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ABSTRAGT

If the elements of the choice set in a decision model involving
randomness are not arbitrary, but restricted appropriately, an
expected utility ordering of them can be represented by a mean-
standard deviation ranking function. These restrictions can apply to
the form of, or can specify relationships among, the distribution
functions. A particularly useful restriction is one which requires
that elements in the choice set, when normalized to have a zero mean
and unit variance, be identically distributed. No restriction is
placed on the form of any individual distribution function.

This research empirically tests for this and other useful
restrictions on the relationships among the elements of a set of
random variables. Observations from the random variables are used to
test whether or not they have distribution functiens which are
appropriately related to one ancther. The tests are applied to rate
of return data for portfolios of common stock. The tests indicate
that one cannot reject the hypothesis that the distribution functions
of these portfolios are sufficiently similar te imply that the
efficient set of portfolios for any risk averse expected utility

maximizer is contained in the mean-standard deviation efficient set.
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I. Introduction

In general discuseions of expected utility (EU) decision mocdels
usually no assumptions are made concerning the form of, or the
relationships among, the distribution functions describing the random
alternatives. As a consegquence, unless guadratic utility is assumed,
the ordering under EU cannot be represented by one which depends on
only the mean and standard deviation (MS) of the random alternatives.

on the other hand, if the elements in the choice set are not
arbitrary, but restricted appropriately, an EU ordering can be
represented by a MS ranking functiocn. These restrictions can apply to
the form of, or can specify relationships among, the distribution
functions. Recently, Sinn [1983] and Meyer [1987] remind us of this,
generalizing the normality restriction to one termed the "linear
class™" (5inn) or the "location and scale" (Meyer) condition. This
restriction requires that elements in the choice set, when normalized
to have a zero mean and unit variance, be identically distributed. No
restriction is placed on the form of any individuai distributicn
function. Each of the random alternatives is equal in distribution to
the others except for lécation and scale.

This research begins the process of empirically testing for this
and other useful restrictions on the relationships among the elements
of a set of random variables. Observations from the random variables
are used to test whether or not they have distribution functions which
are appropriately related to one another. This is done without
restricting or specifying the form of the distribution functiorns
involved. The tests are applied to rate of return data for portfolios

of common stock.



The empirical analysis of stock portfolios is used to illustrate
the test procedure, but the results that are obtained are also
important in their own right. The tests indicate that one cannot
reject the hypothesis that the distribution functions for rate of
return on portfeclios of common stock are sufficiently similar to one
ancther to imply that the efficient set of portfolics for any risk
averse expected utility investor is contained in the MS efficient set
This finding is not due to a special form for these distribution
functions, but a result of their similarity. One implication of this
finding is that the relatively simple MS portfolio building algorithm:
are appropriate for larger classes of investers than is indicated in
the standard literature.

The paper is organized as follows., 1In the next section the
approach used to model and test for relationships among random
variables, and the specific hypotheses to be examined, are described.
In section III, the Kolmogorov-Smirnov (KS5) multi-sample fest is
suggested as an appropriate one when examining for these relationship:
among random rates of return on peortfolios of common stock. Section

.IV presents the results from using this test to examine for the
hypothesized similarities among these random alternatives using
historical data. Finally, section V offers conclusions that can be
drawn from the evidence presented here.

IT. Mocdel Structure

Random alternatives in many econcmic decision medels involving
randomness, result from an agent’s selecticn of values for choice
variables taking various random and nonrandom parameters as given.

Thus, each random alternative has a commen source of randemness, the



random parameters, and therefore is automatically related to the
others. How they are related to one another depends on the structure
of the equation which yields the random outcome as a functien of the
agent’s choices and the random and nonrandom parameters. If this
structure is appropriately restricted, then an EU ranking of ﬁhe
random alternatives can bhe represented by one depending only on their
first two moments.

The general model structure dealt with here assumes that the
random alternatives EZ, are eqﬁal in distribution to a;¥ + b/% + c,
where a,, b and ¢ are nonrandom, and ¥ and ¥ are random. In
this model, ¢, ¥ and ¥ are parameters outside the contreol of the
decision maker, and a, and b, are selected by the decision maker from
the feasible set. This structure implies that for given values for the

parameters, the expected utility ranking of Z; can be reduced to ane

i
which depends only on a, and b,. With further assumptions, these
parameters can be made one to one with the mean and standard deviation
of Z,. This will ke illustrated shortly.

While this structure may seem restrictive, it is sufficiently
general to contain many of the economic models dealing with randcmness
found in the literature. In fact, most such models contain only one

1

scurce of randomness, rather than the two allowed here. Since the

requirement is that Z, be equal in distribution to a;¥ + b/% + c,

the random variables ¥ and X can differ across ¥ as lcng as the jolnt
distribution function for ¥ and X remains fixed. The twoc cases
discussed next illustrate this possiblity.

