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I. Introductjon

Government policy makers and business planners are interested in knowing
the probabilities of various economic events happening. In 1989 and 1990, for
example, there was interest in the probability that a recession would occur in
the near future. Model builders who make forecasts typically do not directly
answer probability questions. They typically present a "base" forecast and a
few alternative "scenarios." If probabilities are assigned to the scenarios,
they are subjective ones of the model builders.?

Probability questions can, however, be directly answered within the
context of macroeconometric models by using stochastic simulation. The first

part of this paper explains how this can be done and gives some examples. An

stochastic simulation are objective in the sense that they are based on the
use of estimated distributions. They are consistent with the probability

structure of the model.

lPresented at the NBER Leading Indicator Conference, May 3-4, 1991, NBER,
Cambridge, MA.

2] am indebted to Doug Hamilton for stimulating my interest in the use of
stochastic simulation to estimate probabilities in econometric models. I am
also indebted to Jim Hamilton, Jim Stock, Mark Watson, and other participants
at the Leading Indicator Conference for very helpful comments.
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advantage of this procedure is that the probabilities estimated from the

3steck and Watson (1989) do present, however, within the context of their
leading indicator approach, estimates of the probability that the economy will
be in a recession six months hence.




Estimated probabilities can also be used in the evaluation of a model.
Consider, for example, the event that in a five-quarter period there is
negative real GNP growth in at least two of the quarters. For any historical
five-quarter period,!this event either did or did not happen. The actual
value or outcome is thus either 0 or 1. Now, for any five-quarter period for
which data exist, one can estimate from a model the probability of the event
occurring. If this is done for a number of five-quarter periods, one has a
series of probability estimates that can be compared to the actual (0 or 1)
values. One can thus evaluate how good the model is at predicting various
events. An example of this type of evaluation is presented in the second part

of this paper.

II. The Procedure
The Model

The model considered in this paper can be dynamic, nonlinear, and
simultaneous and can have autoregressive errors of any order. Write the model

as:
(1) £(Fe, Xe, @) =y , i=1,...m, t=1,...,T,

where y, is an n-dimensional vector of endogenous variables, x, is a vector of
predetermined variables (both exogenous and lagged endogenous), «; is a vector
of unknown coefficients, and u;, is an error term. It is assumed that the
first m equations are stochastic, with the remaining u;, (i = m+l,...,n)
identically zero for all t.

Each equation in (1) is assumed to have been transformed to eliminate

any autoregressive propertiés of its error term. If the error term in the



untransformed version, say vy, 1n equation i, follows a rth order
autoregressive process, Vi = pyViey + ...+ ppyVie, + Uy, where u; is iid,
then equation i is assumed to have been transformed }nto one with u;, on the
right hand side. The autoregressive coefficients Plir +-+1 Pri are
incorporated into the a; coefficient vector, and the additional lagged values
that are involved in the transformation are incorporated into the x, vector.
This transformation makes the equation nonlinear in coefficients if it were
not otherwise, but this adds no further complications to the model because it
is already allowed to be nonlinear. It does result in the “loss" of the first
r observations, but this has no effect on the asymptotic properties of the
estimators. wu;, in (1) can thus be assumed to be iid even though the original
error term may follow an autoregressive process.

Let u, be the m-dimensional vector (Ujt,...,U)’. It is assumed for the
stochastic simulations below that u, is distributed as multivariate normal
N(0,Z), where T is m x m. Although the normality assumption is commonly made,
the general procedure discussed in this paper does not depend on it., If
another distributional assumption were used, this would simply change the way
the error terms were drawn for the stochastic simulations.

It is assumed that consistent estimates of o;, denoted @,, are available
for all i. Given these estimates, consistent estimates of u,,, denoted U,
can be computed as f,(y.,X.,a;). The covariance matrix T can then be estimated
as £ =~ (l/T)ﬁﬁ’, vhere U is the m x T matrix of values of gy

Let a be the k-dimensional vector (ojy,...,ay)’, where k is the total
number of unrestricted coefficients in the model, including any autoregressive
coefficients of the original error terms, and let & denote the estimate of a.

It is also assumed that an estimate of the covariance matrix of &, denoted V,



is available, where ¥ is k x k.

