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model of risky decision making. Our results suggest that models which prov‘ide for probability
transformations are most appropriate for the majority of subjects. Further, we find that the
transformation differs for most subjecfs depending upon whether the risky outcomes are gains
or losses. Most subjects are considerably less sensitive to changes in mid-range probability
than is proposed by the expected utility model and risk-seeking behavior over “long-shot”
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1.0 INTRODUCTION

Results of experimental studies of risky decision making have diminished the descriptive ap-
p=al of expected utility theory (EUT: see von Neumann and Morgenstern 1947) and led lo t-e
development of a variety of alternative theories {see Kahneman, Slovic and Tversky 1982;
Sugden 1986, Hogarth and Reder 1986; Machina 1987: and Fishburn 1987 for surveys). Devel-
opment of methods for assessing preference models and. hence, describing risky decision
making behavior has lagged however. remaining tied o the expected utility model as in the
work by McCord and deNeufville (1986). Thus, while it is now well documented that a decision
maker’s sensitivity to probability levels and to changes in probability is not constant across
the unit interval {e.g.. Kahneman and Tversky 1979). little attention has been given to incor-
porating this knowledge in assessment methodology. It is strange that work estimating em-
pirical modeis has continued under the maintained hypothesis of expected utility given the
extensive experimental evidence at odds with EUT and the range of newer theories of risky

decision making.

In this paper. we specify and estimate a parametric preference model that incorporates non-
identity functions over both probability and outcome The model allows, but does not require.
the subjective valuation of both probabilities and outcomes. Our modet is consistent with a
set of alternative theories which modify some of the premises of EUT while maintaining the
expectation-type structure of ** -~ ~reference functional.2 The two-parameter form chosen for
the probability function is a generalization of the frequency interpretation of probability. The
form is sufficiently flexible to include (1} the EUT model {i.e., the probability function is iden-
tity); (2) a symmetrical form in which the sum of the weights equals one (a3 special case of

models suggested. e.g., by Quiggin 1982. Yaari 1987, and Karmarkar 1978); and (3} a contin-

2 For discussions of some alternative theories which depart from the expectation form see Machina
1987 and Becker and Sarin 1987.



uous approximation of the decision-weighting function of prospect theory (Kahneman and
Tversky 1979). These various forms are derived by restricting the values of the parameters,
as will be discussed in greater detail in the next section. The explanatory power of the re-
sulting set of nested empirical models can be compared using traditional statistical tests to
provide insight on the relevance of alternative theoretical models. Further. the estimated pa-
rameter values provide insight on the empirical influence of probability on risky decision be-

havior.

Brieﬂy, our (esuils show that models which allow for transformation of objective probabilities
provide slgniﬁcangly better fits to our subjects’ data than models which do not. Overweighting
of “small” probabilities was common and the impact of changes in probability was Qispropor—
tionately large when probabilities were “near” 0 or 1. For the majority of subjects, the "best-
fit” model differed depending upon the domain (i.e.. gains or losses). In particular. the
properties of the probabilily function differed for the two domains with subcertainty found to
be more common for losses than for gains. Finally, the results show that risk-seeking be-
havior over both gains and losses is common when the probability of the best outcome in
“small.” while risk avoidance is the norm when the probability of the best outcome is "large.”
These findings are consistent. for exampte. with an individual simultaneously gambling and

purchasing insurance.

The following section presents the empirical model. Subsequently, we describe our esti-
mation methodology and data. Section 5.0 presents our results and section 6.0 our discussion.

In the final section. we present a summary and our conclusions.

2.0 EMPIRICAL MODEL
in this paper. we are interested in risky decision models of the following form:

n

SN = ) x(p) s(x). g
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where Y is a prospect which yields outcome x; with probability p;; S(+) is a function that con-
verts a prospect Y to a level of satisfaction: =(+) is the subjective-probability or decision-

weighting function: and s( ) transforms outcomes into levels of satisfaction.

A three-parameter general mode! is proposed. We assume that the satisfaction function,

s(+), can be approximated by a power function, i.e.
s(x) = 2

This form is concave, linear. or convex as y < = > 1 and has been used extensively in utility
function estimation. {See Fishburn and Kochenberger 1979 for a comparison of alternative
forms for empirical utility functions.) Concavity, linearity, or convexity reflects diminishing.
constant, or increasing marginal valuation of x and, if EUT is the theoretical construct, risk-
avoiding. risk-neutral. or risk-seeking behavior. We estimate separate models for gains and

losses. therefore permitting different forms in the two domains.

The decision-weighting function is a rational function as specified below:

ol

=
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fori.k =1.2. ...n k#i and« f > 0. Inits most restricted form {i.e., x = § = 1). equation
3 reduces to the frequency interpretation of probability. i.e. r, = p,/\l‘_p, . where n = the number
e 1

of outcomes. Further, for all values of x and . #(0) = 0 and ={1) = 1. As can be seen, the
weight given =1ch event is a function of the entire probability distribution. This approach is
consistent not only with the frequency interpretation of probability but also with recent the-
oretical models such as ant_icipated utility theory (AUT) proposed by Quiggin (1982) and Yaari
(1987). AUT suggests, however, that transformations are applied to the cumulative (or the
decumulative) probabilities rather than to individual probabilities, an approach which avoids
violations of stochastic dominance implicit in the modeis of, for example, Karmarkar {1978)
and Kahneman and Tversky (1979). Aslong asa = 1. n = 2, our model is consistent with the

specia! case of AUT in which »(0.5) = 0.5.



