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ABSTRACT

If the elements of the choice set in a decision model involving

randomness are not arbitrary, but restricted appropriately, an

expected utility ordering of them can be represented by a mean-

atandard deviation ranking function. These restrictions can apply to

the fan of, or can specify relationships among, the distribution

functions. particularly useful restriction is one which requires

that elements in the choice set, when normalized to have a ero mean

and unit variance, be identically distributed. No restriction is

placed on the form of any individual distribution function.

This research empirically teats for this and other useful

restrictions on the relationships among the elements of a set of

random variables. Observations from the random variables are used to

test whether or not they have distribution functions which are

appropriately related to one another, The tests are applied to rate

of return data for portfolios of common stock. The tests indicate

that one cannot reject the hypothesis that the distribution functions

of these portfolios are sufficiently similar to imply that the

efficient set of portfolios for any risk averse expected utility

naximizer is contained in the mean-standard deviation efficient set.
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I. Introduction

In general discussions of expected utility (EU) decision node is

usually no assumptions are made concerning the form of, or the

relationships among, the distribution functions describing the rendom

alternatives. As a consequence, unless quadratic utility is assumed,

the ordering under EU cannot be represented by one which depends on

only the mean and standard deviation (143) of the random alternatives.

on the other hand, if the elements in the choice set are not

arbitrary, but restricted appropriately, an EU ordering can be

represented by a MS ranking function. These restrictions can apply to

the form of, or can specify relationships among, the distribution

functions. Recently, Sins [1983] and Meyer [1987] remind us of this,

generalizing the normality restriction to one termed the 'linear

clasa" (Sinn) or the "location and scale" (Meyer) condition. This

restriction requires that elements in the choice set, when normalized

to have a zero mean and unit variance, be identically distributed. No

restriction is placed on the form of any individual distribution

function. Each of the random alternatives is equal in distribution to

the others except for location and scale.

This research begins the process of empirically testing for this

and other useful restrictions on the relationships among the elements

of a set of random variables. observations from the random variables

are used to test whether or not they have distribution functions which

are appropriately related to one another, This is done without

restricting or specifying the form of the distribution functions

involved. The tests are applied to rate of return data for portfolios

of common stock.



The empirical analysis of stock portfolios is used to illustrate

the test procedure, but the results that are obtained are also

inportant in their own right. The tests indicate that one cannot

reject the hypothesis that the distribution functions for rate of

return on portfolios of common stock are sufficiently similar to one

another to inply that the efficient set of portfolios for any risk

averse expected utility investor is contained in the MS efficient set

This finding is not due to a special form for these distribution

functions, but a result of their similarity. One implication of this

finding is that the relatively simple MS portfolio building algnnithim

are appropriate for larger classes of investers than is indicated in

the standard literature.

The paper is organized as follows, In the next section the

approach used to model smd test for relationships among random

variables, and the specific hypotheses to be examined, ere described.

In section III, the Kolsogorov—Smirnov (KS) multi—sample tsst is

suggested as an appropriate one when examining for these relaticnship

among random rates of return on portfolios of common stock. Section

IV presents the results from using this test to examine for the

hypothesized similarities among these random alternatives using

historical date. Finally, section V offers conclusions that can be

drawn from the evidence presented here.

II. Model structure

Random alternatives in many economic decision models involving

randomness, result from an agent's selection of velues for choice

variables taking various random and nonramdom parameters as given.

Thus, each random alternative has a common source of randomness, the



random parameters, and therefore is automatically related to the

others. How they are related to one another depends on the structure

of the equation which yields the random outcome as a function of the

agent's choices and the random and nonrandorn parameters. If this

structure is appropriately restricted, then an EU ranking of the

random alternatives can be represented by one depending only on their

first two moments.

The general model structure dealt with here assumes that the

random alternatives 21 are equal in distribution to ÷ bSE .+ c,

where a, bL and c are nonrandom, and ¶ and SE are random. In

this model, c1 SE and 2 are parameters outside the control of the

decision maker, and a and b1 are selected by the decision maker from

the feasible set. This structure implies that for given values for the

parameters, the expected utility ranking of 2 can be reduced to one

which depends only on a1 and b1. With further assumptions, these

parameters can be made one to one with the mean and standard deviation

of 2. This will be illustrated shortly.

While this structure may seem restrictive, it is sufficiently

general to contain many of the economic models dealing with randomness

found in the literature. In fact, most such models contain only one

source of randomness, rather than the two allowed here.1 Since the

requirement is that 2 be equal in distribution to + b;SE ÷ c,

the rsndon variables 2 and SE can differ across as long as the joint

distribution function for and SE remains fixed. The two cases

discussed next illustrate this possiblity.

A special case of this general structure which follows the typical

expected utility decision model with its one source of randomness,
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assumes that is equal in distribution to a + b1 where b, is

greater than zero. This is the structure pointed out by Sinn and

Meyer in support of the linear class or location and scale condition

since it implies that all are equal in distributicn to one another

except for location and scale. Sine and Meyer show how EU and MS

rankings of such random alternatives are related to one another. The

specific formulation of this stucture which we test for is:

Model 1: =
a1 + b1'1 where b1 > 0 and 5 are identically

distributed. Notice that the random term S is allowed to differ

across i, but its distribution function does not.