Estimating Standard Errors of Forecasts

It will be useful to consider first the use of stochastic simulation to
estimate standard errors of forecasts. A forecast from a model is subject to
four main sources of uncertainty -- uncertainty from the structural error
terms, from the coefficient estimates, from the exogenous-variable forecasts,
and from the possible misspecification of the model. Stochastic simulation
can easily handle the first three sources, but accounting for possible
misspecification is much harder. A method is presented in Fair (1980) that
uses stochastic simulation to estimate the degree of misspecification of a
model and to adjust the standard errors for the misspecification. This method
does not, however, carry over in any straightforward way to the estimation of
probabilities, and in this paper only the first three sources of uncertainty
are considered. The probability estimates are thus based on the assumption
that the model is correctly specified,

Given £ and V, the uncertainty from the error terms and coefficient
estimates can be estimated. Consider first drawing error terms. Let uj
denote a particular draw of the m error terms for period t from the N(O,i)
distribution. Given uf, a, and x,, one can solve the model for period t using
a method like the Gauss-Seidel technique. This is merely a deterministic
simulation for the given values of the error terms, coefficients, and
predetermined variables. Call this simulatjon a "trial." Another trial can
be made by drawing a new set of values of u; and solving again. This can be
done as many times as desired. From each trial one obtains a prediction of

each endogenous variable. Let yj, denote the value on the jth trial of



endogenous variable i for period t. For J trials, the stochastic simulation
estimate of the expected value of variable i for period t, denoted i, is

J
(2) By = (1/IE yiy

j=1
The stochastic simulation estimate of the variance of the forecast error,
denoted Gft, is

J
(3 53, = (L/DE (vl - Bye)?
j=-1

1f the forecast horizon is more than one period, then each trial is a
dynamic simulation over the horizon, with predicted values computed for each
endogenous variable for each period. Any lagged endogenous variables in the
X, vector are updated as the simulation proceeds. If, for example, the
horizon is 8 quarters, then 8 vectors uj are drawn (t = 1,...,8), the
simulation is over the 8 quarters, and & means and variances are computed for
each endogenous variable using formulas (2) and (3).

Consider now drawing coefficients. Let o denote a particular draw of
the coefficient vector a. Under the assumption that the asymptotic
distribution of & is multivariate normal with covariance matrix V, o" can be
drawn from the N(&,G) distribution. (Again, the normality assumption is not
necessary. Some other distribution could be assumed for a, and the draws made
from it.) Each trial now consists of drawing both error terms and
coefficients. If the forecast horizon is more than one period, only one
coefficient draw should be done for the entire horizon. This is consistent

with the assumption upon which the estimation of a model is based, namely that



the coefficients do not change over time.

Accounting for exogenous-variable uncertainty is less straightforward
than accounting for uncertainty from the error terms and coefficient
estimates. Exogenous variables are by their nature exogenous, and no
probability structure has been assumed for them. One might think that
exogenous variables should always just be taken to be fixed, but when
comparing forecast-error variances across models, it is important to try to
put each model on an equal footing regarding the exogenous variables.
Otherwise, the model that takes more important and hard-to-forecast variables
as exogenous has an unfair advantage. Therefore, some assumption about
exogenous-variable uncertainty has to be made when comparing models,

One approach is to try to estimate variances of the exogenous-variable
forecasts from past predictions that model builders and others have made of
the exogenous variables. Given these estimates and a distributional
assumption, one could then draw exopenous-variable values for each trial.
Each trial would then consist of draws of the error terms, coefficients, and
exogenous variables. An alternative approach is to estimate autoregressive or
vector autoregressive equations for the exogenous variables and add them to
the model. One would then have a model with no exogenous variables, and error
terms and coefficients could be drawn from the expanded model. Either of
these approaches is a way of trying to incorporate exogenous-variable
uncertainty into the stochastic simulation estimates of the forecast-error

variances.



Estimating Event Probabilities

Estimating event probabilities is straightforward once the stochastic
simulation has been set up and the event defined, Consider an 8 quarter
prediction period and the event that within thls period there are two
consecutive quarters of negative real GNP growth. Assume that 1000 trials are
taken. For each trial one can record whether or not this event occurred. If
it occurred, say, 150 times out of the 1000 trials, its estimated probability
would be 15 percent. It should be clear that as many events can be considered
as desired. Almost no extra work is needed to estimate probabilities beyond
what is needed to estimate means and variances, and there is wide latitude in
the choice of events. The extra work is simply keeping track of how often

each event occurs in the solution for each trial.

III. ated b e ee Eve
The Model

Estimated probabilities for three events are presented in this section
using the model in Fair (1984). There are two contractionary events and one
inflationary event.

The model consists of 30 stochastic equations and 98 identities. There
are 179 estimated coefficien:s. The estimation period used for the present
results is 1954 1 - 1989 IV (144 observations). The model is estimated by two
stage least squares with account taken when necessary of the autoregressive
properties of the error terms. Ten of the equations are estimated under the
assumption of a first order autoregressive process of the error term, and two
of the equations are estimated under the assumption of a third order process.