A special case of this general structure which follcws the typical

expected utility decision model with its one source of randemness,



assumes that % is equal in distribution to a, + b'® where b, is
greater than zero. This is the structure pointed out by Sinn and
Meyer in support of the linear class or location and scale cendition
since it implies that all % are equal in distribkuticn toc one ancther
except for location and scale. Sinn and Meyer show how EU and MS
rankings of such random alternatives are related to one ansother. The
specific formulation of this stucture which we test for is:

Model 1: 2, = a + b¥, where b, > 0 and ¥, are identically
distributed. Notice that the random term ¥, is allowed to differ
acreoss i, but its distribution function does not.

The second special case of interest allows twe socurces of

randomness, but assumes that,uy > 0, ¥, = 0 and that ¥ and ¥ are

I
independent of one another. These restrictions do not imply the
location and scale condition, but are sufficient to yield that the
efficient set for any risk averse expected utility decision maker is

contained in the MS efficient set.?

The specific formulation of this
structure which we test for is:

Model 2: 2, = a;§ + b% + ¢ where b, > 0, kK, >0, ¥ =0, and
the ¥ are identically distributed, the % are identically

distributed, and ¥, and ?Iare independent of one another. Again, the

¥, and ¥, can depend on i, but the assumptions imply that the jeint

distribution of (¥,X) does not.

In summary, a general model structure which implies that the
random alternatives the decision maker faces are related to one
another in a two dimensional fashion has been identified. Two special
cases of this structure which imply that the EU efficient set for all

risk averse decision makers is contained in the MS efficient =zet are



also identified. The remaining sections of this paper discuss testing
for such model structures, and whether or not rate of return data for
portfolios of common stock can be adequately represented by a model of
either of these two type.

III. Stock Portfolio Models and Kolmogorov-Smirnov Tests

Given (z,}) a éample of observations from the random alternatives,
the empirical question of concern is whether or not thﬁée observations
are a likely result of Model 1 or 2 for any constants a,, b, ¢, and
fandom parameters ?land ¥, which satisfy the stated restricticons.

How this question is addressed depends on the information availabie
concerning the constants and random parameters.

‘It each of the nonrandem terms are known and the random
parameters are observed concurrently with Z, then each of the t
observations must be checked for consistency with the specified model.
This is the extreme case since all variables on the right and left
side.of the hypothesized model are chserved.

A less extreme situation is one where the random parameters ¥

and ¥, are cbserved concurrently with &, but the a, b, and ¢ are
not known. For each i, it must be determined if {z,} lies in the
three dimensional vector space spanned by {y } and {x,) and a vector
of ones, and if so, whether the coefficients satisfy the appropriate
sign restrictions. WNeither of these two situations involves
statistical testing to confirm that the hypothesized model does or
does not repreéent the process generating alternatives E,.

A more interesting case is where one of the random parameters,
say ¥, is not observed. In this situation the hypothesized model,

with specified nonrandom terms and observations {z;} and {y,) can he



used to calculate values for (x,}. The question is: would it be
reasonable to observe these values as observations from an ¥, which
satisfies the stated restrictions. Statistical tests can be used for
this question. This is the situation which arises in analyzing the
model representing the rate of return earned on a portfolio of commen

stock.

The single index version of the Capital Asset Pricing Model
(CAPM) assumes a structure very similar to Models 1 and 2. It assumes
that the rate of return for a portfolio i is given by E o =9¢ + m(fm ~
P) + Lor where ¢ is the risk free rate of return and E; is the random
rate of return on the market portfolio. ¢ and F  are parameters to
the agent. q is the covariance of the rate of return on the
portfolio with the rate of return on the market burtfolio divided by
the market’s variance, and is assumed to be constant. E; represents

nonsystematic risk associated with the portfoelio and is a random
variable. These latter two terms depend on the securities the agent

chooses to include in the portfeolio and hence are subscripted by 1.
The single index model assumes that ¥, and Ei are independent, and
that the fl are independent of one another and have a mean of zero.
This model can be put in the form of Model 1 or Medel 2 with
additional assumptions concerning ﬂ the nonsystematic risk term. If
{, = B8 where §, are identically distributed, then the single index
model becomes:
Model 1A: % = ¢ + B(E, - ¢ + 5,)
where the various terms satisfy the restrictions contained in Model 1,

including the requirement that the random parameter, (¥, - ¢ + %) be

identically distributed for each F.



Similarly, if the fi terms, when scaled to have the same

variance, are identically distributed, then a model like Model 2

results. Let 8, denote a scale factor so that Gl = m%i where &, are

i
identically distributed. The single index model then takes the form

Model 2A: B = ¢ + D (E, - o) + 03,
which =satisfies the form and other restrictions of Medel 2. Thus, if
the nonsystematic risk variables, when scaled appropriately, are
identically distributed then the EU efficient set is contained in the
MS efficient set.

In the CAPM model all terms other than the nonsystematic risk
term are observable or can be cbtained from independent Ssources.
Hence the test we conduct focuses on whether or not the calculated

§, are likely to have resulted as random samples from

identically distributed 3“ That is, using
Model 1A: &, = [r, - ¢ - Bz, - ¢)]/B  or
Model 2A: &, = [r, = ¢ = E(rml- ©)1/8,
and data on the terms onrthe right hand side, one can test whether or

not the calculated ($,)} are likely to have resulted from draws from

the same population. Since theory suggests that the & are
independent of one another, the Kolmogorov-Smirnov (KS) or Cramer-von-
Mises tests are approprilate for this preblem.