The f§ parameter determines whether there will be an inflection in the weighting functional and
the direction of the inflection {e g . concave-convex). Specifically, for all 0 < p; <t p~.,

m >< p asfi <> 1, where atp*. n(p’) = p-. Thus. the value of the § parameter deter-
mines whether “small” probabililies will be under- or over-weighted. Ifff = 1, n, > < p, as

a >< 1| forall p.

The x parameter provides an additional weight on the outcome probabilily p.. if x < 1. p;is
downweighted, signifying perhaps a pessimistic view of the outcome occurring ("event or
outcome pessimism”). Figure 1a shows a representative weighting function (n = 2) for the
parameter values « = § =0.5; as can be seen. probabilities are over-weighted uptop = 0.2
and under-weighted thereafter. Generally, forn = 2, p* <=> 05as a < =2> 1. Addi-
tionally, if « < 1. r is subcertain, i.e. ir{i < 1. Subcertainty might be viewed as "prospect
hr
pessimism” in the sense that the value of the prospect is reduced vis-a-vis certain outcomes.
Kahneman and Tversky (1979) suggested subcertainty as a property of the prospect theory
weighting function, although subcertainty may result in violations of stochastic dominance.
Indeed, the property of subcertainty (as well as the parallel property of supra-certainty) was
the basis of Fishburn’s (1978) criticism of Handa’s (1977) certainty equivalence theory {CET)
mode!l. Kahneman and Tversky also acknowledged the potential problem subcertainty posed
for stochastic dominance and suggested that dominated prospects would be eliminated from
consideration during an editing phase that they posit occurs before the evaluation of pros-

pects.

Il « = 1, the weighting function is “certain” in that the sum of the weights attached to a com-

plete prospect will equal to 1. Further, for distributions of the form p, = % Yi=12..n,
inflection of the {certain} decision-weighting function occurs at % .so that =, = p, . Thus, for
n = 2, #(0.5) = 0.5 and the weighting function is symmetrical about p = 0.5. Addilionally, for
the two-outcome case, the function is identical to that proposed by Karmarkar’s {1978) sub-
jective weighted utility theory (SWUT) and is consistent with Quiggin‘s (1982) AUT since

n(p) = 1 — n(1 — p).” See Figure 1b.

? The restriction that x = 1 generates a special case of the AUT model in which there is symmetry



Finally if + > 1. p, is overweighted. signifying perhaps an optimistic view of the ith outcome
occurring. In this configuration. the weighting function is supra-certain. i.e. the sum of the

weights will be greater than 1.

In addition to being flexible enough to accommodate the subcertainty property of prospect
theory’s weighting function, the functional form can also generate decision weights which are
subadditive and subproportional * Thus. when « < 1 and # < 1, equation 3 may be consid-
ered a continuous approximation of prospect theory’s weighting function in that it accommo-
dates the properties Kahneman and Tversky ascribe to this function. Of course, as a
continuous approximation, the function does not allow investigation of discontinvities of = near

p = 0 and p = 1, another property suggested for prospect theory's decision-weighting func-

tion.

Equation 3 provides a means to examine preference behavior vis-a-vis changes in probability.

EUT, of course, suggests that decision makers are equally sensitive to changes in probability

across the complete probability distribution (trivially, when n, = p,. Vi, gr _ 1). For more

dp
complex functionals, the derivative with respect to p is not constant. Thus, for certain pa-

rameter values, equation 3 suggests very little sensitivity to changes in mid-range probabili-
ties versus considerable sensitivity to changes in probabilities near 0 and 1. Figure 2 shows

a plot of the first derivative of equation 3 for x = f =05 As can be seen. a decision maker

between =(p) and ={1-p) of the form «(p) = 1 — =(1-p). The AUT approach applies a transformation
to the cumulative probability distribution and, thus, the appropriate AUT interpretation of the func-
tions in Figure 1 would be that they are the weight, #,(p. 1-p) . given to the worst outcome, x, when
it has probability p. The weight associated with the best outcome, x,, would be

7,(1-p, p) = 1 — m,(p. 1-p). We would like to thank an anonymous referee for insights on this issue.
An additional point is that our parametric model, with a restricted to one, implies that 2(0.5) = 0.5,
as shown in Figure 1b. Although this was an early assumption of AUT (Quiggin 1382). this restriction
was subsequently relaxed by Quiggin (1987). Thus, both forms shown in Figure 1 are consistent with
AUT, but our full model {see equation 4) is not wholly compatible with AUT. Specifically, ifa # 1.
1. p) £ 1 — mip. 1-p).

