. o, 2 .
We now prove that the series ijo A% (A,yo,e) converges, where

vi(A,y:8) =(j !)_IJ.EHJ(W){apZ(A,w I yO;B)/aw}dw :

First, note that the integral jjwewz/z{apz(A,w ! yO;G)/aw}Zdw converges, since from the
second bound in Lemma 2, we obtain that:

I&pZ(A,w I yo;e)/ay' < b, exp{—3w2/8} X R(|w],|y0 |)

x exp{by|wl|yo [+ b, w|+b, |y, |+ b,yi}

where R is a polynomial of finite order in (Iwl,lygl) with coefficients uniform in 8 € ® , and

where the constants b;, i=0,...,4 are uniformin 6 € © .

Second, expand the squared term in

0 = Jj:ew:/z {apz(A’W I YO;e)/aw - (I)(W)ZJLOVJ(A’YO;B)HJ'(W)}2 dw
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= [T {ap,(A,wy,:0)/ow} dw
= 221" Y vi(Ay6i8)[ {ap, (A wly,:6) /0w (w)dw
)Y N V(A Y8V (A y,:6) [TemH (w)H, (w)dw
= [Te " {op, (A wly,:0)/ow) dw - @r) 7Y itV (Ay,)

and the (dominated) convergence of the series on the right-hand-side follows. Further, the

series converges uniformly with respect to 8 in © and to yq in the compact set Ay.

Next, we prove that the expansion p}’ of pz converges. We can bound the terms of

order j=1 in the series according to

Inj(A,yO;O)HJ(Z)l: (G+ 1)!)‘1U:Hj+l(w){8pz(A,w | yO;G)/aw}dw“Hj(z)l
:,Vj+l(A’y0;e)HHj(Z)|
< K{l _'_’25/2/25/4 I}CZZ/4 y {j—m(j!)”z‘\;jﬂ(A,yO;e) ‘}
< K{l +lzs/z/25/4 l}ezz/4 < {j_l/4(j+1)-”2((j+1)!)”2|VJ—+1(A,y0;9) ’}

<K{1+|2"7/2%" Fe A LG + Gt DIVLi(Ay,:0)} /2
since || < (o’ + Bz)/Z. But both series

zj—l/l(j+ ])71 and Z (J+1)'VJ2+1(A’Y0’9)

are convergent. Hence p3’(A,zly,;0) = q)(z)Z;:Onj(A,yo;G)Hj(z) is convergent as

J—eo. Note that the convergence is uniform in z over the entire real line since the two
series just above converged uniformly with respect to z. The convergence is also uniform

with respect to 0 in © and yg in the compact set Ay.

The last point that remains to be proved is that the limit of p(Z”(A,Z I yO;G) is indeed
p,(A,z1yy:0). Let q,(A,zly,;0)=lim, Py (A,z1y,:0). qz is continuous in z as the
uniform limit of a series of continuous functions. Further, with

€, =] PGHDTHGHDIVEL(Ay:0)
note that there exists a constant K such that

i+l

q)(z)’nj(A’Y();e)Hj(Z” < K{l +|ZS/2/25/4 I}e—22/4 8j+1 < KO 6422/8 e
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(for z large enough) and hence qz satisfies the same bound as pz in Lemma 2. Therefore
the integral (k)" fmqZ(A,w 1'y4:8)H, (w)dw exists and since
(kN ijp;f)(A,w ly,;6)H, (w)dw
_ ] oo - _wl
= (k!)” _;:onJ(A’YO;e).L,(zn) e /ij(W)Hk(W)dW
B nk(A,yO;G) ifk<J
0 ifk>J

we have that (k!)™ fjmqZ(A,w 1y4:8)H, (w)dw =1, (A,y,;8), and so pz and qz have the
same My coefficients for all k>0.

To conclude, it is easy to see that two continuous functions satisfying the same first
bound as in Lemma 2 and sharing the same 1 coefficients for all k must be equal. Indeed,
define the difference r,(A,w | yO;G) = qZ(A,W I yo;e)— pZ(A,w ! yO;B). The integral of rz
against polynomials wk of all orders k>0 is equal to zero (since any polynomial of order k
1s a linear combination of the first k polynomials Hy) and therefore by Weierstrass’s

approximation theorem the function rz is identically zero.

Let us now go back to px. We have shown that, for every £€>0, there exists
Je(Ay;0) such that for all J > Jo(Ay;0), the bound:

‘pZ(A,Z 1y0:8) — p3(A,z | yo;e)i <eg
holds for all zeR, y, € A, and 6 ©.