The KS test is selected because it is easy to compute, and hence
easily extendable to cases of many samples and many chservations. For
portfclios of common stock, a large number of nonoverlapping samples
and cbservations are available. Since the power of these statistical
testes increases as the number of samples or the sample size increases,

it is advantageous to be able to deal with large numbers of samples



with many observations.

The multisample Kolmogorov-Smirnov (KS) statistic, dencted D, is
the maximum difference between any pair of k empirical distribution
functions (EDFs) formed from k samples. Formally, D is given by D =
sup |F (x) - Q(x)[, where the supremum is taken across %, 1, and
j, and F,(x) and F,(x) are the EDFs from samples i and j. The
statistic D is a discrete random variable which takes on a raticnal
value between zero and one.

The probability distribution for the statistic D has been
analytically derived and tabulated for the two and three sample cases
under the assumption that the samples are independently drawn from the
same population. It has also been tabulated for a larger number of
samples using Monte Carlo methods. This is possible because the
probability distribution for D does not depend on the form of the

continucus distribution function describing the population and D is

easily computed.3

For the two sample case, the X5 test compares favorably with
other nonparametric tests and with parametric tests of this same
hypothesis, The main nonparametric alternative is the Cramer-ven Mises
test. The parametric alternatives vary, depending on the form cf the
distribution function assumed and the specific alternative hypothesis.
Conover [1971] indicates that the K8 test is similar in power tc the
Cramer-von Mises test, sasier to compute, and is more extensively
tabulated, especially for small samples. Compared with parametric
tests, such as the Chi-square or Lillifors tests which assume
normality, the K8 test deoes quite well, with only a small loss in

power under normality. The KS test does much better than these



parametric tests when normality is violated, and hence these latter
tests are misapplied.

The distribution free property of the statistic D is also a
desirable feature since neither Model 1 or 2 make any statement
concerning the form of the distribution functions describing the
random variables. Bradley [1968] indicates that the KS test is
sensitive to all alternative hypotheses, not just ones concerning
differences in location or scale. That is, it is a test which is also
sensitive to differences in the shape or form of the distribution

function.

IV. Portfolio Data and Hypothesis Test Results

In this section, results from using the multisample KS test to
test the hypothesis of identically distributed scaled nonsystematic

risk in the rate of return data for portfolios of common stock are

reported. All the data used in the study are drawn from the crsp?
‘tapes of monthly rate of returns on corporate equities traded on the
New York or American Stock Exchanges. The rate of return includes
dividends and capital gains. These tapes were searched tc find all
securities for which a thirty year history of monthly data (360
observations) exists over the period January, 1955 through December,
1984. A total of 424 securities were found.

This sample was split inte two randomly chosen subsamples of 212

securities each.”® One of these subsamples was reserved for future
analysis, and has not been used to date. & detailed examination of
the second subsample revealed 20 securities for which one or more

monthly rates of return are missing. These securities were dropped



from the sample and not replaced. Thus, the full working sample which
is used to build portfolios has 360 monthly observations on 192
separate securities.

This full working sample on the 192 securities was split once
again into two randomly chosen subsampies of the same 180 monthly
observations on each security. Subsample A is used to independently
obtain values for the parameters m and §,. The only use made of
subsample A is to construct values for these two constants. Subsanple
B is used to test for identidally distributed nonsystematic risk when
the nonsystematic risk variable is scaled by one of the constants
determined from subsample A. A more detailed description of how this
is accomplished follows.

Using the 180 monthly observations in subsample A, the rates of
return for each of the 192 securities are regressed against the rate
of return for the market portfolio for those same months. The market
rate of return is represented by the CRSP market index which uses
value weighting and includes dividends. The regression slope
coefficient for each security is used as its m. The standard
deviation of the residuals in each regression is used as the § for
that security.

Te construct pertfolios, the 1382 securities were numbered from 1

to 192, and a securities sampling vector was constructed containing.

those numbers ordered by the corresponding security’s m value. When
tests involve n portfolios of k securities in each, the ith portfolio
contains the securities indicated by elements (i=1)(190/n) + Jj for ]
= 1 to k of this securities sampling vector. In our analysis n alway

is either 10, 19 or 38.
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Given the sample of 192 securities, this procedure allows one to
create 10 (19, 38) portfoliocs containing‘up to 19 (10, 5) securities
with no two portfoliocs of the same size containing common securities.
This no-overlap condition allows independent nonsystematic risk terms
for the various portfolios of a fixed size. Under this procedure,
as the number of securities included in the portfelios increases the
previous securities are retained and new securities are added. In
each case investigated, the rate of return on a multiple security
portfolio is an egual weight (1/k} average of the rates of return of
the component securities. The B and § for the portfolios are
determined in the same manner as for securities. This portfolio
puilding procedure gives portfolios with widely differing B, values,

both efficient and inefficient ones.$

Given values for B and §,, a constant risk free rate (¢) of 6%
per year (rate of return of .005 per month), and the observed market

rate of return r

s the observations on E, in subsample B are used to

calculate sets of values for the unobserved scaled nonsystematic risk
under Model 1A or 2A. This 1s done for each portfelio using the
transformations mentioned earlier and relisted below for convénience.