The autoregressive coefficients are included in the 179 coefficients. The 30



x 30 covariance matrix of the structural error terms was estimated as
(1/T)ﬁﬁ’, where U is the 30 x T matrix of estimated residuals (as noted above,
T is 144). The 179 x 179 covariance matrix of the estimated coefficients was
estimated using the formula in Fair (1984), pp. 216-217. This matrix is not
block diagonal even though the correlation of the error texrms across equations
is not taken into account in the estimation of each equation by two stage
least squares. The correlation affects the covariance matrix, and so the
matrix is not block diagonal.

There are 82 exogenous variables in the model not counting the constant
term, the time trend, and a few dummy variables. For the present results
exogenous-variable uncertainty was handled as follows. Each of the 82
exogenous variables was regressed on a constant, time, and its first four
lagged values (over the same 1954 I - 1989 IV estimation period).* The
estimator was ordinary least squares. The 82 x 82 covariance matrix of the
error terms was estimated as (l/T)ﬁé’, vhere E is the 82 x T matrix of
estimated residuals from the exogenous-variable equations. Denote this
estimated matrix as §.

The 82 equations were then added to the model, leaving the expanded
model with no exogenous variables except the constant term, the time trend,
and a few dummy variables. The expanded model was restricted in two ways.
First, the error terms in the 30 structural equations were assumed to be
uncorrelated with the error terms in the 82 exogenous-ﬁariable equations.

The 112 x 112 estimated covariance matrix of all the error terms is thus block

diagonal, with one block % and one block §. This treatment is consistent with

“Many of the exogenous-variable equations were estimated in logs. Logs
were not used for tax rates and for variables that were sometimes negative or
very close to zero.



one of the assumptions upon which the structural equations were estimated,
namely that the exogenous variables are uncorrelated with the structural error
terms. Second, the coefficient estimates in the exogenous-variable equations
were taken to be fixed in the stochastic simulations. In other words, only
coefficients for the 30 structural equations were drawn. This lessens
somewhat the uncertainty assumed for the exogenous variables, but it will be
seen that the uncertainty from the coefficient estimates is small relative to
the uncertainty from the error terms.

The key exogenous variables in the model are government fiscal-policy
variables, exports, and the price of imports. Monetary policy is endogenous -
- Fed behavior is explained by an interest rate reaction function, the

interest rate reaction function being one of the 30 structural equations.

l hg Eveuts

From about the beginning of 1989, there was concern that the economy
might enter a recession in the near future, a recession generally being
considered to be two consecutive quarters of negative real growth. It is thus
of interest to examine this period. For the present results the prediction
period was taken to be the five quarters 1990 I - 1991 I. Given this period,

the following three events were considered:

A. At least two consecutive quarters of negative real GNP growth.
B. At least two quarters of negative real GNP growth.
C. At least two quarters in which inflation (percentage change in

GNP deflator) exceeded 7 percent at an annual rate.



Event A is a recession as generally defined. Event B allows the two or
more quarters of negative growth not to be consecutive. Event C 1s a case in

which people would probably start to worry about inflation picking up.

The Stochastic Simulations

Three stochastic simulations were performed, each based on 1000 trials.
For simulations 1 and 2 the exogenous-variable equations were not added to the
model, and the exogenous-variable values were taken to be the actual values.
For simulation 1 only error terms were drawn, and for simulation 2 both error
terms and coefficients were drawn.

For simulation 3 the 82 exogenous-variable equations were added to the
model in the manner discussed above. It is important to note than in oxder to
make this simulation comparable to the other two, the estimated residuals in
the exogenous-variable equations were added to the equations and taken to be
fixed across all the trials. The draws of the error terms for the exogenous-
variable equations were then added to the fixed residuals. Adding the
residuals to the exogenous-variable equations means that when the expanded
model is solved deterministically (by setting the error terms in the
structural equations equal to zero), the solution is the same as when the non
expanded model is solved using the actual values of the exogenous variables.
This treatment of the exogenous-variable equations for simulation 3 means that
the base paths of the exogenous variables are the actual paths (jﬁst as for
simulations 1 and 2). The base paths, for example, are not the paths that
would be predicted by the exogenous-variable equations if they were solved by

setting their error terms equal to zero.
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All three simulations are thus based on knowledge of the exogenous-
variable values for the 1990 I - 1991 I period. The simulatiouns are, however,
outside of the estimation period, since the estimation period ended in 1989
IV. Therefore, the simulations are predlctions that could have been made as
of the end of 1989 IV had all the exogenous-variable values for the next five
quarters been known.