The second special case of interest allows two sources of

randomness, but assumes that > 0, = 0 and that and ¶ are

independent of one another. These restrictions do not inply the

location and scale condition, but are eufficient to yield that the

efficient set for any risk averse expected utility decision maker is

contained in the MS efficient set.2 The specific formulation of this

structure which we test for is:

Model 2: T = a1 + bLj + c where b1 > 0, ii > 0, = 0, and

the are identically distributed! the are identically

distributed, and 2 and are independent of one another. Again, the

. and 5 can depend on i, but the assumptions imply that the jcint

distribution of does not.

In summary, a general model structure which implies that the

random alternatives the decision maker faces are related to one

another in a two dimensional fashion has been identified. Two special

cases of this structure which imply that the EU efficient set for all

risk averse decision makers is contained in the MS efficient set are



also identified. The remaining sections of this paper discuss testing

for such model structures, and whether or not rate of return data for

portfolios of common stock can be adeqtately represented by a nodal of

either of these two type.

III. Stock Portfolio Models and Xolmogorov—Smirnov Tests

Given {z11) a sample of observations from the random alternatives,

the empirical question of concern is whether or not those observations

are a likely result of Model 1 or 2 for any constants a, b1, c, and

random parameters and which satisfy the stated restrictions.

How this question is addressed depends on the information available

concerning the constants and random parameters.

If each of the nonrandom tens are known and the random

parameters are observed concurrently with !i, then each of the t

obaervations must be checked for consistency with the specified model.

This is the extreme case since all variables on the right and left

side of the hypothesized model are observed.

A less extreme situation is one where the random parameters 9.

and 3 are observed concurrently with , but the a, b1, and c are

not known. For each i, it must be determined if (z} lies in the

three dimensional vector space spanned by (y} and XLL) and a vector

of ones, and if so, whether the coefficients satisfy the appropriate

sign restrictions. Neither of these two situations involves

statistical testing to conf in that the hypothesized model does or
does not represent the process generating alternatives 2.

A more interesting case is where one of the random parameters,

say R, is not observed. In this situation the hypothesized model,
with specified nonrandom tens and observations {z} and (Y) can be
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used to calculate values for (x1}. The question is: would it be

reasonable to observe these values as observations from an i which

satisfies the stated restrictions. Statistical tests can be used for

this question. This is the situation which arises in analyzing the

model representing the rate of return earned on a portfolio of common

stock.

The single index version of the Capital Asset Pricing Model

(CAPM) assumes a structure very similar to Models 1 and 2. It assumes

that the rate of return for a portfolio i is given by = + -
) ÷ where • is the risk free rate of return and m is the random

rate of return on the market portfolio. , and are paraneters to

the agent.
B1

is the covariance of the rate of return on the

portfolio with the rate of return on the market portfolio divided by

the market's variance, and is assumed to be constant. ç represents

nonsystematic risk associated with the portfolio and is a random

variable. These latter two terms depend on the securities the agent

chooses to include in the portfolio and hence are subscripted by I.

The single index model assumes that ,, and r. are independent, and

that the are independent of one another and have a mean of zero.

This model can be put in the form of Model 1 or Model 2 with

additional assumptions concerning E the nonsystematio risk term. If

where 6 are identically distributed, then the single index

model becomes:

ModellA:

where the various terms satisfy the restrictions contained in Model 1,

including the requirement that the random parameter, (? - + ) be
identically distributed for each f.
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Similarly, if the tens, when scaled to have the same

variance, are identically distributed, then a model like Model 2

results. Let denote a scale factor so that = O(6 where L are

identically distributed. The single index model then takes the form

Model 2A: = + D(f — 0) ÷

which satisfies the form and other restrictions of Model 2. Thus, if

the nonsystematic risk variables, when scaled appropriately, are

identically distributed then the EU efficient set is contained in the

MS efficient St.

In the CAPM model all terms other than the nonsystenatic risk

term are observable or can be obtained from independent sources.

Hence the test we conduct focuses on whether or not the calculated

are likely to have resulted as random samples from

identically distributed &. That is, using

Model lÀ: = [r1 — 0 — D1(r1 — •)]/D or

Model 2A: & [r1 — — DE(rL —

and data on the terms on the right hand side, one can test whether or

not the calculated are likely to have resulted fron draws Iron

the same population. since theory suggests that the are

independent of one another, the Kolmogorov-Smirnov (KS) or craner-von-

Mises tests are appropriate for this prohlen.

The KS test is selected because it is easy to compute, and hence

easily extendable to cases of many samples and many observations. For

portfolios of common stock, a large number of nonoverlapping samples

and observations are available. since the power of these statiatical

tests increases as the number of samples or the sample size increases,

it is advantageous to be able to deal with large numbers of sanples
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with many observations.

The multisample Kolmogorov-Ssiirnov (KS) statistic, denoted D, is

the maximum difference between any pair of Ic empirical distribution

functions (EDF5) formed from Ic samples. Formally, D is given by ED =

sup IF(x) — F(x)I. where the supremun is taken across x, i, and

j, and F(x) and F(x) are the EDFs from sanples i and j. The

statistic D is a discrete random variable which takes on a rational

value between zero and one.

The probability distribution for the statistic D has been

analytically derived and tabulated for the two and three sample cases

under the assumption that the samples are independently drawn from the

same population. It has also been tabulated for a larger number of

samples using Monte Carlo methods. This is possible because the

probability distribution for D does not depend on the form of the

continuous distribution function describing the population and D is

easily computed.3

For the two sample case, the KS test conpares favorably with

other monparametric tests and with parametric tests of this same

hypothesis. The main nonparanetric alternative is the Cramer-von Mises

test. The parametric alternatives vary, depending on the form of the

distribution function assumed and the specific alternative hypothesis.