Model 1A: 6, = [r, = ¢ = B, (Ty — ®)1/B,

Model 2R: &, = [r,; = ¢ - B (rg, - $)1/8,
The question is: are these sets of values likely to have resulted as
random samples from the same pbpulation.

These sets of values initially contain 180 points. To investigate

subsamples of smaller size, an observations sampling vector consisting

of 180 random numbers between 1 and 180, drawn without replacement,

was constructed. When tests are conducted using samples of size k,

11



the observations whose numbers match the first k elements of this
observations sampling vector are used. Thus, as the length of the
sample used in the statistical test is increased, the observations
from the shorter samples are retained and additional chservations are
merged with them.

when k portfolios of the same number of securities are obtained
using the above procedures, the methed of portfolio constructicn
allows the nonsystematic risk terms to be independent of one ancther.
Thus, the K5 test with k samples and n observations is appropriate.
These tests were conducted for k = 10, 19 and 38 samples (portfolics)
and using n = 25, 50, 100 and 180 observations. 1In addition, the
number of securities included in the portfolios ranged frem 1 to 19,
12 or 5, depending on whether k = 10, 19 or 38.

A few typical results are listed in Table 1. The entire set of
test results are reported in Appendix A. Each element of Table 1 or
Appendix A lists the results from the test of a particular hypothesis.
This hypothesis is that the set of values representing scaled
nensystematic risk obtained using either Model 1A or 2A with the
indicated parameter values, are random samples from the same
population.

Each line in the table or the Appendix contains four test results.
They are for the indicated model, number of portfollos, and number of
securities in the portfolio, and for samples of 25,.50, 100 and 18¢Q
observations. The numbers reported are the observed value for D as é
fraction (12/25), and below it a pair of numbers (.93,.16) giving the
probability of observing a D value less than or equal to, or greater

than or egual to the observed value, respectively. Neither of these

12



probabilities is likely tc ke small if the sets of data are

independent samples from the same population.7

Table 1 gives the test results for both models for the 10
portfolio case and for portfoiios containing 1, 5, 10, and 15
Vsecurities. These results are typical of those listed in Appendix A.
The entry for portfolics with 15 securities and 180 cbservations
indicates that when 10 portfolios are selected with 15 different
securities in each and 180 menthly cbservations are obtained, the
scaled nonsystematic risk terms for these 10 portfoliocs are not likely

to be identically distributed when scaled by 1/8, and thus model 1A

is rejected. This conclusion is indicated by the K8 statistic’s value
39/180. This large a value only occurs 2% of the time if the samples
are from the same population.

Oon the other hand, if the nonsystematic risk is scaled by 1/8
the identical distribution hypothesis is not rejected (Model 2a). 1In
this case the cbeerved value for D is 28/180 which 1is neither too
large nor toc small as to be unlikely under the identical distribution
hypothesis. The probability of observing this value or less is .47,
while the probability of this value or greater is .61. The remaining
entries in these tables of results are interpreted in this same
fashion.

Two observations can be made concerning the test results. First,
when the number of observations 1s either 25 or 50, neither model can
be rejected. One finds very few instances where either probability is
smaller than .10 or even .20 and certainly no more than one would

expect assuming these rejection levels. Second, with larger sample

sizes, 100 or 180 observations, Model 1A is quite clearly rejected8
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and Model 2A is not. Model 1A is rejected at even the .05 level in
the vast majority of cases, and rejected in every instance at the .20
level. Model 2A on the other hand is not rejected in most instances
at the .05 level and not more often than one would expect at higher
significance levels.

Two minor points of information concerning this work are
noteworthy. First, the reason why portfolios containing different
numbers of securities were selected for study was the prior hypothesis
that well diversified portfolios were more likely to satisfy the
conditions of Model 1 or 2 than single securities. While rejection is
more frequent in portfolios with few securities, Model 1A is rejected
even in portfolios with as many as 19 securities, and Model 2A is not
rejected even in cases where the number of securities is quite small.
Thus, the evidence does not support this prior hypothesis in any
convincing way.

Second, the monthly data can be aggregated into quarterly cr semi-
annual observations and the study repeated. This was carried cut in
part to see if the holding period had any significant effects cn the
outcome of these tests. None were found, and the reduced number cf
observations makes the tests less powerful, so this direction of
extension was abandoned.

Conclusions

In this work, estimation error is considered in the tests which
are conducted. The tests ask whether or not the random variables
whose distribution functions are being estimated are sufficiently

similar to one another when estimation error is taken into

consideration. Other studies comparing the efficient sets under
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EU or MS ranking procedures have used data to estimate the
distripution functions for rate of return on portfolios and then

treated those estimates as if they are exact. Levy and

Markowitz [1979]. Kroll, Levy and Markowitz [1984] and Puiley [1981)
are recent examples. Since these researchers are primarily addressing
the question of potential differences between the EU and MS
ranking techniques they treat their estimates as a means of obtaining
representative distribution functions. This use of estimates as if
they are exact is appropriate.

