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ABSTRACT

The study of differentiated-products markets is a central part of empirical industrial
organization. Questions regarding market power, mergers, innovation, and valuation of new brands
are addressed using cutting-edge econometric methods and relying on economic theory.
Unfortunately, difficulty of use and computational costs have limited the scope of application of
recent developments in one of the main methods for estimating demand for differentiated products:
random coefficients discrete choice models. As our understanding of these models of demand has
increased, both the difficulty and costs have been greatly reduced. This paper carefully discusses the
latest innovations in these methods with the hope of (1) increasing the understanding, and therefore
the trust, among researchers who never used these methods, and (2) reducing the difficulty of use,
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1. INTRODUCTION

Much of the recent empirical industrial organization literature, the "New Empirical 10,"
has focused on study of a single industry (see Bresnahan, 1989.) Until the last few years, most of
the literature has concentrated on homogenous-goods markets. In the last few years this trend
has changed and more attention is being paid to differentiated-products markets. Questions
regarding market power, mergers, innovation, and valuation of new brands are addressed using
economic theory and econometric estimates of demand.! The econometric estimation introduces
many challenges. Recent developments in the one of the main methods of dealing with these
challenges, random coefficients discrete choice models, have not yet realized their full potential
due, mainly, to difficulty of use. This paper carefully discusses these innovations with the
intension of reducing the barriers to entry and increasing the trust in these methods among
researchers that are not familiar with them.

Since the pioneering work of Stone (1954) practitioners estimating demand systems have
struggled with the need for flexible functional forms, which do not impose a prior the data cannot
overcome, while keeping a connection to neo-classical demand theory (either by imposing it, or
finding ways to test it.) Examples include the Rotterdam model (Theil, 1965; and Barten 1966),
the Translog model (Christensen, Jorgenson, and Lau, 1975), and the Almost Ideal Demand
System (Deaton and Muellbauer, 1980.)

Estimating demand for differentiated products adds two additional non-trivial concerns.

Just to mention some of these studies, Bresnahan (1987) studies the 1955 price war in the automobile
industry; Gasmi, Laffont and Vuong (1992) empirically study collusive behavior in a soft-drink market; Hausman,
Leonard and Zona (1994) study the beer industry; Berry, Levinsohn and Pakes (1995) examine equilibrium in the
automobile industry; Goldberg (1995) uses estimates of the demand for automobiles to investigate trade policy
issues; Berry, Carnall and Spiller (1996) study hubs in the airline industry; Bresnahan, Stern and Trajtenberg (1997)
study rents from innovation in the computer industry; Nevo (1997b-d) examines price competition, mergers and
valuation of new brands in the U.S. ready-to-eat cereal industry.
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First, the large number of products, and hence the large number of parameters to be estimated.
To be more specific, we require an estimate of the demand system and the pattern of substitution
between the goods. If, for example, we have 200 differentiated products, then assuming constant
elasticity demand curves, implies estimating 40,000 price elasticities. Even if we impose
restrictions implied by economic theory, the number of parameters will still be too high to
estimate with any available data set.

An additional problem, introduced when estimating demand for differentiated products, is
the heterogeneity in consumer tastes: If all consumers are identical then we would not observe
the level of differentiation we see in the modern marketplace. One could assume that preferences
are of the "right" form (the Gorman form, see Gorman 1959), so that an aggregate, or average,
consumer exists and has a demand function that satisfies the conditions specified by economic
theory (for example see Dixit and Stiglitz, 1977; or Spence 1976.) However, for some
applications using only the aggregate behavior has different implications from using the
individual demand patterns.

A solution to both these problems is given by the discrete choice literature (for example
see McFadden, 1973, 1978, 1984; Cardell, 1989; Berry, 1994; Berry, Levinsohn, and Pakes,
henceforth BLP, 1995; or Nevo 1997a.) The dimensionality problem is solved by projecting the
products onto a space of characteristics, making the relevant dimension the dimension of this
space and not the square of the number of products. Heterogeneity is modeled explicitly and
unknown parameters governing the distribution of hetero geneity are estimated. A well known
problem with many discrete choice models is the strong implication of some of the assumptions
made.

Recent developments in methods for estimating random coefficients discrete choice



models of demand (Cardell, 1989; Berry, 1994; BLP; and Nevo, 1997a) maintain the advantages
of the discrete choice literature while (1) relaxing the restrictions on substitution patterns, (2)
dealing with the endogenity of the price variable and (3) estimating the model using market-level
price and quantity data. The computational costs of implementing these methods are higher than
for classical discrete choice models. However, with advances in the computing methods,
computation time has been reduced to reasonable levels. The rest of this article documents these
methods.

A parallel line of research estimates the same models using individual data, rather than
only market-level data (see Goldberg, 1995;Rossi, McCulloch and Allenby, 1996; or McFadden
and Train, 1997.) This body of work differs from the one described here in the structure of the
data (individual versus market) and in the assumption, usually made, that prices are exogenous
(while the work described here deals with the endogenity of prices.) It should be noted that if
one is using individual data the endogenity issues will not exist in many cases.

An alternative to the discrete choice methods, discussed here, is a multi-level demand
model (see Hausman, Leonard, and Zona, 1994; or Hausman, 1996.) The essential idea is to use
aggregation and separability assumptions to justify different levels of demand. The top level is
the overall demand for the product category (for example RTE cereal.) Intermediate levels of the
demand system, model substitution between various market segments, for example, between kids
cereals and natural cereals. The bottom level is the choice of a brand within a segment. Each
level of the demand system can be estimated using a flexible functional form. This segmentation
of the market reduces the number of parameters proportionally to the inverse of the number of
segments. Therefore, with either a small number of brands or a large number of (a priori)

reasonable segments this method can use flexible functional forms (for example the Almost Ideal



Demand System of Deaton and Muellbauer, 1980) to give good first order approximations to any
demand system. However, as the number of brands in each segment increases, beyond a handful,
this method becomes less feasible. For a comparison between the methods described below and
these multi-level models see Nevo (1997a, chapter 6).

The paper is organized as follows. Section 2 describes a model that encompasses, with
slight alterations, the models previously used in the literature. In Section 3 I give the "big
picture" of the estimation procedure. Section 4 describes the nitty-gritty details of estimation and
should be read only by those readers who would like to actually code the algorithm . Section 5

concludes.

2. THE MODEL

The primitives of the model are consumer preferences and the characteristics of products.
Producers and consumers in the market are assumed to observe all product characteristics and
decisions of all other participants. The researcher, on the other hand, is assumed to observe only
some of the product characteristics and the market outcome of price and quantity of each
product. Some information regarding the distribution of consumer characteristics might be
available but a key assumption is that individual consumer decisions are not observed.’