4 Subadditivity and subproportionality are defined as follows. Given0 < p, q,r < 1, a weighting
function is subadditive if =(rp) > rr(p) {(see Kahneman and Tversky 1979; also Segal 1987). Ifp =
0.002 and r = 0.5, subadditivity would suggest that z{0.001}/=(0.002) > * 5. Kahneman and Tversky
(1979) found that the maijority of their subjects preferred a 0.001 chance of receiving 6000 to a 0.002
chance of receiving 3000. They interpreted these findings to support subadditivity over “small”
probabilities (if the value function over outcomes is concave), as the results impiy that
=(0.001)/2(0.002) > 0.5. Ifa < 1and f < 1, equation 3 is subadditive for “small” probabilities. The
decision-weighting function is subproportional if =(pg)/n(p) < =(pqr)/=(pr) . Again, ifzand f§ < 1,
equation 3 is subproportional f{ui most probabilities. ifa < tand i = 1, the form is subproportional
for all probabilities.



with such a weighting function would be extremely sensitive to changes in very smail and
large probabilities. but would be less sensitive to changes in mid-range probabilities. The
doubling of "long-shot” odds would encourage such a decision maker to “disproportionately”

increase the size of his bet. As x and f§ approach 1 {the EUT model). the first derivative also

approaches 1.

Given the assumptions that (1) = and s are monotonic and continuous. (2) there exists a cer-
tainty equivalent (CE) value for which an individual is indifferent between receiving the CE and
prospect Y, and (3) we can append an additive error term. we can identify the model to be
used in the estimations. Specifically, by substituting equations 2 and 3 into equation 1. for n
= 2, we derive:

e ap’ a1 - p)

e N (@)
ap’ +(1—p)f o + (1 - p)f

Tabie 1 shows the three “nested” models derived [rom our general model (equation 4). We
will refer to the mode! with no restrictions on the parameter values as the fult model. The
model in which « is.restricted to be equal to one will be referred to as the certain-weight
model, to reflect the certainty property of the decision-weighting function when « = 1. Finally,
the mode! in which both « and f are restricted to one will be referred to as the expected utility
or EU model. These three models were estimated for two scenarios using procedures de-
scribed in section 3.0. These two scenarios, one over risky gains and the other over risky

losses, are described in section 4.0.

3.0 ESTIMATION PROCEDURE

CE data, collected as’described in the next section, were used to estimate for each subject
six risky decision models. one for each of our empirical models (Table 1) with separate esti-
mations for gains and losses. A nonlinear least squares regression procedure was used to
solve for the mode! parameters. The solution technique was the multivariate secant or false
position method developed by Ralston and Jennrich (1978). Given that search procedures of

this sort can generate local rather than global optima, a variety of starting values were used.



Since quite different starting values did not generate different parameter estimates. we be-
lieve that the parameter estimates reflect a global rather than local optimum. The estimations

over losses were conducted using the absolute values of x,, x, and CE.

4.0 DATA COLLECTION METHODS

Certainty equivalent data were elicited for risky gains and losses from two study groups. The
first group consisted of maie and femate undergraduates at the University of North Carolina
at Chapel Hill; the second group consisted of 18-to-22-year-old male property offenders
incarcerated in North Carolina. These two groups served as unskilled and skilled subjects for
the choice scenarios which dealt with potential gains from a breaking-and-entering crime and
potential losses of freedom associated with a plea bargain or jury trial. These somewhat un-
usual scenarios were selected as part of a larger study of economic models of criminal be-
havior (Lattimore 1987). Thus. our intent was not to “"train” would-be burglars but rather to
elicit responses for risky choices in an environment which would be more interesting to the
subjects, particularly the offender group, many of whom had faced these types of choices. (All
of the prisoners were incarcerated as a result of committing a property offense and hatlf of
these subjects had received iheir prison sentences as a result of plea bargains.) Our initial
roncerns that the student subjects would have difficulty responding to questions concerning
an illegal activity were allayed when a number of students who pretested the questionnaire

reported no difficulty in responding to the questions.

The data were collected using an interactive computer program that elicited approximate CE
data. The assessments were framed as criminal choice problems where subjects were asked
to provide CE information for a set of “lotteries” over gains from a breaking-and-entering crime
and losses resulting from a prison sentence. Because it could not be assumed that subjects
were familiar with the certainty equivalent concept, a tutorial was provided (see Appendix 1).
The gains scenario was framed as a risky return to a breaki.ng-and-entering crime; the loss

scenario was framed within the context of a plea bargaining situation.



The illegal-gains scenario solicited CE’s for risky gains to a hypothetical breaking-and-
entering crime. Subjects were asked to indicate the smailest amount of cash there would
have to be in one market before they would choose to break into that market rather than an
identical market where the gains from the break-in were risky, i.e. a p chance of $x, and a 1-p
chance of $x, . The subjects were instrqcted to assume that the markets were identical with
respect to the skill required to accomplish the cr;me and the chance of being caught. These
restrictions were introduced to make potential illegal gains independent of other aspects of
the situation--the skill required and the probapility of capture--that might affect a subject’s
response. Thus, the restrictions serve to assure that the two choices differ only with respect
to the payoff. The values of x, and x, ranged from $0 to $1000; x, was aiways the best outcome.
The maximum gain of $1000 was chosen because for the subjects” age group, 18-to-22;year
olds. it was felt that this amount was large enough to atiow diminishing (or increasing) mar-

ginal valuation while at the same time being an amount to which the subjects could "relate.”