Conover [1971 indicates that the KS test is similar in power to the

Cramer-von Mises test, easier to compute, and is more extensively

tabulated, especially for small samples. Compared with parametric

tests, such as the Chi—square or Lillifors tests which assume

normality, the KS test does quite well, with only a small loss in

power under normality. The KS test does much better than thesm
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parametric tests when normality is violated, and hence these latter

tests are misapplied.

The distribution free property of the statistic D is also a

desirable feature since neither Model 1 or 2 make any statement

concerning the form of the distribution functions describing the

random variables. Bradley (1968] indicates that the KS test is

sensitive to all alternative hypotheses, not just ones concerning

differences in location or scale. That is, it is a test which is also

sensitive to differences in the shape or form of the distribution

function.

IV. Portfolio Data and Hypothesis Test Results

In this section, results from using the multisample KS test to

teat the hypothesis of identically distributed scaled nonsystenatic

risk in the rate of return data for portfolios of common stock are

reported. All the data used in the study are drawn from the cRSP4

tapes of monthly rate of returns on corporate equities traded on the

New York or American Stock Exchanges. The rate of return includes

dividends and capital gains. These tapes were searched to find all

securities for which a thirty year history of monthly data (360

observations) exists over the period January, 1955 through December,

1984. A total of 424 securities were found.

This sample was split into two randomly chosen subsanples of 212

securities each.5 one of these subsamples was reserved for future

analysis, and has not been used to date. A detailed examination of

the second subsample revealed 20 securities for which cne or more

monthly rates of return are missing. These securities were dropped
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from the sample and not replaced. Thus, the full working sample which

is used to build portfolios has 360 monthly
observations on 192

separate securities.

This full working sample on the 192 securities was split once

again into two randomly chosen subsamples of the sane 180 ncnthly

observations on each security. Subsample A is used to independently

obtain values for the parameters B1 and • The only use nade of

subsample A is to construct values for these two constants. subsample

B is used to test for identically distributed
nonsystenatic risk when

the nonsysteiaatic risk variable is scaled by one of the constants

determined from subsample A. A more detailed description of how this

is accomplished follows.

using the 180 monthly observations in subsample A, the rates of

return for each of the 192 securities are regressed against the rate

of return for the market portfolio for those same
months. The market

rate of return is represented by the CRSP market index which uses

value weighting and includes dividends. The regression slope

coefficient for each security is used as its The standard

deviation of the residuals in each regression is used as the O for

that security.

To construct portfolios, the 192 securities were numbered from 1

to 192, and a securities sampling vector was constructed containing.

those numbers ordered by the corresponding security's B value. When

tests involve n portfolios of k securities in each, the ith portfolio

contains the securities indicated by elements (i—l)'(190/n)
+ j for :

1 to k of this securities sampling vector. In our analysis n alway

is either 10, 19 or 38.
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Given the sample of 192 securities, this procedure allows one to

create 10 (19, 38) portfolios containing up to 19 (10, 5) securities

with no two portfolios of the same size containing common securities.

This no—overlap condition allows independent nonsystematic risk terms

for the various portfolios of a fixed size. Under this procedure,

as the number of securities included in the portfolios increases the

previous securities are retained and new securities are added. In

each case investigated, the rate of return on a multiple security

portfolio is an equal weight (1/k) average of the rates .of return of

the component securities. The I3 and 0 for the portfolios are

determined in the same manner as for securities. This portfolio

building procedure gives portfolios with widely differing D. values,

both efficient and inefficient ones.6

Given values for and S, a constant risk free rate (th) of 6%

per year (rate of return of .005 per month), and the observed market

rate of return r51, the observations on in subsample B are used to

calculate sets of values for the unobserved scaled nonsystematic risk

under Màdel lA or 2A. This is done for each portfolio using the

transformations mentioned earlier and relisted below for convenience.

Model lA: 6LL = [r — 4' — P(r1 —

Model 2A: = [r,, — — B(r5 —

The question is: are these sets of values likely to have resulted as
random samples from the same population.

These sets of values initially contain 180 points. To investigate

subsamples of smaller size, an observations sampling vector consisting

of 180 random numbers hetween 1 and 180, drawn without replacenent,

was constructed. When tests are conducted using samples of size k,
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the observations whose numbers match the first )c elements of this

observations sampling vector are used. Thus, as the length of the

sample used in the statistical test is increased, the observations

from the shorter samples are retained and additional observations are

merged with them.

When k portfolios of the same number of securities are obtained

using the above procedures, the nethod of portfolio construotion

allows the nonsystematic risk terms to be independent of one another.

Thus, the KS test with k samples and n observations is appropriate.

These tests were conducted for Ic = 10, 19 and 38 samples (portfolios)

and using n = 25, 50, 100 and iso observations. In addition, the

number of securities included in the portfolios ranged from 1 to 19,

10 or 5, depending on whether Ic = 10, 19 or 38.

- A few typical results are listed in Table 1. The entire set of

test results are reported in Appendix A. Each element of Table 1 or

Appendix A lists the results from the test of a particular hypothesis.