It o is globally non-degenerate under Assumption 2(1), 67'(x;8) <c™' < +oo
implies that for all J > Jo(Ax;©):

IpX(A,x 1%0:0) — p(A,x | XO;G)I <e

forall xin R, x, € A and B€ ©. Otherwise, under Assumption 2(2), for every £>0, there
exists a constant cg such that 67'(x;0) < c.' < +oo for all xe [€,4+0) and O € © . Therefore
the uniform convergence of p5’ to pz for z in R implies the uniform convergence of p{’ to
px for x in [g,+<) since for such x’s:
‘pX(A,x 1X,:8) — py’ (A x| xo;e)i
=o(x;8) A" pZ(A,C(A,x 1x,;60)! 'y(xo;G);G) - p(ZJ)(A,C(A,x 1 X:6) y(xo;e);e)’
pz(A,C(A,x 1 X,;0)! y(xo;e);e) - p(Z”(A,Q(A,x 1 X,;0)1 y(xo;e);e) ‘ QED.

< C;]A_]/z
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Proof of Lemma 2: (i) Consider first the case where Dy = (-e0,+e<). Since Y has unit
diffusion, an application of Girsanov’s Theorem yields

pY(A’y | Y();e) =(2na)™" exp{—(y —yo) 28+ L}; Ky (W;e)dw}

X E[exp{AJ’O]g((l —-wy, +uy+A’’B, ;G)duH

where g(w;0)= —(ui(w;G) + auy(w;e)/aw)/Z and {B,/ue[0,1]} designates a
Brownian Bridge with Bp=B1=0 [see Rogers (1984) and Dacunha-Castelle and Florens-
Zmirou (1986, Lemma 1)]. The strict positivity of py follows from that expression, and the

bound from bounding each of the terms.

Assumption 3 gives the bound

for all'y in Dy, where H and M are positive constants [if y=>0, decompose the integral from
Yo to Ep, where [y is bounded as a continuous function on a compact interval, and then
from Eg to y, where [ty is bounded by Ky; a similar argument holds for y<0]. Hence in
general M=K. Note that this is an upper bound for the integral itself, not its absolute value.
It is useful to note that if iy < 0 near +co and py > 0 near -o then M can be set to 0 in the

expression above.

Then by the continuity of g(w;0) in w, and its limit behavior near the boundaries
under Assumption 3, it follows that there exists 20 such that g(w;8) <y for all w>0 and

B O [in general, of course, g will not be bounded below]. Therefore
E[exp{AL:g((l —wy, +uy+A"’B, ;e)duﬂ < e®

Collecting all terms we have that

pY(A,y | yo;G) < (QEA)—l/ze~(y—yn)2/2A+H+L| y=vo |14} yo ) +K(y-yy) IR

2 B _ 2
< CUA—I/Z 6—3()'—)'0) /8a % eCl‘y Yo llyol+Ca | y-vo ‘+C3|)’0‘+C4)’n

provided that —1/(2A)+ M <-3/(8A), i.e., that 0 < A < A=(8M)™". 1t is clear from
the argument that we could replace 3/(8A) in the bound for py by any number less than but
arbitrarily close to 1/(2A), at the cost of reducing A, but this will not be necessary.
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Further, when puy < 0 near +e and Ly 2 O near -oo, M=0 and hence A = +oo and we can
replace 3/(8A) by 1/(2A).

(11) For the second part of the lemma, we calculate
~1/2 y
JdPpy (A’y | y();e)/By = (2ra)™"” exp{—(y =¥o)'/2A+ J’y) MY(W;G)dW}
X {{—(y ~¥o)/A+1y(y:0)} E[e“ﬂg(“-wo+uy+A'”Bu:e)du}

: re{(—u)yy+uy+A"?B _;8)du
+E[A_[Oug'((l—u)yo+uy+A”2Bu;6)du x g hEl1mwyo sy 1477, o) }}

where g’(w:0)=dg(w;0)/ow = —(ZMY(W 0)duy (w;0)/ow + 3’1, (w;8)/ow’ )/2 First,

we have H (y=yo)/A+py(y;0 }’
one in (lyl,lygl), with coefficients umformly bounded ndeO.