Formally, I assume we observe #=1,...,T markets, each with i=1,...,/, consumers. For each

such market we observe aggregate quantities, average prices, and product characteristics for J

2If such decisions are observed the method of analysis differs somewhat from the one presented here. See
Goldberg (1995), Rossi, McCulloch and Allenby (1996), or McFadden and Train (1997), for ways to deal with the
case where individual decisions are observed, but no aggregate data is observed. If both aggregate data and
individual decisions are observed they can be combined to enrich the analysis. This is the topic of ongoing
research.



products.” The definition of a market will vary. BLP use annual sales over a period of twenty
years to define twenty different national markets. On the other hand, Nevo (1997b) defines a
market as a city-quarter combination and Das, Olley and Pakes (1994) define different markets
by looking at different income levels at different years.

The conditional indirect utility of consumer i from product j in market 7,

U(xj. " ijt, Pip T 9), is a function of observed and unobserved (by the researcher) product
characteristics, x;, and &, respectively, price, p;, individual characteristics, T, and unknown
parameters, 8. An important point for the econometric analysis is that the unobserved product
characteristics, &, are not only observed by the producers but also taken into account when
setting the price. This introduces the econometric problem of endogenous prices which is similar
to the well known problem of simultaneity in classical demand estimation methods. In the model
presented here both prices and the unobserved characteristics influence utility in a non-linear
fashion which can potentially create difficulties in a straightforward application of instrumental
variables methods.

The estimation method presented below shows how to transform the model in such a way
that well-known instrumental variable methods can be used. Furthermore, I explain how
parameters that govern heterogenous individual demand can be estimated despite the fact that we
do not observe individual behavior.

I focus on a particular specification of demand which includes, with small changes, most

3For ease of exposition I have assumed that all products are offered to all consumers in all markets. The
methods described below can easily deal with the case where the choice set differs between markets and also, with
somewhat more difficulty, with different choice sets to different consumers. Finally, the methods described below
can also deal with cases where in some markets the quantities of several products are aggregated. For example, in
some markets we might only observe the total amount of Cheerios sold (in different size boxes), yet for the purpose
of our analysis we would like to define the different size boxes as different products. Of course this aggregation
cannot be taken to the extreme: we cannot identify much if all we observe is the aggregation across all products. A
topic for further research is identification and the extent of aggregation across products.
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of the specifications used in previous work. In this specification, the conditional indirect utility

of consumer i from product j in market ¢ is*

= 5,B] 01D, +E T AG, e,
1)
i=1,...0 j=1,.J, t=1,..,T
where x, is a K-dimensional vector of observable characteristics of product j, p;, is the price of
product j in market ¢, , is the national mean of the unobserved (by the econometrician) product
characteristics, AE, is a market specific deviation from this mean, and €, is a mean zero
stochastic term. Finally, (a; B,)are K+1 individual specific coefficients.

Examples of observed characteristics vary by the product being considered. BLP examine
the demand for cars, and include as observed characteristics horsepower, size and the existence
of air-conditioning. In estimating demand for ready-to-eat cereal Nevo (1997a) observes calories,
sodium and fiber content. Unobserved characteristics include a vertical component (for example,
at equal prices all consumers weakly prefer a national brand to a generic version), components
that are consumer specific (for example taste and valuation of freshness), and the market specific
effects of merchandising (other than national advertising.) The reason for separating in notation
& and AE, will become clear below once I discuss including brand-specific dummy variables as
product characteristics.

Implicit in the specification given by equation (1) are two things. First, the indirect utility
can be derived from a quasi-linear utility function, which is free of wealth effects. For some

products this is a reasonable assumption, for example ready-to-eat cereals, but for other products

this is a bad assumption, for example cars. Including wealth effects alters the way price and

“The methods discussed here are general and with minor adjustments can deal with different functional
forms.



income enter equation (1). For an example of how to deal with such effects see BLP. In addition
equation (1) specifies the vertical component to be identical to all consumers. Since the
coefficient on price is allowed to vary among individuals this is consistent with the theoretical
literature of vertical product differentiation. An alternative is to model the distribution of the
valuation of the unobserved characteristics, as in Das, Olley and Pakes (1994). Note that their
model is by no means more general, it only differs in the assumptions made on the distribution of
the random coefficients.

The next component of the model describes how consumer preferences vary as a function
of the individual characteristics, T, some of which are observed. In the context of equation (1)
this amounts to modeling the distribution of consumer taste parameters. The individual
characteristics consist of demographics that are observed and additional characteristics that are
unobserved, denoted D, and v, respectively. I model the distribution of consumers taste
parameters for the characteristics as multi-variate normal (conditional on demographics) with a
mean that is a function of demographic variables and parameters to be estimated, and a variance-
covariance matrix to be estimated. Let y; =(a;,B;---.Bx)andy=(a, B,,....B;) where K is the
dimension of the observed characteristics vector; therefore,

v, =y +1ID,+Zv, , v~ N(O,] ), 6))
where D, is a dx1 vector of demographic variables, I is a (K+1)xd matrix of coefficients that
measure how the taste characteristics vary with demographics, and X is a scaling matrix.’

The specification of equation (2) implicitly makes assumptions about both functional

form and distributions. The latter is somewhat relaxed if the empirical distribution of observed

SAlternatively, one could think of a composite “error” term, v,*, which is distributed N(0,Z*) and £ is the
Cholesky factorization of .



demographics is used, as explained below. The functional form assumptions can be relaxed by
including quadratic and cubic terms in D, (for an example see Nevo, 1997b.)
The specification of the demand system is completed with the introduction of an "outside
good"; the consumers may decide not to purchase any of the brands. Without this allowance a
homogenous price increase (relative to other sectors) of all the products does not change
quantities purchased. The indirect utility from this outside option is
Ui =Gt D+ OV o+ €y, -
The mean utility of the outside good is not identified (without either making more assumptions
or normalizing one of the "inside" goods); thus, I normalize §, to zero. The coefficients m, and o,
are not identified separately from coefficients on a constant that are allowed to vary by
household. 1 interpret the coefficients on this constant as utility parameters of the outside good.
Let 6 = (0,, 6,) be a vector containing all the parameters of the model. The vector 0,=(a,
B) contains the linear parameters and the vector 8,=(IL, X, 7., 0,) the non-linear parameters®.
Combining equations (1) and (2)
Uy, =8,06,005 &> A3 01) + 1y (x5, D3 0y) + &y .