The fact that estimation error is taken inte account in our
procedure means that the finding that Model 2A is not rejected should
be interpreted as implying that the MS and EU efficient sets do not

differ from one another in a statistically significant way. This alsc

gives added meaning to the often made criticism of EU ranking
procedures that they "require more data". It is certainly true that
with few enough observations there is no statistically significant
difference between EU and MS ranking procedures in that the random
alternatives are being estimated so imprecisely so as to not allow
rejection of the LS or similar conditions.

This work shows how one can analyze the data to determine if EU
ranking methods can possibly give results that are statistically
significantly different from MS procedures. Since mutual funds are
portfolios, this work indicates that comparing stochastic dominance
with MS rankings of these funds on the basis of 10 observations
cannot result in statistically significant findings, but can only
illustrate the technique involved (Joy and Porter, [1974]: Meyer

[18771).
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Rejection of Model 1A or 2A, with the specified parameter

values does not imply that Model 1 or Model 2 is rejected. That
is, it could be that the rate of return on portfolios of commen stock
follow a model of the appropriate form, but the test carried out chose

the incorrect random parameter ?“ or incorrect values for a,

and b,. On the other hand, if the specific version of the model is
not rejected, then there exist some parameters such that a model of
the appropriate form represents the Z, adequately.

In the specific implementation of Model @ and 2 used here, the
values for the parameters, and the market index selected toc represent
the common source of randomness, are picked using the suggestions of
the the very simplest CAPM. More sophisicated methods of obtaining
values for these parameters are available, other market indices could
be selected, and some evidence even suggests that certain of the
parameters which are assumed to be constant are not fixed over time.
Any of these changes can lead to better models explaining rate of
return on portfoliocs, or better prediction of future values for
but cannot lead to rejection of Model 2. That is, this work has
indicated that there exist constants a, and b, and random

variables X and § such that the form and restrictions

listed as Model 2 could reasonably be assumed to lead to the data
chserved concerning rate of return on stock portfolios. Only new data

sets or better tests can alter this conclusion.
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Footnotes

1. The model of the competitive firm facing a random ocutput price of
Sandmo {1971] and the portfolio model of Tobin [1558] are examples
displaying this structure.

2. With independence of X, and ?“ the following two equations relate
a, and b to y and o,.

/2
ul - (alzpyz + b]zu:Z) = TW (1)
o =ag +bo +cC (2)

These equations can be inverted and used to determine p and ¢ from a
and b if the determinant of H:

T-l/z (a‘"y’!) T-VZ (bl“:2)

9, o,
is not zero. Assuming this is the case, define V(u,s) to be the
ranking function over {u,s) space which represents the expected
utility preferences over alternatives %Z,, when the Z result from a
model with this general structure. It is now a astraightforward
calculation to develop the properties of V(u,0) and relate them to
properties of u{z). One can show that the sign of V, depends on risk
aversion in the expected utility model. Risk aversion in the expected
utility model implies that the agent always chooses that alternative
with the lowest standard deviation from among those with a given mean
value.

3. This work has been carried out to a limited extent by Gardner,
Pinder and Wood [1980]. Since their work does not examine enough
samples or samples of sufficient size for our purpeses, Appendix B
describes the Monte Carlo procedures used to obtain the small sample
distribution for D for any number of samples of any size.

4. CRSP monthly stock return tape is maintained by the Center for
Research in Security Prices, University of Chicago.

5. The "IPERM" numbers of these firms are available from the authors
upcen regquest.

6. We also conducted tests where the portfolios contained randomly
selected securities without regard to f,. For portfolies containing
several securities or more, the rate of returns distributions become
similar to one another not only in form, but alsc in level of mean and
variance. Hence being able to use a mean-variance ranking procedure
is not very valuable. The procedure reported in the text ensures that
the portfolios are representative of the broad spectrum of portfolios
which can be formed. Inefficient as well as efficient ones are
included, and the portfolio‘’s P, values range from about .5 to 2.0.

7. The sum of these two probabilities minus one is the probability of
obtaining the observed value of D. At one point in the analyis we
accidently constructed portfolios which contained securities in
common. In some instances an overlap of about 50% occurred. This

17



caused the observed KS values to be too small. It appears that
positive correlation leads to lower values for D than would occur with
independence. It is for this reason that we report the probability
that the D value is lass than or equal to the one observed.

8. We also tried a version of Model 1 in which the risk free rate is
replaced by the intercept of the regression used to obtain the b,
values. This did not change the conclusions concerning Model 1.