This hypothesis is that the set of values representing scaled

nonsystematic risk obtained using either Model 1A or 2A with the

indicated parameter values, are random sanples fron the same

population.

Each line in the table or the Appendix contains four test resuits.

They are for the indicated model, number of portfolios, and number of

securities in the portfolio, and for samples of 25, .50, 100 and 150

observations. The numbers reported are the observed value for 0 as a

fraction (12/25), and below it a pair of numbers (.93,.16) giving the

probability of observing a D value less than or equal to, or greater

than or equal to the observed value, respectively. Neither of these
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probabilities is likely to be small if the sets of data are

independent samples from the same population.7

Table 1 gives the test results for both models for the 10

portfolio case and for portfolios containing 1, 5, 10, and 15

securities. These results are typical of those listed in Appendix A.

The entry for portfolios with 15 securities and 180 observations

indicates that when 10 portfolios are selected with 15 different

securities in each and 180 monthly observations are ohtained, the

scaled nonsysteinatic risk terms for these 10 portfolios are not likely

to be identically distributed when scaled by l/D and thus model IA

is rejected. This conclusion is indicated by the KS statistic's value

39/180. This large a value only occurs 2% of the time if the samples

are from the same population.

On the other hand, if the nonsystematic risk is scaled by 1/

the identical distribution hypothesis is not rejected (Model 2k). in

this case the observed value for D is 29/180 which is neither too

large nor too small as to be unlikely under the identical distribution

hypothesis. The probability of observing this value or less is .47,

while the probability of this value or greater is .61. The remaining

entries in these tables of results are interpreted in this sane

fashion.

Two observations can be made concerning the test results. First,

when the number of observations is either 25 or 50, neither model can

be rejected. one finds very few instances where either probability is

anailer than .10 or even .20 and certainly no more than ons would

expect assuming these rejection levels. Second, with larger sample

sizes, 100 or 180 observations, Model lA is quite clearly rejected8
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and Model 2A is not. Model 1A is rejected at even the .05 level in

the vast majority of cases, and rejected in every instance at the .20

level. Model 2A on the other hand is not rejected in most instances

at the .05 level and not more often than one would expect at higher

significance levels.

Two minor points of information concerning this work are

noteworthy. First, the reason why portfolios containing different

numbers of securities were selected for study was the prior hypothesis

that well diversified portfolios were more likely to satisfy the

conditions of Model 1 or 2 than singls securities. While rejection is

more frequent in portfolios with few securities, Model lA is rejected

even in portfolios with as many as 19 securities, end Model 2A is not

rejected even in cases where the number of securities is quite small.

Thus, the evidence does not support this prior hypothesis in any

convincing way.

Second, the monthly data can be aggregated into quarterly or semi-

annual observations and the study repeated. This vas carried out in

part to see if the holding period had any significant effects on the

outcome of these tests. None were found, and the reduced number of

observations makes the tests less powerful, so this direction of

extension was abandoned.

Conclusions

In this work, estimation error is considered in the tests which

are conducted. The tests ask whether or not the random variables

whose distribution functions are being estimated are sufficiently

similar to one another when estimation error is taken into

consideration. Other studies comparing the efficient sets under
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EU or MS ranking procedures have used data to estimate the

distribution functions for rate of return on portfolios and then

treated those estimates as if they are exact. Levy and

Markowitz [1979]. Kroll, Levy and Markowitz [1994] and Pulley [198]j

are recent examples. since these researchers are primarily addressing

the question of potential differences between the EU and MS

ranking techniques they treat their estimates as a neans of obtaining

representative distribution functions. This use of estimates as if

they are exact is appropriate.

The fact that estimation error is taken into account in our

procedure means that the finding that Model 2A is not rejected should

be interpreted as implying that the MS and EU efficient sets do not

differ from one another in a statistically significant way. This also

gives added meaning to the often made criticise of EU ranking

procedures that they "require more data". It is certainly true that

with few enough observations there is no statistically significant

difference between EU and MS ranking procedures in that the random

alternatives are being estimated so imprecisely so as to not allow

rejection of the LS or similar conditions.

This work shows how one can analyze the data to determine if EU

ranking methods can possibly give results that are statistically

significantly different from MS procedures. Since mutual funds are

portfolios, this work indicates that comparing stochastic dominance

with MS rankings of these funds on the basis of 10 observations

cannot result in statistically significant findings, but can only

illustrate the technique involved (Joy and Porter, [1974]; Meyer

[1977]).
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Rejection of Model lA or 2A, with the specified parameter

values does not imply that Model 1 or Model 2 is rejected. That

is, it could be that the rate of return on portfolios of common stock

follow a model of the appropriate form, but the test carried out chose

the incorrect random parameter , or incorrect values for

and b. On the other hand, if the specific version of the nodel is

not rejected, then there exist some parameters such that a model cf

the appropriate form represents the ! adequately.

In the specific implementation of Model 1 and 2 used here, the

values for the parameters, and the market index selected to represent

the common source of randomness, are picked using the suggestions of

the the very simplest CAPM. More sophisicated methods of obtaining

values for these parameters are available, other market indices could

be selected, and some evidence even suggests that certain of the

parameters which are assumed to be constant are not fixed over tine.