D where Q1 is a polynomial of degree

Second ’E[AeB” < E[’A|CIB'] and E[CAJ‘]’g((l_U)y"MHAHEB”;e)du} < e™, so:

: ! —u uy+ 12 : u
sE[AL ug'((l —wy, +uy+ A”zBu;e)du X f:AJ“g((1 Woruy+ 8B, 0)d ]

< AEU

(1—u)y0+uy+A”2B 6 |du] x e

To bound the expected value on the right-hand-side, recall that g’(w;0) has at most
Alw|

and thus

E[J: u

g((1=wy, +uy + A'"?B,; |du] < GED‘ ol Gworuyeatin | u}

1 -w)y,+ +A”2Bu 1 - -
= GJOuE[eI U)o +uy l}du < Gjoue" u>yo|+m|E[eA |B..v]du

B, is distributed as N(O,u(1-u)). If N is distributed as N(0,62), the density of INI is given
by 2(2m)” o exp{ */26? } x20. Therefore for any constant a:

E[e“w] = 2(2n) " _'j e gy = 2(2m) M5! aZGZ/?J‘ o o) oot g

0

— 61\202/2(2n 1/2 —1J‘ x ac? /20 dx = ea202/2

and it follows that E[eAm]B“ ’] =™ Hence

u’

1 A ,
EU ((1-wy, +uy + A”*B 6) Idu] < GJ.Oue“"")’y“ [rlylrant=wi2 gy < Gelvol!
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(since u runs from O to 1) and we can conclude that

|00y (A.y1y,:8)/ay| < DoA™ exp{-3(y - y,)*/88} x P(|y} |y, |

X exp{C|y = Yo |yo |+ Ca|y = ¥4 |+ Cy |y |+ Cyy2)

for all 0<A<A, where the constant Dy is uniform in 6 and Pis a polynomial of finite

degree with coefficients also uniform in 6.

(ii1) Consider now the case where Dy = (0,+). From the proof of Theorem 1, we
need to show that the integral jewz/z {8pZ(A,W | yO;G)/aw}2 dw converges. That is, after a
change of variable Z—Y, we need to show that the integral

+

mA'/ze(y‘yn*“\'(_"nie)A)l/ZA{apY(A’y ! yO’e)/ay}2dy

0

converges at both boundaries 0* and +eo. The boundary 0+ is either an entrance or a natural
boundary for Y, and in both cases lim yorg? apY(A,y I yO;B)/ay =0 [see McKean (1956),
Remark 4.2 page 541]. Hence the integral converges at the boundary 0+.

The change of measure that we used in (1) above is no longer applicable, because
we cannot transform Y into a Brownian motion: the two distributions are no longer
absolutely continuous with respect to one another since Y is now distributed on a subset of
the real line whereas a Brownian motion is distributed on the entire real line. However, we
can transform Y into a Brownian motion on [0,+e0), reflected at 0. Its transition density is

known to be
Proat (A W1 w,) = (21IA)_”2{exp(—(w - WO)Z/ZA) + exp(~ (w+ WO)Z/ZA)}
for w20, wy>0.

Therefore, by Girsanov’s Theorem, we have for y>0, yg>0:

Py (A,y | YO;e) - pRBM(A’y I YO) X exp{_l‘y HY(W;G)dW}

Yo

x ER™M [exp{j: g(Y, ;G)du}

Yt = Y’YO = YO:|

R
where E®M

reflected at 0. We have that

indicates that inside the expectation Y follows the law of a Brownian motion

Prem (A’ yl YO) < Z(ZRA)q/z exp(—(y - yO)Z/ZA)
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since exp(—(y-f—y())2/2A)<exp(—(y~y0)2/2A) for y>0, yo>0. Therefore the same
bound as in cases (1) and (2) apply. QED

Proof of Lemma 3: Recall the bound for py derived in Lemma 2:

. C
uy(Aly,:6,5) <exp{Cy|y,|+C,yi} "G

xJ.j: W=y, |j exp{—3w2/8A +C, |y0|| w|+C,|w |}dy

where we have changed the variable y to w=y-yo. For each A and y there exists a value
(A.y,)> 0 such that for all w, |w|2¥(A,y,) implies that

3w /BA+C ly |[w]+C,|w| <-5w?/16A

and the convergence of the integral follows. QED.

Proof of Lemma 4: (i): See e.g., Sansone (1991, page 304); (ii): see e.g., Sansone
(1991, page 308); (iii): see Stone (1927, Theorem II).