To assess preference functions over the domain of losses, subjects were presented with sce-
nrarios which involved the potential»loss of freedom as a result of incarceration. The subjects
were asked to consider accepling a plea bargain rather than going to trial for a breaking-
and entering crime. Specifically, subjects were asked to indicate the longest sentence they
would accept and pass up going to trial where they faced a sentence of x, months with prob-
asility p or x, months with probability 1-p. The values of x, ranged from 0 to 6 months and the
values of x, ranged from 24 to 36 monfhs; again, x, was always the best outcome (i.e.. the least

prison time).

The order in which the subjects completed the two sets of assessments was randomly deter-
mined (i.e.. some subjects did the breaking-and-eniering assessments first, others did the
plea-bargaining assessments first). The order in which the pairs of outcome levels was pre-
sented was also randomly determined for each subject. For both scenarios, the values of p
ranged from 0.01 to 0.99 and the probability vector was randomly ordered for each outcome

pair.® Subjects were instructed to provide an answer in the "feasible” region for each problem

 This approach was intended to prevent subjects from “anchoring” their responses, which might occur



(i.e., a value between x, and x,) and were asked to verify each response.® At this point. a re-
sponse could be changed. Subjects were not allowed to change earlier responses. Thirty-four
CE’s were provided for each scenario by each offender; 29 CE’s were provided for each sce-
nario by each student. Parameter estimates we‘re' obtained for 57 subjects for the two sce-

narios. Results are reported in the next section.

5.0 RESULTS

In this section, we present the results of the statistical tests comparing the fit of the three
models for the two scenarios and discuss the “goodness of fit” of the most appropriate mod-
els. Subsequently, we present the values of the parameter estimates for gains and losses.

Discussion of the implications of the results is reserved for the next section.

Our first objective was to determine which of the three empirical models (Table 1) provided
the “best” fit to the data. A model was considered “best” (most parsimonious) for a subject’s
data if the restriction(s) on the parameter(s) did not degrade significantly the fit of the data
as measured by F tests. (The asymptotic properties of nonlinear estimators are discussed in
many references. including Judge et al. 1985. All tests were conducted at the 0.05 level of

significance.)

The number of subjects for which each model was most appropriate is shown in Table 2. As
can be seen, the best model for the majority of subjects differed depending upon whether the
outcomes were gains or losses. Specifically, the certain-weight model was found to be most
appropriate for 51 percent of the subjects when the outcomes were gains, while the full model
was best for 60 percent of the subjects when the outcomes were losses Additionally, the EU

model was appropriate for only 26 and 16 percent of the subjects for the domains of gains and

if the probabilities had been presented in ascending (or descending) order. It should also be noted
that this approach differs from the “Iractile” method of utility assessment as described in, for exam-
ple. Keeney and Raiffa (1976). Specificaily, s was not normalized to values between [0.1] and CE,
was not used to elicit CE, where j = i + 1

s After a CL value was piovided, a query of the following form appeared on the screen: "$__isthe
SMALLEST certain payoff at Harry's for which you would pass up the _ percent chance of finding
§_ and the __ percent chance of finding $__ at Jack’s. Do you agree with this {Y/N)?".



losses. respectively. The distributions of best model over the two domains differed signif-

icantly (y? statistic = 16.1154).

Table 3 shows the distribution of “best fit” by type of suoject. {The estimation procedure failed
to converge for one or more of the models for six subjects’ data in each domain. These re-
sults were excluded from the analysis.) As can be seen for the gains models, the modal best
fit for the offenders and female students was the certain-weight model (for 12 of 17 and 11 of
20 subjects, respectively), while the EU model was best for 3 of 20 male students. A different
pattern is apparent for the comparison of best-fit loss modeis. Both groups of males {(i.e.,
offenders and males students) were predominantly categorized by the full modei. while the full

and EU modeis were about equally likely to provide the best fit to the female students’ data.

Our second objective was to examine the explanatory power of the best models. The value
of R? ranged from 0.10 to 0.99. The median R? was 0.73 for the gain models and 0.74 for the

loss models.

The final results we present are the values of the estimated parameters. Recall from section
2.0 that the parameters in the model deiermine the shape of the satisfaction and probability
transform functions. Additionally, as Will be discussed in the next section, the parameter
values provide insight into attitudes towards risk. The parameter values reported are the
estimates from each subject’'s best-fit model. Results for the satisfaction functions (gains and

losses) are presented first, followed by those for the decision-weighting functions.

The satisfaction function, s, over illegal gains was defined by the parameter y . The estimates
for y ranged from a low of 0.3335 to a high of 7.4726; the mean value was 1.3751 and the me-
dian was 0.9841. Table 4 summarizes these resuits. As can be seen subjects were about
equally likely to have concave and convex satisfaction functions over gains. However, the
hypothesis that y = 1 could not be rejected for 31 of the 57 models (two-tailed test); for 15 of

the remaining models, y < 1 and for 11,y > 1.