8,=xB-ap,+&+AL, W, =[p,x]I1D+v) @
where [p,, x].] is a (K+1)x1 vector. Equation (3) illustrates the key idea driving the estimation
procedure described below. The utility is now expressed as the mean utility, represented by 8,
which is common to all consumers, and a mean zero heteroskedastic deviation from that mean,
Ky T €, that captures the effects of the random coefficients. The estimation exploits this

separation to (1) reduce the number of parameters that enter in a non-linear fashion and (2)

generate linear moment conditions.

The reasons for the names will become apparent below.
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Consumers are assumed to purchase one unit of the good that gives the highest utility.
This implicitly defines the set of unobserved variables that lead to the choice of good ;.
Formally, let this set be

Aﬂ(x.t,p.t,S_t; 0,) ={(Di,vi, Sit)luijt zu,, ‘v’l=0,l,...,J}
where x are the characteristics of all brands, x ,=(x,,,.....X, ! P, =@ ,th)’ and
8 ,=(8,,5-»0, /. Assuming ties occur with zero probability, the market share of the jth product,
as a function of the mean utility levels of all the J+1 goods, given the parameters, is
sﬂ(x.,,p‘t,f)_t;ez) = fAdP "(D,v,€) = fA_dP *(e| D,v)dP *(v\D)dP " (D)

! ! )

= fAﬂdP *(e)dP *(v)dP "(D) ,
where P’(*) denotes population distribution functions. The second equality is a direct application
of Bayes rule, while the last is a consequence of the modeling assumptions made in equations (1)
and (2).

Given assumptions on the distribution of the unobserved variables we can compute the
integral in equation (4), either analytically or numerically. A straightforward estimation strategy
is to choose parameters that minimize the distance (in some metric) between the market shares
predicted by equation (4) and the observed shares. For reasons given below, this is not the
strategy used; nevertheless, it serves as an intuitive guide to the estimation scheme.

Possibly the simplest distributional assumptions one can make in order to solve the
integral in equation (4) are those made in classical discrete choice models: consumer
heterogeneity enters the model only through the separable additive random shock, €;. In our
model this implies 0, = 0, and therefore Bu =B s o, =a for all , and equation (1) becomes

ul.jt=xth—apjt+§j+A§jt+sU.t, i=1,..1 j=1,..J, t=1,....T. (5)



If e,

;18 distributed 1.1.d. with a Type I extreme value distribution, this is the well-known (Multi-
nominal) Logit model. The brand market shares relative to the total market, including the

outside good, are

¢ = exp(xth - apjt + &j + Agﬂ)
T :
1+ EILI exp(xk[} —op,t &k * Aékt)

(6)

Although the model implied by equation (5) and the extreme value distribution
assumption is appealing, due to its tractability, it restricts the substitution patterns to depend only

on the market shares. The price elasticities of the market shares defined by equation (6) are

35, Py ap(1-5,), if j=k
njkt T

P 5, -ap,S,, Otherwise.

There are two problems with these elasticities. First, since in most cases the market
shares are small the terma(1 - sﬂ) is nearly constant; hence, the own-price elasticities are
proportional to own price. Therefore, the lower the price the lower the elasticity (in absolute
value), which implies that a standard pricing model predicts a higher markup for the lower-priced
brands. This is possible only if the marginal cost of a cheaper brand is lower (not just in absolute
value, but as a percentage of price) than that of a more expensive product. For some products
this will not be true. Note, that this problem is a direct implication of the functional form in
price. If, for example, price enters in log form the implied elasticity would be roughly constant.
In other words, the functional form directly determines the patterns of own-price elasticity.

An additional problem, which has been stressed in the literature, is with the cross-price
elasticities. In the context of RTE cereals the cross price elasticities imply that if, for example,

Quaker CapN Crunch (a kids cereal) and Post Grape Nuts (a wholesome simple nutrition cereal)

have similar market shares, then the substitution from General Mills Lucky Charms (a kids
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cereal) toward either of them will be the same. Intuitively, if the price of one kids cereal goes up
we would expect more consumers to substitute to another kids cereal than to a nutrition cereal.
Yet, the Logit model restricts consumers to substitute towards other brands in proportion to
market shares, regardless of characteristics.

The Nested Logit (McFadden, 1978) is a slightly more complex model in which the 1.i.d.
extreme value assumption is replaced with a variance components structure. All brands are
grouped into exhaustive and mutually exclusive sets. A consumer has a common shock to all the
products in a set, so she is more likely to substitute to other products in the group. Cardell
(1991) shows the distributional assumptions required in order to retain the extreme value
distribution on the composite term. From a computation point of view the advantage of this
model is that it implies a closed form expression for the integral in equation (4).

The Nested Logit model allows for somewhat more flexible substitution patterns, yet
retains the computational simplicity of the Logit structure. In many cases the a priori division of
products into groups, and the assumption of i.i.d. shocks within a group, will not be reasonable
either because the division of segments is not clear or because the segmentation does not fully
account for the substitution patterns. Furthermore, the Nested Logit model does not help with
the problem of own-price elasticities. This is usually handled by assuming some "nice"
functional form, yet does not solve the problem of having the elasticities be driven by the
functional form assumption.

In some industries the segmentation of the market will be multi-layered. For example,
computers can be divided into branded versus generic and into frontier versus non-frontier
technology . It turns out that the results of the Nested Logit the order of the nests matters (even if

the classification of the products does not change.) For this reason Bresnahan, Stern and
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Trajtenberg (1997) build on the theorem by McFadden (1978) to construct a GEV model of
demand for computers. With the exception of dealing with the problem of ordering the nests ,
this model retains all the advantages and disadvantages of the Nested Logit. In particular it
implies a closed form expression for the integral in equation (4).

If in the full model, described by equations (1) and (2), we maintain the i.i.d. extreme

value distribution assumption. The price elasticities of the market shares defined by equation (4)

are
En arsijt(l _Sijt)dP "(DYdP(v), ifj=k
N, = asjt Pu St
s,
Pia S L P f 0S8, S u il *(D)dP *(v), otherwise.
s,
j

:
where s, = exp{o P py.t} / (1 + Zle exp{Sﬂ + uikt}), is the probability of individual i purchasing
the product j. Now own-price elasticity will not necessarily be driven by functional form. The
partial derivative of the market shares will no longer be determined by a single parameter, «.
Instead, each individual will have a different price sensitivity, which will be averaged to a mean
price sensitivity using the individual specific probabilities of purchase as weights. The price
sensitivity will be different for different brands. So if, for example, consumers of Kellogg’s Com
Flakes have high price sensitivity, then the own-price elasticity of Kellogg® Corn Flakes will be
high despite the low prices and the fact that prices enter linearly. Therefore, substitution patterns
are not driven solely by functional form.