Any of these changes can lead to better models explaining rate of

return on portfolios, or better prediction of future values for rj,

but cannot lead to rejection of Model 2. That is, this work has

indicated that there exist constants aL and b and random

variables and such that the form and restrictions

listed as Model 2 could reasonably be assumed to lead to the data

observed concerning rate of return on stock portfolios, Only new data

sets or better tests can alter this conclusion.
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Footnotes

1. The model of the competitive firm facing a random output price of
Sandmo [1971] and the portfolio model of Tobin [1958] are examples
displaying this structure.

2. With independence of and , the following two equations relate

a1 and bL to and a,

—
(a12p72

+ b12j&)'2 = T"2 (1)

o1=a1a+b1a1+c (2)

These equations can be inverted and used to determine is and a from a
and b if the determinant of H:

11=

a1

is not zero. Assuming this is the case, define V(1a,a) to be the
ranking function over (11,0) space which represents the expected
utility preferences over alternatives 2, when the result from a
model with this general structure. It is now a straightforward
calculation to develop the properties of V(p,a) and relate them to
properties of u(z). one can show that the sign of V, depends on risk
aversion in the expected utility model. Risk aversion in the expected
utility model implies that the agent always chooses that alternative
with the lowest standard deviation from among those with a given nean
value.

3, This work has been carried out to a limited extent by Gardner,
Pinder and Wood [19801. Since their work does not examine enough
samples or samples of sufficient size for our purposes, Appendix B
describes the Monte Carlo procedures used to obtain the small sample
distribution for D for any number of samples of any size.

4. CR5? monthly stock return tape is maintained by the Center for
Research in Security Prices, University of Chicago.

5. The "IPERM" numbers of these fins are evailable from the authors
upon request.

6. We also conducted tests where the portfolios contained randonly
selected securities without regard to . For portfolios containing
several securities or more, the rate of returns distributions become
similar to one another not only in form, but also in level of mean and
variance. Hence being able to use a mean—variance ranking procedure
is not very valuable. The procedure reported in the text ensures that
the portfolios are representative of the broad spectrum of portfolios
which can be formed. Inefficient as well as efficient ones are
included, and the portfolio's p values range from about .5 to 2.0.

7. The sum of these two probabilities minus one is the probability of
obtaining the observed value of D. At one point in the analyis we
accidently constructed portfolios which contained securities in
common. In some instances an overlap of about 50% occurred. This
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caused the observed KS values to be too small. It appears that

positive correlation leads to lower values for D than would occur with

independence. It is for this reason that we report the probability
that the D value is less than or equal to the one observed.

8, We also tried a version of Model 1 in which the risk free rate is

replaced by the intercept of the regression used to obtain the

values. This did not change the conclusions concerning Model 1.
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10 PoRTFOLIOS: Model 1A

Number
of

Securities 25

Table 1

Number of Observations

50 100 180

10

15

1 12/25
(.93, .16)

17/50
(.92, .3.6)

29/100
(.99, .02)

34/180
(.93, .10)

5 11/25
(.84, .34)

16/50
(.84, .27)

24/100
(.89, .17)

40/180
(.99, .01)

12/25
(.93, .16)

16/50
(.84, .27)

34/100
(.99, .00)

51/180
(.99, .00)

10/25
(.66, .57)

16/50
(.84, .27)

25/100
(.93, .11)

39/180
(.99, .02)

10 PORTFOLIOS: Model 2A

Number Number of Observations
of

securities 25 50 100 180

10

15

1 12/25
(.93, .16)

16/50
(.84, .27)

28/100
(.98, .02)

31/180
(.81, .24)

5 9/25
(.43, .82)

15/50
(.73, .42)

21/100
(.67, .44)

25/180
(.34, .74)

10/25
(.66, .57)

13/50
(.40, .73)

24/100
(.89, .17)

36/180
(.97, .05)

10/25
(.66, .57)

14/50
(.58, .60)

20/100
(.56, .57)

28/180
(.61, .47)
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Appendix A

10 PORTFOLIOS: Model 1A

Number of Observations

50 100 180

Number
c4

Securities 25

1 12/25
(.93, .16)

17/50
(.92, .16)

29/100
(.99, .02)

34/180
(.93, -10)

2 9/25
(.43, .82)

15/50
(.73, .42)

24/100
(.89, .17)

32/180
(.86, .19)

3 10/25
(.66, .57)

15/50
(.73, .42)

25/100
(.93, .11)

37/180
(.98, .03)

4 11/25
(.84, .34)

14/50
(.58, .60)

27/100
(.98, .04)

39/180
(.99, .02)

5 11/25
(.84, .34)

16/50
(.84, .27)

24/100
(.89, .17)

40/180
(.99, .01)

6 11/25
(.84, .34)

16/50
(.84, .27)

25/100
(.93, .11)

40/180
(.99, .01)

7 11/25
(.84, .34)

15/50
(.73, .42)

29/100
(.99, .02)

37/180
(.98, .03)

8 12/25
(.93, .16)

15/50
(.73, .42)

28/100
(.98, .02)

41/180
(.99, .01)

9 12/25
(.93, .16)

15/50
(.73, .42)

31/100
(.99, .01)

47/180
(.99, .00)

10 12/25
(.93, .16)

16/50
(.84, .27)

34/100
(.99, +00)

51/180
(.99, .00)

11 12/25
(.93, .16)

16/50
(.84, .27)

33/100
(.99, .00)

49/180
(.99, .00)

12 12/25
(.93, .16)

14/50
(+58, .60)

29/100
(.99, .02)

47/180
(.99, .00)