The same draws of the structural error terms were used for all three
simulations, and the same draws of the coefficients were used for simulations
2 and 3., This means that the differences across the three simulations are not
due to simulation error. There were no cases in which the model failed to

solve for the three sets of 1000 trials,

Fore d Thei andard ors

It will be useful to present the mean forecasts and the standard errors
of the forecasts before presenting the probabilities. The results for the
percentage change in real GNP (denoted g) and the percentage change in the GNP
deflator (denoted p) are presented in Table 1, Two of the main features of
the results in Table 1, which are almost always true for stochastic
simulations of macroeconometric models, are 1) the estimated forecast means
are close to the predicted values from the deterministic simulation and 2)
drawing coefficients has a small effect on the forecast standard errors. The
first result means that the blas in the predicted values from the
deterministic simulation, which arises from the nonlinearity of the model, is-
small. The second result means that the effect of coefficient uncertainty on

the forecast standard errors is small -- most of the effects come from the

11



TABLE 1
Forecast Means and. Standard Errors

Percentage change in real GNP (g)

1990 ' 1991
I 11 I1I Iv 1

Actual 1.73 0.40 1.43 -1.59 -2.56
Forecast means:
det. 3.64 1.00 1.37 0.98 -0.19
u 3.58 1.06 1.37 1.02 -0.14
u,c 3.27 0.82 1.19 0.87 -0.23
u,c,e 3.32 0.91 1.43 1.02 -0.11

Forecast standard errors:

u 1.84 2,03 2.07 2.01 2.18
u,c 1.94 2.13 2.23 2.14 2.24
u,c,e 2.84 3.23 3.37 3.24 3.50
Percentage change in GNP deflator (p)

1990 1991

I II ITI v I

Actual 4.87 4.72  3.86 2.56 5.20
Forecast means:
det 4.57 1.31 3.41 3.76 3.38
u 4.52 1.24 3.46 3.82 3.45
u,c 4.41 1.43  3.37 3.93 3.40
u,c,e 4.35 1.60 3.27 3.82 3.39
Forecast standard errors:
u 1.69 1.75 1.63 1.62 1.65
u,c 1.74 1.81 1.69 1.65 1.68
u,c,e 2.26 2.33  2.36 2.32 2.45

All percentage changes are at annual rates.

det. = deterministic simulation (error terms in the structural equations
set to zero and the model solved once).

u = structural error terms drawn.

¢ = coefficients drawn. .

e = exogenous-variable equations added to the model as discussed in
the text.

12



structural error terms and the exogenous variables.?

The actual values for g show that the growth rate was positive but very
small in 1990 II and negative in 1990 IV and 1991 1. The forecast means for g
are generally larger than the actual values for the five quarters. For 1990
IV the means are about 1.0, compared to the actual value of -1.59, and for
1991 I, the means are about -0.2, compared to the actual value of -2.56.
Regarding the inflation predictions, 1990 II was underpredicted by about 3
percentage points, 1990 IV was overpredicted by about 1 percentage point, and
1991 I was underpredicted by about 2 percentage points. The predictions for
the other two quarters are very close.

The exogenous variables add substantially to the forecast standard
errors (compare the u,c rows to the u,c,e rows). It may be that the current
treatment of exogenous-vafiable uncertainty has overestimated this
uncertainty. When a model builder makes an actual ex ante forecast based on
guesses of the future values of the exogenous variables, it may be that the
average errors of the exogenous-variable guesses are less than those implied
by adding the exogenous-variable equations to the model. In other words, one
may know more in practice about the exogenous variables, particularly
government policy variables, than is implied by the equations. The true
forecast standard errors may thus lie somewhere between the u,c and u,c,e

cases above, and the probability estimates reported below may lie somewhere

SAnother common result in this area is that the estimates are mnot
sensitive to the use of more robust measures of central teundency and
dispersion that the mean and variance. Forecast means and variances do not
necessarily exist, but this does not appear to be a problem in practice. In
part this may be due to the fact that solution failures, like the 9 solution
failures for simulation 3, are discarded. See Fair (1984), Chapter 7, for
more discussion of this. The use of more robust measures in the present case
led to very similar results to those reported abhove.

13



between the two cases.

Given that the predicted values of g are only around 1 percentage point
for three of the five quarters and negative for another and given that the
standard errors are genmerally above 2 percentdge points, it seems likely that
a fairly large fraction of the trials will have two or more quarters of
negative growth. The model is close to predicting negative growth for two or
more quarters already, and so it would not be surprising, given the size of
the standard errors, that a fairly large probability of at least two quarters

of megative growth was estimated.