The value function component of the loss preference model measures the (dis-)value associ-

ated with “doing time," i.e. of "losing” free time. The estimates of the y parameter ranged from

10



0.2781 to 3 7148: the mean was 1.3237 and the median was 0.9728. Results are included in
Table 4. As with the gains models. most values were “close to” 1 so that the hypothesis that
y = 1 could not be rejected for 40 of the 57 subjects. For 15 of the 17 remaining subjects, our
results indicaté y < 1. ({(significance level of 0.025) implying diminishing marginal valuation
of prison time. These results are consistent with other reports suggesting that the value {or
utility} function over losses is convex.” For only 2 subjects was y > 1 -- a result which would

be consistent with a globally concave utility function.

The x and f# parameters define the shape (and properties) of . Table 5 presents the results
for the illegal gains model. The entry for « = 8 = 1 corresponds to the 15 EU model subjects
(see Tabie 2). The 29 subjects for whom z = 1 (certain-weight model) had values of § < 1,
implying a certain weighting function which overweights probabilities less than 0.50. Of the
13 subjects for whom the full model provided the best fit, « and § were both tess than 1 for 10.
Thus, for these subjects, = was subcertain with "small” probabilities overweighted. For two
subjects, « < 1 and # > 1 implying underweighting of “small” probabilities. For one subject,
a > 1and f < 1implying overweighting of “most” probabilities. The estimated values for

a and f#§ are plotted in Figure 3a.

We now consider the results for the decision-weighting function over losses -- finding consid-
erable differences from those reported for gains. For 51 percent of the subjects, both

2 and § were less than 1 (see Table 6 and Figure 3b). These values suggest a decision
weighting function similar to that shown in Figure 1a. For an additionai 25 percent of the
subjects. # < 1and » = 1, suggesting a (certain) weighting function consistent, for example.
with Quiagin’s AUT. For only 16 percent of the subjects was the decision-weighting function’

the identity function, as predicted by EUT.

Figure 4 shows the decision-weighting functions over gains and losses for two subjects. For
the first subject (see Figure 4a). the certain-weight model was most appropriate for both sce-

narios and the decision-weighting functions were essentially identical. The estimated values

7 The estimations over sentence length were conducted for the absolute values of x,, x, and CE.



of # were 0.2364 and 0.2559 for the gain and loss scenarios, respectively. Further, it can be
seen that this subject’s data do not indicate much sensitivity to changes in mid-range proba-
bilities. Specifically. the value of the decision weight increases by only about 0.2 as p in-
creases from 0.2 to 0.8. Figure 4b illustrates the probability transforms for a representative
subject who used different probability transformations for the loss and gain scenarios. For this
subject, the best-fit model was the certain-weight model when the outcomes were gains (

f = 0.5044) and the full model when the outcomes were losses

(B = 0.3624 and a = 0.5745).

6.0 DISCUSSION

The results are consistent with the large body of experimental literature which suggests, in
contrast to the tenets of EUT. that most decision makers transform probabilities in the course
of assessing the value of a risky prospect. Specifically, “small” probabilities are overweighted
and “large” probabilities are underweighted (« < 1. i < 1) by 68 percent (gains) and 79
percent (losses) of our subjects. Additionally, the results suggest that risky losses are treated
differently than risky gains, as suggested by Kahneman and Tversky (1979). However, in
contrast to Kahneman and Tversky’s work, we find that the primary distinction between mod-
els of risky gains and losses is in the character of the probability transform rather than the
outcome transform. As different outcomes were used for the gains and losses, it may be that
the differences in the most appropriate modet in the two domains are attributable to the
characteristics of the outcomes and not to any universal difference in assessing gains and
losses. Whether these findings are peculiar to the scenarios used or will be found through
additionai sxperimentation to be more generally applicable, they are interesting to the extent
that most theoretical models considered do not suggest that the weighting function is scenario

dependent.

Probability transformation {(x, # # 1) was more common when the outcomes were losses
than when they were gains (84 percent versus 74 percent of the models). Further, the nature
of the transformation differed significantly between the two domains. The certain-weight

model was best for 51 percent of the subjects when outcomes were gains in contrast to 25

12



percent when the outcomes were losses. The more complex, full model was appropriate for
60 percent of the subjects when outcomes were losses and only 23 percent when outcomes
were gains. The distinction between these two models is. of course. whether the value of a
is 1. When 1 = 1, the function is “certain” in that the sum of weights over a prospect total to
1. If in addition, as we found, f§ is less than 1. individuals wiil overweight probabilities up to
0.5 and underweight larger ones. Such a = function is consistent with models suggested by
Quiggin (1982) and, for the two-outcome case, is equivalent to that proposed by Karmarkar

(1978).