The full model also allows for flexible substitution patterns, which are not constrained by
a priori segmentation of the market (yet at the same time can take advantage of this segmentation
by including a segment dummy variable as a product characteristic.) The composite random

shock, p,, + €, is no longer independent of the product and individual characteristics. Thus, if

je
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the price of a brand goes up consumers are more likely to switch to brands with similar
characteristics, rather than to the most popular brand. Also, households with similar
characteristics will tend to have similar purchasing patterns.

Unfortunately, these advantages do not come without cost. Estimation of the model
specified in equation (3) is not as simple as that of the Logit, Nested Logit or GEV models.
There are two immediate problems. First, equation (4) no longer has an analytic closed form
(like that given in equation (6) for the Logit case.) Furthermore, the computation of the integral
in equation (4) is difficult. This is solved using the simulation technique, introduced by Pakes
(1986), to compute the integral. Second, we now require information on the distribution of
demographics in the population in order to compute the market shares. This is solved by

sampling individuals from the CPS.

3. ESTIMATION: THE BIG PICTURE
3.1 The Data

The market-level data required to consistently estimate the model previously described
consists of the following variables: market shares and prices in each market, brand
characteristics, advertising, and information on the distribution of demographics. In principal,
some of the parameters of the model are identified even with data on one market. However, it is
highly recommended to gather data on several markets with variation in relative prices of the
products and/or the products offered.

Market shares are defined using a quantity variable, which depends on the context and
should be determined by the specifics of the problem. BLP use the number of automobiles sold,

while Nevo (1997b) converts pounds of cereal into servings. An additional consideration in
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choosing the quantity variable is the need to define a market share for the outside good. This
share will very rarely be observed and will usually be defined as the total size of the market
minus the shares of the inside goods. The total size of the market is assumed according to the
context. So, for example, Nevo (1997b) assumes the size of the market to be one serving of
cereal per capita per day. Bresnahan, Stern and Trajtenberg (1997) take the potential market to
be the total number of office-based employees.

In general to following rules should be used when defining the market size. It is usually
better to define the market larger rather than smaller. When looking at historical data one can
use eventual growth to learn about the potential market size. Check the sensitivity of the results
to the market definition; if the results are sensitive consider an alternative. There are two parts to
defining the market size: choosing the variable to which the market size is proportional and
choosing the proportionality factor. For example, I assumed elsewhere (Nevo 1997a) that the
market size is proportional to the size of the population with the proportionality factor equal to
one serving per day. It turns out that the results are not sensitive to the latter assumption, or in
other words, I could define the market size as several servings per capita per day with little effect
on the results’. The results were more sensitive to the definition of the population, but it is this
part of the assumption that I felt confident about.

An important part of any data set required to implement any of the models described in
Section 2 are product characteristics. These can include physical product characteristics and
market segmentation information. They can be collected from manufacturer’s description of the
product, trade press or the researcher’s prior.

In collecting product characteristics we recall the two roles in the they play in the

"Furthermore, the proportionality factor can be estimated (see Berry, Carnall and Spiller 1996.)
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analysis: explaining the mean utility level, 3(-) in equation (3), and driving the substitution
patterns through the term p(-) in equation (3). Ideally, these two roles should be kept separate. If
the number of markets is large enough, relative to the number of products, the mean utility can

be explained by including product dummy variables in the regression. These variables will
absorb any product characteristics that are constant across markets. A discussion of the issues
arising from including brand dummy variables is given below.

Relying on product dummy variables to guide substitution patterns is equivalent to
estimating an unrestricted variance-covariance matrix of the random shock, &, in equation (1).
Both imply estimating ./ parameters. Since part of our original motivation was to reduce the
number of parameters to be estimated, this is usually not a feasible option (see Hausman and
Wise 1978, for such a model with a small number of products) . The substitution patterns are
explained by the product characteristics and in deciding which attributes to collect the researcher
should keep this in mind.

The last component of the data is information regarding the demographics of the
consumers in different markets. Unlike market shares, prices or product characteristics, the
estimation can proceed without demographic information. Estimation, in such a case, will rely
on assumed distributional assumptions rather than empirical distributions. The Current

Population Survey (CPS) is a good widely available source for demographic information.

3.2 Identification
This section discuses informally and intuitively some of the identification issues. A
useful starting point is to ask how one would approach the problem of estimating price

elasticities if a controlled experiment could be conducted. The answer is to expose different
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consumers to randomly assigned prices and record their purchasing patterns. Furthermore, one
could relate these purchasing patterns to individual characteristics. If individual purchases could
not be observed, the experiment could still be run by comparing the different aggregate purchases
of different groups. Once again these patterns could be related to the difference in individual
characteristics between the groups.

There are two potential problems with mapping the data previously described into the
data that arises from the ideal controlled experiment. First, prices are not randomly assigned,
rather, they are set by profit maximizing firms that take into account information that due to
inferior knowledge the researcher has to include in the error term. This problem will be solved
below by using instrumental variables.

The second, somewhat more conceptual difficulty, arises because discrete choice models,
for example the Logit model, can be estimated using data from just one market; hence, we are
not mimicking the experiment previously described. Instead in our experiment we ask
consumers to choose between products, which are perceived as bundles of attributes. We then
reveal the preferences for these attributes which include price. The data from each market should
not be seen as one observation of purchases when faced with a particular price vector, rather, it is
an observation on the relative likelihood of purchasing J different bundles of attributes. The
discrete choice model ties these probabilities to a utility model which allows us to identify price
elasticities. The identifying power of this experiment increases as more markets are included
with variation both in the characteristics of products and the choice set. The same (informal)

identification argument holds for the Nested Logit, GEV, and random coefficients models, which
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are just a generalized form of the Logit model.?

There are two caveats to the informal argument previously given. If one wants to tie
demographic variables to observed purchases (i.e., allow for a ILD, in equation (2)) several
markets, with variation in the distribution of demographics, have to be observed. Second, if not
all the product characteristics are observed and these unobserved attributes are correlated with
some of the observed characteristics, then we are faced with an endo genity problem. The
problem can be solved by using instrumental variables, but we note that the formal requirements
from these IV’s is different than those required earlier in this section. I return to this point in
Section 3.4. An alternative to IV methods is the inclusion of brand-specific dummy variables
that I strongly recommend if enough markets are observed.

In summary, this section outlined an informal identification argument. The key to
consistent estimation lies in finding valid instrumental variables (in a sense that will be made
clear in the next section.) The requirements from these IV’s are different if several markets are
observed and brand-specific dummy variables are included as brand characteristics.

Furthermore, the experiment that we are trying to reproduce is different.

