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1. Introduction

Statisticians and econometricians often wish to study multivariate random
variables that are non-standard in the sense that they do not have closed-form
distribution functions. The multivariate normal distribution—the most common
multivariate distribution—affords a closed-form solution. Yet, there are many cases
where normality is clearly a poor approximation, for example, when the range of the
variable is restricted in at least one dimension or when at least one of the marginal
distributions is clearly asymmetric. In such cases, the analyst will need more
flexibility in specifying the joint distribution than is allowed by well-known functional
forms.

We imagine that the analyst builds the multivariate distribution from

information about its components. In particular, suppose the analyst specifies the

following:
I. The marginal distribution of each of the components, and
2. The correlation among the components.

Such information about individual variables and their correlations might be available
from previous studies, from economic theory, or from subjective priors. Analysts will
likely find it easter to specify marginal distributions and correlations than joint
distributions. Moreover, plausible marginal distributions and correlations frequently
imply a joint distribution of unknown functional form.

In this paper, we propose two methods for calculating the distribution of a
multivariate random variable with specified marginal distributions and correlations.

Method I is applicable to the circumstance in which some of the components have



normal marginal distributions and the others have lognormal marginal distributions.
For this case, we are able to show analytically how to impose the desired correlation
among the variables. Method I is applicable when the components have any marginal
distribution.

These methods for calculating the distribution functions of correlated random
variables with arbitrary marginal distributions should be useful in a wide range of
applications. We developed this method in order to study the distribution of
measurement error in the consumer price index. We had information about the
distribution of several components of measurement error in the CPI and used this
information to construct the distribution of the overall measurement error.

Our method could also be used for esttmation by simulated moments or
simulated likelihoods where the variates have different marginal distributions.
Moreover, it would be useful for Monte Carlo analysis where the analyst desires to
impose different marginal distributions for the component shocks.

The remainder of the paper is organized as follows. The next section discusses
the two methods for calculating the joint distribution. The following section applies
the method to the case measurement errors in the consumer price index. In addition to
presenting the results of using the joint distribution to aggregate the components of
measurement error, we discuss pitfalls in analyses that are not based on well-specified

probability statements. The final section offers some conclusions.

2. Methods for Calculating the Joint Distribution of Correlated Variables.

In this section, we discuss how to calculate the joint distribution of variables

with specified marginal distributions. If the variables were independent, it would be



simple to calculate their joint distribution by Monte Carlo techniques. One would
simply take independent draws from the specified distributions and tabulate the results.
With correlated variables, it is necessary, however, to draw from the joint distribution.
We discuss two methods for calculating the desired joint distribution while preserving
the specified marginal distributions. The first method is for the case where the
marginal distributions are either normal or lognormal. The second method can be used

with any marginal distributions.

2.1. Method I: Normal and Lognormal Marginal Distributions.

The first method for calculating the joint distribution uses the moment-
generating function of the multivariate normal. We calculate the correlation between
the underlying normal distributions that induces the desired correlation between either
a normal variable and a lognormal variable or two lognormal variables. Let (x,y,z) be
distributed trivariate normal. The moment generating function of a trivariate normal is

m(t)..3) = E[Expll x + 1y + 37]]
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where the parameters p, o, and p are the means, standard deviations, and correlations
of x, y, and z. We need to determine how these parameters relate to the correlation of
x and Exp[y], that is, of a normal variable and a lognormal variable. To do so, we use

the moment generating function. The derivative evaluated at zero of the moment

generating function gives the expectation of a normal variable, while its Jevel

evaluated at one gives the expectation of a lognormal variable. For example, the

expectation of x-Exply] is
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Note that the mean of Exp[y] is Exp[p'y + %03] and that the standard deviation of
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manipulation yields that the correlation of x and Exply] 1s
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Given values of Gy and corr{x,Exp[y]], one can solve equation (3) for the correlation

Pxy of the underlying normal variables that induces the desired correlation between the
normal and lognorma! variables.