The Estimated Probabilities

The probability estimates are as follows (see the notes to Table 1 for

the u, ¢, and e notation):

Event
A B [¢]
Simulation:
u .275 426 .002
u,c .321 .483 .006
u,c,e .393 .522 .049

These estimates indicate that the probability of a recession or near
recession occurring in the 1990 I - 1990 IV period was fairly high according
to the model. With the exogenous-variable equations added to the model, the
estimated probability is greater than one half for event B (two or more
quarters of negative growth). The estimated probability of inflation being

greater than 7 percent for two or more quarters (event C) is véry small --
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less than 5 percent even with the exogenous-variable equations included.

Two other simulations were run to examine the sensitivity of the results
to the exogenous-variable equations. For simulation 4 the error terms in the
exogenous-variable equations were assumed to be uncorrelated with each other:
§ was taken to be diagonal. The three estimated probabilities in this case
were .397, .529, and .077. Only the last estimate is changed much, where it
is now slightly higher. Not accounting for the correlation of the exogenous-
variable error terms appears to increase somewhat the variance of the
inflation forecasts.

For simulation 5 the exogenous-variable equations were taken to be first
order autoregressive rather than fourth order. This had only a small effect o
the results. The three estimated probabilities were: .416, .538, and .037.

It appears that little is gained in decreasing the estimated uncertainty from
the exogenous variables by going from first to fourth order.®

Although the probability estimates for events A and B are fairly high,
they are perhaps not as high as one might hope given that events A and B
actually happened. The use of probability estimates to evaluate models will

now be discussed.

SNote that estimating, say, a fourth order autoregressive equation for an
exogenous variable with a constant term and time trend included is equivalent
to estimating the equation with only a constant term and time trend included
under the assumption of a fourth order autoregressive process for the error
term. The equations are simply accounting for the autoregressive properties
of the error term once the mean and deterministic trend have been removed.

The present results thus show that little is gained in going from a first
order autoregressive process for the error term to a fourth order process.

15



IV. Using Probability Estimates to Evaluate Models

As noted in the Introduction, it is possible for a given event to
compute a series of probability estimates and compare these estimates to the
actual outcomes. Consider event A above, the event of at least two
consecutive quarters of negative values of g in a five-quarter period. Let A,
denote this event for the five-quarter period that begins with quarter t, and
let P, denote a model's estimate of the probability of A, occurring. Let Ry
denote the actual outcome of 4, -- 1 if A, occurred and O otherwise. As
Diebold and Rudebusch k1989) point out, two common measures of the accuracy of
probabilities are the quadratic probability score (QPS):

T

(4) QPS = (1/T)Z 2(Py - RY)? ,
t=1

and the log probability score (LES):

(5) 1ps = - (1/T)§ [(1 - Ry)log(l - P,) + RylogPy ] ,
=1

where T is the total number of observations. It is also possible simply to
compute the mean of Py (say E) and the mean of R, (say E) and compare the two
means. QPS ranges from 0 to 2, with 0 being perfect accuracy, and LPS ranges
from O to infinity, with 0 being perfect accuracy. Larger errors are
penalized more under LPS than under QFS.

For the empirical work in this section, events A, and B, were analyzed
for t ranging from 1954 I through 1990 I (145 observations). A, is the event
of at least two consecutive quarters of negative real GNP growth for the five-

quarter period beginning with quarter t, and B, is the event of at least two
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quarters of negative real GNP growth (not necessarily consecutive) for the
five-quarter period beginning with quarter t.

Since t ranges over 145 observations, there are 145 A, events and 145 B,
events, Estimating the probabilities of these events required 145 stochastic
simulations. Each stochastic simulation was for a five-quarter period. The
beginning quarter for the first simulation was 1954 I, the beginning quarter
for the second simulation was 1954 II, and so on through the beginning quarter
for the 145th simulation, which was 1990 I. Two sets of 145 stochastic
simulations were in fact made. For the first set the exogenous-variable
values were taken to be the actual values -- the exogenous-variable equations
were not used and no draws of exogenous-variable errors were made. The model
used for this set will be called Model (u,c¢).

For the second set the exogenous-variable equations were added to the
model, and error terms were drawn for these equations. As was done for the
results in Section III, the error terms in the exogenous-variable equatiouns
were assumed to be uncorrelated with the error terms in the structural
equations, and no coefficients were drawn for the exogenous-variable
equations. Unlike in Section III, however, the estimated residuals were not
added to the exogenous-variable equations. The base values of the error terms
in these equations were assumed to be zero, just as is always done for the
structural equations., This means that the model’s prediction of the five-
quarter period is based only on information available prior to the period.