18
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10 PORTFOLIOS: Model 1A
Number
of
Securities 25
1 12/25
(.93, .18)
5 11/25
(.84, .34)
10 12/25
(.93, .16)
15 14/25
(.66, .57)
10 PORTFOLIOS: Model 2A
Number
of
Securities 25
1 12/25
(.93, .16)
5 9/25
(.43, .82)
10 10/25
(.66, .57)
15 10/25
(.66, .57)

Table 1

Number of Observatiocns

50
17/50
(.92, .16)

16/50
(.84, .27)

16/50 -
(.84, .27)

16/50
(.84, .27)

100
29/100
(.99, .02)

24/100
(.89, -17)

347100
(.99, .00)

25/100
(.93, .11)

Number of Observations

50
16/50
(.84, .27)

15/50
(.73, .42)

13/50
(.40, .73)

14/50
(.58, .60)

21

100
28,100
(.98, .02)

21/100
(.67, -44)

24/100
(.89, .17)

20/100
(.56, .57)

180
34/180
(.93, .10)

40/180
(.99, .01)

51/180
(.99, .00)

39,180
(.99, .02)

180
11/180
(.81, .24)

25/180
(.34, .74)

36/180

(.97, .05)

28/180
(.61, .47)



Appendix A

10 PORTFOLICS: Medel 1A

Number of Observations

Nugber
Securities 25 50 100 180
. (. 93,/.16) (. 92,/.16) (.53{1?82) (337180,
2 (.43, /.82) (.7 / 42) (_%3{1_87) (.32{1?89)
3 (667?24 (.37 (83100 (387188,
4 (- 84,/.34) (. 58,/.60) (.3%{1984) (.3571%82)
° (el (8358 (3900, 498
¢ T s OOV o £ (5377991 (897138,
? Y ks U / 42) (33719, (33185,
8 (.93 %36 (.73/ 92)  (.88'%2) (897
? (.93 (.713730 (357190, (587280,
1o (- 93,/.16) (.84 /.27) (3872 %0y (.387%%8
t (. 93,/.16) {. 34,/.27) (.3377%0y  (.3577%80)
12 (.93 /.16) (.58, /.60) (.5571%82) (.59, %80
3 (81723 (1378 (8871984 (.88718%,,
H (.8 / 31 (8873 (2871985, (.5571%80)
13 (68227 (Lad%%%y .33/1%1 (138710,
16 (.6 /.57) (. 34,/.27) (.5877%4y (537180,
1 (ai/ 3y (237750 (.5871%82) (837180,
18 (.9 /.15) (.73 %82 (.55{3?04) (.357%85,
18 et/ 27y (1370 (3871982 (897181,



Number

[«
Securities
1

2

10
11
12
13
14
15
16
17
IR
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10 PORTFOLIQS:

25
12/25
(.93, .18)

(.se,/.sv)

10/25
(.66, .57)

11/25
(.84, \34)

9/25
(.43,/.32)

(.88 234

25
(.43, /.32)

(. 3%1/?24)

11/25
(.82, .34)

10/25
(.66, .57)

11/25
(.84, .34)

10/25
(.68, .57)

(.18 /?35)

(.43,/.32)

10/25
(.66, .57)

(.18 /235)

(.43 /?32)

(.43?/?32)

25
(.43, /.32)

50

(- 3}5/?37)

(.40,/?73)

(-40," .73)

(.23, .90)

(.73, .42)

(.92, T16)

(.73, .42)

(.58,” T60)

(.23, T90)

(.40,

13/50
12/59
15/50
17/50
15/50
14/50
12/59
/.73)
12/59

(.23, 90)

12/5
(.23 /.90)

11/50
(10.," 787)

(.23,/.90)
(.58, .60)
(.82,
(.58, .60)

.42)

14/50
16/39
14/50
(- 73;/
/

(.73, .42)
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Model 2A

Number of Observations

100
.43, 089)
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1
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Number
of |
Securities

1

2

10

Number
of |
Securities

1

1% PCRTFOLICS:

25

(.93

(.93, J1s)

/

/
{. 93,(.13)
(.61 /.65)
13/25
12/25
11/25

(.93, “1m3)

(.83, .39)

(.61 .65)

5_
(.83, /.39)

13/25
(.93, .18)

12/25
(.83,/.39)

Model 1A

Number of Observations

(.93
(.87
(.8
(.23
(.76
(.87,
(.76
(.23
(.76

(.61,

]

’
L

!

/
/
/
14/50
/
/
/
/
17/50
16/50

50

.13)
.24)
L 24)
.90)

.39)

9)
90)
39)

.58)

38 PORTFOLIOS:
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(.93, .20}
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(.93, .20)

1 5
(.80, .46)
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(.53, J74)
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\ \ \ \ \
N ~N N3 ]

1 5
(.80, Vi6)

100
36/100
(.99, .00)

33/100
(.99, .01)
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(.99{ .01)

30/100
(.98, 7.03)

29/100
(.97, .05)

31/100
(.39,.02)

33/100
(.89, 7. 01)

Model 1A

Number of Observations

(.9

(.80,
(.65,
(.10,

(.45,

5

/
19/50
/
$5/58
£7/59

24
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.99, .00)

Q
—

~
i
= o0

—_
<
—

~
e
+ 00

—
L]