One can use a similar calculation to induce the correlation between two
lognormal variables. From the moment generating function, the expectation of

Explyl-Explz] is
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Using equation (4), the expression for the correlation of Exp[y} and Exp{z] is

I'The first and second moments of the lognormal variable can be calculated from

m evaluated at ty equal to one and two.
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One can solve equation (5} for the correlation Pyz between the underlying normal

variables that induces the desired correlation between the lognormal variables.

2.2 Method II: Arbitrary Marginal Distributions.

The second method for calculating the joint distribution is more general, but
more cumbersome. Unlike the first method, which exploits the functional form of the
normal and lognormal marginal distributions, this method can be used to analyze
arbitrary, correlated random variables. To induce a correlation between two variables
with different marginal distributions, do the following. First, draw independent
samples from each of the distributions. Second, sort the two samples. Third, calculate

the correlation between the sorted samples. Call this correlation p_ ... . Fourth, unsort

both samples and resort a fraction A = P , where p is the desired correlation
Pmax

between the variables. In general, p ... will be less than one. Thus, P, Puts a
ceiling on the range of the admissible values for p. (In the case of a normal variable
and a lognormal variable, the ceiling is also relevant. In that case, p .. 1t is given by
equation (3) evaluated at pxyzl.)

In the special case of the normal and lognormal variables studied under
method I, this algorithm will give the exact value of p owing to the linearity of
equation (3) in pxy' For other distributions, it may be necessary to iterate to find the

fraction A that generates the desired p.



This procedure is straightforward to generalize for inducing correlations among

more than two variables.

2.3 Discussion of Method I versus Method 1.

The joint distribution of two or more random variables is not uniquely
determined by the marginal distributions of the components and the correlations among
them. Indeed, Method I and Method II yield different joint distributions. For the
special case of normal and lognormal distributions, Method I delivers a homogeneous
sample: Every realization is drawn from the same population distribution and the
population distribution itself exhibits the desired correlation pattern across components.
By contrast, Method 11 delivers a heterogeneous sample: The sample realizations are
drawn from two different population distributions. Realizations from the first
distribution exhibit zero correlation across components while realizations from the
second distribution exhibit correlation equal to Pax- 1he joint distribution is formed
by blending these two samples to achieve the desired overall correlation between the
components.

The joint distribution of generated by Method I will be a smooth function,
while the distribution generated by Method II will have a ridge. In many contexts, the
smoothness of the distribution function generated by Method 1 will be desirable. But
in other contexts, Method II will suffice notwithstanding the ridge. For example, in
the next section we use the multivariate distribution to study the sum of the random
variables. The distribution of the sum of random variables will be smooth even if

their joint distribution has the ridge induced by Method II.



3. Application to Mismeasurement in the CPI.

There are several measurement problems in the consumer price tndex. These
include the effects of substitution across items, within items, across outlets, and the
effects of new items and unmeasured changes in quality. In Shapiro and Wilcox
(1996), we follow the tradition in the small, but growing, “CPI bias” literature of
estimating the extent of these effects component-by-component and then aggregating
them to get an estimate of the extent of the overall bias in the CPI as a measure of the
cost of living. In this section, we describe how we use the methods discussed n
Section 2 to calculate the distribution of the overall bias in the CPL

We state the bias in the CPI in terms of a probability distribution for several
reasons. First, doing so highlights that there 1s uncertainty about the magnitude of the
effects. Second, this approach allows us to be explicit about our beliefs concerning the
magnitude of the effects and the uncertainty surrounding them. Third, specifying the
probability distribution of the component effects allows us to aggregate the effects
rigorously and to calculate the probability distribution of the total effect. Fourth, we
have great flexibility in specifying the probability distributions. For example, we can
allow the uncertainty about the size of the effect to be asymmetric, to be such that the

effect is always positive, or allow for correlations between the effects.