The model used for this set of stochastic simulations will be called Model
{(u,c,e). As noted in Section III, the use of the exogenous-variable equations
may overestimate exogenous-variable uncertainty, and so it is not clear that

the structural model should be judge by Model (u,c,e) rather than by Model
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(u,c). The truth probably lies somewhere in between.

The number of trials for each stochastic simulation was 100, This means
that each set of 145 stochastic simulations required solving the model over a
five-quarter period 14,500 times. In some cases the model failed to solve for
the particular draws, and in these cases the trial was simply discarded. This
means that some of the probability estimates are based on slightly fewer than
100 trials. Most of the failures occurred early in the sample period.

A simple autoregressive model for real GNP was also estimated and
stochastically simulated. The model consisted of regressing the log of real
GNP on a constant, time, and the first four lagged values of log real GNP.

The estimation period was 1954 I - 1989 IV, the same as for the structural
model, and 145 stochastic simulations were made. In this case 1000 trials
were made for each simulation. This model will be called Model AR.

From this work one has three sets of values of P, (t = 1,...,145) for
each of the two events, one set for each model. One also has the values of Ry
for each event. Given the values of R;, a fourth model can be considered,
which is the model in which P, is taken to be equal to R for each observation,
where R is the mean of R, over the 145 observations. This is simply a model
in which the estimated probability of the event is constant and equal to the
frequency that the event happened historically. This model will be called

Model CONSTANT.

18
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The results are as follows:

EVENT A: _

P QPS  LPS
Actual (P - R) .138
Model (u,c) .285  ,192 315
Model (u,c,e) .336 .268 416
Model AR .238 239 401
Model CONSTANT  .138  ,238 401
EVENT B: -

P QPs  LPS
Actual (P ~ R) .297
Model (u,c) 394 249 383
Model (u,c,e) 445 322 481
Model AR 361 361,544
Model CONSTANT  .297  .417  .608

Both the structural model and Model AR overestimate R. (Remember Model
CONSTANT is constructed so that P = E.) Model AR has somewhat less bias than
the structural model. Regarding QPS and LPS, Model (u,c) is always the best,
For event A Model (u,c,e) is the worst, but the results for it, Model AR, and
Model CONSTANT are all fairly close. Model (u,c,e) is noticeably better than
Model AR and Model CONSTANT for event B.

Table 2 presents the 145 values of R, for each event and the 145 values
of P, for each event and each model except Model CONSTANT. (P, for Model
CONSTANT is simply .138 for all t for event A and .297 for all t for event B.)
Figures 1, 2, and 3 plot the values of R, and P, for event B for Models (u,c),
(u,c,e), and AR, respectively.
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.190
.200
.202
.225
195
.178
.158
.166
.183
.163
.205
199
082
085
.103
.128
.126
.161
.133
116
.153
151
.130
088
.096
.104
.118
.136
.152
.151
.170
J132
.139
.158
.180
172
.210
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EVENT B
Model Model
(u,e) (u,c,e)
0.667 0.531
0.585 0.476
0.345 0.266
0.557 0.318
0.407 0.326
0.554 0.516
0.584 0.564
0.758 0.684
0.619 0.750
0.546 0.680
0.622 0.680
0.730 0.653
0.702 0.657
0.765 0.636
0.651 0.566
0.644 0.646
0.362 0.522
0.127 0.176
0.125 0.136
0.200 0.154
0.172 0.152
0.340 0.337
0.526 0.444
0.495 0.455
0.468 0.546
0.548 0.515
0.298 0.337
0.213 0.362
0.053 0.112
0.031 0.071
0.030 0.096
0.061 0.122
0.101 0.152
0.131 0.192
0.223 0.278
0.219 0.268
0.095 0.216
0.070 0.184
0.120 0.182
0.220 0.242
0.300 0.220
0.230 0.333
0.222 0.364

Estimated Probabilities from the Three Models
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1964,
1965.
1965,
1965.
1965.

1966

1966.
1966.
1966.
1967.
1967.
1967.