13 11/25
(.84, .34)

15/50
(.73, .42)

27/100
(.98, .04)

46/180
(.99, .00)

14 11/25
(.84, .34)

16/50
(.84, .27)

26/100
(.96, .07)

42/180
(.99, .00)

15 10/25
(.66, .57)

16/50
(.84, .27)

25/100
(.93, .11)

39/180
(.99, .02)

16 10/25
(.66, .57)

16/50
(+84, .27)

27/100
(.98, .04)

42/180
(.99, .00)

17 11/25
(.84, .34)

15/50
(.73, .42)

28/100
(.98, .02)

42/180
(.99, .00)

18 12/25
(.93, +16)

15/50
(.73, .42)

27/39
(.98, .04)

39/180
(.99, .02)

19 10/25
(.66, .57)

15/50
(.73, .42)

28/100
(.98, .02)

40/180
(.99, .01)



10 PORTFOLIOS: Model 2A

Number
otSecurities

Number of Observations

25 50 100 180

1 12/25(.93, .16) 16/50(.84, .27) 28/100(.98, .02) 31/180(.81, .24)
2 10/25(.66, .57) 13/50(.40, .73) 25/100(.93, .11) 31/180(.81, .24)
3 10/25(.66, .57) 13/50(.40, .73) 25/100(.93, .11) 25/180(.34, .74)
4 11/25(.84, .34) 12/50(.23, .90) 23/100(.83, .24) 23/180(.18, .88)
5 9/25(.43, .82) 15/50(.73, .42) 21/100(.67, .44) 25/180(.34, .74)
6 11/25(.84, .34) 17/50(.92, .16) 22/100(.76, .33) 28/180(.61, .47)
7 9/25(.43, .82) 15/50(.73, .42) 29/100(.99, .02) 34/180(.93, .10)
8 11/25(.84, .34) 14/50(.58, .60) 27/100(.98, .04) 30/180(.76, .30)
9 11/25(.84, .34) 12/50(.23, .90) 26/100(.96, .07) 35/180(.95, .07)

10 10/25(.66, .57) 13/50(.40, .73) 24/100(.89, .17) 36/180(.97, .05)
11 11/25(.84, .34) 12/50(.23, .90) 24/100(.89, .17) 31/180(.81, .24)
12 10/25(.66, .57) 12/50(.23, .90) 23/100(.83, .24) 32/180(.86, .18)
13 • 8/25(.18, .95) 11/50(10., .97) 21/100(.67, .44) 28/180(.61, .47)
14 9/25(.43, .82) 12/50(.23, .90) 17/100(.19, .90) 23/180(.18, .88)
15 10/25(.66, .57) 14/50(.58, .60) 20/100(.56, .57) 28/180(.61, .47)
16 8/25(.18, .95) 16/50(.84, .27) 18/100(.31, .81) 28/180(.61, .47)
17 9/25(.43, .82) 14/50(.58, .60) 20/100(.56, .57) 30/180(.76, .30)
18 9/25(.43, .82) 15/50(.73, .42) 19/100(.43, .69) 29/180(.70, .39)
19 9/25(.43, .82) 15/50(.73, .42) 20/100(.56, .57) 29/180(.70, .39)
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19 PORTFOLIOS: Model 1A

Number of Observations

25

13/25
(.93, .18)

13/25
(.93, .18)

13/25
(.93, .18)

11/25
(.61, .65)

13/25
(.93, .18)

12/2 5
(.83, .39)

11/25
(.61, .65)

12/2 5—
(.83, .39)

13/2 5
(.93, .18)

12/2 5
(.83, .39)

50

19/50
(.93, .13)

18/50
(.87, .24)

18/SO
(.87, .24)

14/50
(.23, .90)

17/50
(.76, .39)

18/50
(.87, .24)

17/50
(.76, .39)

14/50
(.23, .90)

17/50
(.76, .39)

16/50
(.61, .58)

100

36/100
(.99, .00)

3 3/100
(.99, .01)

3 2/100
(.99, .01)

3 0/100
(.98, .03)

29/100(.97, .05)

31/100
(.99, .02)

3 3/100
(.99, .01)

3 0/100
(.98, .03)

29/10 0
(.97, .05)

29/10 0
(.97, .05)

180

63/180(.99, .00)
52/18 0(.99, .00)
50/ 18 0

(.99, .00)

48/180
(.99, .00)

47/18 0(.99, .00)
50/180(.99, .00)
49/180(.99, .00)
45/180(.99, .00)
43/18 0(.99, .01)
4 0/180(.98, .03)

Number
of

Securities

1

2

3

4

5

6

7

8

9

10

Numberof
Securities

1

2

3

4

5

38 PORTFOLIOS: Model lA

Number of Observations

25 50 100

14/25(.93, .20) 20/50(.90, .20)
39/100(.99, .00)

14/25(.93, .20) 19/50(.80, .35) 34/100(.99, .01)
13/25

(.80, .46)
18/50

(.65, .55)
35/100

(.99, .01)

12/25
(.54, .74)

15/50
(.10, .97)

34/100
(.99, .01)

13/25
(.80, .46)

17/50
(.45, .75)

30/100
(.95, .09)
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Number
of.