3.1. Specifying the Component Distributions

To specify the probability distributions of the effects, we examine a wide
range of previous studies. While the parameter values are based on a reading of the
evidence and considerations of economic theory, they are admittedly subjective. In

specifying the distributions, we considered four features: the central tendency, the




shape, the dispersion, and the correlation of the effects. Qur judgements about the

central tendency of the distributions are based on our reading of the best available
estimates for the various effects. The evidence on the other features of the probability
distributions is almost non-existent, so the specifications are almost entirely
judgmental. Unless we had a good reason for doing otherwise, we assume that the
uncertainty about the effects was symmetric. In two cases, there is good reason to
believe that the effect is bounded below by zero and the uncertainty is asymmetric.
We parameterize the symmetric distributions as normal and the bounded, asymmetric
distribution as lognormal. These are chosen for ease of computation and because they
capture the basic shapes, not because there is particular evidence about the functional
form of the uncertainty. We now briefly summarize the component effects and the

2

source of evidence about them.

Across-strata effect. This bias arises because the CPI is a modified Laspeyres

index and therefore does not take into account that consumers substitute across goods
and services when relative prices change. Aizcorbe and Jackman (1993) have
reaggregated the strata of the CPI using a Tornqvist index.> Diewert (1976) shows a
Tornqvist index is a second-order approximation to the true cost of living index. The
estimate of the across-strata effect is based on the difference between the growth in the

Tornquist index and a modified Laspeyres index.

Within-strata effect. The BLS again assumes a modified Laspeyres index

when it aggregates individual price observations to form the price indexes for the

25ee Shapiro and Wilcox (1996) for a detailed discussion of the theory underlying

these effects and of the evidence.

3n the terminology of the CPI, a stratum is an item within a geographical area.



strata. The within-strata effect arises for two, intertwined reasons. First, consumers
alter their shopping patterns in response to changes in the relative prices offered at
different outlets for the same good. The modified Laspeyres formula ignores this
within-stratum substitution. Second, the method of aggregating individual prices can
impart biases. (This second issue has been termed “formula bias.”) These two issues
cannot be analyzed separately. In particular, the magnitude of the bias induced by the
method of aggregation is a function of the degree to which consumers substitute across
outlets. Hence, we treat within-strata substitution and the issue of the aggregation
formula as a single effect. To quantify this bias, we rely on the difference at the
substratum level between a modified Laspeyres index and an alternative index that
provides an approximation to the true cost of living.4

New item and new outlet effects. The new item effect arises because BLS

procedures implicitly assume that a new item delivers no consumer surplus at the price
that it is introduced into the index. Similarly, the new outlet effect arises because the
BLS assumes that any price differential at a new outlet reflects a difference in quality,
not an increase or decrease in the cost of living. There is no systematic evidence on
the new item effect, although there are several dramatic examples of its importance.S
Qur estimate is thus conjectural, although it derives from an assessment of what

fraction of strata in the CPI have frequent introduction of new items. For the new

4See Moulton (1993), Reinsdorf (1996}, Moulton and Smedley (1995), and
Reinsdorf and Moulton (1996) for both theory and empirical results, and, for a related
calculation, Armknecht, Moulton and Stewart {(1995). Shapiro and Wilcox (1996)

discuss the details of this computation.

SExamples of new goods that generate significant consumer surplus include new

models of automobiles, generic drugs, and new brands of breakfast cereals.
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outlet effect, we rely on Reinsdorf (1993) and Lebow, Roberts, and Stockton’s (1994)
analysis of Reinsdorf’s evidence.

Quality change. The BLS attempts to make adjustments for changes in quality
of items in the CPI, but the adjustments are incomplete and imperfect. Evidence on
quality change must be collected item by item, so it is necessarily fragmentary. We
base our estimate on systematic evidence for durable goods {Gordon, 1990) and other
fragments of evidence which largely suggest that unmeasured quality change is
positive.