1967
1968

1968.
1968.
1968.
1969.
1969.
1969.
1969,
1970.
1970.
1970.
1970.
1971.
1971.
1871.
1971.
1972.
1972.
1972.
1972.
1973.
1973.
1973.
1973.
1974,

1974

1974,
1974,
1975.
1975,
1975.
1975,
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TABLE 2 (continued)

EVENT A

.121
.071
.081
192
.232
.276
.327
.388
434
.500
.404
L1112
.273
.354
470
616
.790
.700
.850
.850
.780
.680
.530
.550
.350
.080
.090
.090
.100
.020
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. Model Model
(u,e) (u,c,e)

.337
.354
480
.430
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EVENT B
. Model Model
(u,c) (u,c,e)
0.182 0.480
0.131 0.485
0.212 0.653
0.273 0.570
0.323 0.530
0.357 0.640
0.541 0.780
0.592 0.860
0.707 0.880
0.630 0.850
0.566 0.690
0.276 0.580
0.525 0.680
0.455 0.590
0.600 0.670
0.808 0.77¢
0.940 0.830
0.830 0.750
0.970 0.970
0.950 0.900
0.930 0.900
0.820 0.830
0.680 0.800
0.710 -0.790
0.600 0.490
0.110 0.200
0.230 0.360
0.230 0.210
0.190 0.230
0.020 0.180
0.020 0.260
0.030 0.470
0.130 0.500
0.260 0.410
0.470 0.660
0.790 0.810
0.920 0.890
0.940 0.950
0.900 0.840
0.950 0.830
0.800 0.860
0.480 0.670
0.090 0.120
0.070 0.000
0.130 0.060
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1976.
1976.
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1976.
1977.
1977
1977
1977.
1978.
1978.
1978.
1978.
1579,
1979.
1979.
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1980.
1980.
1980,
1980.
1981.
1981.
1981,
1981.
1982.
1982,
1982.
1982.
1983.
1983,
1983.
1983.
1984,
1984,
1984,
1984,
1985,

1985.

1985,

1985.

1986.
1986.
1986,
1986.
1987.
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TABLE 2 (continued)
EVENT A EVENT B

Model Model Model Act. Model Model Model
(u,e) (u,c,e) AR (u,¢) (u,c,e) AR

0.100 0.080 0.191 0.0 0.150 0.080 0.270
0.040 0.080 0.211 0.0 0.050 0.080 0.296
0.040 0.090 0.242 0.0 0.050 0.100 0.344
0.030 0.100 0.236 0.0 0.140 0.120 0.360
0.100 0.090 0.210 0.0 0.120 0.090 0.314
0.110 0.150 0.225 0.0 0.130 0.210 0,321
0.100 0.230 0.242 0.0 0.110 0.330 0.345
0.210 0.300 0.268 0.0 0.370 0.440 0.383
0.110 0.370 0.332 0.0 0.190 0.520 0.464
0.170 0.360 0.275 0.0 0.220 0.570 0.426
0.390 0.560 0,287 0.0 0.450 0.750 0.396
0.400 0.540 0.359 1.0 0.540 0.760 0.498
0.580 0,710 0.371 1.0 0.780 0.850 0,537
0.460 0.730 0.384 1.0 0.790 0.890 0.537
0.740 0.750 0.368 1.0 0.890 0.920 0.532
0.860 0.780 0.305 1.0 0.950 0.300 0.448
0.680 0.660 0.325 0.0 0.840 0.820 0.465
0.740 0.660 0.283 1.0 0.920 0.830 0.420
0.470 0.530 0.386 0.0 0.710 0.740 0.515
0.200 0.390 0.220 1.0 0.310 0.460 0.375
0.600 0.500 0.174 1.0 0.750 0.640 0.258
0.950 0.610 0.213 1.0 0.960 0.810 0.299
0.850 0.660 0.257 1.0.0.990 0.800 0.371
0.980 0.830 0.230 1.0 1.000 0.900 0.359
0.860 0.730 0.244 1.0 0.950 0.800 0.356
0.700 0.390 0.224 0.0 0.780 0.480 0.327
0.580 0,220 0.112 0.0 0.660 0.330 0.174
0.180 0,080 0.113 0.0 0.270 0.080 0.170
0.000 0.000 0.096 0.0 0.000 0.000 0.155
0.000 0.000 0.090 0.0 0.000 0.000 0.126
0.000 0.010 0.091 0.0 0.000 0.010 0.127
0.000 0.020 0.112 0.0 0.010 0.020 0.153
0.050 0.050 0.128 0.0 0.050 0.050 0.185
0.100 0.170 0.148 0.0 0.140 0.250 0.203
0.320 0.250 0.179 0.0 0.480 0.300 0.251
0.400 0.260 0.204 0.0 0.520 0.410 0.293
0.120 0.210 0.197 0.0 0.190 0.270 0.284
0.070 0.210 0.171 0.0 0.090 0.240 0.250
0.030 0.110 0.185 0.0 0.060 0.140 0.262
0.040 0.160 0.183 0.0 0.080 0.180 0.263
0.030 0.110 0.185 0.0 0.050 0.120 0.262
0.010 0.050 0.186 0.0 0.020 0.060 0.267
0.000 0.000 0.220 0.0 0.000 0.000 0.317
0.010 0.030 0.201 0.0 0.010 0.050 0.300
0.000 0.020 0.163 0.0 0.000 0.020 0.237
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1987.
15987,
1987.
1988.
1988.
1988,
1988.
1989.
1989.
1989,
1989.
1990.
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TABLE 2 (continued)