Securities

19 PORTFOLIOS:

Number of

5025

Model 2A

Observations

100 180

1 12/25
(.83, .39)

18/50
(.87, .24)

26/100
(.87, .21)

33/180
(.74, .34)

2 14/25
(.98, .07)

17/50
(.76, .39)

26/100
(.87, .21)

34/180
(.80, .26)

3 13/25
(.93, .18)

19/50
(.93, .13)

30/100
(.98, .03)

36/180
(.90, .15)

4 11/25
(.61, .65)

14/50
(.23, .90)

21/100
(.32, .79)

29/180
(.37, .72)

5 11/25
(.61, .65)

15/50
(.42, .73)

22/100
(.45, .68)

31/180
(.58, .52)

6 12/25
(.83, .39)

16/50
(+61, .58)

26/100
(.87, .21)

34/180
(.80, .26)

7 10/25
(.35, .88)

15/50
(.42, .73)

24/100
(.70, .42)

31/180
(.58, .52)

8 13/25
(.93, .18)

14/50
(.23, .90)

22/100
(.45, .68)

29/180
(.37, .72)

9 11/25
(.61, .65)

16/50
(.61, .58)

22/100
(.43, .68)

32/180
(.66, .42)

10 9/25
(.12, .98)

14/50
(.23, .90)

23/100
(.58, .55)

27/180
(.19, .88)

Number
of

Securities

1

2

3

4

5

38 PORTFOLIOS: Model 2A

Number of Observations

25 50 100

13/25 19/50 27/100
(.80, .46) (.80, .35) (.76, .35)

14/25 18/50 31/100
(.93, .20) (.65, .55) (.97, .05)

13/25 19/50 30/100
(.80, .46) (.80, .35) (.95, .09)

11/25 14/50 24/100
(.26, .94) (.03, .99) (.36, .77)

11/25 15/50 24/100
(.11, .94) (.10, .97) (.36, .77)
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Appendix B

Monte Carlo Methods and Small Sample Distributions for the
Kolmogorov—Smirnov Statistic

Several studies compute the exact values of the cumulative
distribution function for the KS statistic D, but do so only for snail
numbers of samples. Birnbauin and Hall [l960 focus on the two and
three sample oases, and Taylor and Becker [1982] extend their work to
the four sample oase and also allow unequal sample sizes.
Unfortunately, the computations required for the calculation of these
exact values get prohibitively expensive as either the number of
samples or the number of observations becomes large.

An alternative approach is to estimate the cumulative
distribution function for D using Monte Carlo methods. This approach
was utilized by Gardener, Pinder and Wood £1980] who give percentiles
for U for sample sizes up to 100 and for up to 10 sanpies. They
conclude that accurate approximations to the known exact distribution
functions for the two and three samples cases can be obtained using
5000 replications in the Monte Carlo experiment.

This Monte Carlo approach is adaptable to currently available
personal computer technology. A small program in the GAUSS
Mathematical andStatistical Programming Language1- was written to
compute efficiently the value for U for arbitrary numbers of samples
and sample sizes, and to use these values from a large number of
replications to estimate the CDF for 0. The source code for this
program and a more detailed description of the algorithm are in
Appendix C. The program requires equal sample size across the various
samples for reasons discussed below. This restriction is of no
consequence for the types of economic and financial data dealt with
here.

The accuracy of this particular Monte Carlo algorithm was
examined by estimating the distribution function for 0 for the three
sample case and comparing the results with those computed exactly by
Birnbaum and Hall. Following Gardner, Pinder and Wood, 5000
replications were used. The results confirm that the procedure is
highly accurate. There are 234 entries in the Birnbaum and Hall Table
1 ranging from 0 to 1, but with almost all being larger than .5. The
nean error of our estimates of these values is .0004, with a standard
deviation of .0038. The estimation errors are distributed quite
uniformly across the various entries in the Birnbaum and Hall table.
The maximum error observed was .0134. Thus, we are confident the
algorithm given in Table Cl with 5000 replications estimates the
distribution function for 0 with error whose magnitude is of no
consequence given the critical values (.05 - .2) employed in this
study.

The algorithm allows the user to specify the number of samples
(k), the number of observations (n), and the number of replications
(r) to carry out. The time required to compute the estimated
cumulative distribution for 0 is not excessive as long as the equal
sample size restriction is imposed. Some examples of the
computational time required to carry out 50 replications f or varieus
sample sizes and number of observations are given in Table 212. These
times are such that .0025 times the product of the number of samples,
observations and replications (.0025kn-r) gives a good approximation

26



to the total time in seconds required to obtain the distribution
function for D for the specified case. For the 5000 replication case
this is approximately (n-k)/300 hours.

The reason that equal sample size improves the speed of the
calculation can be seen in Figure I. To compute the value for 0, one
needs the msximum distance between the upper and lover envelopes of

the EDFS formed from the k samples. Finding these envelopes and the

value for 0 involves searching across all of the nk observations
since the envelopes can change value at any of them. Since the EDFS

are nondecreasing functions however, the upper and lower envelopes are

also the left and right envelopes. Under the equal sample sized

restriction these are easier to find since they can change values only

at n different points.3 Thus, the problem is reduced from one of

dimension k-n to one of dimension 2-n. Sample sizes (k) equal to
values up to 180 are dealt with here so this proves to be a

significant shortcut. More details concerning this algorithm are

included in Appendix C.
certain observations concerning the distribution function for D

are worth noting. First, the distribution for 0 becomes more
concentrated about its mean as either the sample size or the number of

samples increases, but this concentration is much more sensitive to

sample size than number of samples. Test statistics for which the

probabality mass is more concentrated about the mean value are more

useful in hypothesis testing. Thus, the analysis here pays more
attention to the effects of sample size than number of samples.