Distribution of the components: Uncertainty, Shape, and Correlation. The top

panel of Table 1 reports the means, tail probabilities, and the functional forms that we
specified for the distribution of each of the effects discussed above. It also 'shows the
standard deviation implied by the specifications. The means are based on the evidence
discussed in the previous paragraphs. The specification of the dispersion, shape, and
correlation of the distributions is largely judgmental. In parameterizing the dispersion,
we attempt to convey our degree of confidence about the magnitude of the effect. We
specify the dispersion in terms of the 10 percent tail probabilities because we found
them easier to assess subjectively than standard deviations. For the normally
distributed effects, we specify both tails; for the lognormally distributed effects, we
specify the upper tail.® For effects with better information {especially the across- and

within-strata effects), our distributions are fairly tight. For the new item and quality

6Unlike the normal, the lognormal is not uniquely determined by specifying the
mean and tail probabilities. There are two distributions corresponding to a given mean
and tail probability. We chose the one that had the typical lognormal shape. (The
other has a spike close to zero and a long. flat tail.) See notes to Table 1 for the

parameters of the distribution of the lognormal variables.



211 -

change effects, which are largely driven by innovation in the economy at large, we
specify wider distributions.

For the new items and new outlets effect, we have a strong belief that the
effects are positive, so we assume lognormality. For the other effects, following the
principal of insufficient reason, we assume normality.

Finally, we specify that a subset of the effects are correlated. This
specification is based solely on theoretical considerations. Three of the
effects—within-strata, new goods, and new outlets—are functions of how readily
consumers switch their spending patterns. Hence, if we underestimate the extent to
which consumers economize by finding the cheapest good within a stratum, we are
also likely to underestimate the extent to which consumers search for the lowest-price
outlet. Without much specific justification, we assign a value of 0.25 to the
correlation among the estimates of these effects. We consider below how sensitive the

results are to alternative assumptions about this correlation.

3.2. Results

To calculate the distribution of the overall bias in the CPI, we use Method I as
follows: We calculate the means and standard deviations of the multivariate normal
corresponding to the normal and lognormal marginal distributions given in Table 1.
We calculate the correlation of the multivariate normals required to induce the desired
correlations given in Table 1 using equations (3) and (5). We draw a replication from

the multivariate normal,’ exponentiate the lognormal components, and sum the

"in practice, we draw from five independent, univariate normals and use the
Cholesky factorization of the covariance matrix to calculate the linear combination

yielding the multivariate normal.
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components. We replicate this procedure many times to give a good estimate of the
distribution of the sum of the components. Method II gives identical results (up to
simulation error). The results are based on 100,000 replications (50,000 draws from
the underlying multivanate normal and their conjugate values).

Table 2 reports the mean, standard deviation, and percentiles of the distribution
of the total bias for different assumptions about the correlation of the cormrelated
effects. The first column of numbers gives the results for the 0.25 correlation of the
second, third, and fourth components. The second and third columns report results for
correlations of 0.0 and 0.5. Figure 1 plots the distnbution under the three assumptions
about the correlation.®

The mean estimate of the total bias is 1.0 percentage point per year. Consider
first the distribution for the baseline specification with the correlations equal to 0.25.

The median is 0.97, indicating only slight right skewness.”

Figure | shows that,
despite the decidedly nonnormal shape of the lognormal components, the distribution
of the total bias resembles a normal distribution. There is substantial uncertainty
concemning the point estimate of the total bias. The standard deviation is 0.38. The
80-percent confidence interval runs from 0.56 to 1.47 percentage points.

Varying the correlation among the component effects has the expected impact
on the distribution of the total bias. Lowering the correlation reduces the dispersion of

the estimate and makes the distribution less skewed. Raising the correlation has the

opposite effect. (See Figure 1.) Nonetheless, over the range of correlations

8The plotted distributions are smoothed using a normal kernel.

9The coefficient of skewness 1s 0.7.
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considered, the quantitative impact on the distribution is fairly small, which is perhaps

fortunate given that we have to guess the size of the correlation.