.
[ Sl
< m

—
.
o

—~ e e e
. . . . . A s . .
Y. TY-SRT I "SR Vo T SV, T Vo TS TR TY SRV o TSV YU, Vo T3, R+ X' Y

o oo oo 0o 0o

_—



Number
of
Securities

1

10

Number
of

Securities
1

2

25

Model 2A

19 PCRTFCLIOS:
Number of Observations
25 50 100

(.83 /.39) {.87 /.24) (.gg{l?gl)
(. 93,/.07) {. 76,/.39) (.%?{1?81)
{. 93,/ i8) (.93 ,/.13) (.32{1?83)
(.61 /.65) {.2 / (. %2/1?99)
(.61, /.55) (. 42,/. (. ig/loga)
83723 (elY s (8917
(. 35,/ (.42, /.73) (.%3/1?22)
B, (3% (3%

(&1)%%6s) (8177 236,%%60)
(1238 (.23V38 AT

38 PORTFOLIOS: Model 2A
Number of Observations
25 50 100

(.80 / 16) (. 30,/.35) (.%241985)
(.93, / (.65, / (.g%{1985)
(.80, /.46) (.8 /.35) (.gg{l?ge)
(.28, /.94) (.03, /.99) (.%é{l?gv)
(. 11,/.94) (. 10,/.97) (.%é{l?gv)
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Appendix B

Monte Carlo Methods and Small Sample Distributicns for the
Kolmogorov-Smirnov Statistic

Several studies compute the exact values of the cumulative
distribution function for the KS statistic D, but do so only for small
numbers of samples. Birnbaum and Hall [1%60) focus on the two and
three sample cases, and Taylor and Becker [1582] extend their work tao
the four sample case and also allow unequal sample sizes.
Unfortunately, the computationz required for the calculation of these
exact values get prohibitively expensive as either the number cof
samples or the number of cohservations becomes large.

An alternative approach is to estimate the cumulative
distribution function for D using Monte Carlo methods. This approcach
was utilized by Gardener, Plnder and Wood [1980] who give percentiles
for D for sample sizes up to 100 and for up to 10 samples. They
conclude that accurate approximations to the known exact distribution
functions fer the two and three samples cases can be obtained using
5000 replications in the Monte Carlo experiment.

This Monte Carlo approach is adaptable to currently availakle
personal computer technology. A small program in the GAUSS

Mathematical and-Statistical Programming Language1 was written to
compute efficiently the value for I for arbitrary numbers of samples
and sample sizes, and to use these values from a large number of
replications to estimate the CDF for D. The source code for this
program and a more detailed descriptien of the algorithm are in
Appendix €. The program requires egual sample size across the various
samples for reasens discussed below. Thig restriction is of no
consequence for the types of economic and financial data dealt with
here.

The accuracy of this particular Monte Carlo algorithm was
examined by estimating the distribution function for D for the three
sample case and comparing the results with those computed exactly by
Birnbaum and Hall. Following Gardner, Pinder and Wood, 5000
replications were used. The results conflrm that the procedure is
highly accurate. There are 234 entries in the Birnbaum and Hall Table
1 ranginyg from 0 to 1, but with almoat all being larger than .5. The
mean error of our estimates of these values is .0004, with a standard
deviation of .0038. The estimation errors are distributed quite
uniformly across the various entries in the Birnbaum and Hall table.
The maximum error observed was .0134. Thus, wWe are confident the
algorlthm given in Table ¢l with 5000 replications estimates the
distribution functicn for D with error whose magnitude is of no
consequence given the critical wvalues (.05 - .2} employed in this
study.

The algorithm allows the user to specify the number of samples
(k) , the number of observations (n), and the number of replicaticns
(r) to carry out. The time required to compute the estimated
cumulative distribution for D is not excessive as long as the equal
sample size restriction is imposed. Some examples of the
computational time required to carry out 50 replications for various

sample sizes and number of observations are given in Table B12. These
times are such that ,0025 times the product of the number of samples,
observations and replications (.0025knr) gives a goog approximation
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to the total time in seconds required to obtain the distributicn
function for D for tha specified case. For the 5000 replicatiocn case
this is approximately (nk)/300 hours. -

The reason that equal sample size improves the speed of the
calculation can be seen in Figure I. To compute the value for D, one
needs the maximum distance between the upper and lower envelopes of
the EDFs formed from the k samples. Finding these envelcpes and the
value for D involves searching across all of the nk observations
eince the envelopes can change value at any of them. Since the EDFs
are nondecreasing functions however, the upper and lower envelopes are
also the left and right envelopes. Under the equal sample sized
restriction these are easier to find since they can change values cnly

at n different points.3 Thus, the problem is reduced from one of
dimension kn to one of dimension 2m. Sample sizes (k) equal to
values up to 180 are dealt with here so this proves to be a
significant shertcut. More detalls concerning this algorithm are
included in Appendix C.

certain observations concerning the distribution function for D
are worth noting. First, the distribution for D becomes more
concentrated about 1ts mean as either the sample size or the number of
samples increases, but this concentration is much more sensitive to
sample size than number of samples. Test statistics for which the
probabality mass is more concentrated about the mean value are more
useful in hypothesis testing. Thus, the analysis here pays more
attention to the effects of sample size than number of samples.