3.3 The Estimation Algorithm

In this section I outline how the parameters of the models described in Section 2 can be
consistently estimated using the data described in the Section 3.1. I follow the suggestion of
Berry (1994) to construct a GMM estimator. Essentially, the idea is to compute the implied

“error term", for a given value of the unknown parameters, and interact it with instruments, thus

*In principal, a random coefficient model, like the one used by BLP, should be identified with observations
on only one market. In practice, however, BLP report difficulty estimating the model with a single market (see BLP
footnote 30.) This should not be surprising given the previous comment on the importance of variation in the choice
set.
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forming the GMM objective function. Next, a search is performed over all the possible
parameter values to find those values that minimize the objective function. In this section I
discuss what the error term is, how it can be computed, and some computational details.
Discussion of the instrumental variables is deferred to the next section.
As previously pointed out, a straightforward approach to the estimation is to solve
N{)in "s(x,p,S;O) —S" (7
where s(°) are the market shares given by equation (4) and S are the observed market shares.
However, this approach will not be taken for several reasons. F irst, all the parameters enter the
minimization in equation (7) in a non-linear fashion. In some applications the inclusion of brand
and time dummy variables results in a large number of parameters and a costly non-linear
minimization problem. The estimation procedure suggested by Berry (1994), which is used
below, avoids this problem by transforming the minimization problem such that some (or all) of
the parameters enter the objective function linearly. Furthermore, it is much harder to think of
identifying assumptions in the context of equation (7), while it is totally natural to do so in the
method used below.
Formally, let Z =[z,,...,z,,] be a set of instruments such that
Ez-w@)]-0, ®)
where , a function of the model parameters, is an "error term" defined below and 0 denotes the
"true" value of these parameters. The GMM estimate is
6= arg;nin (0)ZA 1 Z'w(6) ©)
where 4 is a consistent estimate of E[Z'ww’Z]. The logic driving this estimate is simple
enough. At the true parameter value (6"), the population moment, defined by equation (8), is

equal to zero, so we choose our estimate such that it sets the sample analog of the moments
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defined in equation (8), i.e. Z'®, to zero. If there are more independent moment equations than
parameters (i.e., dim(Z)>dim(0)), we can not set all the sample analogs exactly to zero and will
have to set them as close to zero as possible. The weight matrix, 4, defines the metric by which
we measure how close to zero we are. By using the variance-covariance matrix of the moments,
we give less weight to those moments (equations) that have a higher variance.

Following Berry (1994), the "error term" is not defined as the difference between the
observed and predicted market shares; rather it is obtained by inverting the market share function
to obtain the vector of mean valuations that equates the observed market shares to the predicted
shares. This is done by solving, for each market, the implicit system of equations

5,(8,:8,)=5, .

In some cases (for example, the Logit or Nested Logit models) this can be solved analytically.
However, for the full model suggested above, this has to be done numerically. Once this
inversion has been done, either analytically or numerically, the "error term" is defined as

®,=3,(S,;6,)-(xB+ap,) . (10)
Note, that it is the observed market shares, S, that enter this equation. Also, we can now see the
reason for distinguishing between 0, and 8,: 8, enters this term, and the GMM objective, in a
linear fashion, while 6, enters non-linearly.

The intuition in this definition is as follows. For a given value of the non-linear
parameters, 8,, we compute what is the mean valuation, Sﬂ(-), that would set the predicted
market share equal to the observed market share. We define the residual as the difference
between this valuation and the one "predicted"” by the linear parameters, & and 8. The estimator,
defined by equation (9), is the one the minimizes the distance between these different

predictions.
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Usually’, the error term, as defined by equation (10), is the unobserved product
characteristic, £, However, if enough markets are observed then brand-specific dummy variables
can be included as product characteristics. The coefficients on these dummy variable include
both the mean quality index of observed characteristics, ij, and the unobserved characteristics,
£, Thus, the error term is the market specific deviation from the main valuation, i.e., Af,. The
inclusion of brand dummy variables introduces a challenge in estimating the taste parameters, B,
which is dealt with below.

In the Logit and Nested Logit models, with the appropriate choice of a weight matrix'® |
this procedure simplifies to two-stage least squares. In the full random coefficients model, both
the computation of the market shares, and the "inversion" in order to get Sﬁ(-) , have to be done
numerically. The value of the estimate in equation (9) is then computed using a non-linear
search. This search is simplified by noting that the first order conditions of the minimization
problem defined in equation (9) with respect to 0, are linear in these parameters. Therefore,
these linear parameters can be solved for (as a function of the other parameters) and plugged into
the rest of the first order conditions, limiting the non-linear search to only the non-linear
parameters.

The details of the computation are given in Section 4.

3.4 Instruments
The key identifying assumption in the algorithm previously given is equation (8), which

requires a set of exogenous instrumental variables. The first set that comes to mind are the

°See for example Berry (1994), BLP (1995), Berry, Carnall, and Spiller (1994), Bresnahan, Stern and
Trajtenberg (1997).

"Le., 4=2’Z, which is the “optimal” weight matrix under the assumption of homoscadestic errors.
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instrumental variables defined by ordinary least squares, namely the regressors (or more
generally the derivative of the moment function with respect to the parameters.) In order to
determine the validity of this assumption we examine the pricing decision that results from a
wide variety of pricing models. Prices are a function of marginal costs and a markup term,

p;,=mc, +f(<‘§jt,...) = (mcj +jj.) + (Amcﬂ + Afjt) . (11)
The markup term is a function of the unobserved product characteristics, which is also the error
term in the demand equation (if product-specific dummy variables are not included.) Therefore,
prices will be correlated with the error term and the estimate of the price sensitivity, o, biased
towards zero.

Alternatively, if brand dummy variables are included in the regression the error term is
the unobserved market specific deviation from the mean valuation of the brand. Since I assumed
that players in the industry observe and account for this deviation, it will influence the market
specific markup term and once again downward bias the estimate of price sensitivity. Indeed, the
results given in BLP and Nevo (1997a) support this conclusion.

When brand dummy variables are not included in the product characteristics, the
instrumental variables used in much of the literature are the product characteristics (excluding
price and other potentially endogenous variables), the sum over all the firm’s other brand of the
same characteristics (if the firm produces more than one product) and the sum over all the firm’s
competing brands characteristics. The assumption justifying these IV’s is that the unobserved
characteristics are mean independent of the observed characteristics (see BLP.) Intuitively, they
attempt to proxy for the degree and closeness of competition the brand is facing.