Proof of Lemma 5: The proof is based on verifying the conditions (B.1)-(B.3) of
Basawa and Scott (1983, page 33). First, it is clear that for every 8¢ ©, Li(e) exists.
Indeed, from the expression that we already used in the proof of Lemma 2,

Ln(p\' (Ayl y();9)> =-Ln(2rA)/2 - (y ~y,)* 28+ Lyo My (w;0)dw

+ LH(E[CXP{AL[%(O —wy, +uy +A"B, ;e)du}D

and recall that Ly and g are twice differentiable in 0, and that px is given by (2.8); apply

the differentiation chain rule to conclude.

Next, for every 8 and k=1,...K, the kxk entry in the matrix E[Li(B)Li(B)T|X(i_UA] is
finite, which follows from the finiteness of (3.4). Hence I,(0) is well-defined, and (B.1)
is satisfied.

(B.2), ie., i,'(8) —=— Oand G,(8) = i7¥*(8) H,(6) i;"*(8) —=> G(6) is given by

n

Assumptions 4 and 5.
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(B.3) is a continuity requirement: for all £>0, let Ni(G)E{éE@

(0)(6-0)|< e}

where | | denotes the Euclidean norm on RX, we need that
SUP; e o) in(é)in_l(e) -1Id ” — 0

and
by o 2 O (6)-H,O): @) — o,

both uniformly in 8. A sufficient condition under (3.4) is that the functions

0 J-: {aLn(pX(A,xIxo;e))/%k}sz(A,xlxo;e)dx

and 0 82Ln(pX(A,xIxO;G))/E)GaE)T be continuous in 6e @, for all xge Dx. This
follows from the continuity of 6+ pX(A,xIXO;G) and its first two derivatives. The

continuity is uniform in 6 because © is bounded.

These conditions are essentially equivalent to multivariate extensions of
Assumptions | and 2 in Hall and Heyde (1980, Proposition 6.1, page 160). It follows

from verifying these conditions that

{i,(8)S,(6), G,(8)} — {G"(8)N(0,1d), G(6)}

n

which is a version of the Central Limit Theorem for Martingales in Chapter 1.4, Theorem 1|
page 34 [this reference and the following are from Basawa and Scott (1983).

Now the MLE exists and its distribution follows from Chapter 2.4, Theorem 2

page 58, which is a classical Taylor expansion of the score function:

1(8,)(8, ~0,) — G™7(8,)xN(0, 1d) under P,

The efficiency part of Lemma 5 is an adaptation of Chapter 2.4, Theorem 3 page 60; the
Normal asymptotic variance comparison follows from Chapter 2.3, Corollary 2, page 53.
QED.

Proof of Theorem 2: (i) Fix €>0 and xge R. Let r)((J)(A,xlxo;B) = pX(A,xlxo;G) -
p(,,g)(A, x| xo;G) and

Rgg)(A,x I x0;®) = SUPgo

r,((J)(A,x | x0;9)1

and also define the corresponding quantities for Y and Z. Recall that
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’pX(A,xIxO;G) pg)(A,xlxo;G)’

=0(x:0)"'| py (A, 7(x:8) 17(x,:6):8) — pY(A, ¥(x:8) 17(x,:6):8) |

and hence RY(A,x1x;0) = sup,_|o(x;0)”" ‘ X Rg)(A,y(x;G)ly(xo;G);G)

By Theorem 1, the convergence of py’(A,y1yy;0) to py(A,y1y,;8) is uniform in
y over Dy and in 8 over ©, and in y over bounded subsets Ay of Dy. Hence there exists
Je(A,Avy:0) such that for all J > J.(A,Ay;0) we have

r\(,”(A,nyO;G)| <e.

Supé)e() SupyeD Supy‘,eAY
Now recall that
’Px(A’Xlxo;e) pg)(A’XIXO;GH

= o(x:0)” l pY(A,y(x;G) I y(xo;e);e) pg)(A,y(x;G) | y(xo;ﬂ);9)|

xois fixed. Let Ay be the set of yo described by y(x,;6) as 6 varies in ©. Since © is
bounded and vy is continuous in 6 [G is by Assumption 1] Ay is bounded, and therefore

R&”(A,x | xO;G)) < supeeg{c(x;e)_l} X SUPg o SUPyep, SUPy, ca, rS’(A,y | yo;e)‘

< supeeG{ o(x;0)” }Xs

Let 7(x) = supg.e {G(x;e)_]}, which is finite by the boundedness of © and the continuity
of 67l in 6.