When both « and f8 are less than 1. as was true for the majority of subjects when the outcomes
were losses, the weighting function acquires the rather "disagreeable” property of subcer-
tainty. Subcertainty is disagreeable to the extent that it can result in violations of stochastic
dominance in choices between prospects. Simplisticaily, subcertainty would suggest that a
decision maker would prefer a certain $10 to a 50-50 chance of receiving $10 or $10. More
seriously, subcertainty would also imply $10 is preferred to a 50-50 chance of $10 + ¢, or
$10 + ¢, . for arbitrarily small, positive ¢,. r, . As was noted in section 2.0, subcertainty is
among the properties ascribed to the prospect theory weighting function by Kahneman and
Tversky (1979). who suggested that individuals would edit dominated prospects from consid-
eration prior to evaluation. Our results suggest that subcertainty is common -- particularly
over risky losses. We suggested that subcertainty of the weighting function could imply event
and prospect pessimism by the decision maker vis-a-vis a certain outcome (the CE). These
pessimism concepts are consistent with the interpretation of decision weights by Kahneman
and Tversky (1979, p. 280) as measuring "the impact of events on the desirability of prospects
and not merely the perceived likelihood of these events.” Another interpretation is that given
an undesirable prospect (be it any risky situation or prison sentences), the "rationai” decision
maker may “reserve” part of the cumulative weighting function for some unspecified and,
definitionally, impossible event. Thus. for example. when contemptating the choice between
a distribution of sentence at trial and a plea bargain, which yields a certain prison term, the
decision maker may consider and assign probabilities to other unspecified and impossible
outcomes such as, for example, the prosecutor’s key witness will fail to appear, the judge will

throw the case out of court, or “Providence” will intervene. The discrepancy between the cu-

13



mulative densities over probability and weights then may be interpretéd as a measure of at-
titude towards risky situations in generai and towards the prospects in particular. As prison
sentences are less desirable than ill-gotten gains. it would then not be surprising to find that

subcertain models were more prevalent for our loss situations

A curvilinear decision weighting function has implications both for a decision maker’s sensi-

tivity to changes in probability and attitudes towards risk. Consider the simplest case. Let

X, = 1and x, = 0. Then, CE = =l’r and % = %rt" nir ZZ . Ify is also equal to 1,
—aﬁ% = Z—; . Thus, for x = § = 0.5. the value of the CE can be read directly from Figure

1a and the rate of change in the value of the CE is as shown in Figure 2. As can be seen, smal!
increases in very small and large probabilities result in disproportionate increases in the
willingness to pay for the prospect, whereas changes in mid-range probabilities generate
disproportionately small increases. Of course, the EUT model would suggest a constant rate

of change.

We turn now to a consideration of the impact of curvilinear weighting functions on attitudes
towards risk. Risk attitudes were measured using the risk premium (RP). Our results indicate
that for (at least) some probabilities 87 percent of the subjects are risk seeking when the
outcomes are gains and 89 percent are risk seeking when the outcomes are prison sentences.
The risk-seeking behavior is attributable primarily to transformations of objective probabilities
rather than to convexity of the satisfaction functions. Both the shape of the probability {x) and
the satisfaction functions affect the magnitude of RP. For purposes of these analyses, the
value p® will be detined as the value of p, at which the RP = 0. The value of p® is not unique,
but is dependent upon x,, x,. « . # and y. A unique pR does exist, however, for the special case
in which one of the risky outcomes is 0. The RP > =< 0 as the expected value is greater

than. equal to, or less than the CE. Letx, = 0, then RP > =< 0 as

pxy > = < [n(p)x}]'"".

orasp >=< n(p)". Thus. the parameters «, #. and y define a unique transition probability,

p® where [z(p)]"* = p. ify = 1, the RP will be positive for all p < p® = p* . where, as be-
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fore. p* is the value at which =(p) = p.f A search aigorithm was used to identify the value p?
for each subject and model. These p? are appropriate for ali [x,, p: 0.(1— p)] events. For
gains. therefore. p is the probability of the best outcome (e.g.. $1000) occurring and for losses

p is the probability of the worst outcome (e.g.. 36 months in prison) occurring.

For the iltegal gains scenario, we found that 11 subjects were risk averse and 6 subjects were
risk seeking for ail probabilities and outcomes (see Table 7). The remaining 40 subjects were
risk seeking for some values of p, the probability of the best outcome. Estimated values of

pR varied from 0.02 to 0.89. Individuals were risk seeking. therefore, for all p less than these
values. On average. these 40 subjects were risk seeking for all probabilities Jess than about

0.44 (standard deviation = 0.2294).

For the loss scenario. x, > 0 is the worst outcome and p is the probability of the worst event
happening. (The best outcome is, of course. 0. realized with probability 1-p.) The estimated
values of p* ranged from 0.03 1o 0.77. On average subjects were risk seeking for all p greater
than about 0.30 (standard deviation = 0.1772) -- or. equivalently, for all 0 < (1 -p) < 0.70.
Subjects were risk seeking for all probabilities greater than these p? values.. Although this
result may seem counter-intuitive, it is consistent with the findings with respect to gains, i.e.
individuals are risk seeking when the probability of the best outcome is “small.” Consider the
following example. For one subject. y = 09728, ff = 05532, « = 1. and p? = 048 . I

X, = 24 and p = 0.25. the EV = 6 and the CE = 822 Thus. this individual’s plea bargaining
model suggests that he would accept a plea bargain sentence about 2 months longer than the
expected value of the trial outcome. As he is willing to “pay” a higher certain “price” than the
EV of the trial prospect, he can be deemed risk avoiding. On the other hand, if p = 0.75 (im-
plying a 0.25 chance of 0 months, the best outcome). the EV = 18 and the CE = 15.35, sug-

gesting risk-seeking behavior with respect to the best outcome.