EVENT A

Model Model

(u,e) (u,c,e)

OO0O0OO0OO0OOCODOO0COO

.000
.010
.070
.020
.010
.020
.130
.120
.170
.270
.350
.350

COO0OO0OO0OO0OO0OOOOOO

020
110
160
150
110

.170
.290
.310
.300
.360
.300
.280

[=NoNeoReNoNaoNoN-NollolNeNo]

EVENT B

Act. Model Model

(u,c) (u,c,e)
0.0 0.010 0.020
0.0 0.010 0.150
0.0 0.070 0.190
0.0 0.030 0.260
0.0 0.030 0.170
0.0 0.050 0.230
0.0 0.150 0.400
0.0 0.160 0.400
0.0 0.370 0.470
0.0 0.450 0.460
0.0 0.470 0.450
1.0 0.510 0.340
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One knows from the QPS and LPS results above that Models (u,c) and
(u,c,e) do better than Model AR, and the three figures provide a helpful way
of seeing this. The probability estimates for Model AR never get above .64,
whereas they are close to 1.0 for Models (u,c) and (u,c,e) around a number of
the actual occurrences of event B. Remember that Model (u,c,e) is based on
predicted values of the exogenous variables, and even this version does a
reasonable job of having high estimated probabilities when event B occurs and
low estimated probabilities when event B does not occur. One of the main
times in which the structural model gets penalized in terms of the QPS and LPS
criteria is the second half of the 1960s, where the estimated probabilities
were fairly high for a number of quarters before event B actually happened.

Note from the figures that the occurrence of event B for the period
beginning in 1990 I was not well predicted relative to what was done for
earlier occurrences. The recession of 1990 IV - 1991 I was not an easy one to
predict.”

As a final comment, the results in this section are all within-sample
except for the results for the last five quarters. Even Model CONSTANT is

within-sample because it uses the sample mean over the entire period. In

'Note that the values of P, in the last line in Table 2 for Models (u,c)

and (u,c,e) -- .350 and .280 for event A and .510 and .340 for event B -- are
not the same as those presented in Section III -- .321 and .393 for event A
and .483 and .522 for event B -- even though the five-quarter period is the

same. For Model (u,c) the differences are due to the use of 1000 trials for
the results in Section III compared to 100 trials for the results in Table 2.
For Model (u,c,e) the differences are further due to the use of predicted
values as the base values for the exogenous variables in Table 2 rather than
the actual values in Section III. For Model (u,c,e) the probability estimates
are considerably lower when the predicted values of the exogenous variables
are used. The exogenous-variable equations for some of the government
spending variables failed to predict the slowdown in the growth rate of these
variables that occurred, and this is one 6f the reasons for the lower
probability estimates for Model (u,c,e) in Table 2.

24



future work it would be of interest to do rolling regressions and have all the
simulations be outside-sample. This is expensive because covariance matrices
also have to be estimated each time, and it limits the number of observations
for which P, can be computed because observations are needed at the beginning
for the initial estimation period. In future work it would also be useful to
do more than 100 trials per stochastic simulation. There is still

considerable stochastic-simulation error with only 100 trials.

V. Co 0

This paper shows that stochastic simulation can be used to answer
probability questions about the ecomomy. The procedure discussed here is
flexible in allowing for different models, different assumptions about the
underlying probability distributions, different assumptions about exogenous
-variable uncertainty, and different events for which probabilities are
estimated., The paper also shows that a series of probability estimates can be
computed and that these estimates can then be used to evaluate a model's

ability to predict the various events.

25



REFERENCES
Diebold, Francis X., and Glenn D. Rudebusch, "Scoring the Leading Indicators,"”
Journal of Business, 62, 1989, 369-391.

Fair, Ray C., "Estimating the Expected Predictive Accuracy of Econometric
Models," International Economic Review, 21, 1980, 355-378.

, Specification stimatio and alysis of Macroeconometric Models,
Harvard University Press, 1984.

Stock, James H., and Mark W. Watson, "New Indexes of Coincident and Leading

Economic Indicators,™ Discussion Paper No. 178D, John Fitzgerald Kemnedy
School of Govermment, Harvard University, April 1989.

26