33. Probability Distributions versus “Ranges”.

Other analysts (the CPI Commission appointed by the Senate Finance
Committee and Lebow, Roberts, and Stockton) express their estimates of the
components of the biases in terms of ranges.10 Several questions arise in

connection with the use of ranges, all of which are addressed by our use of the

distributions.
. Where is the probability concentrated? 1Is it uniform across the
interval, concentrated in the center, skewed?
. Is there zero probability outside of the range?
. How are ranges to be aggregated?

This last point is particularly troublesome. Analysts using ranges for the components
have also reported a range for the total that is the outer envelope of the ranges of the
components. Reporting ranges for both the components and the aggregate perhaps
leaves the impression that the distribution within each is similar. Yet, as Figure 1
illustrates, the aggregate will necessarily resemble a bell curve. The central limit
theorem has some bite even for sums of a only few elements.

In addition to the ranges, the Commission also reports point estimates in its
interim report. In some cases, the point estimates are not close to the midpoint of the
range. For example, the Commission’s point estimate for quality change is at the

lower bound of the range. Hence, the Commission’s point estimates apparently do not

10A¢ this point, only the preliminary report of the Commission is available.
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correspond to the mean of the estimates. Instead, they might be interpreted as a
cautious adjustment to indexation—that is, one that could be made with a high level of
confidence of not overadjusting.

Our method allows such policies to be derived based on explicit probability
calculations. Indeed, some policymakers have suggested that indexation of items in
the Federal budget be modified in light of the overstatement of the increase in the cost
of living by the consumer price index.!1 Assessing such proposals is far beyond
the scope of our research. Nonetheless, the probability distribution we provide for the

overall bias in the CPI will be relevant for policymakers confronted with such issues.

4. Conclusion

In this paper, we offer two methods for calculating the joint distribution of
random variables with diverse marginal distributions. The methods allow for
correlation among the variables. In one method, we show how to use the moment
generating function of the multivariate normal distribution to calculate the joint
distribution of correlated variables with normal and lognormal marginal distributions.
In the other method, we show how to calculate the joint distribution for variables with

arbitrary marginal distributions.

1See Daniel Patrick Moynihan, "The CPI: An Easy Fix..." Washington Post

September 26, 1995, opinion page. It is not clear from this op-ed piece whether
Senator Moynihan is suggesting technical adjustments in the CPI that would reduce the
increase in the CPI or legislative adjustments in indexation formulas relative to the
CPL. Several governors also endorsed a change in CPI indexation to address as part a
budget deal (see Judith Havemann, "Governors Recommend CPI Changes,"”

Washington Post, December 5, 1994, page A9.
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Our methods should have wide application in econometrics—both for
estimation by simulation and for Monte Carlo analysis. In this paper, we show how
we apply our methods to the problem of aggregating estimates of component biases in
the CPI. We recommend that this method be used as a way for reporting assessments
of biases in the CPI and for other, similar applications. Our method requires the
analyst to be explicit concerning the uncertainty of the estimates. Highlighting this
uncertainty is important both for the evaluation of official statistics and for related
policy recommendations. The method allows for consistent aggregation of the effects.
Uncertainty about the total is derived explicitly from uncertainty about the
components. This quantification of the uncertainty about the magnitude of biases in
the CPI should be helpful to policymakers debating adjustments to the indexation of

tax brackets and benefits, and to private agents in designing indexed contracts.
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Table 2

Total Bias in the CPI

Distribution of Total Bias

Mean 1.0 1.0 1.0
Standard Deviation 0.38 0.34 0.42
Percentiles: 1 0.25 0.30 0.21
5 045 0.49 0.41

10 0.56 0.60 ¢.53

25 0.75 0.78 072

50 0.97 0.98 0.96

75 1.21 1.20 1.23

90 1.47 1.42 1.51

95 1.64 1.56 171

99 2.08 191 2.23

?Os;‘upr::c:nc[:rrelatmn of 025 0.0 0.5

Note: Table shows mean, standard deviation, and percentiles of the distribution of total bias in the
CPI aggregated from the distributions of the component effects under alternative assumptions about the
correlation of components 2, 3 and 4.
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