Second, for the two sample case, the limiting distribution for D,
as the number of cbservations increases, has been derived and involves
the scale factor n'?; that is, n¥2D has a known limiting
distribution. This limiting distribution is a good approximation for
sample sizes of 75 - 100 or larger. (Manoukian [1988]) Extensions of
this finding to cases invelving more than two samples have not heen
found. Some evidence, however, is given in Figures IT and III. 1In
Figure II, smoothed histograms for D for the 2, 10, 19 and 38 sanmple
cases are given in four different panels. Various numbers of
observations per sample are included. These are scaled so each
contains unit area. 1t is clear from this figure that the cases
invelving a larger number of samples behave qualitatively like the two
sample case. Indeed, when the D values are transformed by the scale
factor n'? to obtain the four panels in Figure III, it is clear that
a limiting distribution exists for those cases as well. Again samples
sizes of 75 - 100 or larger appear to be sufficient to use the
limiting distribution.

cna might also ask if there ijs a limiting distribution as k, the
number of samples, increases. From Figure IV ona can cbserve that a
scale factor in k must be used and that it must be nonlinear in k. So
far, we have keen unable to approximate such a factor as a simple
nonlinear funetion of k. .

Footnotes
1. GAUSS, copyright by Aptech Systems, Inc. Box 6487, Kent, WA 98064,

2. These timing statistics were produced on a Zenith 158 PC with an
smhz clock speed and an 8087 numeric coprocessing chip. Several tests
on a Zenith 241 with an 80287 coprocessor indicated a reducticn in the
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required time by a factor of about 2.5,

3. The right and left envelopes continue to be easier to compute even
when sample slzes differ. An algorithm which handles unequal sample
size is available from R. Rasche.
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Table Bl

Examples of Time Requirements for D Statistic
Monte Carle Computations
(Time in Seconds)
{50 Replications)

k 3 10 25 50 100

n
25 24.17 43.61 85.91 156.04 295.77
50 40.70 77.95 158.30 292.76 - 606.21
100 78.33 156.09 2324.11 505.11 na
150 120.51 242,39 930.48 na na

na = not available. The implementation of the preogram given in Table
1 requires that n*k <= 8190.
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FIGURE IV

PDF of D Statistic (n=75)
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Appendix ¢

The source code in the GAUSS programming language is listed in Table
al. The portion of the algorithm which determines the value for D is
illustrated using a small data set involving three samples taken from
Conover [p.318, 1%71]. The data and the steps of the algorithm are
given in Table C2. Each of the steps described below are indicated by
a corresponding number in that table. GAUSS is a matrix preocessing
languags and the algorithm takes advantage of this fact.

1) construct a matrix of k columns of the n cbservations on the
random variables. (%i4)

2} sort each column of this matrix into ascending order.

1) construct a nx2 matrix, the first celumn containing the maximum
values of each row of the sorted matrix in 2) (max over j of Xig), and
the second column containing elements -1/n. The information 1n the
first columns pertains to the right envelope of the k empirical
distribution functiens.

4) construct a nx2 matrix, the first column containing the minimum
values of each row of the sorted matrix in 2) (min over 3} eof %jj}, and
the second column containing elements 1/n. The information in %

first column pertaine to the left envelope of the k empirical
distribution funetion.

§) construct a Znx2 matrix by "stacking" the matrix in 3) above the
matrix in 4).

6) sort the rows of the matrix in 5) inteo ascending order by their
first element.

7) compute a vector of the cumulative sums of the elements in the
second column of the matrix in 6). These values are the difference
between the upper and lower envelopes of the k empirical distribution
functions at the 2n points where they change values.

8) determine the maximum value of the elements in the vector in 7).
This value is the value for D for the k samples.
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Tabhle Cl
GAUSS Program to Estimate pdf and cdf of the D Statistic

print "read num samples, number obs, number iterations";
dims=con(3,1);
lprint "num samples/num cobservations/num iterations';
lprint /m3 dims;
z=zeros(dims(2,1],dims[1,1]}:
down=ones (dims[2,1],2)
up=-ones (dims(2,1},2);
res=zeros(dimg(2,1],dims[4,1]+1)
tl=hsec;
j=1;
do until j > dims(3,1]:
cls;
t2 = (hsec - tl1l})/100; ’
print "iteration number ":;j;:;" elapsed time ";;t2;;" seconds";;
i=1;
do until i > dims(1,1]:
z[.,1]= sortc(rndu(dims[2,1],1),1);
i=mi+l;
endo;
endif;
down[.,l]=maxc(z‘);
up(.,1l]=minc(z’);
x=sortc(down|up,1);
y=recserar({x,x[1,.],ones(1,2));
J3 = abs{minc(y([.,2]}):
res[(jj,1] = res[ji,1] +1;
j=j+1;
endo;
res = res .,/ dims[3,1];
cx=recserar{res[.,1l},res{1,1],ones(1,1}};
cls;
lprint /m3 "probabilities: ";
lprint /m3 res(.,1):
lprint /m3 *cumulative probabilities";
lprint /m3 cx;
tl = (hsec-t1l)/100;
¢ls; print "total time: "“;itl;
end;
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