Then for m=1 and m=2, we have that

IA

‘EQ“ [{R@?(A,XM IX[;G)}let - xo} j [RP(Ax1x5:0)[ (A x1x4:6,)dx

SEJ T (x)py (A x 1X038, )dx

ie., lim,__ Ee“l:{ V(A X, s IX[;@)}m’Xt :xog—| = 0 for m=1,2, provided that we
prove that the two integrals J o m(x)pX(A,xlxo; 0)dx, m=1,2, converge.

(ii) A difficulty only arises when G is degenerate [otherwise ™" (x) <c¢™ under
Assumption 2(i), and then JX Z_m(x)pX(A,x I xo;eo)dx <c¢ "]. Under Assumption 2(ii),
degeneracy may happen when D = (0,+0) and 6(0;0)=0. Applying the change of variable

X—Y, we wish to prove convergence of the integral
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Jy Z*“‘(y"(y;e)) X py(A,y1y,:0)dy.

v

[Z-! means 1/Z whereas y! represents the inverse of the function v].

Since the only degeneracy of G is near the left boundary x = 0*, we need to
consider the two cases where y =lim__ . Y(x;6) is either 0* or -eo. Under Assumption
2(ii), we have that 67'(x;8) <®~'x® for all 0<x<&y and 8 € © . For 0<x<&, we have

_[Oxdu/c(uge) < Lx(o"lu‘pdu =0 (1-p) " x'*

if 0<p<I, and therefore y = 0% by taking the limit as x tends to 0+. Let x:y“l(y;e), and
we have just shown that for y near 0+, y < m_l(l—p)_lxl"p, from which it follows that

Y7 (y:8) 2 (o1 —p)y)l/(l_p) and consequently

-mp ~mp/(1-p)

S (50) s [0 <ok o)

So naturally the upper bound tends to +oo as y tends to 0*. The issue is whether
this upper bound increases faster than py decreases as y tends to 0+. To answer that

question, we need to call upon Assumption 3(1.i). For O<y<gy,
exp(L’ Iy (W;G)dw) = exp(—Jyo uy(w;e)dw)

% x )
g0 g _ 80 Yy if o=1
< exp(—KL w dw) = {ex(a_,)%(m1)_K(a_1)y-(u_1> fos

will provide an upper bound to py for y near 0+ [see the proof of Lemma 2; the other terms
are bounded near O*]. It is clear that if o>1 the left tail of py decays exponentially fast,
while the upper bound for Z_m(y_l(y;G)) < (o_m[y_l(y;e)]_mp < (o‘m((o(l - p)y)fmp/(lvp)
increases only geometrically, so the integral will converge. If a=1, then the tail of py is
bounded above by y¥ and therefore the integral will converge if x > 2p/(1-p). This is

insured by Assumption 6.
If instead p=1, then
X &0 X
y=lim_ . Lm o '(u;0)du = ch_](u;ﬂ)du +lim _ . J;o 6 '(u;0)du

where F” o' (u;0)du <0 and
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lim _ . J‘; o' (w;0)du < lim _ . onco“'u“’du

_ o 'Ln(x) ifp=1
= hm,Ho -1 -1 —(p-1) .
—o ' (p-1) x ifp>1

= —x

80 y = -0 when p21.

In that case, we have for y near y: Z_m(y_l(y;e))Sm'm[y‘l(y;e)]ﬁmp. Let
x=v"'(y:8). From the same calculation as above, we have y <®'Ln(x) if p=1. Thus

v (y;0) > e and therefore Z_"’(Y_l(y;e)) <® "e ™, Now from Lemma 2, we know

—3y2/3A —mpwy -3y’ /RA

that py is bounded above by a term of the form e , so the integral of e e

converges for y near -eo. If p>1, y<—0 ' (p-1 ~'x®™ and therefore
g p>L.y p

7'(v:8) = (—o(p-1)y) """ = £ (v () <o (-o(p - 1)y)"™""

which again tends to +ec as y tends to -e, but not fast enough to overcome the decay
—3y7 /8A
e

of py. Hence the integral Jy E"m(Y_](}CB)) X py(A,¥1y,;0)dy converges near y =
y P4
-0 when p>1. )

We can therefore conclude that lim; ,_ E, [{R@(A,XHA IX[;G)}m 1Xl = X0:| =0

for m=1,2.

(i11) The convergence of its first two moments to zero imply by Chebyshev’s
Inequality that the sequence R()g)(A,X[+A I Xr;G) converges to zero in probability, given
X=Xy, that is:

lim, . Prob (\R@(A,XHA 1X,:0)|>e|X, =Xo;90) = 0.