Once a brand dummy is introduced a problem arises with these IV’s: unless there is

variation in the products offered in different markets, there is no variation between markets in
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these instruments. For this reasons Nevo (1997b) uses two sets of instruments in an attempt to
separate the exogenous variation in prices (due to differences in marginal costs) and endogenous
variation (due to differences in unobserved valuation.) First, the panel structure of the data is
exploited. The identifying assumption is that, controlling for brand specific means and
demographics, city specific valuations are independent across cities (but are allowed to be
correlated within a city over time''.) Given this assumption, the prices of the brand in other
cities are valid instruments; from equation (11) we see that prices of brand j in two cities will be
correlated due to the common marginal cost, but due to the independence assumption will be
uncorrelated with market specific valuation. Potentially, one could use the prices in all other
cities and all quarters as instruments.

There are several plausible situations in which the independence assumption will not
hold. Suppose there is a national (or regional) demand shock, for example discovery that fiber
reduces the risk of cancer. This discovery will increase the unobserved valuation of all fiber
intensive cereal brands in all cities, and the independence assumption will be violated.

Suppose one believes that local advertising and promotions are coordinated across city
borders, but within regions, and that these activities influence demand. Then the independence
assumption will be violated for cities in the same region, and prices in cities in the same region
will not be valid instruments.

Determining how plausible are these, and possibly other, situations is an empirical issue
so as an alternative Nevo (1997b) examines another set of instruments that attempts to proxy for

the marginal costs directly and compares the difference between the estimates implied by the

""This assumption is also made by Hausman (1996), although his setup does not fit into the model
discussed here,
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different sets of instruments.

BLP discuss the use of “optimal” IV which arises from their assumption of conditional
mean independence, i.e., E(i|Z) =0, rather than no correlation assumption, £(Zw) =0, made
here. Their assumption, which is stronger than the assumption made here, implies that not only
are Z valid IV’s, but so are many other functions of Z. The question they try to address is which
of these functions should be used. The bottom line of their discussion is an efficiency argument

as justification for the use of the first set of instruments discussed in this section.

3.5 Brand Specific Dummy Variables

As previously pointed out, I believe that brand specific fixed effects should be used
whenever possible. There are at least two good reasons to include these dummy variables. First,
in any case where we are unsure that the observed characteristics capture the true factors that
determine utility, fixed effects should be included in order to improve the fit of the model. We
note this helps fit the mean utility level, d;, while substitution patterns are driven by observed
characteristics (either physical characteristics or market segmentation), as is the case if we were
not to include a brand fixed effect.

Furthermore, a major motivation (see Berry, 1994) for the estimation scheme previously
described is the need to instrument for the correlation between prices and the unobserved quality
of the product, . A brand specific dummy variable captures the characteristics that do not vary
by market, namely, ij + éj. Therefore, the correlation between prices and the unobserved quality
is fully accounted for and does not require an instrument. In order to introduce a brand dummy
variable we require observations on more than one market. However, even without brand

dummy variables, fitting the model using observations from a single market is difficult (see BLP,
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footnote 30.)

Once brand dummy variables are introduced, the error term is no longer the unobserved
quality. Rather, it is market specific deviation from this unobserved mean. This additional
variance was not introduced by the dummy variables; it is present in all models that use
observations from more than one market. The use of brand dummy variables forces the
researcher to discuss this additional variance explicitly.

There are two potential objections to the use of brand dummy variables. First, as
previously mentioned, a major difficultly in estimating demand in differentiated product markets
is that the number of parameters increases proportionally to the square of the number of products.
The main motivation for the use of discrete choice models was to reduce this dimensionality
problem. Does introduction of parameters that increase in proportion to the number of brands
defeat the whole purpose?

No. The number of parameters increases only with J (the number of brands) and not /.
Furthermore, the brand dummy variables are linear parameters, and do not increase the
computational difficulty. If the number of brands is large the size of the design matrix might be
problematic, but given the computing power required to run the full model this problem seems
meager.

A more serious objection to the use of brand dummy variables is that taste coefficients, B,
cannot be identified . Fortunately, this is not true. The taste parameters can be retrieved by using
a minimum distance procedure (as in Chamberlain, 1982.)

Let d=(d,, ..., d,)’ denote the Jx1 vector of brand dummy coefficients, X be the JxK
(K<J) matrix of product characteristics which are fixed across markets, and E=(&,, ..., &) be the

Jx1 vector of unobserved product qualities. Then from equation (1)
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d=XB+E .

The estimates of B and £ are

=) x'Q'd, &-d-xp
where d, is the vector of coefficients estimated from the procedure described in the previous
section, and Q is the variance-covariance matrix of these estimates. The coefficients on the
brand dummy variables provide an “unrestricted” estimate of the mean utility. The minimum
distance estimates project these estimates onto a lower dimensional space, which is implied by a
“restricted” model that sets & to zero. Chamberlain provides a X’ test to evaluate these

restrictions.

4. ESTIMATION: THE NITTY-GRITTY

In this section I discuss the computational details of the estimation algorithm previously
described. I describe the actual implementation of the algorithm, but also mention possible
pitfalls and ways to speed the computation. The actual implementation varies for different
models, differences are pointed out.

Before going into the details we recall the intuition of the estimation algorithm. Our
model is one of individual behavior, yet we only observe aggregate data. Nevertheless, we can
still estimate the parameters that govern the distribution of individuals by computing predicted
individual behavior and aggregating over individuals, for a given value of the parameters, in
order to obtain predicted market shares. We then choose the values of the parameters that
minimize the distance between these predicted shares and the actual observed shares. As
explained in Section 3, the metric under which this distance is minimized is not the

straightforward sum of least squares, rather it is the metric defined by the instrumental variables
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and the GMM objective function. It is this last step that somewhat complicates the estimation
procedure.
There are essentially four steps (plus an initial step) to follow in computing the estimates:
(0)  prepare the data including draws from the distribution of v and D (only some models);
(1) for a given value of 0, and 8, compute the market shares implied by equation (4) (only
for some models);
2) for a given 6,, compute the vector  that equates the market shares computed in Step 1 to
the observed shares;
(3) for a given 6, compute the error term (as a function of the mean valuation computed in
Step 2), interact it with the instruments, and compute the value of the objective function;

4) search for the value of 6 that minimizes the objective function computed in Step 3.

Step 0: The data required is described in detail in Section 3.1. The actual organization of
the data depends on the code used to compute the estimation. I found it useful to define a vector
of market shares and two matrices of "right-hand side" variables, X, and X,. The first contains
the variables that enter the linear part of the estimation, common to all individuals (d(:) in
equation (3)), and includes: price, advertising, brand dummy variables (or product characteristics
if brand dummy variables are not included.) The latter, X,, contains the variables that will have a
random coefficient, and therefore will enter the non-linear part (u(*) in equation (3)), and
includes: price, and characteristics (which could include segment-specific dummy variables.)
Some models (e.g., Logit, Nested Logit, and GEV) do not have random coefficients, the non-
linear part is set to zero, and therefore only the first design matrix, JX,, is required.