The resulls suggest that risk-seeking behavior is common when the probability of the best

outcome is relatively “small” for both gains and losses. These findings are, of course, con-

* Ifa =f=1.theRP >=< 0asy < => 1 for all probabilities, consistent with EUT risk measures.
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sistent with an individual simultaneousiy gambling and purchasing insurance. Risk seeking
appears, however, to “persist” for a much larger probability range when the outcomes are

losses.

7.0 SUMMARY AND CONCLUSIONS

Preference models over gains and losses were estimated that explicitly allowed for subjective
valuation ofoﬁlcome levels and probabilities. This methodological approach extends the re-
cent literature by beginning the search for an appropriate parametric model of risky decision
making thrat will reflect empiricai regulari.ti‘es and récent theoretical work. Our findings are
consistent with the results reported in the literature which suggest that transformations of
probabilities are common in risky decision making. However. our work extends this literature
in that it demonstrates that behavior is significantly affected by the transformation of proba-
bilities. Specifically. our results indicate that. for most subjects. models which aliow for
transformation of objective probabilities provide significantly more expianatory power than
models such as EUT which do not allow such a transform. The EUT model provided the fbest”
explanation of the decision making behavior of only about 20 percent of the subjects (26 and
16 percent for gains and losses, respectively). The full mode! (with both parameters assuming
values less than 1) was more likely to-be appropriate for losses and the certain-weight model
(¢« = 1; f# < 1) was more likely to be appropriate for gains. In Section 6.0, we considered the
implications of the parametric estimates for behavior towards risk. The deviation of = from
identity was shown to imply variation in responsiveness to changes in p, with individuals ex-
hibiting greater sensitivity to changes in small and large probabilities than to mid-range
probabilities. Additionally. the results showed that risk seeking over “small” probabilities is
common, while risk avoidance is the norm for larger probabilities: Risk seeking was found to
be appropriate for a wider probability range when outcomes were losses than gains. Two
maijor differences in gain and loss models were thus identified. First, the difference in results
for the two domains suggested that subcertainty (“pessimism” towards the risky prospects) is
more common for losses than gains. Secondly, risk-seeking behavior appears to be  »

persistent with respect to probabilities for losses.
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The intent of our research was to provide a systematic empirical test of some of the more
recent theoretical and empirical insights regarding risky decision making. We were partic-
ularly interested in providing insights on the influence of probability on risky choice. In pursuit
of this objective, we extended the methodology of preference functional assessment to ac-
commodate non-linearity of preferences with respect to probability and proposed a qﬁite
flexible parametric form for the probability function. We believe that assessment of preference
functionals which accommodate nonlinearities in probability provides more information than
examination of pair«wise choices. The benefit of the estimation of a parametric model is the
ability to separate the influence of outcomes and probabilities on risky choice behavior,
yielding insight on (1) the extent of over- aqd underweighting of probabilities, (2) sensitivity to
changes in probability, (3) the impact of decision weights on risk-taking benavior. and (4) the

impact of outcomes on risk-taking behavior
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APPENDIX 1

This appendix provides a description of the interactive computer program that was used to
elicit the CE’s. The initial screen provided a general introduction to the task. This introduction
noted that the subject is going to be shown some choices “similar to those that might be faced
by an individual who is trying to decide which store to break into or whether to accept a plea
bargain” and that his/her responses should be "what you would do if you were faced with the
choices that will be shown.” The introductory screen also noted that responses to the
questions "in no way imply that you would ever break into a building or engage in any other
zriminal activity.” This caveat was included to assure the subjects. particularly the offenders.

that their responses would not be used against them in any way.

The situation for the breaking-and-entering scenario was described as follows:

Suppose that you had decided to break into one of two markets--
Jack’s or Harry’s. Further, suppose that you knew it

would take the same skill to break into either market and that
the risk of capture was the same. Further, suppose that you
know that Jack has $900 in his register half the time and $100
the other half, while Harry always has some cash in his register.

An example of the types of choices that would be shown was then given. The possible payoffs
at Jack’s in the example above is a 50 percent chance of $300 and a 50 percent chance of $100.
The explanation accompanying the example {shown next) provided instruction as to how they

should think about the choice problems

If you knew Harry’s register contained $110, you would probably choose
to break into Jack’s. On the other hand, if you knew Harry had $890

in his register, you would probably choose his market. What if Harry had
$300? Or $700? Which would you choose?

As you can see, there is some number of dollars less than
$900 and more than the $100 payofif at Jark’s for which it
wouid be difficult for you to decide whir: market to break
into. Your task is to decide the & ¢ ..T «mount of certain
cash at Harry’s for which you would cnouse to break into
Harry’s rather than Jack’s:
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The instructions concluded by asking the subjects to "Consider each question carefully and

tell us how you would act if you were really faced with each choice.”

The structure of the plea bargaining scenario introduction is identical to that of the breaking-
and-entering scenario shown above. An example of the piea-bargaining scenario is given

below.

Suppose you were captured breaking-into a market and are
discussing your alternatives with your attorney. Your

attorney feelis that if your case goes to court you will face

a 50% chance of receiving a 6-month sentence and a 50% chance
of receiving a 36-month sentence.