Then, by Bayes’ Rule we have
Prob (|R{(A,X ., 1X,:0) | > &6,
= f:Prob (I R()g)(A,XHA I X‘;®)|> €|Xt =X,; 60) 1tl(x0;90)dxO
where 7,(x,;6,) = dProb (X, <x,;8,)/dx, denotes the unconditional (or marginal)

density of X, at the true parameter value. Note that since we are not assuming that the

process is strictly stationary, that density depends on t.

Now since
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0 < Prob (!R&”(A,XHAIXK;@)PS’X,:xo;eo) < 1and |, (x,:8,)dx, =1

it follows from Lebesgue Dominated Convergence Theorem [see e.g., Haaser and Sullivan
(1991, Theorem 6.8.6)] that

lim, ... Prob (|RY(A,X,,, 1X,;0)|>;8,) = 0.

From p(;)(A,X

logarithm, it follows that

1 X,;6)——>py(A,X,,4 1X,;0) and the continuity of the

t+A t+A

Ln[p(x‘”(A,XHA | X[;e)] —2 Ln[py (A, X,,4 1X,:0)]

and therefore for fixed n: £{(6) —2— £ _(8) as J—>oo, uniformly in 8. Once we have
reached this stage, the convergence of the respective argmax in éf) — én 1S an
application of standard methods since ¢.(8) and ¢, (8) are both continuous in 6 for all n
and J.

(iv) Fix £>0 and 6>0. From part (ii), for each n, there exists J,>0 such that for all
J>J,: Prob (‘é(n” -0 |>¢/2; 60) < e™". Then there exists N>0, e~ < §/2, such that for
all n>N: Prob( 6, -8, >£/2;60) <8/2 since 6. —2—6,. The conclusion follows

from:

Prob (‘éﬁ;""—60\>e;90) < Prob(léff“)—én >£/2;90)+Prob(én~60|>£/2;60).

and similarly for the convergence in distribution since

i77(6,)(6, ~6,) —— G(8,)xN(0,1d)

1

by Lemma 5. In addition, it is clear that we can replace J, by any J/ > J; in the statements

above with no modification. QED.

Proof of Lemma 6: Define the function (p(s,yo;e) = E[f(Y )

t+s

Y, = yo] for se (O,Z).
@ is differentiable in s (since the function s — py (s,y [ yO;G) is), and we have:

90(835:0) _ 1=y Io(8.¥ 1%0:6)

d
Js 3 Y

ay ay”

=l ey 3 1 d(Y) .
_j_w{uY(Y’e) dy +5 dy2 pY(S,ylyO,e)dy

= f(y){_a_(—uy(y;e)pY(s,y 19:6)) + % 9°py(s.y! yo;e)}Gly
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where the integral converges due to the upper bound on py in Lemma 2, the growth
condition on Wy and the fact that f and its derivatives have at most exponential growth. The
second equality follows from the Kolmogorov forward equation satisfied by py and the

third from integration by parts. When integrating by parts, we have

£(y ) (v:0)p(s.y 1y,:8)]~ =0

(and similarly for the other boundary terms) in light of the same bounds as above.
Therefore d(0,y,:0)/ds = A(8) # f(y,) and similarly 9'9(0,y,;8)/ds' = A’(B) e f(y,) for
all j, by iterating the same steps, starting from:

J’ <P 5, yo, apy(s,ylyo;e)
—d
J-m{ ds Y

The result then follows from applying Taylor’s Theorem at s=0, to the function ¢
evaluated at s=A. QED.
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Figure 1

Conditional Density Approximations for the Vasicek Model

Semi-Annual Sampling Frequency

VAS semi-annual density

25
20}
15
10
5
0.06 0.08

0.12 0.14

VAS semi-annual error of order 1 VAS semi-annual error of order 2
0.0002
0.0001
0.12 0.14
0.12 0
VAS semi-annual error of order 3 VAS semi-annual error of order 4

G.000075¢

-6
.10
€.00005 !
-7
0.000027/\ 5. 10

C.06

.14 -1.




45

Figure 2

Conditional Density Approximations for the Vasicek Model
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Figure 3

Conditional Density Approximations for the Cox-Ingersoll-Ross Model
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Figure 4

Conditional Density Approximations for the Cox-Ingersoll-Ross Model
Monthly Sampling Frequency
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