Next, we need to sample #s individuals, which for our purposes consists of a vector of
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shocks that determine the individual’s taste parameter, v, demographics, D, and potentially a
shock to the utility, . The use of this "individual data" is explained below, in Step 1. In most
cases we will not need to draw ¢, since we can integrate the extreme value shocks analytically
(see details below.) That is also the reason we do not need these draws for the Logit, Nested
Logit and GEV models.

The sample of individuals can be generated in two ways: by assuming a parametric
functional form, or using the empirical non-parametric distribution of real individuals. Shocks
that determine the individuals taste parameters, v, are drawn from a multi-variate normal
distribution. In principal these could be drawn from any other parametric distribution'?. The
choice of the distribution depends on the problem at hand and on the researcher’s prior.
Demographics are drawn from the CPS; instead of assuming parametric forms for the
distribution of demographics real individuals are sampled (and if we observed actual purchases
made by these individuals, we would not need the estimation steps that follow.) This, of course,
has the advantage of not depending on a somewhat arbitrary assumption of a parametric
distributional form. On the other hand, if the parametric form was correct (or nearly so), then
using the non-parametric approach will be significantly less efficient. The choice of parametric
vs. non-parametric form should depend on the researcher’s believe on how well a parametric
function can explain the distribution of heterogeneity.

As pointed out, the data consists of observations on prices and market shares of different
brands in several markets. In theory we could consider drawing different individuals for each
observation, i.e., each brand in each market. However, in order for Step 2 to work we require

that the predicted market shares sum up to one, which requires that we use the same draws for

2 For example, Berry, Carnall and Spiller (1996) use a bimodal distribution.
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each market.

There is a question of whether these draws should vary between markets. Once again, the
answer depends on the specifics of the problem and the data. In general, the draws should be the
same whenever it is the same individuals making the decisions. For example, BLP use national
market shares of different brands of cars over twenty years. They use the same draws for all
markets. On the other hand Nevo (1997b) allows for different draws for each market.

Finally, it is important to draw these only once at the beginning of the computation. If
the draws are changed during the computation the non-linear search is unlikely to convergence.

Step 1: Now that we have a sample of individuals (each described by (v, D, ¢)), fora
given value of the parameters, 0,, and the component common to all consumers, 8, we compute
the predicted market shares given by the integral in equation (4). For many models (e.g., Logit,
Nested Logit and GEV) this step can be performed analytically.

For the full random coefficients model this integral has to be computed by simulation.
There are several ways to do this. The first is the naive frequency estimator. We sample ns
draws of the vector (v, D, €), for each of these we predict the brand purchased, and then sum over

the purchases. Formally, our estimator is given by

1 ns
s(p-x,8,P, ;0)) 721 Huy(D,v,pe)2uD,v,e) VI=0,1,...J},

where 1{C} =1 ifthe C'is true, and 0 otherwise. This is repeated for every brand in every
market.

Although this approach is very intuitive it is lacking in three dimensions. First, it
requires a large number of draws, ns, at least the number of products, and usually much more

than that. Otherwise, the predicted market shares for some of the products will be zero. The
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smaller the observed shares the larger the problem. Second, in this approach there are three
simulation processes that induce variance in the estimated parameters, the sampling processes of
the v’s, the D’s, and the €’s. While in the approach suggested below the simulation error due to
the sampling process of the €’s is eliminated. Finally, this approach renders a non smooth
objective function, and therefore does not allow us to use gradient methods (see Step 4.)

A second approach to computing the predicted market shares, which does not suffer from
the above problems, is the smooth simulator. Here we use the extreme value distribution on
P(g)to integrate the €’s analytically. Formally, the predicted market shares, given by equation

(4), are approximated by

1 ns
5(D,%,8,P,:8))=—) 5, =

ns -1

K
1 & eXp(Sj +) e X Oy + 1y Dy + .+ D id))
~ K i
ISEL1+Y ele’(sm * 3t X (O + Dy 4 +ndeid))

where (vil""’viK) and (Dﬂ,...Did), i=1,...,ns, are the draws from step 0.

Note, that we no longer require a large number of draws to predict non-zero market
shares. Actually, one draw of the pair (v, D) will suffice (although this is by no means the
recommended number.) Also, since the €’s are integrated analytically the variance due to the
simulation process is limited only to the simulation of v and D. Finally, unlike before the
predicted market shares are smooth functions of the parameters, and therefore a gradient method
can be used to minimize the objective function.

An additional approach that reduces even further the simulation variance is the use of
importance sampling (see BLP; or Gweke, 1995.)

Step 2: As previously pointed out, we choose our estimates by minimizing the distance
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of the predicted market shares to the observed market shares. For the reasons given in Section 3
we will not define the distance as the sum of squares, rather we obtain an expression that is linear
in the structural error term and interact it with instruments to form a GMM objective function.
This step is required in order to obtain this structural error term.

We want to compute the J-dimensional vector of mean valuations, 6, that equates the
market shares computed in Step 1 to the observed shares. This amounts to solving the system of
equations™

s(8 : 92):S, (12)
where s(°) are the predicted market shares computed in Step 1 and S are the observed market
shares. This system is solved market by market.

For the Logit model this inversion can be computed analytically by 8]. = ln(SJ ) -In(S,),
where S is the market share of the outside good, computed by subtracting the sum of observed
market shares of all the inside goods from 1. Note, it is the observed market shares that enter
this equation, and therefore we do not require Step 1 for the Logit model. This inversion can also
be computed analytically in the Nested Logit model (see Berry, 1994) and the GEV model (see
Bresnahan, Stern and Trajtenberg, 1997.)

For the full model the system of equations (12) is non-linear and is solved numerically. I
use the contraction mapping suggested by BLP (see there for proof of convergence), which
amounts to computing

31 =8 +In(S) - In(s(p,x,8'.P,30,)),  1=0,...T, 3)
where s5(°) are the predicted market shares computed in Step 1, T is the smallest integer such that

|87 -87"1||is smaller than some tolerance level, and 8" is the approximation to 5.

YBerry (1994) proves existence and uniqueness of the vector §.

30



A few practical points. First, convergence can be reached faster by choosing a good
starting value, 8,. I used the value, 87, computed from the last iteration of the objective
function, with the first iteration using the values that solve the Logit model. Better
approximations can be derived (for example, using the Jacobian of &(+) computed below, the first
term of a Taylor approximation can be computed.) However, I found that computing better
approximations usually took longer than the time saved.