The district attorney has offered to plea bargain: You will
get a sentence shorter than 36 months if you agree to plead

guilty.

What is the LONGEST sentence the DA could offer before you
wouid just forego the trial and accept the shorter sentence?

More details of the breaking-and-entering and plea-bargaining questions are shown in Figure

5.
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TABLE 1. EMPIRICAL MODELS

MODEL FREE PARAMETERS RESTRICTION(S)
Full Model a B,y none
Certain-Weight Modet By a =1

ELj Model Y a = ﬂ =1




TABLE 2. BEST-FIT MODEL RESULTS®

MODEL FREE PARAMETERS . GAINS LOSSES
Full Mode! x fy 13 34
Certain-Weight Model By 29 14
EU Model y 15 9

* Entries are number of subjects.



TABLE 3.

BEST-FIT MODEL RESULTS BY SUBJECT TYPE®

TYPE FULL CERTAIN-WEIGHT EU TOTAL
GAINS

Offenders 4 12 1 17

Male Students 5 6 9 20

female Students 4 11 5 20

Totzl 13 29 15 57
LOSSES

Offenders 15 5 0 20

Mzale Students 12 7 3 22

Ffamale Students 7 2 6 15

Total 34 14 9 57

* Entries are number of subjects.



TABLE 4. ESTIMATED VALUES OF 3

VALUE OF y
MODEL D<y= 1<y <2 y > 2 Totatl
GAINS
Full Model 3 8 2 13
Certain-weight 12 14 3 29
EU Model 10 3 2 15
Total 25 25 7 57
LOSSES
Full Model 1 14 9 34
Certain-weight 11 2 1 14
EU Model 4 ) 1 9
Total 26 20 11 57

* Entries are number of subjects.



TABLE 5. VALUES OF DECISION WEIGHT PARAMETERS: ILLEGAL GAINS®

a < 1 x =1 x> 1 Total
pg <1 10 29 1 40
B =1 0 15 8] 15
f o> 1 2 0 0 2
Tota! 12 44 1 57

‘Entries are number of subjects.



TABLE 6. VALUES OF DECISION WEIGHT PARAMETERS: PLEA BARGAINING®

ax <1 = > Total
fo< 1 29 14 2 45
g =1 o] 9 0 9
g > 1 3 0 0 3
Total 32 23 2 57

“Entries are number of subjects



TABLE 7. RISK ATTITUDES B8Y MODEL"

MODEL GAINS LOSSES

RS RS/RA RA RS RS/RA RA
Fuli Model 1 1 1 4 29 1
Certain-Weight 0 29 0 4 10 0
EU Model 5 - 10 4 - 5
Total [ 40 11 12 39 8§

* Entries are number of subjects
Subjects were classified as risk seeking (RS) and risk averse {RA)
vis-a-vis the best cutcomes for both scenarios
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Figure 1. Decision-weighting function = for example parameter values: Decision-weighting

functions for (a)a = § = 05and (b)a = tand § = 0.5
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Example decision-weighting functions for two subjects: The dashed and solid lines
show the estimated decision-weighting functions for the gains and loss models. re-
spectively for the subjects for whom (a) + = 1 and f = 0.2364 (iflegal returns model)
and § = 0.2559 (sentence length model): and (b)«x = 1 and # = 0.5044 {illegal returns

model) and » = 0.5745 and f = 0.2559 {sentence length model).



PAYQFF FACM JACK'S PAYOFF FROM HARRY'S
2 chance of $30¢ § 7 tor sure
757, chance of $i6Q

“hat1s the SMALLEST number ol doltars there would have to be in
Harry s register before you would choose Harry s rather than Jack 57

YOUR RESPONSE SHOULD BE AN AMCUNT BETWEEN 5960 AND $100.
ENTER YOUR RESPONSE §

Iatter response -- say 100)

5300 1s the SMALLEST certain payalf at Harry's for which you would
pass up the 257, chance of inding $3C0 and the 75%, chance of finding
$100 at Jack's.

0o you agree wilh this (Y N}?

(it no)
RECONSIDER THE CHOICE AT JACK'S AND ENTER YOUR RESPONSE §

{if yes 1o next choice at Jack s}

TRIAL QOUTCOMES PLEA BARGAIN SENTENCE
50*: chance ot B monihs ? months for sure
507 chance of 36 months

Whatis the LONGEST sentence the DA could olfer belore you wauid
take the chance of going to trial”

YOUR RESPONSE SHOULD BE A NUMBER OF MONTHS BETWEEN & AND 36.

ENTER YOUR RESPONSE IN MONTHS

{atter response - say 18)

You would 9o to trial where there is a 50%, chance of receiving
3 36-month sentence and a 507, chance of receiving a 5-month sentence
if the sentence offered by the DA vzas MORE than 18 monlhs

Do you agree with this (Y/N)?

(it no)
RECONSIDER THE TRIAL OUTCOMES AND
ENTER YOUR RESPONSE IN MONTHS

{if yes. 10 next trial outcomes)

Figure 5. Examples of breaking-and-entering and plea-bargai