second, for the two sample case, the limiting distribution for D,

as the number of observations increases, has been derived and involves

the scale factor rY; that is, n"2D has a known limiting
distribution. This limiting distribution is a good approximation for

sample sizes of 75 - 100 or larger. (Manoukian [1986)) Extensions of
this finding to cases involving more than two samples

have not been

found. Some evidence, however, is given in Figures II and III. In
Figure II, smoothed histograms for 0 for the 2, 10, 19 and 38 sample

cases are given in four different panels. Various numbers of
observations per sample are included. These are scaled so each

contains unit area. It is clear from this figure that the cases
involving a larger number of samples behave qualitatively like the two

sample case. Indeed, when the 0 values are transformed by the scale

factor n to obtain the four panels in Figure III, it is clear that

a limiting distribution exists for those cases as well, Again samples

sizes of 75 — 100 or larger appear to be sufficient to use the

limiting distribution.
One might also ask if there is a limiting distribution as k. the

number of samples, increases. From Figure iv one can observe that a

scale factor in k must be used and that it must be nonlinear in k. so

far, we have been unable to approximate such a factor as a simple

nonlinear function of k. -

FootnGt
1. GAUSS, copyright by Aptech Systems, inc. Box 6487,

Kent, WA 98064.

2. These timing statistics were produced on a
Zenith 158 PC with an

8mhz clock speed and an 8087 numeric coprocessing chip. several tests

on a zenith 241 with an 80287 coprocessor
indicated a reduction in the
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required time by a factor of about 2.5,

). The right and left envelopes continue to be easier to compute even
when sample sizes differ. M algorithm which handles unequal sample
size is available from R. Rasche.
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Table 81

Examples of Time Requirements for D Statistic
Monte Carlo Computations

(Time in Seconds)
(50 Replications)

k 3 10 25
-

50 100
n

25 24.17 43.61 85.91 156.04 295.77

50 40.70 77.95 158.30 292.76 -606.21

100 78.33 156.09 324.11 505.11 na

150 120.51 242.39 950.48 na na

na = not available. The isplementation of the program given in Table
1 requires that n*k c= 8190.
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FIGURE IV
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Anoendiic C

The source code in the GAUSS programming language is listed in Table
Al. The portion of the algorithm which determines the value for D is
illustrated using a small data set involving three samples taken fron
Conover [p.318, 1971]. The data and the steps of the algorithm are
given in Table C2. Each of the steps described below are indicated by
a corresponding number in that table. GAUSS is a matrix processing
language and the algorithm takes advantage of this fact.

1) construct a matrix of k columns of the n observations on the
random variables. (xij)

2) sort each column of this matrix into ascending order.

3) construct a nx2 matrix, the first column containing the naximum
values of each row of the sorted matrix in 2) (max over j of Xij), and
the second column containing elements -1/n. The information in the
first columns pertains to the right envelope of the k empirical
distribution functions.

4) construct a nfl matrix, the first column containing the minimum
values of each row of the sorted matrix in 2) (mm over j of xii), and
the second column containing elements 1/n. The information in the
first column pertains to the left envelope of the k empirical
distribution function.

5) construct a 2nx2 matrix by "stacking" the matrix in 3) above the
matrix in 4).

6) sort the rows of the matrix in 5) into ascending order by their
first element.

7) compute a vector of the oumulative sums of the elements in the
second column of the matrix in 6). These values are the difference
between the upper and lower envelopes of the k empirical distribution
functions at the 2n points where they change values.

8) determine the maximum value of the elements in the vector in 7) -
This value is the value for D for the k samples.
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Table Cl

GAUSS Program to Estimate pdf and cdf of the U statistic

print "read nun samples, number obs, number iterations";
dims=con(3,l)
iprint "nun samples/nun observations/nun iterations";
lprint /m3 dime;
z=zeros(dims[2,lJ,dime[],l]}
down=ones(dims[2,l] ,2)
up=—ones(dims(2,ll.2) ;
res=zeros(dims[2,l],dime[4,l]+1H
tlhsec;
j=i;
do until j > dims(3,lI;

cia;
t2 = (hsec — tl)/iOO;
print "iteration number "nj;;" elapsed time "ut2u" seconds';;

i=i;
do until i > dims(l,l);

z[.,iJ= sortc(rndu(dims[2,l],l),l);

endo;
endif;

down[.,i]=maxc(z')
up(. ,i]minc(z')
x=sortc(downlup,i);
y=recserar(x,x[i, •] ,oneS(l,2))jj = abs{minc(y[.,2]fl;
res[jj,l] = res[jj,l) +1;

jaj-f1;
endo;
res = res ./ dims[3,i];
cx=recserar(res[.,l},res[i,i),ofles(i,i));
dc;
iprint /m3 "probabilities: H;
iprint /m3 res(.,l);
lprint /m3 "cumulative probabilities";
iprint /m3 cX
ti = (hsec—ti)/lOO;
ols; print "total time: "fltl;
end;
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Table C2

Example of Algorithm for Computing D—Statistic with Eqin].
Observations per Sample

l 31

(1) (2)

U
4

—.

4)

J 7]
(5) (6)

II I
4

(7)
(0)

I
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