Second, the further away from the true value of the parameters we are, the harder it is to
solve the system of equations (12). Therefore, I found it helpful to change the tolerance level as
the number of iterations in the process defined b-y equation (13) goes up. For example, for the
first 100 iterations, of the process defined in equation (13), the tolerance level is set to 10E-8,
while after that every additional 50 iterations the tolerance level increases by an order of
magnitude. If the change in the value of the parameters was low (say less than 0.01) the
tolerance level was kept at its initial value. This promises that near the solution the inversion is
computed very accurately, while the algorithm does not waste time far away from the solution,
where the number of iterations required to achieve accurate convergence of the process defined
in equation (13) is high.

Third, a trivial point but one that can save several days of work: the order of the terms in
equation (13) matters.

Step 3: Finally we can compute the error term. For both the Logit and the full model it is
defined by

©=0-X,0,,
where 0 is the J-dimensional vector computed in Step 2, X, | 1s the design matrix defined in Step

0, and 0, is the vector of linear parameters. This is interacted in a straightforward way with the
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instrument matrix to form the moment conditions, which are used to compute the objective
function

0(0)ZA4 ' Z'w(®),
where 4 is a consistent estimate of E[Z'on’Z].

Like many GMM estimation problems, the computation of the objective function requires
knowledge of the weight matrix, which in general requires knowledge of the true value of the
parameters (or a consistent estimate thereof.) There are several solutions to this problem. First,
assume homoscedastic errors and therefore the optimal weight matrix is proportional to Z'Z,
thus, the need to know the true parameter values is eliminated. Se;cond, we can compute an
estimate of 0, say é, using 4 =Z'Z, and then use this estimate to compute a new weight matrix
E[Z 'w(8)o(D)'Z], which in turn is used to compute a new estimate of 0.

An additional option is to continue iterating between the estimates of 0 and 4 until
convergence. Hansen, Heaton and Yaron (1996) show this is equivalent to solving

& :arg;nin ®(8)'Z[Z o®)w(0)'Z] ' Z'w(®),
and title it continuous updating. Although this approach has some appeal, it is not clear in what
sense it is optimal. Both this approach and the previous one are first- order asymptotically
equivalent. As shown by Hansen, Heaton and Yaron (1 996), for linear GMM problems, neither
method dominates in finite samples. Therefore, I see no justification to use continuous updating
in non-linear GMM problems, like the one here, where the computational costs are enormous

Step 4: Search for the value of 8 that minimizes the objective function. For the Logit
model this can be done analytically (it is a linear GMM problem.) For the full model we need to
perform a non-linear search over 0. This search can be sped by using the first order conditions,

with respect to 6, to express 0, as a function of 0., i.e.,
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0, =(X,24 '2'x)) " x/74 ' 2'5(8,),
where X, is the design matrix and Z is the instrument matrix. Now, the non-linear search can be
limited to 6,.

One of two search methods is usually used. The Nelder-Mead (1965) non-derivative
"simplex" search method, and a quasi-Newton method with an analytic gradient (see Press et al.,
1994.) The first is more robust but is much slower to converge, while the latter is two orders of
magnitude faster, yet is sensitive to starting values; due to the non-linear objective function. If
the initial values are extremely poor the algorithm would reach regions where the objective is not
defined. This is especially true if the variables are scaled differently, i.e., one characteristic will
range from 1 to 5 while another from 0 to 250.

A useful trick is to set the value of the objective function to a high number (say 10E+10)
if one of its components is not defined. This allows the algorithm to deal with situations in
which the objective function is not defined. Poor starting values, different scaling of the
variables, and the non-linear objective would cause this to happen. This usually happens in the
first few iterations, especially if the parameters are not properly scaled. An alternative way of
dealing with this problem is to decrease the initial step size (i.e., the step taken in the direction
determined by the negative of the gradient.) The recommended practice is to start with the non-
derivative method and switch to the gradient method once the objective has been lowered to
reasonable levels.

Always when performing a non-linear search one has to assure that a global minimum
was found rather than a local one. The non-derivative method is slightly more robust to local
minimums because it does not use local (derivative) information. However, it also does not

guarantee convergence to a global minimum. I recommend the following check list. After a
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minimum is found using the gradient method, restart the problem using this minimum as the
initial value for a non-derivative search. Hopefully, the results will be the same. Next, restart
the problem with several different initial values and use the gradient method. Hopefully, the
same results are obtained regardless of the starting values.

The main increase in speed using the gradient method is due to the analytic gradient,
Using a gradient computed from finite differences results in relatively less increase in speed,
while maintaining all the problems of the gradient method. In order for the gradient to be well
defined everywhere, the simulated market shares have to be smooth functions of the parameters.
The smooth simulator discussed above has this property, while the naive frequency simulator
does not.

In order to compute the gradient of the objective function, the Jacobian of the function
computed in Step 2 has to be computed. The mean valuations of the J brands in each market are
implicitly defined by the following system of J equations

sj(Sl,...,SJ,ez;x,p,Pm) =Sj, J=1,...J
By the Implicit Function Theorem (see Simon and Blume, 1994, Theorem 15.7 pg 355) the

derivatives of the mean value with respect to the parameters are

3%, a5 ds, 9\ 05 o
o R ol
Ds = « - i l=-| o . o], (14)
38, 03, os, 0s, ds, ds,
® E B ol

where 6,,, i=1,...,L denotes the i’s element of the vector 8,, which contains the non-linear

parameters of the model. The share function defined by the smooth simulator is
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Substituting this back into equation (14), we obtain the Jacobian of the function computed in

Step 2.

The gradient of the objective function is

2xD8'xZxA '+ Z'*w.

Once this is programed it is easy to check, by comparing the resuits to the gradient computed

using finite differences. If performing such a comparison, then the tolerance levels in Step 2 have

to be set low (10E-8), and not allowed to vary (see discussion above.)

5. CONCLUDING REMARKS

As was mentioned in Sections 3.2-3.4, the identification relies on having a set of

exogenous instrumental variables. Finding such IV’s is crucial for any consistent estimation of

demand. In estimating demand for differentiated-products this problem is further complicated.

Cost data are rarely observed and indicators closely related to cost will rarely exhibit enough
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cross-brand variation. A few solutions previously used were offered, yet all suffer from potential
drawbacks. It is important not to get carried away in the technical “fireworks” and remember this
most basic, yet very difficult, identification problem.

This paper mentioned some of the previous work that used the methods described here.
The scope of application and potential of use are far from exhausted. Of course, there are many
more potential applications within the study of industrial economics, both in studying new
industries and in answering different questions. However, the full scope of these methods is not
limited to industrial organization. Fields like economics of crime, public finance or
environmental economics, are just a few examples of fields in which there seems to be a lot of
individual heterogeneity yet individual data is rare. The model and the method described here

could be adopted to deal with questions in these fields.
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